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n a period of fewer than 10 years,

the quest for self-driving vehicles,

also referred to as autonomous

vehicles (AVs) or driverless cars,

has become one of the biggest
technology races in the world, with
tens of billions of dollars poured into
companies and start-ups. The goal is
an on-road, consumer-driverless car:
whether owned by individuals or part
of a centralized ride-sharing fleet,
this is the area where the majority of
investment has occurred. However,
AVs have been around for much lon-
ger in other fields, such as mining,
which share some but not all of the
same technical challenges faced by
on-road AVs. In this article, we pro-
vide an overview of the key technical
challenges and solutions for both on-
and off-road AVs, with a focus on
one of the key unsolved challenges—
interaction with vulnerable road
users (VRUs).

Key technical competencies:
Hardware

A typical AV contains a number of
key components: the physical plat-
form and a suite of sensing and on-
board computational hardware.

Platform
The type of AV platform affects the
viability of different technological
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solutions to the problem of autonomy.
Larger vehicles are typically heavier
and harder to stop—and more dam-
aging when they hit something—but
they can carry a greater number of
onboard sensing and computing
components. Energy storage also
generally scales favorably with vehi-

A typical sensor suite on top of a car, with multiple cameras and lidar s

(Source: QUT; used with permission.)

cle size, an important consideration
that can enable better up-time per-
centages and utilization of more pow-
er-hungry computing,.

Sensor suites

AV platforms have access to a range
of sensing technologies (Fig. 1).
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Lidar- and laser-based range sen-
sors provide accurate long distance
range-to-object information and can
also use reflectance information to
detect lane markings. However, in
adverse weather, such as rain or
smoke, their capabilities can be sig-
nificantly degraded.

Modern camera technology pro-
vides very-high-resolution imagery
of the environment, with good dy-
namic range (revealing detail both
in bright and dark areas of an im-
age simultaneously) and high frame
rates (Fig. 2). The information pres-
ent in a camera image is much rich-
er than that produced by any other
sensing modality, provided it can be
successfully extracted—the widely
quoted proof of concept here being
that humans can drive very well with
primarily visual sensing alone. Cam-
eras are often less expensive and re-
quire less power than lidar, but they
are sensitive to changes in environ-
mental appearance caused by factors
such as day—night cycles (Fig. 3).

Radar’s primary purpose in most
current AV applications is collision

What an autonomous car sees: (a) a range of camera views and (b) range scans. (Source: QUT; used with permission.)
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avoidance: although it does not have
good acuity and, as a result, strug-
gles to distinguish small objects, it is
relatively resilient to environmental
conditions, such as adverse weather,
and can see through smoke and fog
quite well. Finally, sensors such as
GPS receivers provide positioning in-
formation (which can be disrupted by
tunnels or tall buildings), while inter-
nal sensors deliver information such
as linear acceleration, rotational rate,
steering angle, and wheel speed.

Computational hardware
Computer hardware provides the pro-
cessing power to perform all of the
onboard autonomy-related tasks, such
as scene understanding, navigation,
and high-level control. To maximize
electric-vehicle range, recent hardware
trends have focused on power usage
per computing unit. Nvidia is a good
example of a key player in this space,
with power-efficient, highly capable
systems such as its Jetson AGX Xavi-
er. Offboard computing still has a use-
ful role to play in AV applications—for
example, in the consolidation and
merging of the massive amounts of
data uploaded by thousands of cars in
a city on a daily basis.

Key technical competencies:
Software

The software operating on AVs per-
forms a number of key technical com-
petencies, including localization,
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planning, decision making, and
scene understanding,.

Mapping and localization
Mapping and localization are key
pillars of AV operation. There are
several subtypes of localization,
each of which plays a different role
in enabling autonomy on a vehi-
cle (Fig. 4).

Simultaneous localization and
mapping has long been a major re-
search field in robotics: how does a
robot move through an environment,
building up a map of that environ-
ment, while simultaneously localiz-
ing itself within that everchanging
map? Approximate localization—
what you get on your phone’s GPS—
is typically used for overall route
planning and is obtained from GPS
or onboard localization systems. Au-
tomation-enabling higher-precision
localization is typically provided by
onboard localization within existing
maps of the environment or, in the
case of some autonomous mining ve-
hicles, high-accuracy GPS.

Relative localization is also impor-
tant—for example, knowing that the
vehicle is currently located 0.73 m
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from the edge of the road. Accurate
relative positioning (and velocities
and accelerations) with respect to
moving objects, such as an oncoming
car, is critical for safe vehicle plan-
ning and control.

Planning, decision making,

and control

Just as critical to an AV’s viability as
sensing and mapping is what is then
done with that information: how does
the vehicle plan and then act, wheth-
er to accelerate, brake, turn, or acti-
vate a turning indicator? These pro-
cesses play a critical role in safety;
the planning system must continu-
ally plan safe actions, such as slow-
ing down or suddenly changing lanes
to avoid an unexpected obstacle when
braking is not an option.

The planning and decision-mak-
ing process also changes signifi-
cantly for on-road delivery vehicles
that carry goods rather than people,
such as those used by Nuro. In acci-
dent situations with these AVs, there
is no tension between protecting hu-
mans inside and outside the vehicle,
so the safety of humans outside can
be entirely prioritized.
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Environmental change poses a significant challenge for camera-based technologies. (a) The images are from the same place
under radically different environmental conditions, whereas in (b), the images are from different places in the environment.
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Interaction with VRUs

Vehicles that have reached Society of
Automotive Engineers level 3 auton-
omy and above will have to know
how to interact with humans. This
includes human drivers, who—even
in a world where AVs are rapidly
adopted—will be on the roads for the
foreseeable future. Bicyclists, pedes-
trians, motorcyclists, scooter riders:
these categories of VRUs have
enduring claim to their share of the
urban pavement. Interacting safely,
explainably, and politely with VRUs

is likely to remain an essential part
of the AV’s task (Fig. 5).

Pedestrians and cyclists are not
predictable with standard techni-
ques, such as Kalman filters. Sim-
ply stopping every time a VRU could
potentially enter the vehicle’s path
results in vehicles that perform ex-
cessive and unnecessary emergency
maneuvers. Overall, 86% of docu-
mented incidents with AVs are either
rear-endings or sideswipings that

result from a human’s misunder-
standing of an AV’s behavior. Under-

All errors are not created equal. For example, for second-to-second control in a mining
tunnel, minimizing lateral error is more important than downtrack (along the length of the tun-
nel) error since the immediate risk is hitting the wall.

Detecting and predicting the intent of VRUs, such as cyclists and pedestrians, is a
critical challenge for AVs. (Source: Perceptive Automata; used with permission.)
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standing VRUs is key to eliminating
this failure mode.

Moving away from the trolley
problem mind-set

Much of the attention devoted to in-
teractions between AVs and VRUs has
focused on ethical dilemmas. A
famous thought experiment is the
“trolley problem,” where, in the epony-
mous problem, a trolley driver is
forced to choose which of two actions,
both of which cause someone’s death,
is more morally acceptable; this has
been held up as a model for the kinds
of decisions AVs will have to make.
Although it may someday be the case
that AVs are sophisticated enough and
have good enough information about
the world that the primary concern
with VRU interaction is how to
behave ethically in the unlikely event
that there is no option but to cause
catastrophic bodily harm to a
human, there are several reasons why
this is not currently a primary con-
cern to AV makers.

First, the starting goal for many
vehicle makers is finding a motion
plan that provably minimizes or elim-
inates any chance of a harm-causing
interaction. The Intel division Mobil-
Eye has published work attempting
to formalize risk analysis in motion
planning to develop behavior plans
where a negative interaction is im-
possible. Second, the types of ethical
dilemmas discussed in most trolley-
problem research rely on very fine-
grained categorization of VRUs—an
old person versus a young person, a
pregnant woman versus a helmetless
cyclist, and so on—that are largely
out of reach for current perception
systems in AVs. Third, much of the
current focus in AVs is on minimiz-
ing harm in general, and one way to
do that is to plan around the level of
damage likely to be caused. For these
reasons and others, the ethical con-
siderations raised by the trolley prob-
lem are increasingly not being consid-
ered as the most immediate practical
challenge for AVs.

Key technical breakdown
VRUs are sometimes difficult to dis-
tinguish: from the waist up, a cyclist,
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pedestrian, and scooter rider all look
very similar to a computer vision sys-
tem. Here, we provide a technical
breakdown of the relevant technolo-
gies that address this challenge.

Detecting VRUs

When we use the term detection, we
mean automatically detecting that
something is in the way of the vehicle.
Radar, lidar, and various other non-
red/green/blue sensors are very capa-
ble for this task, but they have limita-
tions around discriminatory resolu-
tion (radar) and current cost (lidar).
Camera sensors represent a less
expensive option that has caught on
with several car companies producing
self-driving vehicles.

Recognizing VRUs

When we use the term recognition, we
mean automatically determining
what exactly is in the scene as sensed
by the vehicle (Fig. 6). Current recog-
nition algorithms have been largely
developed and tested in the laborato-
ry by using standard benchmark
data sets, such as ImageNet and
Common Objects in Context (better
known as COCO), but a troubling dis-
connect exists between laboratory
experimentation and real-world oper-
ation. For example, a well-known lim-
itation of all machine-learning-based
algorithms is their poor handling of
inputs from classes outside the train-
ing set. This is known as the open set
recognition problem, and it is a com-
mon problem in autonomous driv-
ing. A new class of open-set-tolerant
machine-learning algorithms is being
developed to address this issue.

Recognizing VRU actions

After detection and recognition of a
VRU comes activity recognition—what
the VRU is doing. Take one scenario:
traffic officers signaling cars to follow
a detour by waving in a certain direc-
tion. With a correct determination of
what the officer's action means, the
vehicle can alter its course and safely
proceed as directed.

This is a nontrivial sequence of
events that must unfold within sec-
onds and be executed with a level of
accuracy that matches that of a hu-

man driver. As with other areas of visu-
al recognition within computer vision,
great strides have been made in action
recognition, but current approaches
are not as robust as human drivers.

Predicting VRU actions

Arguably, the most important aspect
of interacting with VRUs is predic-
tion. A motor vehicle that is traveling
straight at 25 mi/h on a road and
does not have its brake lights illumi-
nated can be assumed to continue
traveling at approximately 25 mi/h,
at least momentarily. Compared with
vehicles, VRUs have many fewer con-
straints in terms of traffic signals,
other traffic, and rules of the road
and, therefore, have much more vari-
ability in potential paths.

Much work on the prediction of
VRU actions has relied on funda-
mentally physics-based models: If
you know the location and trajectory
of the pedestrian, how well can you
extrapolate his/her future trajec-
tory? Elaborations have included the
use of cues, such as the presence
of relevant context like crosswalks,
and the integration of information
regarding the pose of the person.
These approaches have proven to be
relatively robust on very short time

scales, but they have not been able
to provide useful predictions outside
of a time window of about 1.5 s. At
normal urban driving speeds, that’s
not enough. One proposed solution
is to model the dynamics of all of the
actors at an intersection, which criti-
cally relies on being able to accurate-
ly model every agent in the scene.

Almost all of the current approach-
es have another shortcoming: that
the drivers with which VRUs are most
comfortable interacting—humans—
do nothing like either of these ap-
proaches. Humans have a finely tuned
and remarkably high-functioning
facility called theory of mind, which
allows them to make behaviorally
useful assumptions about the in-
ternal mental state of another hu-
man. A human driver isn’t trying to
guess the trajectory of a pedestrian;
instead, he or she is making sophis-
ticated inferential judgments about
what that pedestrian’s goals are and
how that pedestrian might interact
in a social process with the vehicle.
Approaches that model this concept
look promising,.

Communicating car intent to VRUs
The interaction between VRUs and
human-driven vehicles begins when

Reliably detecting and recognizing VRUs, such as cyclists, is difficult enough un-
der normal conditions but is compounded in poor visual conditions and when the VRU
(indicated by the red box) is partially obscured by other objects in the environment.
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either the driver or the VRU first
notices the other and ends when the
vehicle has proceeded out of the
VRU's field of view. It is bidirection-
al: the pedestrian wants to know
that the car recognizes that he or
she is there, the car seeks to know
what the pedestrian wants, and so
on. Companies, such as Jaguar/
Land Rover, have experimented
with mounting large, cartoon eyes
on vehicles to communicate infor-
mation about how the AV is distrib-
uting its “attention.” Former start-
up Drive.ai designed its AVs to fea-
ture interactive screens that can
communicate more complex mes-
sages, such as “I'm waiting for you
to cross.” These systems have limit-
ed grammar, but actual interactions
between human drivers and VRUs
also rely on very limited grammar.
To communicate with limited gram-
mar, the ability of both VRUs and
vehicles to understand the inten-
tions and state of mind of other road
actors is essential.

Current technical issues

With the field maturing over the past
15 years since the DARPA Grand
Challenge AV competition in 2004
(which is widely credited as catalyzing
the modern AV technology race), it
has become relatively clear that some
key technical issues remain unsolved,
and these are generally widely ac-
knowledged by both industry and
researchers working in this area. One
of the most significant topics is inter-
actions with VRUs, which we have
already covered. Here, we briefly high-
light some of the other challenges.

The problem of corner cases

Corner cases, as they have become
known, are situations that rarely
occur and, as a result, are hard to
predict, anticipate, and react to
appropriately. A person dressed in a
chicken suit is one example of a cor-
ner case. For self-driving cars, the
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problem is particularly difficult
because the current artificial intelli-
gence techniques behind these sys-
tems do not generalize as well as a
human driver and have difficulty
coping with these highly unusual
situations. Consequently, much
effort is being invested in coming up
with ways to deal more effectively
with these corner cases by gathering
ever-larger amounts of data from the
real world, simulating billions of
miles of driving, and repeatedly test-
ing pathologically difficult scenarios.

Simulation versus
real-world testing
A key issue for AV developers is that
cars are already quite safe: there is
approximately one fatality for every
100 million miles of driving. Conse-
quently, it is very difficult under nor-
mal conditions to obtain sufficient
mileage on a limited number of devel-
opment vehicles to prove the safety of
a system. Therefore, developers have
turned to simulation as a critical tool
in their autonomy arsenal. High-fidel-
ity simulation environments enable
researchers to target specific weath-
er conditions and pedestrian config-
urations and run much-higher-
throughput simulation and evalua-
tion than is possible in the real world.
A key challenge in using simula-
tion arises from the transferability
problem: how do you show and prove
that the system you have developed
in simulation will work as well in
the real world? Simulation is never
a perfect replication of reality. Many
resources and much effort have
consequently been invested in im-
proving the utilization and transfer-
ability of development in simulation
environments.

Sometimes versus anytime:
Weather and other
environmental conditions

The real world is a constantly chang-
ing environment, which presents

IEEE POTENTIALS

major challenges for AVs. First and
foremost, the environment can
change in both appearance and phys-
ical structure due to day-night cycles;
seasonal change; and weather condi-
tions, such as rain, snow, and fog.

Figure 3 illustrates some of the
key challenges that a changing world
can cause. The same place [shown in
the left column of Fig. 3(a)] can ap-
pear completely different at night
during a tropical storm versus clear
weather in the daytime. The problem
is further complicated by the natu-
ral environmental aliasing that can
also be encountered, shown in the
left column of Fig. 3(b): these are two
places that are completely different
locations but look highly similar.

These problems can be partly solved
by using advanced methods or sen-
sors that are not as sensitive to ap-
pearance change, such as lidar. How-
ever, visual sensing is critical for
the rich, nuanced understanding of
the world around an AV, and, con-
sequently, the problem of operating
in challenging visual conditions re-
mains relevant and unsolved.

Provability, explainability, and
self-characterization
A significant shortcoming of the pres-
ent generation of self-driving vehicles
(and deep learning in general) is the
difficulty in describing the properties
of their underlying deep-learning
models in a rigorous manner. In
essence, the learning problem during
training is one of function approxi-
mation, where the approximated
function cannot be recovered in an
exact manner afterward. (This is why
neural networks have a reputation of
being black boxes.) We would like to
be able to enforce explainability for
any output of a deep-learning model,
but since we cannot examine any
learned functions directly, we can
only turn to the observable output of
the system—the same situation psy-
chologists find themselves in when
studying the human brain. One pos-
sibility, then, is to test the deep-
learning models in a manner similar
to how psychologists test the brain.
For some applications, pausing and
handing off control to a human operator
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is feasible, but only if the system is
able to assess its own performance
reliably. To do this, probabilistic outputs
reflecting uncertainty are required.
For deep-learning-based systems,
this can be accomplished with strate-
gies, such as making small perturba-
tions to the weights of the network, drop-
ping out units of a trained network at
test time, using a probabilistically
calibrated readout layer, or exam-
ining statistical distributions of the
data sampled by the sensors. The
choice of distribution is important:
underestimating the occurrence of
rare events can be dangerous, but
overestimating them may be prob-
lematic for usability.

AVs beyond the road

Beyond the road, AVs have been or
could be deployed in a range of other
domains, including mining, logis-
tics, agriculture, and defense. Here,
we briefly cover the key deployment
domains and their unique problems
and opportunities.

Mining

Mining, in general, has several of the
key characteristics that facilitated
its early adoption of AVs: it is large

enough to support the capital-inten-
sive development of AV-related tech-
nology, its existing remote operation
workflows are more easily automated,
and there are fewer latency-critical
scenarios, meaning that occasional
handover to a remote operator is fea-
sible. One example milestone in AVs
in mining is Rio Tinto’'s autonomous
haulage system, which recently hauled
its one billionth ton autonomously.
Mining is a challenging environ-
ment (Fig. 7). Underground, there is
no access to satellite-based GPS, so
alternative technological solutions
are required: some involve instal-
lation of additional infrastructure,
local Wi-Fi networks, or on-vehicle
camera- and laser-based localiza-
tion solutions. Onboard camera-
based solutions encounter a range
of challenging perceptual conditions:
dust, smoke, water, and highly varied
lighting conditions. Range-sensor-
based solutions encounter a differ-
ent set of challenges, including the

(d)

highly aliased geometry of many un-
derground tunnel systems.

Logistics

It is possible to design an entire
logistics center to facilitate higher
levels of automation. Amazon’s ful-
fillment centers, built on top of its
acquisition of Kiva Systems, are a
prime example of this: the autono-
mous robots move shelving around
rather than attempt to pick things
off static shelves. Other approach-
es, such as Ocado’s, involve a rigid
square lattice on which robots move
around, picking up and dropping
off grocery loads. In both cases,
humans are restricted to certain
areas of the environment, so human
safety issues are significantly reduced
as a technological concern.

Agriculture

Farms generally have relatively con-
trolled access and minimal to no
human presence in the operational

(e)

In underground mining environments, a range of challenging perceptual conditions are encountered by AVs, including huge light-
ing changes, darkness, water, and dust: (a) clear images, (b) low light, (c) water, (d) dust, and (e) glare. (Adapted from Zeng et al.)
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zone of an AV. In addition, it can
sometimes be hard to find people to
fill some labor roles, further moti-
vating the case for developing AVs.
Autonomous farming vehicles can
perform a range of activities, includ-
ing sowing and planting crops, killing
weeds, and the long-term holy grail:
harvesting crops. Progress has been
slow: although there have been doz-
ens of AV trials, there are few long-
term commercial deployments (Fig. 8).
Most of the more capable platform
demonstrations have been announced
only in the past 2-3 years.

Defense

In defense, as in mining, the cost
per unit of many vehicle types is typi-
cally far larger than that of a normal
consumer car, enabling the use of
more capable sensing and comput-
ing. Much modern defense theory
assumes that there will be a complete
blackout on both communications
and GPS-based positioning technolo-
gies (similar to the conditions imposed
on underground autonomous mining
trucks), meaning that on-vehicle
autonomy will have to shoulder the
bulk of the decision making rather
than relying on outsourcing to a
human at a remote command post.

The environments that these ve-
hicles might deploy into, such as ru-
ined, dusty, or smoking urban land-
scapes and thickly vegetated forests,
pose a range of challenging mobility,
perception, planning, and control
challenges. Finally, there are also
the ethical considerations around
autonomy in any defense application,
which are receiving significant sus-
tained attention.

Other fields

There are almost 40 marine ports
that are at least partly automated
globally, and some of those autono-
mous components involve AVs, for
example, shifting shipping con-
tainers around. Other areas of AV
deployment include sidewalk-
based delivery vehicles, such as
Amazon’s Scout program and Star-
ship technologies. These vehicles
are typically relatively small and
inexpensive, and they move at rela-
tively low speeds, radically reduc-
ing their danger profile compared
to on-road larger vehicles moving
at higher speeds.

Conclusion
AV-enabling technology has matured
and advanced significantly over the

Agriculture shares many of the same motivations for AV use as mining, but wide-

spread commercial deployment has lagged. (Source QUT; used with permission.)
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past decade in a range of domains,
including on-road passenger-carry-
ing or delivery vehicles, mining, and
logistics. In some application areas,
such as logistics and mining, these
vehicles already form a commer-
cially critical part of the companies
that operate them, whereas in oth-
ers, most notably on-road AVs, wide-
spread commercial deployment has
not yet occurred.

Much of the core technology is
likely to continue benefitting from
steady progress in sensing and
computing capabilities (along with
a corresponding decrease in price)
and the associated progress in vital
technical capabilities, such as gen-
eral scene understanding and VRU
interaction. In fields where safety is
not directly involved, such as those
where humans are physically absent
from the operating environment of
AVs, future progress will likely be
determined by simple commercial
calculations based on the cost and
efficiency of AV systems. However,
there remain key technical hurdles
to overcome with respect to safety
for widespread on-road deployment,
which will make for interesting
years ahead.
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