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ABSTRACT

Describable visual facial attributes are now commonplace in human biometrics and affective comput-
ing, with existing algorithms even reaching a sufficient point of maturity for placement into commercial
products. These algorithms model objective facets of facial appearance, such as hair and eye color, expres-
sion, and aspects of the geometry of the face. A natural extension, which has not been studied to any great
extent thus far, is the ability to model subjective attributes that are assigned to a face based purely on visual
judgments. For instance, with just a glance, our first impression of a face may lead us to believe that a per-
son is smart, worthy of our trust, and perhaps even our admiration — regardless of the underlying truth
behind such attributes. Psychologists believe that these judgments are based on a variety of factors such
as emotional states, personality traits, and other physiognomic cues. But work in this direction leads to an
interesting question: how do we create models for problems where there is only measurable behavior?
In this paper, we introduce a convolutional neural network-based regression framework that allows us to
train predictive models of crowd behavior for social attribute assignment. Over images from the AFLW face

database, these models demonstrate strong correlations with human crowd ratings.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In human attribute modeling, there often exists a disparity
between the way humans describe humans and the way compu-
tational models describe humans. A large amount of describable
attribute research in computer vision concentrates on objective traits.
For example, work using the popular CelebA dataset [22,30,44,42]
applies different methods to model traits such as “Male” and “Bearded”
with binary annotations. Beyond objective attributes, it is possible
to model more subjective traits such as expression [12,7], attrac-
tiveness [17], and humorousness [21], but research often overlooks
the important interrelation between attribute modeling and social
psychology. Enabling computers to make accurate predictions about
objective content and enabling computers to make human-like judg-
ments about subjective content are both necessary steps in the
development of machine intelligence. Here, we focus on the latter.
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Specifically, we concentrate on descriptions of the face, as an
abundance of social psychology research demonstrates a human ten-
dency to make judgments in social interactions based on the faces of
fellow humans [33,40,1]. Popular human characteristics of academic
interest closely related to these social interactions include emo-
tion [24], attractiveness [1], trustworthiness [37,40,29,8], dominance
[33,24], sociability, intelligence, and morality [1]. Psychologists often
specifically concentrate on trustworthiness, dominance, and intelli-
gence because they represent comprehensive abstract qualities that
humans regard in each other. Alexander Todorov, one of the fore-
most psychologists studying these social judgments, uses dominance
and trustworthiness as the basis of many in-depth studies of human
judgment [36-38]. Ultimately, he finds that most other recogniz-
able subjective traits in humans can be represented as an orthogonal
function of dominance and trustworthiness [27], which suggests
these two conceptual traits are ideal for computational modeling
(Fig. 1).

Closely related to our work is research concentrated on the assess-
ment of abstract traits in human faces based on the effect of facial
contortions and positions. Inspired by animals’ displays of dominance
and submissiveness inrespective head raises and bows, Mignault et al.
specifically analyzed the effects of head tilt on the change in perceived
dominance and emotion [24]. Not only does the study confirm the



M. McCurrie et al. / Image and Vision Computing 78 (2018) 14-25 15

Trustworthiness

Dominance

Trustworthiness

o LA

- Levitt
Dominance

Age

Fig. 1. Computational modeling of social attributes allows us to predict what the
crowd might say about a face image. In this image we graphically compare the
attribute predictions for Julian Assange and Benedict Cumberbatch, who plays Assange
in the movie The Fifth Estate, as well as the predictions for Edward Snowden and Joseph
Gordon-Levitt, who plays Snowden in the movie Snowden. Specifically looking at these
images, our models output similar predictions between the subjects and their actors.
The radar plots above reflect the output of a face processing pipeline, where faces are
detected, aligned, and then processed through a deep convolutional neural network
regressor that models a particular social attribute. This regression framework is the
main contribution of our work. For this image we display the predictions’ z-scores
with respect to the training data.

hypothesized disparity in perceived traits based on head tilt, but it
also finds gender has a noteworthy influence on subjects’ perceptions.
Keating et al. assessed the effect of eyebrow and mouth gestures
on perceived dominance and happiness in a cultural context [14].
The study found smiling to be a universal indicator of happiness and
showed weak associations between not smiling and dominance. It
also determined the effect of alowered-brow on perceived dominance
to be generally restricted to Western subjects.

In this paper, we connect traditional machine learning and social
psychology findings like those described above. We work specifically
with traits that can be considered abstract representations of high-
level human attributes. Additionally, we introduce a convolutional
neural network-based (CNN) regression framework that allows us to
train predictive models of crowd behavior for social attribute assign-
ment. Very different from prior work, we make use of a unique visual
psychophysics crowdsourcing platform, TestMyBrain.org, to gather
the annotations necessary for training. As a case study, we examine
four social attributes: trustworthiness, dominance, age, and 1Q. We
investigate each purely in the context of crowd judgments. Our mod-
els demonstrate strong correlations with crowd ratings, which we
suspect are largely driven by low-level image cues.

In short, our contributions in this paper are:

o Anovel dataset of over 6000 images annotated for all four traits
of interest.

e The deployment of a crowd-sourced data collection regime,
which collects large amounts of data on high-level social
attributes from the popular psychophysics testing platform
TestMyBrain.org.

e The comparison of different deep learning architectures for
abstract social attribute modeling.

o Asetofhighly effective automatic predictors of social attributes
that have not been modeled before in computer vision.

2. Related work

The related work in computer vision falls into two categories: gen-
eral face attributes, and specific CNN-based approaches. We review
both in this section.

2.1. Attributes in computer vision

Due to the proliferation of low-cost high performance computing
resources (e.g., GPUs) and web-scale image data, large-scale image
classification and labeling is now commonplace in computer vision.
With respect to face images from the web, Labeled Faces in the
Wild [13], YouTube Faces [41], MegaFace [26], Janus Benchmark
A [15], and CelebA [22] are all popular choices for a variety of facial
modeling tasks beyond conventional face recognition. Attribute pre-
diction, where the objective is to assign semantically meaningful
labels to faces in order to build a human interpretable description
of facial appearance, is the particular task we concentrate on in this
paper.

Both Farhadi et al. [9] and Lampert et al. [ 19] originally conceived
of visual attributes as a development supporting object recognition,
rather than a primary goal in and of itself. Faces, however, are a special
case where standalone analysis supports applications in biometrics
and affective computing. Kumar et al. used facial attributes for face
verification and image search [17].Scheirer et al. applied the statistical
extreme value theory to facial attribute search spaces to create accu-
rate multi-dimensional representations of attribute searches [31].
Siddiquie et al. modeled the relationships between different attributes
to create more accurate multi-attribute searches [34]. Lastly, Luo et
al. captured the interdependencies of local face regions to increase
classification accuracy [23].

Certain traits such as Age [25,18,20] and gender [21,20] have
enjoyed disproportionate attention, but researchers also model
numerous other facial attributes. The release of the large CelebA
dataset [22] also prompted several novel studies of facial attributes
on all 40 traits in the dataset [30,44,42]. For a comprehensive review
of facial attribute work in practical biometric systems, see the review
authored by Dantcheva et al. [6].

2.2. Convolutional neural networks for attributes

Current state-of-the-art facial attribute modeling relies on CNNs.
Pioneering work in the field, Golomb et al. trained a CNN with an 8.1%
error rate on gender prediction [11]. More recently, Zhang et al. used
CNNs alongside conventional part-based models to predict attributes
such as clothing style, gender, action, and hair style from images [43].
Wang et al. applied CNNs to an automatically generated egocentric
dataset annotated for contextual information such as weather and
location [39]. Levi et al. used a CNN for age and gender classification
from faces [20]. Liu et al. used two cascaded CNNs and trained sup-
port vector machines to separate the processes of face localization
and attribute prediction [22]. Finally, Zhong et al. extended the work
of Liu et al. using off-the-shelf CNNs to build facial descriptors in a
different approach to attribute prediction [44].

Most similar to our research is the recent work of Lewenberg et
al. [21]. They use a CNN to predict objective traits including gender,
ethnicity, age, make-up, and hair color, and subjective traits includ-
ing emotional state, attractiveness, and humorousness. That research
introduced a new face attributes dataset of 10,000 images annotated
for these traits. To generate this dataset, Lewenberg et al. employed
Amazon’s Mechanical Turk raters from the US and Canada to rate



16 M. McCurrie et al. / Image and Vision Computing 78 (2018) 14-25

Training Data Distributions
Age ‘ L ‘Dominance

02

Tr_ustwort_hin_ess 7 1Q

0.

06 8 10

Instances

Consensus Score

Fig. 2. Data distributions. We assert that to most accurately model humans’ psychological judgments, each of these traits should be modeled on a continuous distribution. For
this reason we employed the Likert Scale in our data collection and then took the average of human ratings for each image. This graphic shows faces at each quartile from the
dataset (left) as well as the training data distributions (right), all of which seem to be close to normal.

a subset of the PubFig dataset, aggregating labels from three sepa-
rate individuals for each image. Notably, the work only analyzes the
traits with binary classification, labeling each image as “yes” or “no”
with respect to a trait. Our most immediate improvement on this
work is in the way in which we collect data. We use an online psy-
chophysics testing platform, aggregating data from a larger number
of raters from an arguably more reliable and geographically variable
source. In addition, we model more abstract, representational traits
on continuous distributions.

Also parallel to our work, and the current state-of-the-art
attribute prediction, is the work of Rudd et al. [30]. Rudd et al. employ
a single custom Mixed Objective Optimization Network (MOON) to
multi-task facial attribute recognition, minimizing the error of their
networks over all forty traits of the CelebA dataset [22]. We use our

Click one of the buttons below to rate this face from 110 7,

where 1 is the least DOMINANT and 7 is the most.

least 1 2 3 4 5 6 7 most

Fig. 3. Annotation task. A sample behavioral task that a subject might see on
TestMyBrain.org. All ratings collected for this work were on a Likert scale between 1
and 7, where 1 indicates the least amount of attribute presence, and the 7 indicates
the most amount.

own implementation of the MOON architecture as a basis for each
separate trait in our modeling.

3. Crowd-sourced data collection

In this paper, we introduce a new dataset for social attribute mod-
eling. The dataset consists of 6300 grayscale images of faces sampled
from the AFLW dataset [16] and annotated for the four traits we study.
Representative samples ofthe dataset foreach traitcanbeseeninFig.2.
This dataset is novel in that it captures human annotators’ subjective
assessment of traits with underlying truth. For traits such as Age and
IQ, which are easy to record and described on well-known scales, it is
of course possible to produce a dataset with verifiable measurements
of the underlying traits — but this is not our objective. Rather than
analyze and model actual trustworthiness, dominance, age, and IQ, we
choose to study people’s described perceptions of the aforementioned
traits. For example, our dataset does not include actual ages, instead
the images are annotated by a consensus score — aggregate statistics
of what many people said about the ages of the subjects in the images.

3.1. TestMyBrain.org

For this high-level annotation, we use TestMyBrain.org [10], a
crowd-sourced psychophysics testing website where users go to
test and compare their mental abilities and preferences. It is one
of the most popular “brain testing” sites on the web, with over 1.6
million participants since 2008. But what specific advantages does
TestMyBrain.org have over a service like Amazon’s Mechanical Turk?

TestMyBrain.org is a citizen science effort that facilitates psycho-
logical experiments and provides personalized feedback for the user,

Table 1

Dataset statistics: Statistics on the 5040 images used for training for all four social
attribute classes (normalized to a [0, 1] range). The “Mean Std. of Ratings” refers to the
average standard deviation of the human scores for each individual image.

Trust. Dom. Age 1Q
Mean of ratings 0.48 0.47 0.42 0.48
Std. of ratings 0.16 0.16 .20 0.14
Mean Std.
of ratings 0.34 0.32 0.13 0.27
Mean Num.
of ratings 3247 32.19 15.80 15.79
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Fig. 4. Attribute relationships. Trustworthiness and Dominance have a linear negative correlation. Age tends to have a non-linear relationship with the other traits, reflecting the
similar Trustworthiness, Dominance, and IQ between the elderly and children individuals. Originally we hypothesized that Trustworthiness and Dominance would provide an
orthogonal basis for other traits and therefore be linearly independent. These graphs show this may not be the case.

mutually benefiting both researchers and those curious about their
own mind. The subject pool is geographically diverse and provides an
arguably superior psychometric testing group compared to smaller
more homogeneous subject pools such as that of Mechanical Turk. In
addition to being an ideal setting for aggregate, cross-cultural psy-
chometric experiments for researchers, TestMyBrain.org provides
the non-monetary incentive of detailed, personalized results for sub-
jects. Subjects visiting the site are motivated by a desire to learn
about themselves and have little incentive to respond to experi-
ments quickly or poorly. Based on these factors, we determined that
the subject pool of TestMyBrain.org is ideal for the delicate task of
honestly appraising abstract attributes in faces.

Using TestMyBrain.org, we asked participants to judge faces for a
select trait on a Likert Scale, a psychometric bipolar scaling method
shown in Fig. 3. As can be seen in Table 1, each face has an aver-
age of about 32 judgments for Trustworthiness and Dominance and
15 for Age and IQ. We recorded the average judgment to use as
the consensus score for that image and normalized the Trustworthi-
ness and Dominance scores. In training we map all y values so that
0 < y < 1. We calculated the coefficient of determination (R?) of
mean human ratings from two independent sets of 943 subjects for
389 random images from the AFLW set for Trustworthiness and 400

random images from the AFLW set for dominance. The Trustworthi-
ness R? is 0.93 and the Dominance R? is 0.88. Both of these statistics
are very similar to the internal reliability calculated by Oosterhof and
Todorov [27]. Thus, there is indeed signal in these data that can be
learned by a machine learning algorithm.

3.2. Data insights

We can learn about simple patterns in human judgment by
observing correlations in the data. The Annotated Facial Landmarks
in the Wild Dataset provides annotations for gender, glasses, occlu-
sion, grayscale, facial landmarks, and bounding boxes. Comparing
attribute distributions conditioned on the objective, binary traits
provides interesting information. Females tend to be rated as more
trustworthy and less dominant, people with glasses are generally
rated as more intelligent. Occlusion has a weak correlation with
trustworthy ratings. Glasses have a weak correlation with age rat-
ings. Most likely due to our preprocessing, original image quality and
grayscale are not correlated with any attributes. Some interesting
relationships are shown in Fig. 5.

As discussed previously, we hypothesized that Trustworthiness
and Dominance are an orthogonal basis for other human attributes,
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Fig. 5. Dataset patterns. A few of the interesting relationships between our annotated attributes and the AFLW attributes. From left to right, top to bottom: glasses is positively
correlated with 1Q, glasses is positively correlated with Age, female Age is distributed more normally than male Age, and occlusion is negatively correlated with Trustworthiness.

Best viewed in color.

implying statistical independence. As seen in Fig. 4, Trustworthi-
ness and Dominance are negatively correlated. This may be evidence
against the hypothesis, but also could be a result of several fac-
tors including question wording and calculating aggregate score
measurements using the mean.

4. CNN regression for social attributes

Our algorithm is a regression model that outputs a single score
from an input image. A regression, rather than a binary classification,
is a more realistic representation of the initial judgments humans
make. For example, from our four modeled traits, both Age and IQ
are already known to be described by continuous distributions and
are therefore likely judged on continuous distributions. We assert
the other two modeled traits, Trustworthiness and Dominance, are
similarly best described by continuous distributions. For what is dis-
cussed below with respect to architectures, assume the output is
always a single floating point number from a fully-connected layer
after feature extraction.

4.1. Comparing architectures: what works best for social attribute
modeling?

We initially compare different feature extraction algorithms,
most of which are Convolutional Neural Networks with varying
depths and use of regularization. We run each with similar param-
eters that we determined empirically. With respect to our imple-
mentation of the architectures, we made use of the Keras [5] and
Theano [2] deep learning frameworks.

To test very shallow features we examine feature extraction with
Histogram of Oriented of Gradients and two custom shallow CNN
architectures. For the most basic feature extraction we use the His-
togram of Oriented Gradients algorithm followed by several fully
connected layers with dropout. In the “Shallow” network, we employ
three segments of convolution and max pooling connected to fully-
connected layers with dropout and Parametric ReLU activations. In the
“Basic6” network, we employ four segments of a single convolution
and max pooling followed by two fully-connected layers with ReLU
activations and no dropout.
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Fig. 6. Performance during training. In this image, we compare the ability of each architecture to learn the dataset and generalize to validation data. We include all four traits,
training and validation scores, and all four original architectures plus our final architecture based on the hyperparameter optimization results. Of the four original architectures
the MOON models generally perform better, but our optimized models consistently perform the best. (Optimized models were trained with early stopping, as can be seen in the

plots.) Best viewed in color.

To test moderately deep architectures we used the Oxford Visual output. The newest architecture we analyzed is our implementation

Geometry Group’s VGG 16 and 19 networks [35], and a VGG16 of the MOON architecture [30], which is more shallow than both of

variant from Rudd et al. We reproduce the convolutional architec- the VGGNet implementations. The convolutional feature extracting
tures, modifying the shape of the input and output matrices for portion of the architecture is similar to the VGG networks in that
our smaller grayscale images and single floating point regression it consists of several segments, where each segment has multiple
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Fig. 7. Data augmentation. We explore the use of six different augmentation techniques for our small dataset, pictured here. During hyperparameter optimization, we optimize
the probability that each of these augmentations occurs during training, and then the extent to which it occurs. For example, we can optimize the possible size of the occlusion,

the extent of the brightness, and the possible amount of noise added to each image.
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Table 2
Hyperparameters: Some important hyperparameter optimization results per trait for
our optimized MOON architectures.

Trust. Dom. Age 1Q
Learning rate 10742 1044 1048 10746
Dropout 55% 31% 45% 38%
2x Convolution 0 64 32 32 64
2x Convolution 1 64 64 128 32
2x Convolution 2 128 - - -
3x Convolution 3 256 256 256 256
3x Convolution 4 256 512 512 256
3x Convolution 5 256 512 512 -
FC layers 1 3 4 3
FC outputs 2079 2227 2187 1244

Table 3
Results: R? values of validation and testing results from our optimized MOON
architectures for each trait. Best results on the test set are shown in bold.

Trust. Dom. Age (0}
Validation 0.41 0.49 0.75 0.29
Validation ensemble 0.43 0.51 0.74 0.30
Test 0.38 0.46 0.72 0.24
Test ensemble 0.43 0.46 0.74 0.27

convolutional layers followed by a max pooling layer. We modify
the architecture for our smaller grayscale images and connect the
convolutional layers to fully-connected layers that output a single
score. To test a very deep network we use Resnet-50. We find that
Resnet-50 with random weight initializations does not converge well
when trained on so few images.

As will be discussed below in Section 6, the differences in model
performances on the validation sets during training are not very
large, suggesting the architecture choice may not make a signif-
icant difference. The newer MOON architecture performs slightly
better on most of the traits, however, so we chose to use it as a
basis for our final optimized models. Note that the earlier work of
Lewenberg et al. [21] used an AlexNet block structure augmented
with supervised features (facial landmark information) and a custom

Trustworthiness

loss function, while MOON is a more straightforward VGG [35]
modification.

4.2. Augmentation

To make the most of our small dataset, we augment the images
with occlusion, brightness, blur, histogram equalization, horizontal
flipping, and random noise at optimization time (Fig. 7). We predict
that some of these augmentation techniques will help, such as flip-
ping the image, but given our findings that features of the image
such as occlusion are correlated with human ratings, we suspect
that overuse of certain augmentation will harm our models abil-
ity to generalize. We explore this further in our hyperperameter
optimization.

4.3. Under and over sampling

As seen in Fig. 2, the aggregate ratings for each trait tend toward
a normal distribution. Thus, the extreme values are rarely observed
by the model in training and values that tend toward the mean
score are observed frequently. We chose to treat our dataset as
imbalanced and adapt class under and over sampling for a regression
situation. We first bin all values, normalize the discrete distribution,
and assign a default probability of 1 — P(bin), where P(bin) is the
relative probability of a bin in the training data. We then choose a
prior function over the probability of the binned values:

P(p) = p* +107F
where p € [0,1] is the original bin probability, & € [2,20] controls
how often extreme values are chosen and 3 € [1.2, 3] controls how
often the most common values are chosen. Then we optimize o and
B during hyperperamater optimization.
4.4. Hyperparameter optimization

Rudd et al. train their MOON models on RGB images that are

larger than our grayscale images and model hypothetically less
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Fig. 8. Transfer learning performance during training. In this image, we compare different weight initialization methods, namely random, Imagenet pretrained, and VGG-Face
pretrained. We also observe the effects of freezing some layers. Pre-trained initializations provide a clear advantage in both speed and performance The difference between VGG-
Face and Imagenet pretrained weight initializations seems to be negligible. Using the original pretrained representations by freezing all the layers, however, hinders performance.

Best viewed in color.
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Fig. 9. Transfer learning saliency. Here, we display the different localization abilities of models trained with different initialization schemes on images from our validation sets.
Random initializations appear to be the best at localizing obvious features, but perform the worst.

abstract objective attributes from the CelebA dataset, which is anno-
tated for binary classification. This suggests that our very different
dataset and features could benefit from some deviations in parame-
ter choices.

To determine the best network size and deviation in parame-
ters from the original MOON architecture, we optimize the network
for each trait using hyperopt [3], a python library for hyperparam-
eter optimization. Our search space includes learning rate, dropout,
the number of filters in each layer, the number of layers, the
amount of data augmentation, and the parameters of a sampling
function. Employing hyperopt with the Tree of Parzen Estimators
(TPE) algorithm allowed us to test a multitude of different parameter
and architecture combinations. After a very wide parameter search,
we perform a refined search with early stopping, and use the best
models.

We maximize the model’s performance with respect to the
coefficient of determination (R?) from the regression of j, the model’s
predicted scores, on y, the average human annotations. We use the
coefficient of determination as the measure of performance because
it represents the percentage of prediction variation explained by the
regression model. Thus our measure of performance does not reflect
accuracy with respect to the underlying trait, but rather captures
agreement between our model and the aggregate assessments of
human annotators.

As seen in Fig. 6, each trait trains very differently. Following
this trend, each trait’s coefficient of determination is optimized by
slightly different hyperparameters and deviations from the MOON
architecture as seen in Table 2. However, the improvements are only
modest, suggesting that deeper architectures and data augmentation
are not helpful for this task.

4.5. Smoothing errors with an ensemble

Another simple improvement is to train an ensemble of optimized
networks on our data and take the average of each model’s regression
output at inference time. Using the optimized parameters we train
five models holding out a different 20% of the training data for each

model. Despite each model using less training data, correlations with
crowd judgments improve for all attributes but Dominance. The final
R? values are seen in Table 3.

5. Transfer learning

Given the dataset only contains 6300 images, training may
be improved by initializing model weights with those previously
trained on other datasets. We concentrate on VGG16 and observe the
effects of different pretrained weight initializations.

We choose VGG16 weights trained on the Imagenet dataset for
the general task of object recognition, as well as VGG16 weights
trained for Face Recognition [28]. Weights from a face recognition
task should encode features specific to the face, which may help
our understanding of the features necessary for this task. We train
iterations of each of these models with all layers frozen, half the lay-
ers frozen, and no layers frozen. For each network, we only use the
convolutional layers and add a single fully connected layer after.

Both pretrained networks were trained on color images of size
224 x 224 so we expand our tightly cropped images exemplified
in Figs. 2 and 3 by repeating the last row or column and adding
two channels. Doing so adds considerably more useless information
to the input, affecting our ability to compare these models to our
optimized models. Therefore, we also train a network with random
weight initializations for fair comparison.

The models’ training over time can be seen in Fig. 8. Transfer
Learning has two clear benefits over random initializations. First the
pretrained models perform better, reaching a minimum that gen-
eralizes better on the validation set. Second the pretrained models
approach this superior minimum very quickly, allowing for signifi-
cantly shorter training time. As shown in Fig. 8 there is not an obvious
difference between VGG-face and Imagenet initializations, and there
is not an obvious difference between training all layers and training
only the last half of the layers.

We can also compare the ability of each network to localize facial
features to understand why pretrained models perform better. We
take the gradient with respect to the output of our model and weight
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Fig. 10. Saliency from occlusion. We can visualize regions of the face that are most important to the trained models by systematically covering parts of the face and recording the
absolute differences. Here, we separately analyze 100 images of the validation set and display the average differences as a heatmap on top of the averaged faces. Best viewed in

color.

convolutional features by their relative significance as in Ref. [32]. We
upscale and overlay the given heatmap on the input image, giving a
rough idea of which areas are most important for an input. Fig. 9 com-
pares the localization between networks with and without transfer
learning, showing immense differences in feature localization. It is
interesting to see that the randomly initialized networks that general-
ize considerably worse than the pretrained networks seem to localize
features such as the eyes and mouth considerably better than the
pretrained models. We do not use pretrained networks further in our
evaluation.

6. Experimental evaluation

There are two important facets of evaluation with respect to our
social attribute models: (1) model correlation with human crowd
ratings of images, and (2) feature importance for social attribute
models. Each of these facets is explored in this section. After data
collection, our dataset consisted of 6300 grayscale images of faces,
aligned to correct for in-plane rotation using the CSU Toolkit [4]
and annotated for Trustworthiness, Dominance, Age, and 1Q. We
randomly separated 80% of the original dataset into a training set,
and split the remaining 1260 images into a validation and test set

(630 images each). The test set is held out during training, while the
validation set is used to tune the hyperparameters.

6.1. Correlations with crowd judgments

We employ the R? value from a regression of , the model’s
predicted scores, on y, the original human annotations, as a measure
of our model’s performance. This is a reasonable metric given the
linear relationship of y and . To properly compare architectures and
assess the training performance of our optimized model, we record
the R? at each epoch and graph them in Fig. 6.

Looking at the graphs, the validation R? values are ultimately very
similar between architectures. There is some variability in training
speed, and randomly good weight initializations seem to help, how-
ever the depth of the architecture does not seem to explain any
improvement in scores.

As expected, our optimized architectures outperform the other
four architectures. We display our final results from the optimized
networks in Table 3, which shows R? values from regressions of our
model’s predicted values on human annotated consensus scores for
both the validation and testing sets. Each trait has a slightly different
coefficient of determination, however all scores are strong for a
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1Q

Dominance

Fig. 11. Final filters. Visualizing a sample of the filters from the last convolutional layer of each optimized model, we can observe the resemblance of the output to a low-level
feature extractor, consistent with our observation that deeper architectures add little to no improvement. (Color added to improve contrast.)

psychology-oriented experiment incorporating noisy human mea-
surements. Our models for Age are the strongest, IQ are the weakest,
and Trustworthiness and Dominance perform similarly to each other.

6.2. Visualizations of feature importance

Visualizations of the hyperparameter optimized CNN models
show localized areas of importance on the face for each trait. As an
example, we overlay average heatmaps for each trait on the averaged
faces of 100 images from the validation data in Fig. 10. To produce
these graphics we systematically moved a gray box over an image,
iteratively scaling the box down after each pass. We then recorded
the absolute difference in total score at each point. This visualization
is intriguing because it allows us to view, in a certain image, or over
an average of images, what areas of the face have the most or least
significant effect on the final prediction.

The performance of a model trained on subjective human assess-
ments is much less intuitive than the performance of a model trained
on an objective task. Although interpretation of performance within
the realm of supervised learning remains the same, validating the
results is not as simple as looking at the outputs. Referring back
to previous social psychology research [24,14] both Trustworthiness
and Dominance are expected to rely on the mouth. Our models indi-
cate a heavy reliance on areas near the mouth and chin. Similarly,
Keating et al. [14] determined that a lowered brow should affect
the (mostly Western) perception of Dominance. Both our Dominance
and Trustworthiness models approximately locate the brow mid-
sections. These observations indicate that our models have learned
to look in the same places that humans do, possibly replicating the
way we judge high-level attributes in each other.

Another method of analyzing our models is a visualization of the
filters. Our visualizations of the filters from the final convolutional

layer of each network in Fig. 11 are intriguing because they resemble
the output of a low-level feature extractor. This indicates that despite
the high-level abstract quality of these traits, low-level features
might be enough for humans to make their immediate judgments.
This is consistent with our observation that deeper architectures add
little to no improvement.

6.3. Processing faces in video

Avery good litmus test for our models is video processing. For each
frame from a video, we can apply face detection and face alignment,
and then use our optimized models to predict the score of each trait.
We can even do this in real time — displaying the predicted change
in crowd assessment as subjects alter facial position and expression
in the video. Fig. 12 shows several frames from a couple of example
videos being processed. In Fig. 12, all scores are mapped to a standard
normal distribution and shown over time on both a line plot and a his-
togram. A selection of processed videos are provided as supplemental
material.

7. Discussion

Current state-of-the-art visual recognition algorithms in com-
puter vision, and more specifically algorithms for facial attribute pre-
diction [21,30], show accuracy that promises new applications in the
near future. It is in the best interest of both researchers and develop-
ers in industry to promote research that focuses on the interrelation
of machine learning, computer vision, and social psychology.

A modelis only as good as its data. The dataset and its annotations
will ultimately have the most significant effect on the psychological
validity and usefulness of the models. When annotating a dataset
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Fig. 12. Video processing. Frames taken from real time video processing examples. The scores are normalized with respect to the training data statistics and then displayed over
time on a line plot and a histogram. These frames exemplify changes in predictions based on facial expression and head movement.

for subjective traits, small differences such as the number of anno-
tations and the geographic and cultural differences of the annotators
must be taken into consideration. Different cultures and languages
affect the way people interpret traits, or the description of traits. Just
as intriguing as the generalizations about people that we made in
our work is the study of different cultures and focus groups. Models
trained only on the annotations of a focus group could generalize to
new data, enabling cross-culture comparisons — useful in research,
marketing, political campaigning and more.

In systematically analyzing human judgments, it is also important
to choose traits that best fulfill a purpose. In our case, Trustworthiness
and Dominance are the best representations of the abstract judgments
humans make about each other. IQ and Age, while not as fundamental
in a psychological sense, still have conceivable applications, including
the assessment of preconceived notions of intelligence and seniority —
subtle social cues we often take for granted.

Code, data, and supplemental material for this paper can be found
at: http://github.com/mel-2445/Predicting-First-Impressions.
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