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A B S T R A C T

Describable visual facial attributes are now commonplace in human biometrics and affective comput-

ing, with existing algorithms even reaching a sufficient point of maturity for placement into commercial

products. These algorithms model objective facets of facial appearance, such as hair and eye color, expres-

sion, and aspects of the geometry of the face. A natural extension, which has not been studied to any great

extent thus far, is the ability to model subjective attributes that are assigned to a face based purely on visual

judgments. For instance, with just a glance, our first impression of a face may lead us to believe that a per-

son is smart, worthy of our trust, and perhaps even our admiration — regardless of the underlying truth

behind such attributes. Psychologists believe that these judgments are based on a variety of factors such

as emotional states, personality traits, and other physiognomic cues. But work in this direction leads to an

interesting question: how do we create models for problems where there is only measurable behavior?

In this paper, we introduce a convolutional neural network-based regression framework that allows us to

train predictive models of crowd behavior for social attribute assignment. Over images from the AFLW face

database, these models demonstrate strong correlations with human crowd ratings.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In human attribute modeling, there often exists a disparity

between the way humans describe humans and the way compu-

tational models describe humans. A large amount of describable

attribute research in computer vision concentrates onobjective traits.

For example, work using the popular CelebA dataset [22,30,44,42]

appliesdifferentmethodstomodeltraitssuchas“Male”and“Bearded”

with binary annotations. Beyond objective attributes, it is possible

to model more subjective traits such as expression [12,7], attrac-

tiveness [17], and humorousness [21], but research often overlooks

the important interrelation between attribute modeling and social

psychology. Enabling computers to make accurate predictions about

objective content and enabling computers to make human-like judg-

ments about subjective content are both necessary steps in the

development of machine intelligence. Here, we focus on the latter.

� This paper has been recommended for acceptance by Alice J O’Toole.
* Corresponding author.
E-mail address: mmccurr1@nd.edu (M. McCurrie).

Specifically, we concentrate on descriptions of the face, as an

abundance of social psychology research demonstrates a human ten-

dency to make judgments in social interactions based on the faces of

fellow humans [33,40,1]. Popular human characteristics of academic

interest closely related to these social interactions include emo-

tion [24], attractiveness [1], trustworthiness [37,40,29,8], dominance

[33,24], sociability, intelligence, andmorality [1]. Psychologists often

specifically concentrate on trustworthiness, dominance, and intelli-

gence because they represent comprehensive abstract qualities that

humans regard in each other. Alexander Todorov, one of the fore-

most psychologists studying these social judgments, uses dominance

and trustworthiness as the basis of many in-depth studies of human

judgment [36-38]. Ultimately, he finds that most other recogniz-

able subjective traits in humans can be represented as an orthogonal

function of dominance and trustworthiness [27], which suggests

these two conceptual traits are ideal for computational modeling

(Fig. 1).

Closely related to ourwork is research concentrated on the assess-

ment of abstract traits in human faces based on the effect of facial

contortions andpositions. Inspired by animals’ displays of dominance

andsubmissiveness in respectivehead raises andbows,Mignault et al.

specifically analyzed the effects of head tilt on the change inperceived

dominance and emotion [24]. Not only does the study confirm the

https://doi.org/10.1016/j.imavis.2018.06.010

0262-8856/© 2018 Elsevier B.V. All rights reserved.
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Fig. 1. Computational modeling of social attributes allows us to predict what the

crowd might say about a face image. In this image we graphically compare the

attribute predictions for Julian Assange and Benedict Cumberbatch, who plays Assange

in themovie The Fifth Estate, as well as the predictions for Edward Snowden and Joseph

Gordon-Levitt, who plays Snowden in themovie Snowden. Specifically looking at these

images, our models output similar predictions between the subjects and their actors.

The radar plots above reflect the output of a face processing pipeline, where faces are

detected, aligned, and then processed through a deep convolutional neural network

regressor that models a particular social attribute. This regression framework is the

main contribution of our work. For this image we display the predictions’ z-scores

with respect to the training data.

hypothesized disparity in perceived traits based on head tilt, but it

alsofinds genderhas anoteworthy influenceon subjects’ perceptions.

Keating et al. assessed the effect of eyebrow and mouth gestures

on perceived dominance and happiness in a cultural context [14].

The study found smiling to be a universal indicator of happiness and

showed weak associations between not smiling and dominance. It

alsodeterminedtheeffectof a lowered-browonperceiveddominance

to be generally restricted to Western subjects.

In this paper, we connect traditional machine learning and social

psychology findings like those described above. Wework specifically

with traits that can be considered abstract representations of high-

level human attributes. Additionally, we introduce a convolutional

neural network-based (CNN) regression framework that allows us to

train predictive models of crowd behavior for social attribute assign-

ment. Very different from prior work, wemake use of a unique visual

psychophysics crowdsourcing platform, TestMyBrain.org, to gather

the annotations necessary for training. As a case study, we examine

four social attributes: trustworthiness, dominance, age, and IQ. We

investigate each purely in the context of crowd judgments. Our mod-

els demonstrate strong correlations with crowd ratings, which we

suspect are largely driven by low-level image cues.

In short, our contributions in this paper are:

• A novel dataset of over 6000 images annotated for all four traits

of interest.

• The deployment of a crowd-sourced data collection regime,

which collects large amounts of data on high-level social

attributes from the popular psychophysics testing platform

TestMyBrain.org.

• The comparison of different deep learning architectures for

abstract social attribute modeling.

• A set of highly effective automatic predictors of social attributes

that have not been modeled before in computer vision.

2. Related work

The relatedwork in computer vision falls into two categories: gen-

eral face attributes, and specific CNN-based approaches. We review

both in this section.

2.1. Attributes in computer vision

Due to the proliferation of low-cost high performance computing

resources (e.g., GPUs) and web-scale image data, large-scale image

classification and labeling is now commonplace in computer vision.

With respect to face images from the web, Labeled Faces in the

Wild [13], YouTube Faces [41], MegaFace [26], Janus Benchmark

A [15], and CelebA [22] are all popular choices for a variety of facial

modeling tasks beyond conventional face recognition. Attribute pre-

diction, where the objective is to assign semantically meaningful

labels to faces in order to build a human interpretable description

of facial appearance, is the particular task we concentrate on in this

paper.

Both Farhadi et al. [9] and Lampert et al. [19] originally conceived

of visual attributes as a development supporting object recognition,

rather than aprimary goal in andof itself. Faces, however, are a special

case where standalone analysis supports applications in biometrics

and affective computing. Kumar et al. used facial attributes for face

verificationand imagesearch [17]. Scheireretal. applied thestatistical

extreme value theory to facial attribute search spaces to create accu-

rate multi-dimensional representations of attribute searches [31].

Siddiquieetal.modeledtherelationshipsbetweendifferentattributes

to create more accurate multi-attribute searches [34]. Lastly, Luo et

al. captured the interdependencies of local face regions to increase

classification accuracy [23].

Certain traits such as Age [25,18,20] and gender [21,20] have

enjoyed disproportionate attention, but researchers also model

numerous other facial attributes. The release of the large CelebA

dataset [22] also prompted several novel studies of facial attributes

on all 40 traits in the dataset [30,44,42]. For a comprehensive review

of facial attribute work in practical biometric systems, see the review

authored by Dantcheva et al. [6].

2.2. Convolutional neural networks for attributes

Current state-of-the-art facial attribute modeling relies on CNNs.

Pioneeringwork in the field, Golomb et al. trained a CNNwith an 8.1%

error rate on gender prediction [11]. More recently, Zhang et al. used

CNNs alongside conventional part-basedmodels to predict attributes

such as clothing style, gender, action, and hair style from images [43].

Wang et al. applied CNNs to an automatically generated egocentric

dataset annotated for contextual information such as weather and

location [39]. Levi et al. used a CNN for age and gender classification

from faces [20]. Liu et al. used two cascaded CNNs and trained sup-

port vector machines to separate the processes of face localization

and attribute prediction [22]. Finally, Zhong et al. extended the work

of Liu et al. using off-the-shelf CNNs to build facial descriptors in a

different approach to attribute prediction [44].

Most similar to our research is the recent work of Lewenberg et

al. [21]. They use a CNN to predict objective traits including gender,

ethnicity, age, make-up, and hair color, and subjective traits includ-

ing emotional state, attractiveness, and humorousness. That research

introduced a new face attributes dataset of 10,000 images annotated

for these traits. To generate this dataset, Lewenberg et al. employed

Amazon’s Mechanical Turk raters from the US and Canada to rate
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Fig. 2. Data distributions. We assert that to most accurately model humans’ psychological judgments, each of these traits should be modeled on a continuous distribution. For

this reason we employed the Likert Scale in our data collection and then took the average of human ratings for each image. This graphic shows faces at each quartile from the

dataset (left) as well as the training data distributions (right), all of which seem to be close to normal.

a subset of the PubFig dataset, aggregating labels from three sepa-

rate individuals for each image. Notably, the work only analyzes the

traits with binary classification, labeling each image as “yes” or “no”

with respect to a trait. Our most immediate improvement on this

work is in the way in which we collect data. We use an online psy-

chophysics testing platform, aggregating data from a larger number

of raters from an arguably more reliable and geographically variable

source. In addition, we model more abstract, representational traits

on continuous distributions.

Also parallel to our work, and the current state-of-the-art

attribute prediction, is thework of Rudd et al. [30]. Rudd et al. employ

a single custom Mixed Objective Optimization Network (MOON) to

multi-task facial attribute recognition, minimizing the error of their

networks over all forty traits of the CelebA dataset [22]. We use our

Fig. 3. Annotation task. A sample behavioral task that a subject might see on

TestMyBrain.org. All ratings collected for this work were on a Likert scale between 1

and 7, where 1 indicates the least amount of attribute presence, and the 7 indicates

the most amount.

own implementation of the MOON architecture as a basis for each

separate trait in our modeling.

3. Crowd-sourced data collection

In this paper, we introduce a new dataset for social attributemod-

eling. The dataset consists of 6300 grayscale images of faces sampled

from theAFLWdataset [16] and annotated for the four traitswe study.

RepresentativesamplesofthedatasetforeachtraitcanbeseeninFig.2.

This dataset is novel in that it captures human annotators’ subjective

assessment of traits with underlying truth. For traits such as Age and

IQ, which are easy to record and described onwell-known scales, it is

of course possible to produce a dataset with verifiablemeasurements

of the underlying traits — but this is not our objective. Rather than

analyzeandmodel actual trustworthiness, dominance, age, and IQ,we

choose to studypeople’s describedperceptionsof theaforementioned

traits. For example, our dataset does not include actual ages, instead

the images are annotated by a consensus score — aggregate statistics

ofwhatmany people said about the ages of the subjects in the images.

3.1. TestMyBrain.org

For this high-level annotation, we use TestMyBrain.org [10], a

crowd-sourced psychophysics testing website where users go to

test and compare their mental abilities and preferences. It is one

of the most popular “brain testing” sites on the web, with over 1.6

million participants since 2008. But what specific advantages does

TestMyBrain.org have over a service like Amazon’s Mechanical Turk?

TestMyBrain.org is a citizen science effort that facilitates psycho-

logical experiments and provides personalized feedback for the user,

Table 1

Dataset statistics: Statistics on the 5040 images used for training for all four social

attribute classes (normalized to a [0, 1] range). The “Mean Std. of Ratings” refers to the

average standard deviation of the human scores for each individual image.

Trust. Dom. Age IQ

Mean of ratings 0.48 0.47 0.42 0.48

Std. of ratings 0.16 0.16 .20 0.14

Mean Std.

of ratings 0.34 0.32 0.13 0.27

Mean Num.

of ratings 32.47 32.19 15.80 15.79
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Fig. 4. Attribute relationships. Trustworthiness and Dominance have a linear negative correlation. Age tends to have a non-linear relationship with the other traits, reflecting the

similar Trustworthiness, Dominance, and IQ between the elderly and children individuals. Originally we hypothesized that Trustworthiness and Dominance would provide an

orthogonal basis for other traits and therefore be linearly independent. These graphs show this may not be the case.

mutually benefiting both researchers and those curious about their

ownmind. The subject pool is geographically diverse and provides an

arguably superior psychometric testing group compared to smaller

more homogeneous subject pools such as that of Mechanical Turk. In

addition to being an ideal setting for aggregate, cross-cultural psy-

chometric experiments for researchers, TestMyBrain.org provides

the non-monetary incentive of detailed, personalized results for sub-

jects. Subjects visiting the site are motivated by a desire to learn

about themselves and have little incentive to respond to experi-

ments quickly or poorly. Based on these factors, we determined that

the subject pool of TestMyBrain.org is ideal for the delicate task of

honestly appraising abstract attributes in faces.

Using TestMyBrain.org, we asked participants to judge faces for a

select trait on a Likert Scale, a psychometric bipolar scaling method

shown in Fig. 3. As can be seen in Table 1, each face has an aver-

age of about 32 judgments for Trustworthiness and Dominance and

15 for Age and IQ. We recorded the average judgment to use as

the consensus score for that image and normalized the Trustworthi-

ness and Dominance scores. In training we map all y values so that

0 ≤ y ≤ 1. We calculated the coefficient of determination (R2) of

mean human ratings from two independent sets of 943 subjects for

389 random images from the AFLW set for Trustworthiness and 400

random images from the AFLW set for dominance. The Trustworthi-

ness R2 is 0.93 and the Dominance R2 is 0.88. Both of these statistics

are very similar to the internal reliability calculated by Oosterhof and

Todorov [27]. Thus, there is indeed signal in these data that can be

learned by a machine learning algorithm.

3.2. Data insights

We can learn about simple patterns in human judgment by

observing correlations in the data. The Annotated Facial Landmarks

in the Wild Dataset provides annotations for gender, glasses, occlu-

sion, grayscale, facial landmarks, and bounding boxes. Comparing

attribute distributions conditioned on the objective, binary traits

provides interesting information. Females tend to be rated as more

trustworthy and less dominant, people with glasses are generally

rated as more intelligent. Occlusion has a weak correlation with

trustworthy ratings. Glasses have a weak correlation with age rat-

ings. Most likely due to our preprocessing, original image quality and

grayscale are not correlated with any attributes. Some interesting

relationships are shown in Fig. 5.

As discussed previously, we hypothesized that Trustworthiness

and Dominance are an orthogonal basis for other human attributes,
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Fig. 5. Dataset patterns. A few of the interesting relationships between our annotated attributes and the AFLW attributes. From left to right, top to bottom: glasses is positively

correlated with IQ, glasses is positively correlated with Age, female Age is distributed more normally than male Age, and occlusion is negatively correlated with Trustworthiness.

Best viewed in color.

implying statistical independence. As seen in Fig. 4, Trustworthi-

ness and Dominance are negatively correlated. This may be evidence

against the hypothesis, but also could be a result of several fac-

tors including question wording and calculating aggregate score

measurements using the mean.

4. CNN regression for social attributes

Our algorithm is a regression model that outputs a single score

from an input image. A regression, rather than a binary classification,

is a more realistic representation of the initial judgments humans

make. For example, from our four modeled traits, both Age and IQ

are already known to be described by continuous distributions and

are therefore likely judged on continuous distributions. We assert

the other two modeled traits, Trustworthiness and Dominance, are

similarly best described by continuous distributions. For what is dis-

cussed below with respect to architectures, assume the output is

always a single floating point number from a fully-connected layer

after feature extraction.

4.1. Comparing architectures: what works best for social attribute

modeling?

We initially compare different feature extraction algorithms,

most of which are Convolutional Neural Networks with varying

depths and use of regularization. We run each with similar param-

eters that we determined empirically. With respect to our imple-

mentation of the architectures, we made use of the Keras [5] and

Theano [2] deep learning frameworks.

To test very shallow features we examine feature extraction with

Histogram of Oriented of Gradients and two custom shallow CNN

architectures. For the most basic feature extraction we use the His-

togram of Oriented Gradients algorithm followed by several fully

connected layers with dropout. In the “Shallow” network, we employ

three segments of convolution and max pooling connected to fully-

connected layerswithdropoutandParametricReLUactivations. In the

“Basic6” network, we employ four segments of a single convolution

and max pooling followed by two fully-connected layers with ReLU

activations and no dropout.
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Fig. 6. Performance during training. In this image, we compare the ability of each architecture to learn the dataset and generalize to validation data. We include all four traits,

training and validation scores, and all four original architectures plus our final architecture based on the hyperparameter optimization results. Of the four original architectures

the MOON models generally perform better, but our optimized models consistently perform the best. (Optimized models were trained with early stopping, as can be seen in the

plots.) Best viewed in color.

To test moderately deep architectures we used the Oxford Visual

Geometry Group’s VGG 16 and 19 networks [35], and a VGG16

variant from Rudd et al. We reproduce the convolutional architec-

tures, modifying the shape of the input and output matrices for

our smaller grayscale images and single floating point regression

output. The newest architecture we analyzed is our implementation

of the MOON architecture [30], which is more shallow than both of

the VGGNet implementations. The convolutional feature extracting

portion of the architecture is similar to the VGG networks in that

it consists of several segments, where each segment has multiple

Fig. 7. Data augmentation. We explore the use of six different augmentation techniques for our small dataset, pictured here. During hyperparameter optimization, we optimize

the probability that each of these augmentations occurs during training, and then the extent to which it occurs. For example, we can optimize the possible size of the occlusion,

the extent of the brightness, and the possible amount of noise added to each image.
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Table 2

Hyperparameters: Some important hyperparameter optimization results per trait for

our optimized MOON architectures.

Trust. Dom. Age IQ

Learning rate 10−4.2 10−4.4 10−4.8 10−4.6

Dropout 55% 31% 45% 38%

2x Convolution 0 64 32 32 64

2x Convolution 1 64 64 128 32

2x Convolution 2 128 – – –

3x Convolution 3 256 256 256 256

3x Convolution 4 256 512 512 256

3x Convolution 5 256 512 512 –

FC layers 1 3 4 3

FC outputs 2079 2227 2187 1244

Table 3

Results: R2 values of validation and testing results from our optimized MOON

architectures for each trait. Best results on the test set are shown in bold.

Trust. Dom. Age IQ

Validation 0.41 0.49 0.75 0.29

Validation ensemble 0.43 0.51 0.74 0.30

Test 0.38 0.46 0.72 0.24

Test ensemble 0.43 0.46 0.74 0.27

convolutional layers followed by a max pooling layer. We modify

the architecture for our smaller grayscale images and connect the

convolutional layers to fully-connected layers that output a single

score. To test a very deep network we use Resnet-50. We find that

Resnet-50with randomweight initializations does not convergewell

when trained on so few images.

As will be discussed below in Section 6, the differences in model

performances on the validation sets during training are not very

large, suggesting the architecture choice may not make a signif-

icant difference. The newer MOON architecture performs slightly

better on most of the traits, however, so we chose to use it as a

basis for our final optimized models. Note that the earlier work of

Lewenberg et al. [21] used an AlexNet block structure augmented

with supervised features (facial landmark information) and a custom

loss function, while MOON is a more straightforward VGG [35]

modification.

4.2. Augmentation

To make the most of our small dataset, we augment the images

with occlusion, brightness, blur, histogram equalization, horizontal

flipping, and random noise at optimization time (Fig. 7). We predict

that some of these augmentation techniques will help, such as flip-

ping the image, but given our findings that features of the image

such as occlusion are correlated with human ratings, we suspect

that overuse of certain augmentation will harm our models abil-

ity to generalize. We explore this further in our hyperperameter

optimization.

4.3. Under and over sampling

As seen in Fig. 2, the aggregate ratings for each trait tend toward

a normal distribution. Thus, the extreme values are rarely observed

by the model in training and values that tend toward the mean

score are observed frequently. We chose to treat our dataset as

imbalanced and adapt class under and over sampling for a regression

situation. We first bin all values, normalize the discrete distribution,

and assign a default probability of 1 − P(bin), where P(bin) is the

relative probability of a bin in the training data. We then choose a

prior function over the probability of the binned values:

P(p) = pa +10−b

where p ∈ [0, 1] is the original bin probability, a ∈ [2, 20] controls

how often extreme values are chosen and b ∈ [1.2, 3] controls how

often the most common values are chosen. Then we optimize a and

b during hyperperamater optimization.

4.4. Hyperparameter optimization

Rudd et al. train their MOON models on RGB images that are

larger than our grayscale images and model hypothetically less

Fig. 8. Transfer learning performance during training. In this image, we compare different weight initialization methods, namely random, Imagenet pretrained, and VGG-Face

pretrained. We also observe the effects of freezing some layers. Pre-trained initializations provide a clear advantage in both speed and performance The difference between VGG-

Face and Imagenet pretrained weight initializations seems to be negligible. Using the original pretrained representations by freezing all the layers, however, hinders performance.

Best viewed in color.
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Fig. 9. Transfer learning saliency. Here, we display the different localization abilities of models trained with different initialization schemes on images from our validation sets.

Random initializations appear to be the best at localizing obvious features, but perform the worst.

abstract objective attributes from the CelebA dataset, which is anno-

tated for binary classification. This suggests that our very different

dataset and features could benefit from some deviations in parame-

ter choices.

To determine the best network size and deviation in parame-

ters from the original MOON architecture, we optimize the network

for each trait using hyperopt [3], a python library for hyperparam-

eter optimization. Our search space includes learning rate, dropout,

the number of filters in each layer, the number of layers, the

amount of data augmentation, and the parameters of a sampling

function. Employing hyperopt with the Tree of Parzen Estimators

(TPE) algorithm allowed us to test a multitude of different parameter

and architecture combinations. After a very wide parameter search,

we perform a refined search with early stopping, and use the best

models.

We maximize the model’s performance with respect to the

coefficient of determination (R2) from the regression of ŷ, themodel’s

predicted scores, on y, the average human annotations. We use the

coefficient of determination as the measure of performance because

it represents the percentage of prediction variation explained by the

regression model. Thus our measure of performance does not reflect

accuracy with respect to the underlying trait, but rather captures

agreement between our model and the aggregate assessments of

human annotators.

As seen in Fig. 6, each trait trains very differently. Following

this trend, each trait’s coefficient of determination is optimized by

slightly different hyperparameters and deviations from the MOON

architecture as seen in Table 2. However, the improvements are only

modest, suggesting that deeper architectures and data augmentation

are not helpful for this task.

4.5. Smoothing errors with an ensemble

Another simple improvement is to train an ensemble of optimized

networks on our data and take the average of eachmodel’s regression

output at inference time. Using the optimized parameters we train

five models holding out a different 20% of the training data for each

model. Despite eachmodel using less training data, correlations with

crowd judgments improve for all attributes but Dominance. The final

R2 values are seen in Table 3.

5. Transfer learning

Given the dataset only contains 6300 images, training may

be improved by initializing model weights with those previously

trained on other datasets. We concentrate on VGG16 and observe the

effects of different pretrained weight initializations.

We choose VGG16 weights trained on the Imagenet dataset for

the general task of object recognition, as well as VGG16 weights

trained for Face Recognition [28]. Weights from a face recognition

task should encode features specific to the face, which may help

our understanding of the features necessary for this task. We train

iterations of each of these models with all layers frozen, half the lay-

ers frozen, and no layers frozen. For each network, we only use the

convolutional layers and add a single fully connected layer after.

Both pretrained networks were trained on color images of size

224 × 224 so we expand our tightly cropped images exemplified

in Figs. 2 and 3 by repeating the last row or column and adding

two channels. Doing so adds considerably more useless information

to the input, affecting our ability to compare these models to our

optimized models. Therefore, we also train a network with random

weight initializations for fair comparison.

The models’ training over time can be seen in Fig. 8. Transfer

Learning has two clear benefits over random initializations. First the

pretrained models perform better, reaching a minimum that gen-

eralizes better on the validation set. Second the pretrained models

approach this superior minimum very quickly, allowing for signifi-

cantly shorter training time. As shown in Fig. 8 there is not an obvious

difference between VGG-face and Imagenet initializations, and there

is not an obvious difference between training all layers and training

only the last half of the layers.

We can also compare the ability of each network to localize facial

features to understand why pretrained models perform better. We

take the gradient with respect to the output of our model and weight
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Fig. 10. Saliency from occlusion. We can visualize regions of the face that are most important to the trained models by systematically covering parts of the face and recording the

absolute differences. Here, we separately analyze 100 images of the validation set and display the average differences as a heatmap on top of the averaged faces. Best viewed in

color.

convolutional features by their relative significance as in Ref. [32].We

upscale and overlay the given heatmap on the input image, giving a

rough idea ofwhich areas aremost important for an input. Fig. 9 com-

pares the localization between networks with and without transfer

learning, showing immense differences in feature localization. It is

interesting to see that the randomly initializednetworks that general-

ize considerablyworse than the pretrained networks seem to localize

features such as the eyes and mouth considerably better than the

pretrainedmodels. We do not use pretrained networks further in our

evaluation.

6. Experimental evaluation

There are two important facets of evaluation with respect to our

social attribute models: (1) model correlation with human crowd

ratings of images, and (2) feature importance for social attribute

models. Each of these facets is explored in this section. After data

collection, our dataset consisted of 6300 grayscale images of faces,

aligned to correct for in-plane rotation using the CSU Toolkit [4]

and annotated for Trustworthiness, Dominance, Age, and IQ. We

randomly separated 80% of the original dataset into a training set,

and split the remaining 1260 images into a validation and test set

(630 images each). The test set is held out during training, while the

validation set is used to tune the hyperparameters.

6.1. Correlations with crowd judgments

We employ the R2 value from a regression of ŷ, the model’s

predicted scores, on y, the original human annotations, as a measure

of our model’s performance. This is a reasonable metric given the

linear relationship of y and ŷ. To properly compare architectures and

assess the training performance of our optimized model, we record

the R2 at each epoch and graph them in Fig. 6.

Looking at the graphs, the validation R2 values are ultimately very

similar between architectures. There is some variability in training

speed, and randomly good weight initializations seem to help, how-

ever the depth of the architecture does not seem to explain any

improvement in scores.

As expected, our optimized architectures outperform the other

four architectures. We display our final results from the optimized

networks in Table 3, which shows R2 values from regressions of our

model’s predicted values on human annotated consensus scores for

both the validation and testing sets. Each trait has a slightly different

coefficient of determination, however all scores are strong for a
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Fig. 11. Final filters. Visualizing a sample of the filters from the last convolutional layer of each optimized model, we can observe the resemblance of the output to a low-level

feature extractor, consistent with our observation that deeper architectures add little to no improvement. (Color added to improve contrast.)

psychology-oriented experiment incorporating noisy human mea-

surements. Our models for Age are the strongest, IQ are the weakest,

and Trustworthiness and Dominance perform similarly to each other.

6.2. Visualizations of feature importance

Visualizations of the hyperparameter optimized CNN models

show localized areas of importance on the face for each trait. As an

example, we overlay average heatmaps for each trait on the averaged

faces of 100 images from the validation data in Fig. 10. To produce

these graphics we systematically moved a gray box over an image,

iteratively scaling the box down after each pass. We then recorded

the absolute difference in total score at each point. This visualization

is intriguing because it allows us to view, in a certain image, or over

an average of images, what areas of the face have the most or least

significant effect on the final prediction.

The performance of a model trained on subjective human assess-

ments is much less intuitive than the performance of a model trained

on an objective task. Although interpretation of performance within

the realm of supervised learning remains the same, validating the

results is not as simple as looking at the outputs. Referring back

to previous social psychology research [24,14] both Trustworthiness

and Dominance are expected to rely on the mouth. Our models indi-

cate a heavy reliance on areas near the mouth and chin. Similarly,

Keating et al. [14] determined that a lowered brow should affect

the (mostlyWestern) perception of Dominance. Both our Dominance

and Trustworthiness models approximately locate the brow mid-

sections. These observations indicate that our models have learned

to look in the same places that humans do, possibly replicating the

way we judge high-level attributes in each other.

Another method of analyzing our models is a visualization of the

filters. Our visualizations of the filters from the final convolutional

layer of each network in Fig. 11 are intriguing because they resemble

the output of a low-level feature extractor. This indicates that despite

the high-level abstract quality of these traits, low-level features

might be enough for humans to make their immediate judgments.

This is consistent with our observation that deeper architectures add

little to no improvement.

6.3. Processing faces in video

Avery good litmus test for ourmodels is videoprocessing. For each

frame from a video, we can apply face detection and face alignment,

and then use our optimized models to predict the score of each trait.

We can even do this in real time — displaying the predicted change

in crowd assessment as subjects alter facial position and expression

in the video. Fig. 12 shows several frames from a couple of example

videos being processed. In Fig. 12, all scores aremapped to a standard

normal distribution and shownover timeonboth a line plot and a his-

togram. A selection of processed videos are provided as supplemental

material.

7. Discussion

Current state-of-the-art visual recognition algorithms in com-

puter vision, andmore specifically algorithms for facial attribute pre-

diction [21,30], show accuracy that promises new applications in the

near future. It is in the best interest of both researchers and develop-

ers in industry to promote research that focuses on the interrelation

of machine learning, computer vision, and social psychology.

Amodel is only as good as its data. The dataset and its annotations

will ultimately have the most significant effect on the psychological

validity and usefulness of the models. When annotating a dataset
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Fig. 12. Video processing. Frames taken from real time video processing examples. The scores are normalized with respect to the training data statistics and then displayed over

time on a line plot and a histogram. These frames exemplify changes in predictions based on facial expression and head movement.

for subjective traits, small differences such as the number of anno-

tations and the geographic and cultural differences of the annotators

must be taken into consideration. Different cultures and languages

affect the way people interpret traits, or the description of traits. Just

as intriguing as the generalizations about people that we made in

our work is the study of different cultures and focus groups. Models

trained only on the annotations of a focus group could generalize to

new data, enabling cross-culture comparisons — useful in research,

marketing, political campaigning and more.

In systematically analyzing human judgments, it is also important

to choose traits that best fulfill a purpose. In our case, Trustworthiness

andDominanceare thebest representationsof theabstract judgments

humansmake about each other. IQ andAge,while not as fundamental

in a psychological sense, still have conceivable applications, including

theassessmentofpreconceivednotionsof intelligenceandseniority—

subtle social cues we often take for granted.

Code, data, and supplemental material for this paper can be found

at: http://github.com/mel-2445/Predicting-First-Impressions.
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