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We study the confinement phase transition in SU(2) Yang-Mills theory, based on a statistical ensemble
model of correlated instanton-dyons. We show for the first time that such a model provides a quantitative
description, in light of the lattice data, for the temperature dependence of the order parameter.
We characterize the short-range interaction which plays a crucial role for the properties of such an
ensemble. The chromomagnetic charge density as well as the spatial correlations are found to be consistent
with known lattice and phenomenological information.
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I. INTRODUCTION

Sixty-five years after the advent of Yang-Mills theory [1]
and more than 45 years after the discovery of quantum
chromodynamics (QCD) [2,3], an understanding of the
mechanism for the confinement phenomenon in such
theories remains a significant challenge [4,5]. First-
principle lattice simulations have proven that confinement
is indeed a consequence of the underlying gluon fields in
the strongly coupled regime and provided ample detailed
information about the transition between confined and
deconfined phases [4,6,7]. Heavy-ion collision experiments
at the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) have also allowed the phenom-
enological extraction of many properties of hot matter
in the vicinity of the confinement transition [8–11].
Nevertheless, we do not have a precise picture of how
confinement occurs, nor what are the relevant degrees of
freedom driving this phenomenon.
Recently, a promising approach has emerged, based on

a new class of gluon topological configurations known as
the instanton-dyons [12–24]. This paper aims to provide,
for the first time, a quantitative description of the confine-
ment transition in SU(2) Yang-Mills theory based on
this approach. In the following, we will first formulate

the confinement problem and introduce the instanton-dyon
ensemble model in an accessible way. We will then present
detailed results to be compared with lattice data as well as
discuss the phenomenological implications.

II. HOLONOMY POTENTIAL

Let us start by formulating the confinement problem in
pure Yang-Mills theory in terms of the holonomy potential.
In the imaginary-time formalism for finite-temperature
field theory, one can define the Polyakov loop for a gauge
configuration Aμ as

L½Aμ� ¼ P̂ exp

�
i
Z

1=T

0

dx4A4ð  x; x4Þ
�
; ð1Þ

where T is temperature and P̂ is the usual path ordering.
As is well known, the gauge-invariant expectation value
L≡ h 1

Nc
TrLi, often also simply referred to as the Polyakov

loop, is a well-defined order parameter for confinement
transition in pure Yang-Mills theories [4,6]. The value of L
provides a measure of the “penalty”: L ¼ 0 implies infinite
free energy cost, while L ¼ 1 implies zero cost for creating
a free color charge (in the fundamental representation).
Therefore, in the confined phase below the critical temper-
ature Tc one has L ¼ 0, whereas at T > Tc one has L > 0

which approaches unity with increasing temperature. Some
very interesting analytical insights into the pertinent con-
finement dynamics in deformations of Yang-Mills theories
on R3 × S1 can be found in Refs. [25–28].
One can classify all of the gauge configurations accord-

ing to the boundary values of the Polyakov loop, L∞ ≡
L½Aμ�jj  xj→∞ [29,30]. We focus on the SU(2) case. Up to a
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gauge transformation and owing to the traceless nature of
gauge group generators, one can always characterize the
boundary values with one parameter h ∈ ½0; 1�: L∞ ¼
diagðe−iπh; eiπhÞ. Correspondingly, for configurations with
such boundary values, one has

L∞ ¼ 1

2
TrL∞ ¼ cos ðπhÞ: ð2Þ

The above gauge-invariant value is the holonomy, with h
being the holonomy parameter. For later convenience we
also introduce h̄≡ 1 − h. The confining holonomy corre-
sponds to L∞ ¼ 0 (and thus h ¼ 1=2), while the trivial
holonomy corresponds to L∞ ¼ 1 (and thus h ¼ 0).
One can then classify all gauge configurations according

to their holonomy values, and rewrite the path-integral
formulation of the theory’s partition function as

Z ¼
Z

½DAμ�e−SE →
Z

dh

�Z
½DAh

μ�e−SE
�

¼
Z

dhe−U½h�V=T; ð3Þ

where Ah
μ are all gauge configurations with holonomy value

h, V is the system volume, T is the temperature, and the
potential U½h� or U½L∞� is the holonomy potential.
In thermodynamic equilibrium at a given temperature T,

the expectation value of the Polyakov loop hL∞i must
correspond to the minimum of the holonomy potential.
Therefore, by computing this holonomy potential and
examining its minimum, one would be able to determine
hL∞i and its dependence on temperature. In this formu-
lation of the confinement problem, the essential question is
to reveal the shape of the potential U½L∞� and the holonomy
value at its minimum.
As a famous example, one could compute the (one-loop)

perturbative contributions from gluons to the holonomy
potential. This neat result, from Gross, Pisarski, and Yaffe
(GPY) [29,30], is given by

UI
GPY ¼ 4π2

3
T4h2h̄2: ð4Þ

It is obvious that the above perturbative potential has its
minimum at h ¼ 0 or h ¼ 1, i.e., corresponding to trivial
(nonconfining) holonomy. That is, perturbative contribu-
tions cannot lead to confinement. Contributions to the
holonomy potential that would be capable of changing its
shape toward a minimum at confining holonomy (with
h ¼ h̄ ¼ 1=2), therefore, must come from nonperturbative
sectors, as we shall discuss next.

III. CORRELATED INSTANTON-DYON
ENSEMBLE

It has long been suspected that an ensemble of gluonic
topological configurations holds the key to the confinement
mechanism and their contributions to the holonomy poten-
tial should drive its minimum toward the nontrivial,
confining value [31–35]. The hard question is what type
of topological configurations would be the right degrees
of freedom. They need to carry chromomagnetic charges to
be compatible with the “dual superconductor” picture for a
confining vacuum, which appears to be supported by
extensive lattice studies [7,36]. Their properties also need
to be sensitive to holonomy in order to influence the
behavior of the holonomy potential. The instanton-dyons,
which are constituents of the Kraan–van Baal–Lee–Lu
(KvBLL) calorons, appear to be a promising candidate
satisfying both requirements. Let us briefly discuss these
objects in the following.
The KvBLL caloron, found relatively recently [12,13], is

a new type of finite-temperature instanton solution with
nontrivial holonomy. See, e.g., Ref. [16] for reviews. The
most remarkable feature is that each such caloron of the
gauge group SUðNcÞ is made of Nc constituents that are
magnetically charged. These constituents are referred to as
instanton-dyons. Specifically for the SU(2) case, there are
four types of instanton-dyons: the L- andM-dyons together
make a KvBLL caloron, while the L̄- and M̄-dyons make
an anticaloron. The key properties of the instanton-dyons
are summarized in Table I. While a caloron’s action is
always the familiar 8π2=g2 (where g is the gauge coupling)
independent of holonomy, the division of this action
between the two constituents as well as the size of these
objects sensitively depend on the holonomy parameter h.
Even though a caloron is both electrically and magnetically
neutral, its constituent dyons do carry nonzero charges.
These nontrivial features of instanton-dyons have generated
hope that confinement could be explained by their con-
tributions. A number of analytic and numerical studies have
shown results in strong support of such a scenario [14–24].
To investigate confinement, one needs to compute the

contributions of instanton-dyons to the holonomy potential.
To do that, we build a statistical ensemble of these objects
for any given holonomy value as follows:

TABLE I. Properties of the SU(2) instanton-dyons.

M M̄ L L̄

Electric charge 1 1 −1 −1
Magnetic charge 1 −1 −1 1
h charge 1 1 −1 −1
Action h 8π2

g2 h 8π2

g2 h̄ 8π2

g2 h̄ 8π2

g2

Size ð2πThÞ−1 ð2πThÞ−1 ð2πTh̄Þ−1 ð2πTh̄Þ−1
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Zdyon
h ¼ e−U

II
GPYðhÞV=T

X
NM;NL;
NL̄;NM̄

1

NL!NM!NL̄!NM̄!

×
Z YNL

l¼1

fLT3d3rLl

YNM

m¼1

fMT3d3rMm

×
YNL̄

l̄¼1

fL̄T
3d3rL̄l̄

YNM̄

m̄¼1

fM̄T
3d3rM̄m̄

× detðGDÞ detðGD̄Þe−VDD̄ : ð5Þ

The above sums run over various configurations with
NL, NM, NL̄, and NM̄ numbers of L, M, L̄, and M̄ dyons
respectively. These objects are distributed over the spatial
volume with their respective coordinates labeled by rLl

,
rMm

, rL̄l̄
, and rM̄m̄

. The determinant terms detðGDÞ and
detðGD̄Þ come from the quantum weight for dyons and
antidyons by computing one-loop quantum fluctuations
around background fields of the calorons, the detailed
forms of which can be found in, e.g., Refs. [14,18,24].
The fugacity factors fL, fM, fL̄, and fM̄ are given by

fM ¼ fM̄ ¼ S2e−hSh
8h
3
−1;

fL ¼ fL̄ ¼ S2e−h̄Sh̄
8h̄
3
−1: ð6Þ

Studies on instanton-dyon ensemble models of this sort
were pioneered in Refs. [17,18]. Various qualitative
features of such models were investigated in Refs. [19,20,
23,24].
An important quantity in the partition function Zdyon

h is
the caloron action S, which is essentially the “control
parameter” of the ensemble. While classically one simply
has S ¼ 8π2=g2, quantum loop corrections cause the
coupling to run with the temperature scale T. Here,
next-to-leading-order effects are considered by taking
the two-loop correction to the gauge coupling [15],
thus defining the relation between the action and temper-
ature via

SðTÞ ≈ 22

3
log

�
T
Λ

�
þ 34

11
log

�
2 log

�
T
Λ

��
; ð7Þ

where Λ is the nonperturbative scale. By varying S from
large to small values, the system changes from high to low
temperature or equivalently from the weak- to strong-
coupling regime. In addition, we consistently include the
two-loop correction to the perturbative potential (4), which
takes the simple and compact form [37]

UII
GPY ¼

�
1 −

5

S

�
UI
GPY: ð8Þ

A crucial ingredient for the properties of the ensemble
is the interaction among the instanton-dyons within the

ensemble. This is implemented via the VDD̄ term in Eq. (6).
Such an interaction has two features. At long distance, the
interaction between a pair of constituents i and j at a spatial
distance rij should be a Coulomb force according to the
objects’ e, m, and h charges in Table I:

V long ¼ ðeiej þmimj − 2hihjÞ
S

2πT
e−MDrij

rij
: ð9Þ

The screening effect in such a many-body ensemble of
charges has been implemented through a Debye mass
parameter MD in the above. Note that between an
L-M pair (and similarly a L̄-M̄ pair), which together can
make a full caloron, all interactions cancel out by virtue of
their Bogomol’nyi-Prasad-Sommerfield nature [12–14].
The correlations between these pairs are encoded in the
determinant terms. In between an L-M̄ or L̄-M pair, the
Coulomb force is repulsive and prevents unphysical over-
lapping between them. For the other pair combinations
(i.e., L-L, L̄-L̄, L-L̄ as well as M-M, M̄-M̄, M-M̄), a
repulsive force at short distance needs to occur and stabilize
the ensemble [17]. We use the following short-range
corelike interaction [18,38]:

Vshort ¼
chVc

1þ eð2πTÞrijch−ζc
; for rij <

ζc
ð2πTÞch

; ð10Þ

where the coefficient ch ¼ h for theM sector while ch ¼ h̄
for the L sector, reflecting the different properties of the
two sectors. Vc is the strength parameter of this repulsive
potential. ζc is the range parameter that separates the
short- and long-distance regions. The repulsive potential
becomes important when the ensemble becomes dense and
it strongly influences the short-range correlations among
constituents. The confining properties of such an ensemble
are sensitive to the key parameters Vc and ζc [24].
Our goal here is to investigate the viability of this

effective description for confinement in light of first-
principle lattice calculation results and to characterize
the necessary parameters of such an ensemble in order
to quantitatively describe the confinement transition in the
SU(2) case. We then examine the consistency of this
ensemble with other lattice and phenomenological findings.

IV. CONFINEMENT PHASE TRANSITION

In this study, we have performed extensive numerical
simulations for the statistical ensemble of instanton-dyons
as described above. Scanning a wide range of parameter
space ðVc; ζcÞ, for each choice we simulate the ensemble at
different values of the action S (which is basically varying
the temperature).
A first quantity to examine is the aforementioned

holonomy potential at different temperatures. These results
for U½L∞� are shown in Fig. 1. [For this plot, the parameters
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are chosen as ðVc ¼ 5; ζc ¼ 2.4Þ, but the observed behav-
ior of the holonomy potential is generically true for other
choices of parameters.] As can be seen, when the action S
decreases (i.e., the temperature decreases), the holonomy
potential smoothly evolves from a hump shape featuring
minima away from L∞ ¼ 0 toward a valley shape featuring
a minimum at the confining holonomy of L∞ ¼ 0. This is
characteristic for a second-order phase transition. In fact,
one can identify the critical action Sc (with a corresponding
temperature we call Tc) where the minimum just moves to
L∞ ¼ 0. This allows us to do the scale the temperature
via Eq. (7).
Clearly, in the strongly coupled regime (corresponding to

smaller S at lower temperature), confinement occurs in the
system. This result can be intuitively understood as follows.
With increasingly strong coupling, it costs less action to
create these objects. As a result, the ensemble would
eventually become dense enough so that the short-range
repulsive force becomes important. In this regime, the
holonomy parameter h would prefer to stay at 1=2 where
the L and M sectors are balanced. To see this, imagine that
h deviates from 1=2, say, h < 1=2. In this case, the number
of M-dyons would increase (as their action cost is hS)
but their size ∼1=h would also increase, thus causing a
significant increase in energy cost due to the repulsive
interaction. The same argument for the L sector applies for
the case of h > 1=2. As a result, when the ensemble
becomes dense, the h ¼ 1=2 point becomes the optimal
state of the system.
With the holonomy potential obtained, one can then

determine from its minimum the Polyakov loop expectation
value hL∞i as a function of temperature. As is well known,

this is the order parameter for a confinement transition in
pure Yang-Mills theories. In the SU(2) case, a second-order
phase transition is expected with hL∞i ¼ 0 at low temper-
ature, while it is nonzero at high temperature. Such
dependence hL∞iðTÞ for SU(2) Yang-Mills theories has
been obtained from lattice simulations, as shown in Fig. 2
by the filled circle and diamond symbols from two recent
lattice works [39,40]. We use the grey band to indicate the
lattice uncertainty as reflected by the minor difference
between the two calculations. The results from instanton-
dyon ensemble calculations for a few choices of parameters
are shown in Fig. 2 as curves with open symbols. A second-
order phase transition is clearly observed in all cases. We
scan a wide range of parameter space and compare with
lattice results with quantitative χ2 analysis to constrain the
values of Vc and ζc. For the repulsive potential strength
Vc, we find that the results are relatively insensitive to its
value in the range from 5 to 20, with Vc ¼ 5 giving the best
agreement with lattice results. However, the results are
quite sensitive to the range parameter ζc, as can be seen
from the visible variation of the curves with different ζc in
Fig. 2. We see very good agreement with lattice results for
ζc ∈ ½2.2; 2.6� and find the optimal value to be ζc ¼ 2.4
with χ2=d:o:f: ≈ 1.21.
As is well known, it is expected based on the center

symmetry of this theory that the Polyakov loop as the order
parameter would exhibit a second-order transition with
critical scaling behavior near Tc in the same universality
class as the 3D Ising model [41,42]. Such behavior is
well reproduced by the instanton-dyon ensemble results,
following the scaling formula hL∞i ¼ bðT=Tc − 1Þ0.3265
½1þ dðT=Tc − 1Þ0.530� [40,43] shown by the smooth curves
in Fig. 2. A fitting analysis with a mean-field scaling
exponent would give a worse fit very close to Tc, but would
work well at higher temperatures.

FIG. 1. The holonomy potential U as a function of holonomy
L∞ for different actions S from larger to smaller values (from top
to bottom), or equivalently from higher to lower temperatures.
See text for details.
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See text for details.
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V. INSTANTON-DYON DENSITY AND
CORRELATIONS

With the key parameters of the instanton-dyon ensemble
characterized above, we now examine its consistency with
other relevant information. One such example is the density
of chromomagnetically charged objects. This has been
studied on the lattice for SU(2) Yang-Mills theory [44]. In
Fig. 3, we compare such a density from our instanton-dyon
ensemble with that from the lattice calculations in Ref. [44].
Results for ζc in the parameter range where the confine-
ment transition can be quantitatively described are also
reasonably consistent with the magnetic density from
Ref. [44], with ζc ¼ 1.8 giving the best agreement.
It may be noted that recent phenomenological studies of
jet energy loss observables and heavy flavor transport at the
RHIC and LHC provide interesting evidence for the
presence of a chromomagnetic component in the near-Tc
region [45–50]. The density of magnetic charges extracted
from those studies in the vicinity of Tc [50] is about
ρT−3 ≃ ðNc − 1Þ·ð0.4–0.6Þ, which is also consistent with
instanton-dyon ensemble results.
Finally, we also compute the spatial density-density

correlations between dyons and antidyons in the ensemble.
These correlations feature a typical liquid-like behavior in
the near-Tc region, with a correlation length on the order
of ð0.5–1Þ · 1=T. Again, such property appears to agree
with experimental observations of the quark-gluon plasma

as a nearly perfect liquid at the RHIC and LHC [8–11] and
with phenomenological studies that suggest the chromo-
magnetic component to play a key role in such observed
transport property [45,51,52].

VI. CONCLUSION

In summary, we have studied a model for describing the
confinement transition in SU(2) Yang-Mills theory, based
on a statistical ensemble of correlated instanton-dyons.
This model was shown to quantitatively describe the lattice
data for the temperature dependence of the order parameter.
The short-range interaction plays a crucial role and we
have characterized the key parameters of this interaction.
The chromomagnetic charge density as well as the spatial
correlations in such an ensemble were also found to be
consistent with known lattice and phenomenological infor-
mation. We conclude that the correlated instanton-dyon
ensemble provides a successful explanation of the confine-
ment mechanism in SU(2) Yang-Mills theory, and may
hold the promise of a similar success for QCD. Interesting
and important future tests of this model would include,
e.g., the Polyakov loop behavior in representations other
than the fundamental one and the topological susceptibility
in the transition region, which will be studied and reported
elsewhere.
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