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I
n a period of fewer than 10 years, 

the quest for self-driving vehicles, 

also referred to as autonomous 

vehicles (AVs) or driverless cars, 

has become one of the biggest 

technology races in the world, with 

tens of billions of dollars poured into 

companies and start-ups. The goal is 

an on-road, consumer-driverless car: 

whether owned by individuals or part 

of a centralized ride-sharing fleet, 

this is the area where the majority of 

investment has occurred. However, 

AVs have been around for much lon-

ger in other fields, such as mining, 

which share some but not all of the 

same technical challenges faced by 

on-road AVs. In this article, we pro-

vide an overview of the key technical 

challenges and solutions for both on- 

and off-road AVs, with a focus on 

one of the key unsolved challenges—

interaction with vulnerable road 

users (VRUs).

Key technical competencies: 

Hardware

A typical AV contains a number of 

key components: the physical plat-

form and a suite of sensing and on -

board computational hardware.

Platform

The type of AV platform affects the 

viability of different technological 
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solutions to the problem of autonomy. 

Larger vehicles are typically heavier 

and harder to stop—and more dam-

aging when they hit something—but 

they can carry a greater number of 

onboard sensing and computing 

components. Energy storage also 

generally scales favorably with vehi-

cle size, an important consideration 

that can enable better up-time per-

centages and utilization of more pow-

er-hungry computing.

Sensor suites

AV platforms have access to a range 

of sensing technologies (Fig. 1). 

Lidar- and laser-based range sen-

sors provide accurate long distance 

range-to-object information and can 

also use reflectance information to 

detect lane markings. However, in 

adverse weather, such as rain or 

smoke, their capabilities can be sig-

nificantly degraded.

Modern camera technology pro-

vides very-high-resolution imagery 

of the environment, with good dy-

namic range (revealing detail both 

in bright and dark areas of an im-

age simultaneously) and high frame 

rates (Fig. 2). The information pres-

ent in a camera image is much rich-

er than that produced by any other 

sensing modality, provided it can be 

successfully extracted—the widely 

quoted proof of concept here being 

that humans can drive very well with 

primarily visual sensing alone. Cam-

eras are often less expensive and re-

quire less power than lidar, but they 

are sensitive to changes in environ-

mental appearance caused by factors 

such as day–night cycles (Fig. 3).

Radar’s primary purpose in most 

current AV applications is collision 
FIG1 A typical sensor suite on top of a car, with multiple cameras and lidar sensors. 

(Source: QUT; used with permission.)

(a)

(b)

FIG2 What an autonomous car sees: (a) a range of camera views and (b) range scans. (Source: QUT; used with permission.) 
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avoidance: although it does not have 

good acuity and, as a result, strug-

gles to distinguish small objects, it is 

relatively resilient to environmental 

conditions, such as adverse weather, 

and can see through smoke and fog 

quite well. Finally, sensors such as 

GPS receivers provide positioning in-

formation (which can be disrupted by 

tunnels or tall buildings), while inter-

nal sensors deliver information such 

as linear acceleration, rotational rate, 

steering angle, and wheel speed.

Computational hardware

Computer hardware provides the pro-

cessing power to perform all of the 

onboard autonomy-related tasks, such 

as scene understanding, navigation, 

and high-level control. To maximize 

electric-vehicle range, recent hardware 

trends have focused on power usage 

per computing unit. Nvidia is a good 

example of a key player in this space, 

with power-efficient, highly capable 

systems such as its Jetson AGX Xavi-

er. Offboard computing still has a use-

ful role to play in AV applications—for 

example, in the consolidation and 

merging of the massive amounts of 

data uploaded by thousands of cars in 

a city on a daily basis.

Key technical competencies: 

Software

The software operating on AVs per-

forms a number of key technical com-

petencies, including localization, 

planning, decision making, and 

scene understanding.

Mapping and localization

Mapping and localization are key 

pillars of AV operation. There are 

several subtypes of localization, 

each of which plays a different role 

in enabling autonomy on a vehi-

cle (Fig. 4).

Simultaneous localization and 

mapping has long been a major re-

search field in robotics: how does a 

robot move through an environment, 

building up a map of that environ-

ment, while simultaneously localiz-

ing itself within that everchanging 

map? Approximate localization—

what you get on your phone’s GPS—

is typically used for overall route 

planning and is obtained from GPS 

or onboard localization systems. Au-

tomation-enabling higher-precision 

localization is typically provided by 

onboard localization within existing 

maps of the environment or, in the 

case of some autonomous mining ve-

hicles, high-accuracy GPS.

Relative localization is also impor-

tant—for example, knowing that the 

vehicle is currently located 0.73  m 

from the edge of the road. Accurate 

relative positioning (and velocities 

and accelerations) with respect to 

moving objects, such as an oncoming 

car, is critical for safe vehicle plan-

ning and control.

Planning, decision making,  

and control

Just as critical to an AV’s viability as 

sensing and mapping is what is then 

done with that information: how does 

the vehicle plan and then act, wheth-

er to accelerate, brake, turn, or acti-

vate a turning indicator? These pro-

cesses play a critical role in safety; 

the planning system must continu-

ally plan safe actions, such as slow-

ing down or suddenly changing lanes 

to avoid an unexpected obstacle when 

braking is not an option.

The planning and decision-mak-

ing process also changes signifi-

cantly for on-road delivery vehicles 

that carry goods rather than people, 

such as those used by Nuro. In acci-

dent situations with these AVs, there 

is no tension between protecting hu-

mans inside and outside the vehicle, 

so the safety of humans outside can 

be entirely prioritized.

Place A Place A

Place BPlace A′

Same Place,

Low Similarity
Difference Place,

High Similarity

A–A′ A–B

(a) (b)

FIG3 Environmental change poses a significant challenge for camera-based technologies. (a) The images are from the same place 

under radically different environmental conditions, whereas in (b), the images are from different places in the environment.

The information present in a camera image  
is much richer than that produced by any  

other sensing modality, provided it can be 
successfully extracted.  
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Interaction with VRUs 

Vehicles that have reached Society of 

Automotive Engineers level 3 auton-

omy and above will have to know 

how to interact with humans. This 

includes human drivers, who—even 

in a world where AVs are rapidly 

adopted—will be on the roads for the 

foreseeable future. Bicyclists, pedes-

trians, motorcyclists, scooter riders: 

these categories of VRUs have 

enduring claim to their share of the 

urban pavement. Interacting safely, 

explainably, and politely with VRUs 

is likely to remain an essential part 

of the AV’s task (Fig. 5). 

Pedestrians and cyclists are not 

predictable with standard techni-

ques, such as Kalman filters. Sim-

ply stopping every time a VRU could 

potentially enter the vehicle’s path 

results in vehicles that perform ex-

cessive and unnecessary emergency 

maneuvers. Overall, 86% of docu-

mented incidents with AVs are either 

rear-endings or sideswipings that 

 result from a human’s misunder-

standing of an AV’s behavior. Under-

standing VRUs is key to eliminating 

this failure mode.

Moving away from the trolley 

problem mind-set

Much of the attention devoted to in -

teractions between AVs and VRUs has 

focused on ethical dilemmas. A 

famous thought experiment is the 

“trolley problem,” where, in the epony-

mous problem, a trolley driver is 

forced to choose which of two actions, 

both of which cause someone’s death, 

is more morally acceptable; this has 

been held up as a model for the kinds 

of decisions AVs will have to make. 

Although it may someday be the case 

that AVs are sophisticated enough and 

have good enough information about 

the world that the primary concern 

with VRU interaction is how to 

behave ethically in the unlikely event 

that there is no option but to cause 

catastrophic bodily harm to a 

human, there are several reasons why 

this is not currently a primary con-

cern to AV makers.

First, the starting goal for many 

vehicle makers is finding a motion 

plan that provably minimizes or elim-

inates any chance of a harm-causing 

interaction. The Intel division Mobil-

Eye has published work attempting 

to formalize risk analysis in motion 

planning to develop behavior plans 

where a negative interaction is im-

possible. Second, the types of ethical 

dilemmas discussed in most trolley-

problem research rely on very fine-

grained categorization of VRUs—an 

old person versus a young person, a 

pregnant woman versus a helmetless 

cyclist, and so on—that are largely 

out of reach for current perception 

systems in AVs. Third, much of the 

current focus in AVs is on minimiz-

ing harm in general, and one way to 

do that is to plan around the level of 

damage likely to be caused. For these 

reasons and others, the ethical con-

siderations raised by the trolley prob-

lem are increasingly not being consid-

ered as the most immediate practical 

challenge for AVs.

Key technical breakdown

VRUs are sometimes difficult to dis-

tinguish: from the waist up, a cyclist, 
FIG5 Detecting and predicting the intent of VRUs, such as cyclists and pedestrians, is a 

critical challenge for AVs. (Source: Perceptive Automata; used with permission.) 

FIG4 All errors are not created equal. For example, for second-to-second control in a mining 

tunnel, minimizing lateral error is more important than downtrack (along the length of the tun-

nel) error since the immediate risk is hitting the wall.
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VRUs are sometimes difficult to distinguish:  
from the waist up, a cyclist, pedestrian,  
and scooter rider all look very similar to  

a computer vision system.  
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pedestrian, and scooter rider all look 

very similar to a computer vision sys-

tem. Here, we provide a technical 

breakdown of the relevant technolo-

gies that address this challenge.

Detecting VRUs

When we use the term detection, we 

mean automatically detecting that 

something is in the way of the vehicle. 

Radar, lidar, and various other non–

red/green/blue sensors are very capa-

ble for this task, but they have limita-

tions around discriminatory resolu-

tion (radar) and current cost (lidar). 

Camera sensors represent a less 

expensive option that has caught on 

with several car companies producing 

self-driving vehicles.

Recognizing VRUs

When we use the term recognition, we 

mean automatically determining 

what exactly is in the scene as sensed 

by the vehicle (Fig. 6). Current recog-

nition algorithms have been largely 

developed and tested in the laborato-

ry by using standard benchmark 

data sets, such as ImageNet and 

Common Objects in Context (better 

known as COCO), but a troubling dis-

connect exists between laboratory 

experimentation and real-world oper-

ation. For example, a well-known lim-

itation of all machine-learning-based 

algorithms is their poor handling of 

inputs from classes outside the train-

ing set. This is known as the open set 

recognition problem, and it is a com-

mon problem in autonomous driv-

ing. A new class of open-set-tolerant 

machine-learning algorithms is being 

developed to address this issue.

Recognizing VRU actions 

After detection and recognition of a 

VRU comes activity recognition—what 

the VRU is doing. Take one scenario: 

traffic officers signaling cars to follow 

a detour by waving in a certain direc-

tion. With a correct determination of 

what the officer’s action means, the 

vehicle can alter its course and safely 

proceed as directed.

This is a nontrivial sequence of 

events that must unfold within sec-

onds and be executed with a level of 

accuracy that matches that of a hu-

man driver. As with other areas of visu-

al recognition within computer vision, 

great strides have been made in action 

recognition, but current approaches 

are not as robust as human drivers.

Predicting VRU actions 

Arguably, the most important aspect 

of interacting with VRUs is predic-

tion. A motor vehicle that is traveling 

straight at 25 mi/h on a road and 

does not have its brake lights illumi-

nated can be assumed to continue 

traveling at approximately 25 mi/h, 

at least momentarily. Compared with 

vehicles, VRUs have many fewer con-

straints in terms of traffic signals, 

other traffic, and rules of the road 

and, therefore, have much more vari-

ability in potential paths.

Much work on the prediction of 

VRU actions has relied on funda-

mentally physics-based models: If 

you know the location and trajectory 

of the pedestrian, how well can you 

extrapolate his/her future trajec-

tory? Elaborations have included the 

use of cues, such as the presence 

of relevant context like crosswalks, 

and the integration of information 

regarding the pose of the person. 

These approaches have proven to be 

relatively robust on very short time 

scales, but they have not been able 

to provide useful predictions outside 

of a time window of about 1.5 s. At 

normal urban driving speeds, that’s 

not enough. One proposed solution 

is to model the dynamics of all of the 

actors at an intersection, which criti-

cally relies on being able to accurate-

ly model every agent in the scene.

Almost all of the current approach-

es have another shortcoming: that 

the drivers with which VRUs are most 

comfortable interacting—humans—

do nothing like either of these ap-

proaches. Humans have a finely tuned 

and remarkably high-functioning 

facility called theory of mind, which 

allows them to make behaviorally 

useful assumptions about the in-

ternal mental state of another hu-

man. A human driver isn’t trying to 

guess the trajectory of a pedestrian; 

instead, he or she is making sophis-

ticated inferential judgments about 

what that pedestrian’s goals are and 

how that pedestrian might interact 

in a social process with the vehicle. 

Approaches that model this concept 

look promising.

Communicating car intent to VRUs

The interaction between VRUs and 

human-driven vehicles begins when 

FIG6 Reliably detecting and recognizing VRUs, such as cyclists, is difficult enough un-

der normal conditions but is compounded in poor visual conditions and when the VRU 

(indicated by the red box) is partially obscured by other objects in the environment.

If you know the location and trajectory of  
the pedestrian, how well can you extrapolate  

his/her future trajectory?
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either the driver or the VRU first 

notices the other and ends when the 

vehicle has proceeded out of the 

VRU’s field of view. It is bidirection-

al: the pedestrian wants to know 

that the car recognizes that he or 

she is there, the car seeks to know 

what the pedestrian wants, and so 

on. Companies, such as Jaguar/

Land Rover, have experimented 

with mounting large, cartoon eyes 

on vehicles to communicate infor-

mation about how the AV is distrib-

uting its “attention.” Former start-

up Drive.ai designed its AVs to fea-

ture interactive screens that can 

communicate more complex mes-

sages, such as “I’m waiting for you 

to cross.” These systems have limit-

ed grammar, but actual interactions 

between human drivers and VRUs 

also rely on very limited grammar. 

To communicate with limited gram-

mar, the ability of both VRUs and 

vehicles to understand the inten-

tions and state of mind of other road 

actors is essential.

Current technical issues

With the field maturing over the past 

15 years since the DARPA Grand 

Challenge AV competition in 2004 

(which is widely credited as catalyzing 

the modern AV technology race), it 

has become relatively clear that some 

key technical issues remain unsolved, 

and these are generally widely ac -

knowledged by both industry and 

researchers  working in this area. One 

of the most significant topics is inter-

actions with VRUs, which we have 

already covered. Here, we briefly high-

light some of the other challenges.

The problem of corner cases

Corner cases, as they have become 

known, are situations that rarely 

occur and, as a result, are hard to 

predict, anticipate, and react to 

appropriately. A person dressed in a 

chicken suit is one example of a cor-

ner case. For self-driving cars, the 

problem is particularly difficult 

because the current artificial intelli-

gence techniques behind these sys-

tems do not generalize as well as a 

human driver and have difficulty 

coping with these highly unusual 

situations. Consequently, much 

effort is being invested in coming up 

with ways to deal more effectively 

with these corner cases by gathering 

ever-larger amounts of data from the 

real world, simulating billions of 

miles of driving, and repeatedly test-

ing pathologically difficult scenarios.

Simulation versus  

real-world testing

A key issue for AV developers is that 

cars are already quite safe: there is 

approximately one fatality for every 

100 million miles of driving. Conse-

quently, it is very difficult under nor-

mal conditions to obtain sufficient 

mileage on a limited number of devel-

opment vehicles to prove the safety of 

a system. Therefore, developers have 

turned to simulation as a critical tool 

in their autonomy arsenal. High-fidel-

ity simulation environments enable 

researchers to target specific weath-

er conditions and pedestrian config-

urations and run much-higher-

throughput simulation and evalua-

tion than is possible in the real world.

A key challenge in using simula-

tion arises from the transferability 

problem: how do you show and prove 

that the system you have developed 

in simulation will work as well in 

the real world? Simulation is never 

a perfect replication of reality. Many 

resources and much effort have 

consequently been invested in im-

proving the utilization and transfer-

ability of development in simulation 

environments.

Sometimes versus anytime: 

Weather and other 

environmental conditions

The real world is a constantly chang-

ing environment, which presents 

major challenges for AVs. First and 

foremost, the environment can 

change in both appearance and phys-

ical structure due to day–night cycles; 

seasonal change; and weather condi-

tions, such as rain, snow, and fog.

Figure 3 illustrates some of the 

key challenges that a changing world 

can cause. The same place [shown in 

the left column of Fig. 3(a)] can ap-

pear completely different at night 

during a tropical storm versus clear 

weather in the daytime. The problem 

is further complicated by the natu-

ral environmental aliasing that can 

also be encountered, shown in the 

left column of Fig. 3(b): these are two 

places that are completely different 

locations but look highly similar.

These problems can be partly solved 

by using advanced methods or sen-

sors that are not as sensitive to ap-

pearance change, such as lidar. How-

ever, visual sensing is critical for 

the rich, nuanced understanding of 

the world around an AV, and, con-

sequently, the problem of operating 

in challenging visual conditions re-

mains relevant and unsolved.

Provability, explainability, and 

self-characterization

A significant shortcoming of the pres-

ent generation of self-driving vehicles 

(and deep learning in general) is the 

difficulty in describing the properties 

of their underlying deep-learning 

models in a rigorous manner. In 

essence, the learning problem during 

training is one of function approxi-

mation, where the approximated 

function cannot be recovered in an 

exact manner afterward. (This is why 

neural networks have a reputation of 

being black boxes.) We would like to 

be able to enforce explainability for 

any output of a deep-learning model, 

but since we cannot examine any 

learned functions directly, we can 

only turn to the observable output of 

the system—the same situation psy-

chologists find themselves in when 

studying the human brain. One pos-

sibility, then, is to test the deep-

learning models in a manner similar 

to how psychologists test the brain.

For some applications, pausing and 

handing off control to a human operator 

The pedestrian wants to know that the car 
recognizes that he or she is there, the car seeks to 

know what the pedestrian wants, and so on.
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is feasible, but only if the system is  

able to assess its own performance 

reliably. To do this, probabilistic outputs 

reflecting uncertainty are required. 

For deep-learning-based systems, 

this can be accomplished with strate-

gies, such as making small perturba-

tions to the weights of the network, drop-

ping out units of a trained network at 

test time, using a probabilistically 

calibrated readout layer, or exam-

ining statistical distributions of the 

data sampled by the sensors. The 

choice of distribution is important: 

underestimating the occurrence of 

rare events can be dangerous, but 

overestimating them may be prob-

lematic for usability.

AVs beyond the road

Beyond the road, AVs have been or 

could be deployed in a range of other 

domains, including mining, logis-

tics, agriculture, and defense. Here, 

we briefly cover the key deployment 

domains and their unique problems 

and opportunities.

Mining

Mining, in general, has several of the 

key characteristics that facilitated 

its early adoption of AVs: it is large 

enough to support the capital-inten-

sive development of AV-related tech-

nology, its existing remote operation 

workflows are more easily automated, 

and there are fewer latency-critical 

scenarios, meaning that occasional 

handover to a remote operator is fea-

sible. One example milestone in AVs 

in mining is Rio Tinto’s autonomous 

haulage system, which recently hauled 

its one billionth ton autonomously.

Mining is a challenging environ-

ment (Fig. 7). Underground, there is 

no access to satellite-based GPS, so 

alternative technological solutions 

are required: some involve instal-

lation of additional infrastructure, 

local Wi-Fi networks, or on-vehicle 

camera- and laser-based localiza-

tion solutions. Onboard camera-

based solutions encounter a range 

of challenging perceptual conditions: 

dust, smoke, water, and highly varied 

lighting conditions. Range-sensor-

based solutions encounter a differ-

ent set of challenges, including the 

highly aliased geometry of many un-

derground tunnel systems.

Logistics

It is possible to design an entire 

logistics center to facilitate higher 

levels of automation. Amazon’s ful-

fillment centers, built on top of its 

acquisition of Kiva Systems, are a 

prime example of this: the autono-

mous robots move shelving around 

rather than attempt to pick things 

off static shelves. Other approach-

es, such as Ocado’s, involve a rigid 

square lattice on which robots move 

around, picking up and dropping 

off grocery loads. In both cases, 

humans are restricted to certain 

areas of the environment, so human 

safety issues are significantly reduced 

as a technological concern.

Agriculture

Farms generally have relatively con-

trolled access and minimal to no 

human presence in the operational 

(a) (b)

(c) (d) (e)

FIG7 In underground mining environments, a range of challenging perceptual conditions are encountered by AVs, including huge light-

ing changes, darkness, water, and dust: (a) clear images, (b) low light, (c) water, (d) dust, and (e) glare. (Adapted from Zeng et al.)

Underestimating the occurrence of rare events  
can be dangerous, but overestimating them  

may be problematic for usability.
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zone of an AV. In addition, it can 

sometimes be hard to find people to 

fill some labor roles, further moti-

vating the case for developing AVs. 

Autonomous farming vehicles can 

perform a range of activities, includ-

ing sowing and planting crops, killing 

weeds, and the long-term holy grail: 

harvesting crops. Progress has been 

slow: although there have been doz-

ens of AV trials, there are few long-

term commercial deployments (Fig. 8). 

Most of the more capable platform 

demonstrations have been announced 

only in the past 2–3 years.

Defense

In defense, as in mining, the cost 

per unit of many vehicle types is typi-

cally far larger than that of a normal 

consumer car, enabling the use of 

more capable sensing and comput-

ing. Much modern defense theory 

assumes that there will be a complete 

blackout on both communications 

and GPS-based positioning technolo-

gies (similar to the conditions imposed 

on underground autonomous mining 

trucks), meaning that on-vehicle 

autonomy will have to shoulder the 

bulk of the decision making rather 

than relying on outsourcing to a 

human at a re  mote command post.

The environments that these ve-

hicles might deploy into, such as ru-

ined, dusty, or smoking urban land-

scapes and thickly vegetated forests, 

pose a range of challenging mobility, 

perception, planning, and control 

challenges. Finally, there are also 

the ethical considerations around 

autonomy in any defense application, 

which are receiving significant sus-

tained attention.

Other fields

There are almost 40 marine ports 

that are at least partly automated 

globally, and some of those autono-

mous components involve AVs, for 

example, shifting shipping con-

tainers around. Other areas of AV 

de  ployment include sidewalk-

based delivery vehicles, such as 

Amazon’s Scout program and Star-

ship technologies. These vehicles 

are typically relatively small and 

inexpensive, and they move at rela-

tively low speeds, radically reduc-

ing their danger profile compared 

to on-road larger vehicles moving 

at higher speeds.

Conclusion

AV-enabling technology has matured 

and advanced significantly over the 

past decade in a range of domains, 

including on-road passenger-carry-

ing or delivery vehicles, mining, and 

logistics. In some application areas, 

such as logistics and mining, these 

vehicles already form a commer-

cially critical part of the companies 

that operate them, whereas in oth-

ers, most notably on-road AVs, wide-

spread commercial deployment has 

not yet occurred.

Much of the core technology is 

likely to continue benefitting from 

steady progress in sensing and 

computing capabilities (along with 

a corresponding decrease in price) 

and the associated progress in vital 

technical capabilities, such as gen-

eral scene understanding and VRU 

interaction. In fields where safety is 

not directly involved, such as those 

where humans are physically absent 

from the operating environment of 

AVs, future progress will likely be 

determined by simple commercial 

calculations based on the cost and 

efficiency of AV systems. However, 

there remain key technical hurdles 

to overcome with respect to safety 

for widespread on-road deployment, 

which will make for interesting 

years ahead.
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