Collective modes near a Pomeranchuk instability
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We consider collective excitations of a Fermi liquid near the Pomeranchuk transition to a state
with an order parameter characterized by the angular momentum [. For each value of [, we study

the evolution of longitudinal and transverse collective modes in the charge (c) and spin (s) channels

with the Landau parameter Flc(s), starting from positive Flc(s)

transition at Ff(s) = _1.

and all the way to the Pomeranchuk
In each case, we identify a critical zero-sound mode, whose velocity

vanishes at the Pomeranchuk instability. For F; lc<s> < —1, this mode is located in the upper frequency

half-plane, which signals an instability of the ground state. In a clean Fermi liquid the critical mode
may be either purely relaxational or almost propagating, depending on the parity of [ and on whether
the response function is longitudinal or transverse. These differences lead to qualitatively different
types of time evolution of the order parameter following an initial perturbation. A special situation
occurs for the [ = 1 order parameter that coincides with the spin or charge current. In this case the
residue of the critical mode vanishes at the Pomeranchuk transition. However, the critical mode can
be identified at any distance from the transition, and is still located in the upper frequency half-
plane for F{® < —1. The only peculiarity of the charge/spin current order parameter is that its
time evolution occurs on longer scales than for other order parameters. We also analyze collective
modes away from the critical point, and find that the modes evolve with FlC<S> on a multi-sheet

Riemann surface. For certain intervals of FZC(S), the modes either move to an unphysical Riemann
sheet or stay on the physical sheet but away from the real frequency axis. In that case, the modes

do not give rise to peaks in the imaginary parts of the corresponding susceptiblities.

I. INTRODUCTION

A Pomeranchuk transition is an instability of a Fermi
liquid (FL) towards a spontaneous order which breaks
rotational symmetry but leaves translational symmetry
intact!. Examples include ferromagnetism®* and var-
ious forms of nematic order in quantum Hall systems,
Sr3Ru, 07, and cuprate and Fe-based superconductors®.
For a rotationally-invariant system in two dimensions
(2D), deformations of the Fermi surface (FS) can be clas-
sified by the value of the angular momentum . In gen-
eral, a deformation with only one particular [ develops
at a Pomeranchuk transition. A Pomeranchuk order pa-

rameter A () = S, 7 (K){af, o 0 ato o Ge_q/a.0r)
is bilinear in fermions and has the spin structure tg, ,, =
Sa,ar OF ty o = 0f . in the charge (c) and spin (s)
channels, correspondingly (o# is the Pauli matrix). The
order parameter is assumed to vary slowly, ie., ¢ <
min{ay !, kr}, where ag is the lattice constant and kp is

the Fermi momentum. Under rotations, the form-factors

lc(s)(k) transform as basis functions of the angular mo-
mentum and, in general, also depend on the magnitude
of k| = k. For example, ff(s) (k) = cos@f°)(k) or
(%) (k) = sin 0£°() (k), where 0 is the azimuthal angle of
k. According to the FL theory”®, a Pomeranchuk order
with angular momentum [ emerges when the correspond-

(s)

ing Landau parameter F, lc approaches the critical value

of —1 from above.

In this paper we focus on dynamical aspects of a
Pomeranchuk instability. We consider primarily the 2D
case, because examples of Pomeranchuk transitions have
been discussed mostly for 2D systems® 26. We consider
an isotropic FL but do not specifically assume Galilean
invariance, i.e., the single-particle dispersion in our model
is not necessarily quadratic in |k|. The main object of
our study is the dynamical susceptibility, x;(g,w), which

corresponds to a particular order parameter Af(s). In
2D, there are two types of susceptibilities for any given
l: a longitudinal one, with the form-factor proportional
to coslf, and a transverse one, with the form-factor pro-
portional to sinlf (for [ = 0, there is only one type, with
an isotropic form-factor). In the low energy limit (¢ — 0
and w — 0) the dynamical susceptibility is a function of
the ratio s = w/v}q, where v}, is the renormalized Fermi
velocity. As a function of complex variable, x(s) has both
poles and branch cuts in the complex plane. We focus on
the retarded susceptibility, which is analytic in the upper
half plane Ims > 0, except for the case when the system
is below the Pomeranchuk instability, and, in general, has
poles and branch cuts in the lower half plane Ims < 0.
The poles of x(s) correspond to zero-sound collective
modes whose frequency and momentum are related by
w = svjq. If the Landau parameter is positive and non-
zero for only one value of [, there is one longitudinal and
at most one transverse zero-sound mode for any ! # 0.
These are conventional propagating modes with Res > 1
and infinitesimally small Ims in the clean limit, when the



fermionic lifetime is infinite. The branch cuts are a conse-
quence of the non-analyticity of the free-fermion bubble
(the Lindhard function). Their significance is that the
zero-sound poles are defined on a multi-sheet Riemann
surface. In 2D, this non-analyticity is particularly sim-
ple, being just a square-root (see Sec. ITA). As a result,
the Riemann surface is a genus 0, two-sheet surface. We
shall refer to the first sheet, which includes the analytic
half plane, as the “physical sheet”. In our work we mostly
discuss the properties of the physical sheet.

We obtain explicit results for the frequencies of collec-
tive modes in the whole range of —1 < F**) < co. First,
we consider a clean FL (Sec. IT). We present explicit re-
sults for the zero-sound modes with [ = 0,1, 2 (Secs. II B,
IIC, and IID, correspondingly) and analyze the struc-
ture of the zero-sound modes for arbitrary [ (Sec. ITE).
We show that for [ = 0 and in the transverse channel
with [ # 0, all zero-sound modes acquire a finite decay
rate already for an arbitrary small negative Flc(s), ie.,
s = da — ib, where a, b are real and b > 0. A positive
b implies that a perturbation of the order parameter de-
cays exponentially with time. The frequency of one of the
modes vanishes at the Pomeranchuk transition. We call
this mode the critical one. In the longitudinal channel,
the decay rate of one of the modes remains infinitesimally
small until the corresponding |F1*)| exceeds a threshold
value. Immediately below the threshold, this mode is lo-
cated at s = +a — b with @ > 1 and b < 1. Even though
the mode frequency is almost real, the corresponding
pole is located below the branch cut and thus cannot be
reached from the real axis of the physical sheet. Accord-
ingly, the imaginary part of the susceptibility does not
have a peak above the particle-hole continuum for real s,
i.e., the mode is “silent”. Below the transition, i.e., for

Flc(s) < —1, the pole is located in the upper frequency
half-plane, and a perturbation of the order parameter
grows exponentially with time, which indicates that a FL
becomes unstable with respect to a Pomeranchuk order.
We obtain explicit results for the frequencies of collective
modes in the whole range of —1 < F¥) < oo,

In Sec. ITI, we analyze how the dispersion of collective
modes is modified in the presence of impurity scattering.
In the dirty limit, the critical modes in both longitudi-
nal and transverse channels become overdamped for all {.
Impurity scattering also smears the threshold, described
in the previous paragraph, i.e., the longitudinal collective
modes have non-zero damping rates for any Flc(s) < 0.

In Sec. IV, we analyze the susceptibility in the time
domain,

c(s dw c(s w
et = [

which determines the time evolution of the order param-
eter following an initial perturbation. We obtain explicit

forms of Xf(s)(q, t) for Il = 0 and [ = 1. Above the Pomer-

anchuk transition, the time dependence of ch(s) (¢,t) in

the clean limit is a combination of an exponentially de-
caying part, which comes from the poles of Xf(s)(q,w),
and of an oscillatory (and algebraically decaying) part,
which comes from its branch cuts. At the transition,
XS(S)(q,t) reaches a time-independent limit at ¢ — oo,
while Xi(s)(q,t) grows linearly with time in the clean
case and saturates at a finite value in the presence of
disorder. Below the transition, the poles of ngi)(q,w)
are located in the upper half-plane of w. Consequently,
both XS(S)(CL t) and XT(S)(q, t) increase exponentially with
time. This means that any small fluctuation of the cor-
responding order parameter is amplified, and thus the
ground state with no Pomeranchuk order is unstable. In
the case of finite disorder, the branch-cut contribution
also begins to decay exponentially, on top of its algebraic
and oscillatory behavior.

In Sec. V, we consider the special case of an order pa-
rameter that coincides with either the charge or spin cur-
rent. Previous studies?% 28 found that the corresponding

c(s)

static susceptibility, x7"’(¢,0), does not diverge at the

tentative Pomeranchuk instability at F©*) = —1 because
of the Ward identities that follow from conservation of
total charge and spin. We analyze the dynamical sus-
ceptibility for such an order parameter. We show, using
both general reasoning and direct perturbation theory
for the Hubbard model, that while the static susceptibil-
ity indeed remains finite at Ff(s) = —1, the dynamical
one still has a pole, which moves to the upper frequency
half-plane below the transition. The residue of this pole
vanishes as (1 + Ff(s))2 at Ff(s) = —1, but is finite both
for FF® > —1 and Ff®) < —1. We argue that the
presence of the pole in the upper frequency half-plane
for F*) < —1 indicates that the state with no Pomer-
anchuk order becomes unstable, like for any other type of
the order parameter. We derive a Landau functional for
the charge/spin current order parameter and show that
it has a conventional form, except that the coupling be-
tween the order parameter and an external perturbation

has an additional factor of 1+ Fy ) We argue that the

charge/spin current order does develop at 1 + F ) < 0,
just as for a generic [ = 1 order parameter, but it takes
longer to reach equilibrium after an instantaneous per-
turbation. This result differs from earlier claims that
there is no Pomeranchuk transition to a state with the
charge/spin current order parameter?6 28,

Before we move on, a comment is in order. It is well
known that the range of FL behavior shrinks as the sys-
tem approaches a Pomeranchuk instability and disap-
pears at the transition point, where the system displays
non-Fermi-liquid behavior down to the lowest energies.
In our analysis, we will be studying the collective modes
at finite s = w/(v},q) and assume that w and ¢ are both
small enough so that at any given distance to the critical
point the system remains a Fermi liquid.
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where Np is the density of states at the Fermi energy
Ep, Gueo(k,e) = 1/ [e — €k + Er + idsgne] is the (time-
ordered) Green’s function, € is the single-particle dis-
persion, D is the spatial dimensionality, and a factor of
two comes from summing over spins. We will be inter-
ested only in the case of small ¢ and w, ie., ¢ € kp
and w < Er. In this case, integration over the internal
fermionic momentum and frequency is confined to the
regions of small € and €, — Ep, i.e., the susceptibility
comes from the states near the FS or, for brevity, from
“low-energy fermions”.

For interacting fermions, the particle-hole bubble is
modified in several ways”®2°. First, the self-energy cor-
rections transform a free-fermion Green’s function near
the F'S into a quasiparticle Green’s function, in which the
bare velocity vg is replaced by the renormalized velocity
vy = vp(m/m*), where m* is the renormalized mass,
and the Green’s function is multiplied by the quasipar-
ticle residue Z < 1. Second, interactions between low-
energy fermions generate multi-bubble contributions to
the susceptibility. These renormalizations transform the
free-fermion susceptibility X;r(jg .

c(s)

ticle susceptibility qu,l(q,w). (The effect of damping
due to the residual interaction between quasiparticles is
a subleading effect in the range of ¢ and w of interest
to us, and will not be considered here.) Third, fermions
far away from the FS (“high-energy fermions”) also con-

tribute to the full susceptibility ch(s) (q,w).
The general expression for the dynamic susceptibility
29

(¢,w) into the quasipar-

is

@) = WIRGH @) F X0 )

II. DYNAMICAL QUASIPARTICLE
SUSCEPTIBILITY NEAR A POMERANCHUK
TRANSITION IN A CLEAN FERMI LIQUID

A. Quasiparticle susceptibility

According to the Kubo formula, the correlation func-
tion of an order parameter A?(S) is related to the suscep-

tibility ch(s)(q, w) with respect to the conjugated “field”.

In its turn, X?(s)(q,w) is given by a fully renormalized

particle-hole bubble with external momentum ¢ and ex-
ternal frequency w. For free fermions, the particle-hole
bubble is just a convolution of two fermionic Green’s
functions, whose momenta (frequencies) differ by q (w).
In the time-ordered representation, we define the normal-
ized susceptibility as

2 2 2

2
1 1 1 1
Giree <k + §qa €+ w) Giree (k i w) (2)

(

Here Af(s) is the side vertex, renormalized by high-energy
fermions, and the stand-alone term Xfrgj)l represents the
contribution solely from high-energy fermions. This last
term does not have a singular dependence on ¢ and w
and will not play any crucial role in our analysis.

The quasiparticle contribution to the susceptibility de-
pends on the fully renormalized (and antisymmetrized)
interaction between low-energy fermions. usually de-
noted by I'o3.~5(k — p). This interaction includes renor-
malizations by high-energy fermions but not by low-
energy fermions. For a rotationally- and SU(2)-invariant
system, which we consider here, T'n5 ,5(k — p) can be
expanded over harmonics characterized by orbital mo-
menta [, and the properly normalized coefficients of this

. Cc(s
expansions are known as Landau parameters F) (),

Laprs =Tk — p)daydps + I°(k — p)oay - ops,

r°¢)(k — p) = Fg(s) +2 Z I‘lc(s) cosl(Ox — bp)
I=1
Flc(s) = VFFlc(S), (4)

where
vp = 2Npz2 L (5)
m

and Oy, 0 are the azimuthal angles of k, p. The static
quasiparticle susceptibility, xz(p“i)l(q,()), is expressed in

terms of just a single Flc(s):

c(s) VR
Xapt(4:0) = ——- (6)
ap,! 1+F‘lc(s)



The dynamical quasiparticle susceptibility cannot, in
general, be expressed in terms of a single Landau pa-
rameter, unless all Landau parameters except for a single

Flc(s) are small. In this special case,

c(s)

Xfree,l(q*7w)
Xep (@ w) = VvF (7)

1 + F}C(S)Xfree,l (q*v LU)

where ¢* = (m/m*)q and Xfree,(¢*,w) is normalized
t0 Xfree,i(¢*,0) = 1 (we recall that we consider small
q* < kp). For all order parameters, except for the charge

or spin current, the vertex AZC(S) in Eq. (3) is expected to
remain finite at the Pomeranchuk transition. The behav-
ior of the full susceptibility is then determined entirely
by the quasiparticle X;ﬁ%(q,w).

Although the calculations are straightforward and
some of the results have appeared before,26:28:30-38 e
include below the details of the derivation of ng(q,w)
in 2D, as we will be interested in the pole structure of
the susceptibility not only near a Pomeranchuk transi-
tion but also away from it. In what follows we consider
separately the cases of [ = 0,1,2, and then analyze the

case of arbitrary [. In these calculations we assume that

)

a single Landau parameter Flc(s is much larger than the

rest and compute X:g(q,w) using Eq. (7). In Sec. ITF,

we consider the case when Fi®) and F{'*) are compara-

ble, while all Flc>(s1) can be neglected.
For definiteness, in this and the next two sections we

approximate the form-factors by their values on the FS,
as lc(s)(kp) = v/2cos(1f) in the longitudinal channel and

lc(s)(kp) = v/2sin(l6) in the transverse channel, where
kr = krpk/k and 6 is the angle between the direction of
kr and the x axis.

B. [=0

In this case the form-factor f¢*) (k) is just a constant.
The form of the retarded free-fermion susceptibility along
the real frequency axis is well known

w
(vpq*)? — (w + i6)?
1S

VA= (s+i6)?

where we used that vp¢* = viq and defined s = w/v}q.
Viewed as a function of complex s, Xfree,0(s) has branch
cuts, which start at s = —id below the real axis and run
along the segments (—oo, —1) and (1,00) along the real
axis.

Traditionally, ¢ in Eq. (8) is interpreted as an infinitesi-
mally small damping rate whose physical origin does need
not to be specified and whose sole purpose is to shift the
branch cut into the lower half-plane of complex s. We
will see, however, that such approach is not sufficient for

Xfree,0 (q*7 w) =1+ \/

=1+ (8)

our purposes, because it would not allow us to resolve
the relative positions of the zero-sound poles and branch
cuts of the susceptibility in the complex plane of s. For
this reason, we will consider a specific damping mecha-
nism, namely, scattering by short-range impurities, and
treat § as a finite albeit small number.

The order parameter in the [ = 0 channel (charge
or spin) is conserved, i.e., the susceptibility must sat-
isfy XS(S)(q = 0,w) = 0 (see, e.g., Refs. 39 and 40).

Once ¢ is finite, Eq. (8) does not satisfy this condition
because it was obtained either by adding id self-energy
corrections to the Green’s functions or, which is equiv-
alent, by solving the kinetic equation in the relaxation
time approximation. To ensure that charge and spin are
conserved, one also has to include vertex corrections to
the particle-hole bubble or go beyond the relaxation time
approximation!. The corresponding free-fermion sus-

ceptibility is given by*?
18
VA= (s+i6)2 -6

where § now stands for the dimensionless impurity scat-
tering rate. The —0 term next to /1 — (s+4id)? in
(9) comes from vertex corrections. Until Sec. III, we
will be assuming that impurity scattering is weak, i.e.,
J < min{Res, Ims}.

For FOC ) > 0 we expect to have well-defined collective
modes with |s| > 1. In this case, one can safely neglect §
in Eq. (9) and replace /1 — (s +40)2 by —isgnsv/s? — 1.

Equation (9) is then reduced to

Xfree,O(S) =1+ (9)

|s|
ree,0\S =1- . 10
Xiean(s) = 1 = =2 (10)

Substituting this form into Eq. (7), we obtain

c(s 32_
Xq;})(s) =vp ! ) (11)

The locations of the poles are determined from the equa-
tion

|s]

14 F — B s

=0. (12)
One can check that the solution s; 9 = %5, with 5, > 1
indeed exists only for FOC(S) > 0:

1 FC(S)
S (13)

S .
P c(s)
14 2F;

We now widen the scope of our analysis and search for
solutions with complex s. To this end, we need to keep
d terms in Xgree,0($). The quasiparticle susceptibility for
s in the lower half-plane is obtained by substituting (9)



into (7). This yields

1+ /1—(s+i8)2—6 (14)

c(s) . s
1+ Fj (1 + Zl(s+i6)25>

Using Eq. (14), we can study the poles of Xfﬁ%(s) ev-

erywhere in the lower half-plane of complex s and in the
whole range of F =),
The positions of the poles in the lower half-plane of s

are determined by

Xeoo(s) = vr

14 F5Y is
G = 575 (15)
Fy V1=(s+10)?2 =9
For Fg(s) > 0, the solutions of (15) are
5172 = :l:SIhO — Z'So, (16)
where

1+ Fg® - 1+ EY

Sp,0 = R0 g do=26 + OC(S) (17)

Up to the —id term, this result coincides with Eq. (13),
as it should. We see that 4 is positive but smaller than §
in (15). This implies that the poles are located above the
branch cuts. The purpose of starting with Eq. (9) with
small but finite § was to resolve the difference between ¢,
which determines the locations of the branch cuts, and
09, which determines the distance between the poles and
the real axis. Near the poles, the susceptibility reduces
to

faSs 1
(14 2F5)3/2 \ s + sp,0 + id0

1
—]. (18)
5 — Sp,0 + 0o

This expression is valid for complex s above the branch

X0 (s) o

cut at Ims = —79. This includes the real axis. For real
s and vanishingly small Jy, Imy*) (s) has §—functional
peaks at s = £s,¢ with s, > 1, i.e.,, outside the

particle-hole continuum (see Fig. 1a).
For negative Fy ) we search for complex solutions of
Eq. (12) in the form s = +a—ib. For F{®) < —1/2, there

exists a purely imaginary solution s = —is; o, where
1— FC(S)
so= o 1 (19)
V2IFS —1
The pole at s = —is; ¢ describes a purely relaxational

zero-sound mode. As long as 1+ FOC(S) > 0, the pole in

X:S%)(%W) is in the lower half-plane of s, i.e., excitations

decay exponentially with time. Once 1 + Fy ) becomes
negative, the pole moves into the upper half-plane. Then
excitations grow exponentially with time, i.e., the system
becomes unstable (see Sec. IV for more detail). This
is corroborated by the fact that the static susceptibility
diverges as the system approaches a Pomeranchuk insta-
bility:

c(s) vp
Xap.0(0,0) = ——5- (20)
qp,0 1 +Foc(s)

As FOC(S) increases above —1, i.e., |F5(S)\ gets smaller,
the frequency of the relaxational mode in (19) increases
= —1/2.
At this value of FS(S), the mode bifurcates into two
(si0 = £3,,0), and each new mode moves from imag-
inary to almost real s along infinite quarter-circles in the
complex s plane.

in magnitude. It reaches s;o = oo at FOC(S)

For —1/2 < FOC(S) < 0 the mode frequency is given by
5§ = +5,0 — 109, where

1= |[F9 o 1= R
Spo = 0 L s 0 L )
V1—2[F) 1=2|Fy ™|
The real part varies from 5,9 = oo at FOC(S) =-1/240

to 5,0 =1 at FS(S) = 0. The pole positions are similar
to those for positive FOC(S) (see Eq. (17)); however, now
8o > 0, i.e., the poles are located below the branch cut
at Ims = —4§. At vanishingly small §, which we consider
here, the poles are glued to the lower edge of the branch
cut immediately below the real axis. The evolution of
the real and imaginary parts of the poles with F('f ) is
shown in Fig. 2.

The existence of the poles glued to the lower edge of the
branch cut is a tricky phenomenon. At first glance, they
describe undamped collective excitations with velocity
larger than the Fermi velocity ( note that 5,9 > 1 in
Eq. (21)). Indeed, the susceptibility near the poles is

|F5 )] < 1
(1 72|F00(3)|)3/2 S+§p,o+i50
1
> (22

S — gp,() + z'50

Xoh(s) o

This form is very similar to that in Eq. (18) for positive

Fy ) However, Eq. (22) is valid only for complex s below
the lower edge of the branch cut at |s| > 1, and cannot
be extended to real s. More precisely, Eq. (22) cannot
be extended to the real axis on the physical sheet of the
Riemann surface, which we recall is the sheet for which
Xa(g?o(s) is analytic in the upper half-plane. Instead, it
can be extended to the real axis of the unphysical sheet,
the one for which /1 — (s+140)? = i\/(s+140)? — 1.

This means that the pole below the branch cut has no
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FIG. 1: (color online) The imaginary part of the susceptibility in the [ = 0 channel, x
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gg)s%)(s), where s = w/v}q. (a)

(s) for different FS*) > 0 in a clean system (a small impurity scattering rate § = 10~ was added to make

the poles visible). (b) Imx ") (s) for different F¢'® < 0 in a clean system. Note that Imxfl(s) (s) is nonzero only for

qp,0

|s| < 1 in this case. In this and all other figures, we omit the “qp” subscript and “c(s)

susceptibiliies, and set vp = 1.

effect on the behavior of Imxgﬁ%(s) on the real axis, the

imaginary part of the susceptibility for real s,

c(s VFX;; ,0(8)
Iqu;%(s) = ) ;e ) 2
(14 F5 Xreeo(®)) + (F5' o))
(23)

with x/(s) = RGXE(;;O(S) and x"(s) = T2 (s), has

free,0
no peak above the continuum. Therefore, the modes for

-1/2 < FOC(S) < 0 are “silent”, in a sense that they can-
not be detected by a spectroscopic measurement which

probes Imxgﬁ% (s).

C. =1

For [ > 1 we have to distinguish between the longitu-
dinal susceptibility with the form-factor v/2 cos 6 and the
transverse susceptibility with the form-factor v/2sin 6.
We consider the two cases separately. Here and in what
follows, we will suppress the ¢(s) superscript in the lon-
gitudinal and transverse susceptibilities for brevity, i.e.,

c(s),long long s),tr tr
— X -

we will relabel x; —x; = and Xf(

1. 1 =1, longitudinal channel

The computation of the free-fermion susceptibility
with v/2 cos 6 formfactors at the vertices is quite straight-
forward. In notations of the previous section, the re-

p,0

” superscript of the

tarded susceptibility is given by

Xﬁ’gfl(s) =1+ 252 (1 +

V1= (s + i5)2> - (@)

For real |s| > 1 Eq. (24) reduces to

free,1

long 2
s)=1+2s"|1—
Xfree,1 (5) ( =

'8') )

Substituting this form into Eq. (7), we obtain an equa-
tion for the poles:

71 + FlC(S) =242+ 2527‘5‘ .

26)
) o (
F s2—1
A solution of Eq. (26) in the form s12 = +s,1 with
sp1 > 1, ie., outside the continuum, exists only for
F& > 0. For small F{®, s,, = 14 2(Ff®)2. As
Fy ) increases, the magnitude of s, ; also increases, and
at large Ff(s) becomes s, 1 ~ (3Ff(s)/4)1/2. Correspond-
ingly, Imxgtgf (s) has peaks on the real axis at s = £s, 1.
To find the actual position of the poles in the complex
plane, we will again need to treat § as a finite albeit
small quantity. As for the [ = 0 case, we associate § with
weak impurity scattering. Because a generic [ = 1 order
parameter is not a conserved quantity, vertex corrections
are not crucial*®>. Nevertheless, they are necessary to

correctly determine the location of the poles.

The expression for Xif:fl (s) in the presence of impurity

scattering will be derived in Sec. I11. Here, we just borrow
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FIG. 2: (color online) Evolution of the poles of the dynamical susceptibility in the [ = 0 channel. (a) The real (blue)

and imaginary (yellow) parts of the pole of the quasiparticle susceptibility

parameter Fi(

c(s)

qp.0(8) as a function of the Landau

*). For clarity, we show only one pole (for Fy s 1 /2 there are two poles with real parts of opposite

signs) (b) The path followed by the pole in the complex plane with increasing FOC(S). For FOC(S) < —1 the pole is

purely imaginary and above the real axis, which indicates that the FL state is unstable. With increasing F; (S), the
pole moves down along the imaginary axis, which corresponds to an overdamped zero-sound mode, and reaches —ioo

at FOC(S) = —1/2. Tt then “jumps” to the lower edge of the branch cut. A pole located at the lower edge of the
branch cut corresponds to a ‘silent” zero-sound mode, which cannot be detected in measurements of XS(S)(S) for real

s (i.e., real frequencies). At FOC(S) = 0 the pole moves to the upper edge of the branch cut, where it becomes a
well-defined zero-sound mode, detectable by spectroscopic methods.

the result:
1+ 1'71(8(*@6)2
n \1—(s+1
Xion8 (s) = 1 4 25° D a— (27)
1—(s+id)2

The equation for the poles becomes

c(s) e
1+ R 02 1—(s+19) .—l— z(s—l—@é). (28)
e VI—(s+i6)2 -6

If we assume that s is in the lower half-plane above the
branch cut, i.e., =0 < Ims < 0 and /1 — (s +140)? =
—isgns4/(s +40)%2 — 1, we find that the solution actually
exists only for 0 < Ff(s) < 3/5. For these Ff(s), the
poles are located at s12 = %5, 1 — iSl, where s, 1 is the
solution of Eq. (26) (which exists for all F£*) > 0), and
51 = Ql(;, where

2

Pl . (29)
2—82 +sp1y/soq — 1

S

Q1 =

For 0 < Ff(s) < 3/5, sp1 varies between 1 and 2/v/3,
and Q1 < 1, as we assumed. For FE&) = 3/5, we have
Sp1 = 2/\/§ and @7 = 1, i.e., the pole merges with the

branch cut. For larger F} ) we have Q7 > 1, violating
our assumption that the pole is above the branch cut, so
that Eq. (28) has no solution. A more careful analysis
shows that the pole has moved to the unphysical Rie-
mann sheet on which y/1 — (a + ib)2 near the branch cut
is defined as \/1 — (a + ib)? = i\/(a + ib)2 — 1 instead of

V1= (s+1i6)? = —isgns\/(s +i6)? — 1, which we used

to search for the poles on the physical Riemann sheet.

The absence of the zero-sound pole for Fy ) > 3/5 is

a surprising result, but it has little effect on the form of

Xif;’ $(s) for real s. The latter has a conventional form for

all positive Ff(s):

1 1
long
§) X — — — |, 30
qu,l( ) <5+5p,1+i51 55p,1+i51> (30)

and Imxiﬁ;ﬁ(s) has peaks at s = +s,, 1, as shown in Fig. 3.

This is because the vicinity of the pole on the unphysical
sheet extends to the real s axis on the physical sheet, for
|s| > 1, via the branch cut.

There also exists another solution for Fy @) > 0, which
is purely imaginary: s = —is; ;. Assuming that s; 1 > 6,
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FIG. 3: (color online) Imxloﬁ)rf(s) for different Fy. (A

small impurity scattering § = 10™2 was added to make
the pole at positive F; visible. )

we obtain an equation for s;; from Eq. (28):

1+,
B
2F;

Si,1
14 5?71

For small positive Ff(s), si1 o~ 1/2 Ff(s) > 1. As

(31)

Fy (=) increases, s;1 decreases and eventually saturates
at s;1 =1/ /3. This additional solution will be relevant
for the case of finite damping, analyzed in Sec. ITI. Note
that Eq. (31) has a solution only for positive s; 1, i.e., the
pole is in the lower half-plane, as it should be.

For negative Fy (*) we again search for complex solu-
tions in the form

S1,2 = +a — ’Lb, b>0 (32)
(s)

~
~

Right above the Pomeranchuk instability, i.e, at Fy
—1 but Ff(s) > —1, we find

c(s) 1/2 c(s)
1+ F 1+ F
0= (21 > e L)

In contrast to the [ = 0 case, the collective modes are
almost propagating because a > b. Below the Pomer-
achuk transition, i.e., for Ff(s) < —1, both poles become
purely imaginary and split away from each other along
the imaginary s axis:

11+ F)| V2

One of these poles is now in the upper frequency half-
plane, i.e., a perturbation with the structure of the lon-
gitudinal [ = 1 order parameter grows exponentially (see
Sec. III). This indicates a Pomeranchuk instability.

In the interval —1 < Ff(s) < Fets) where Fe) =

l,cr> 1,cr
—1/9, we find s1 2 = a1 — iby, where

L+ /) o o]
a; = |F1(1)| [(1 —/|F >> <1+3\/|F1( >|>}

4

1_ /FC(S) 1/2
by = vk KH \/|Ff(s)) (3\/|Ff(s)| _1” :

4

sl

(35)

As |Fy (S)| decreases, a; monotonically increases, while
b1 first increases and then changes trend and start de-
creasing (see Fig. 4). The poles reach the lower edges of

the branch cuts at F£). At this critical value of FI*

l,cr

aer1 = 2/v/3 > 1and b= 0 (up to a term of order §). For

|Fy (S)| slightly below ny(csr), a, and b; are approximately
given by

3 Cc(s c(s 1/2
bFJAﬂW—mw)7

2 243+/3 (s c(s
ai= 2 = 25 (1)

N

2 2
=& O(by)- (36)

When F; (®) approaches F f(:r)7 the poles approach the real
axis along the paths that are almost normal to it.

The existence of the solution with a; > 1 but finite b;
for Fy ) < Flc,(csr) is at first glance questionable, because
conventional wisdom suggests that a mode with Res > 1
is located outside the particle-hole continuum and thus
should be purely propagating. However, as for the | =
0 case, these poles are located below the branch cuts,
cannot be accessed from the real axis and do not lead to

a peak in Imy*"8(s) for real s.
For F{¥) < Ff(s) < 0, the poles are located at 512 =

l,cr

+5,1 — 101, where 5,1 is determined from

5 1— |F®
2,1+ =2 = |C o | (37)
512971 -1 |F1 ‘
and 6; = Q16 with
=2
_ 5
Q=" (38)
2—5,1—Sp1y/Sp1— 1

The magnitude of 5, varies between 5,1 = 2/v/3 at
FE = FE9 and 5,1 = 14 2(FF“)2 for =™ <« 1,

l,cr
i.e., at vanishing F} ) the poles approach the end points
of the branch cuts. As follows from Eq. (38), Q1 > 1
for 5,1 in this interval, hence 61 > 4, i.e., the poles are
located below the lower edges of the cuts, as expected.



This is very similar to what we found in the [ = 0 case
for —1/2 < FS"™ < 0. Like in that case, the | = 1
susceptibility for Ff’(:r) < Flc(s) < 0 has poles at s =
+5,1 —id1:

1 1
long _ — . 39
Xap,1() o (s +8p1ti0  s—5p1+ Ml) )

However, Eq. (39) is again only valid for complex s in
the lower half-plane below the branch cut, and cannot
be extended to real s. These poles correspond to silent
modes, and the susceptibility does not have peaks above
the particle-hole continuum. We plot Imy'°"%(s) for real

qp,1
s in Fig. 3. The evolution of the real and imaginary parts

of the poles with Ff(s) is shown in Fig. 4.

2. 1l =1, transverse channel

We next consider the transverse quasiparticle suscep-
tibility in the [ = 1 channel. The retarded susceptibility
of free fermions with the v/2 sin 6 form-factors at the ver-

J

tices is
troa(s) =1—2s%+2 (1 - s? S B—
X ,1( ) ( ) T— (s +i0)2 (s i§)2

(40)
For real |s| > 1 Eq. (40) is reduced to

Xpipo1 () = 1 — 257 4 2|s|y/s% — 1. (41)

Substituting this form into Eq. (7), we find that the po-
sitions of the poles on the real frequency axis and outside
the particle-hole continuum are determined by

(s)
1+F
R Y TV (42)

Flc(s)

In contrast to the longitudinal case, the solutions of this
equation s15 = =£s,1 exist not for any positive Ff(s)
but only for Ff(s) > 1 (Ref. 36). Slightly above the
threshold, s,1 = 1+ (F£¥) —1)2/8. For large positive
F{® | sp0 m [ F9 /2.

To obtain the solutions in the complex plane s, we

introduce impurity scattering in the same way as in the
previous cases. Equation (40) is then replaced by

Xr(s) = 1 — 2 (s +id—iy/I— (51 i6)2) . (43)

There are no additional terms due to vertex corrections
because the form-factor is an odd function of the angle 6
and thus vertex corrections vanish upon angular integra-
tion.

Substituting Eq. (43) into Eq. (7), we find that for
Flc(s) > 1, where Eq. (42) has a solution for real s, there
is actually no solution for the pole of x{, ;(s) in the com-
plex plane of s, above the branch cut. Still, for real s,

Imxfﬁ)’l(s) displays sharp peaks even for Ff(s) <1

For 0 < Ff(s) < 1 we assume that s is below the
branch cut and re-write the square root in Eq. (43) as
V1= (s+1i6)% =isgnsy/(s + )% — 1. If we just neglect
0 after that, we find another propagating mode, located
at s1,2 = £5p.1, where 5, ; > 1 is the solution of

14 FF®

S =25 (s G -1).
Fy

However, if § is treated as a small but finite quantity, we
find that there is no solution of (x{, ;(s))™" = 0 with
Ims,, 1| > 6, i.e., there is no pole below the branch cut.

Combining this with the absence of the pole for F} ) 5
1, we conclude that the [ = 1 transverse susceptibility

does not have a pole on the physical sheet for Ff(s) > 0.

(

However, as was the case for the longitudinal mode, the
poles do exist on the unphysical sheet.

For negative Ff(s) the pole of x{/, ;(s) is on the imag-
inary axis: s = —is; ;. The value of s;; is determined
by

1-|F{Y|

)2 _ e
sl = 2(si1)° 4+ 285,14/ 1+ (s01)% (45)
1

The solution exists for all negative F{*). When F{*)

approaches zero from below, s;; ~ 1/2|Ff(s)|1/2. Near

1+ Ff®) = 0, we have s;; ~ (1+ F'™)/2, ie., s =
—i(1+ Ff(s))/2. As before, when 1 + Ff(s) changes sign
and becomes negative, the pole moves from the lower to
the upper frequency half-plane, i.e. an [ = 1 perturbation
in the shape of the FS grows with time exponentially.
This behavior is similar to the one for [ = 0. Yet, a
purely relaxational collective mode in the [ = 1 transverse
channel exists for all —1 < Ff(s) < 0, i.e., it appears
without a threshold.
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FIG. 4: (color online) The poles of X:(S) (s) in the longitudinal and transverse channels. The use of colors and

p,1

notations is the same as in Fig. 2. See Sec. II C for a detailed discussion.

1. 1 =2, longitudinal channel

The retarded free-fermion susceptibility with the
V2 cos 20 form-factors at the vertices is

long 2 4 . 2 2 S
Xtr s)=1—-4s*4+8s"+2i(25° — 1) ————.
f ee,2( ) ( ) 1-— (S + 25)2

The equation for the poles of lepn,g (s) outside the contin-

uum, i.e., for s real and |s| > 1, now reads

1 FC(S)
L S WA 2(2s% — 1)2i

R w1 D
Similarly to the cases of I = 0 and of the longitudinal
channel for [ = 1, the propagating solutions s; 9 = £s, 2
exist for all positive F5®). For small F§), s,, ~ (1 +
2(F2C(S))2); for large FQC(S), Spo & (cm(s)/2)1/2.

To obtain the solutions in the complex plane, we in-
troduce impurity scattering in the same way as before.
Combining the self-energy and vertex corrections, we ob-

(46)  tain after some algebra
J
long _ . S . . ) 2 .
Xireo 2(8) =1 —2i (s +i0 —iy/1—(s+ 1) ) (1 —2s(s+1d)). (48)

VI—(s+i0)2—6

The equation for the pole becomes

14 B
2F2C(5)

_ 1S
V1=(s+1i6)2 -0

Solving for the pole at small but finite §, we find 512 =
Es5p0 — igg, where 6y = Qgé. Evaluating QQ, we find
that it is smaller than 1 for FQC(S) < 0.420, when s, 2 <
1.072. For these cm(s), the pole is located above the

branch cut, as it should be. For larger F£*) there are no
poles near the real axis. This is similar to the behavior
in the longitudinal channel for [ = 1. We re-iterate that
the absence of a true pole in the complex plane does not

affect the behavior of yy™8(s) for real s; in particular,

(s—l—ié—i 1 (s+i5)2)2(1—2s(8+i6)). (49)

(

Imyy"¥(s) still displays sharp peaks at s = =s,» and

that, in mathematical terms, the pole moves to a different
Riemann sheet at F5*) = 0.420.

For negative F;(s) Eq. (49) has two solutions. One of
them is purely imaginary: s = —is; 2. For F;(S) ~ —1,
sio = (1 — [FS¥)))/2; for small negative F5'™) ;5 ~
1/(2|F5®)|1/4). Another solution does not become criti-
cal at the Pomeranchuk transition. To detect this mode,
we notice that, for cm(s) = —1, Eq. (49) is satisfied not
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FIG. 5: (color online) The poles of XZ;S))Q (s) in the complex plane. The use of color and notation is the same as in

Fig. 2. See Sec. IID for a detailed discussion.

only by s = 0, but also by 51 2 = +1/v/2. The latter solu-

tions are on the real axis, but away from the branch cut.

At small deviation from the critical value F5™) = —1,

these solutions evolve into s 2 = *as — by, where

1 14 F5'
Ay = ﬁ (1 + 42>

(1 + FQC(S))2
8v2

Observe that by remains positive even when 1+ Fy ) <

by = (50)

0. As Fy (s) gets larger, the solutions first move away
from the real axis but then reverse the trend and, at

the threshold value F£%) = —0.0632, reach the lower

2,cr
J

Xgeeﬂ(s) =1+ 482

The equation for the poles outside the continuum, i.e.,
for s real and |s| > 1, reads

1 FC(S)
Rl 8st — 457 — 85%|s|\/s2 — 1.

(52)
FQC(S)

For positive F;(S), the solutions s12 = =sp9 exist
for FQC(S) > 1/3. For FQC(S) just slightly above 1/3,
spa ~ 1+ (81/128)(F5™ — 1/3)2. For large FL'¥,
sp2 & (F57 [2)172.

To obtain the solutions in the complex plane s, we
introduce impurity scattering in the same way as before.
There are no additional terms due to vertex corrections
because the form-factor is an odd function of the angle
6. Equation (51) is then replaced by

2

Xfreo2(s) = 1 — 4s(s + id) (s +id —i/1—(s+ i6)2)
(53)

For Ff(s) > 1/3, we assume that s is above the branch

—8s% —

edge of the branch cut at as o ~ £1.046. As F;(S) is

varied from FQC(Csr) to 0, the solutions “slide” along the
lower edge of the branch cut towards s = +1. This is
very similar to what we found in the [ = 0 case, for
~1/2 < F$*) <0, and in the [ = 1 longitudinal channel,
for Ff(csr) < Ff(s) < 0. At a small but finite 4, the two
sliding solutions are sy 9 = %5, 2 — 09 with 9 > 6, i.e.,
the pole does exist but is located below the branch cut.

The evolution of the poles with F5*) is shown in Fig. 5.

2. 1 =2, transverse channel

The retarded free-fermion susceptibility with the
V2 sin 260 formfactors at the vertices is given by

8is3(s% — 1)

V1— (54102

(51)

(

cut and use /1 — (s +140)? = —isgnsy/(s +i6)2 — 1. If
we neglect § after that, we obtain the same solution s, o
as in (52). For 0 < Fg(s) < 1/3, the same procedure but
with an assumption that the pole is below the branch
cut, yields another propagating mode, which slides along
the lower edge of the branch cut, much like it happens for
the pole of the transverse susceptibility for [ = 1. Once
we take into account that ¢ is small but finite, we find
that the solution along the real axis does not survive in
either of the cases, i.e., there is no pole close to the real
axis on the physical Riemann sheet. This is similar to
the situation for the [ = 1 transverse channel.

As for the [ = 1 case, there also exists another mode
for FQC(S) > 0, at s = —is; 2 on the imaginary axis. The
value of s; o is determined from

1 Fc(s) 2
+7c(23) = (si2)’ (51‘72 +4/1+ (&‘,2)2) .
AF

For small cm(s) >0, 550~ 1/(2F;(8))1/4; for large FQC(S)7

(54)



Sio~1/ 2v/2.

For negative Fy ) there is no solution on either real or
imaginary frequency axes, and we search for the solutions
in the form s = £ay —ibs, where both as and by are finite.
In this situation, one can safely neglect § and write the
equation for the poles as

1— |
Lol i 52 (1 — 25 + 2is\/1 — 52) : (55)

4|F5|

An analysis of this equation shows that the solution exists
for all FQC(S) < 0. Near FQC(S) =1,

1/2
1—|Fe® 1—|FE®
a9 ~ <|42 | , by = 7‘42 | (56)

For small negative FS™ ay ~ by &~ 1/(2V/2|FE|H/4).

(s)

The evolution of this pole with F,"* is shown in Fig. 5.

E. arbitrary [

1.  Equations for the poles

We now focus in more detail on negative Flc(s) and,
in particular, on the behavior of collective modes near
a Pomeranchuk instability. Comparing the results for
for the I = 0,1,2 modes, we see a difference between
even and odd /. Namely, near a Pomeranchuk instability
the critical mode in the longitudinal channel is purely
imaginary for even [ = 0,2 and almost real for odd [ = 1.
For transverse channels the situation is the opposite — the
mode near a Pomeranchuk instability is purely imaginary
for I = 1 and almost real for [ = 2. In this section we
analyze whether this trend persists for other values of I.

The retarded longitudinal and transverse susceptibili-
ties of free fermions can be obtained analytically for any
l. We have

Xt () = Ko + Ko, (57)
where
Ky = —/COSQZQ& (58)
= s+ 16 — cos b
s
G (s /T (s T )
1,0 1—(s+i5)2( ( )?)
(59)

The equation for the pole on real frequency axis outside
the continuum, i.e., for |s| > 1, is

c(s)
e = (L ).

Flc(s) (s 4 1i6)
(60)

The upper and lower signs correspond to the longitudi-
nal and transverse channels, respectively. One can easily
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verify that, for any I, a solution with real |s| > 1 exists
only for positive Flc(s).

For negative Flc(s), we search for complex solutions. In
this case, we re-write (60) as

1-|FY) s
F V=

In what follows, we consider the longitudinal and
transverse channels separately, first for even [ and then

for odd . We consider separately the limits of Flc(s) ~ —1

and |F, lc(s)| < 1, and then interpolate between the two
limits. We show that there are multiple solutions with
complex s in each channel. The structure of the solutions
in the longitudinal channel for even [ are very similar to
those in the transverse channel for odd I. We do not
discuss here the solutions in the transverse channel for
positive Flc(s), but below the threshold on the solution
with real s and s > 1.

(1 +(s—iv/1— 32)2l> . (61)

2. even l, longitudinal channel

For Flc(s) ~ —1, we first search for a solution with
small |s|. Expanding Eq. (61) in s, we find a pole on the
imaginary axis

14 £
PO Lkl (62)
2

There exist additional non-critical solutions for which s
remains finite at FIC(S) = —1. To obtain these solutions,
we choose the plus sign in Eq. (61), set Flc(s) = —1, and
solve the resultant equation 1 + (s —iv1—s2)? = 0.
There are [ solutions s,, = arccos [r(2m + 1)/2l], where
0 < m < is an integer. They form [/2 pairs of solutions
with s19, = %ap, ap < 1,0 < p < /2. For | = 2, we
have a single pair s; 2.0 = +1/v/2, consistent with what
we found earlier. At small deviations from Flc(s) = -1,
in any direction, these solutions become complex s 2., =
+a, —iby, b, x (1 —|—Flc(s))2. The imaginary part of these
solutions remains negative even for F ) « 1.

Next, consider the interval 0 < —Flc(s) < 1. In this
limit, the magnitude of s must be large for the right-hand
side of Eq. (61) to match 1/\Flc(s)| > 1 on the left-hand
side of the same equation. Using v/1 — s? = is for s in

the lower half-plane, we reduce (61) at small |F; lc(s)| to
S (63)
Lo

This equation has [ — 1 solutions with s, =

eii“m/l/2|Flc(s)|1/2l, where 0 < m < [ is an integer.
The solution with m = [/2 is purely imaginary, and
the other | — 2 solutions form p = (I — 2)/2 pairs of



s1,2;p = *a, —iby. The purely imaginary solution, s/,
evolves towards s;; = 0 as FZC(S) approaches —1 and

moves into the upper half-plane when [Ff)| > 1, sig-
naling a Pomeranchuk instability. The other solutions,

51,2;p, €volve towards finite values at Flc(s) = —1. Com-
paring the number of solutions with sy 2., = +a, — b,
at FIC(S) = —1land 0 < —Ff(s) < 1, we see that they

differ by one pair, which exists for the former case but
not for the latter. From the analysis of the | = 2 case,
we know that the solution s; o = £a — ib with a non-zero

b emerges when |Flc(s)\ exceeds a threshold value. At the
threshold, 519 = +a — 46 with @ > 1 and § <.

For |Flc(5) | smaller than the threshold, the poles remain
below the branch cut at s = +a — id,a > 1. For vanish-
ingly small §, which we consider in this section, the poles
are glued to the lower edge of the branch cut and slide
along the branch cut towards its lower end at |s| =1 as

|F?®)| decreases. We see that for any even I there exists

exactly one such threshold solution, while other solutions

appear already for infinitesimally small negative FIC(S).

3. ewven l, transverse channel

We start again with F lc(s) ~ —1 and consider the solu-
tion with vanishingly small s. For the transverse channel
[for which we have to choose the minus sign in Eq. (61)],
the leading, linear-in-s term on the right-hand side of
Eq. (61) is absent, and one needs to include the sublead-
ing terms. A straightforward analysis then shows that
the poles of the transverse susceptibility are located near
the real axis, at

1/2
14+ F°® 14 Fe®
s10 7+ <21l — i (64)

When |Flc(s)| becomes larger than 1, this solution moves
into the upper half-plane, signaling an instability towards
the development of a Pomeranchuk order.

There also exist other solutions that remain finite at
Flc(s) — —1. These solutions are obtained by setting
Flc(s) = —1 in Eq. (61) and solving the resultant equa-
tion 1 — (s — iv/1 — s2)? = 0. There are [ — 2 solutions
sn, = arccos(mn/l), where 0 < n <l and n # /2. Such
solutions do not exist for [ = 2, i.e., there is only a solu-
tion that vanishes at Flc(s) — —1.

For 0 < —Flc(s) < 1 we need to solve 1/|Flc(s)| =
—(25)?!. The solutions are s,, = e~ "(1+2n)/(2) /2| Fe|1/2!
with 0 < n < [. The number of solutions is [, and they
form {/2 pairs with s1 2., = £a, — by, 0 < p < /2. One
pair evolves towards s; 2., = 0, as Ff(s) approaches —1,
while the other [ — 2 solutions tend to finite values +a,

at Flc(s) = —1. We see that the number of non-critical
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solutions is the same, i.e., [ — 2, both for 0 < —Flc(s) <1
and at Flc(s) =-1.

4. oddl, longitudinal channel

The analysis for odd [ proceeds along the same lines.
We do not present the details of calculations and just
state the results. For F”) ~ —1, there are [ + 1 so-
lutions, which form (I + 1)/2 pairs s19, = *a, — ibp,
0 < p < (I4+1)/2. One pair is the same as in Eq. (64), the
other solutions tend to finite s,,, = arccos(mw(1+2m)/(2l),
with 0 < m < I, m # (I —1)/2, at F = —1.
For 0 < —Flc(s) < 1, there are [ — 1 solutions s, =
e~ /2| Fe |V with 0 < m < 1. They form (I —1)/2
pairs si o, = ta, —ib,, 0 < p < (I —1)/2. Com-
paring the number of solutions at Flc(s) ~ —1 and for
0 < fFlc(s) < 1, we see that there exists one pair of
solutions s1 9 = +a — ib with b > 0, which emerges once
|Flc(s)| exceeds a threshold value. For |Flc(s)| smaller than
the threshold, this pair of solutions remains glued to the

lower edge of the branch cut immediately below the real
axis.

5. odd l, transverse channel

For Flc(s) ~ —1, there is one purely imaginary solu-
tion with vanishing s, as in Eq. (62), and [ — 1 solutions
sp = arccos(mn/l), 0 < n < . For 0 < —Flc(s) < 1,
there are [ solutions s,, = e~ "(1+2m)/(21) 9| pe|1/2! with
0 < m < I. One solution, with m = (I —1)/2, is
purely imaginary, while the other solutions form (I—1)/2
pairs sy, = £a, —iby, 0 < p < (I —1)/2. Com-
paring the number of solutions at Flc(s) ~ —1 and for
0 < —FZC(S) < 1, we see that the number is the same,
i.e., all solutions develop already at infinitesimally small
Flc(s). The purely imaginary solution moves into the up-
per frequency half-plane when Flc(s) + 1 becomes nega-
tive, signaling a Pomeranchuk instability, while other so-
lutions s1 9., = +a, — ib, remain in the lower frequency
half-plane even for Flc(s) < -1

Comparing the solutions for even and odd [, we see that
at Flc(s) ~ —1, the solutions in the longitudinal channel
for even [ are quite similar to those in the transverse
channel at odd [ and vise versa. For smaller negative
Flc(s) there is a difference between the longitudinal and
transverse channels at any [. Namely, there exists one
solution in the longitudinal channel which remains glued
to the lower edge of the branch cut at |s| > 1, until
|Flc(s)| exceeds a threshold value, while in the transverse
channel all solutions with Ims < 0 emerge already at
infinitesimally small Flc(s).



F. The case of two comparable Landau parameters

As a more realistic example, we consider the case when
two Landau parameters, e.g., FOC ) and Fy (s), are compa-
rable in magnitude, while the rest of the Landau param-
eters are negligibly small. In this situation, the relation
between the quasiparticle and free susceptibilities is more
complicated than in Eq. (7) because the [ =0 and | =1

channels are coupled at finite s via the F (S)Ff ) term.

Resumming the coupled RPA series for ng% and Xiﬁ: i

or, equivalently, solving the FL kinetic equation, one ar-
rives at26-3?

2Ff ) K2
14%1?f(5)(1(04%1(2)
2F I e g2
1+F1C(s)(K0+K2)

Ky —
c(s) _
Xapo(8) = vF

)

14+ FSW K, —

o(s)
Ko+ Ky — %
long _ 1+F 7 Ko 65
qu,1(5) =VF (s) 2r e g2 (65)
Lo B (Ko o+ K) = 2
where K, are given by Eq. (58). Explicitly,
s
Ko=1+i——o
0 VI— (s 1i0)2
2 5”
Ko+ Ko=14+2s 42—
o JI— (51 i0)2
2
and K1 = s+ i————. 66
' VI (5+0)2 (66)

long

qp.1 vanish when
;

The denominators of X:S}) and y
(1+FS Ko) 14 FF9 (Kg+Ky)) = 2RSSO RO K2 (67)

Suppose that Flc(s)
1+ Foc(s) >0 (FOC(S) can be of either sign). In the pre-
vious sections, we saw that a critical zero-sound mode
corresponds to small s. Substituting the forms of K,
into Eq. (67) and assuming that s is small, we obtain

is negative and close to —1 while

(14 FSN (1 + FE®) = 252 4 2083 +iFC@ (1 + FEO) s,
(68)

Iterating this equation in 1 4 Ff(s) < 1, we obtain its
approximate solution as

14 FON
s=k | gt (14 FS&)1/2

i Cc(Ss
—1(1+F1( ). (69)
This form does not differ qualitatively from Eq. (33) for
the case Fg(s) =0, i.e., both the real and imaginary parts

of the zero-sound velocity vanish when F} (®) approaches
—1, and the imaginary part vanishes faster. The only

14

)

effect of non-zero Fy () is to renormalize the prefactor of

Res.
In the opposite case, when FS ) is close to —1 while

Fy ) is not, close to —1 but otherwise arbitrary, we find

from (67)

21— Ff®
1+ Fe)

We see that the pole remains on the imaginary axis and

moves from the lower to upper frequency half-plane when

1+ Foc(s) changes sign. The Landau parameter FIC(S)
affects only the subleading term. We expect this behavior

sx =i |1+ B+ (14 FY) . (70)

to hold when Flc(s) with [ > 1 are also present, as long

as F{8) are not close to —1.

The simultaneous presence of Fj; ) and F v (S), however,
changes the threshold for the existence of a propagating
zero-sound mode. ( For 3D systems, this effect was no-

ticed in Ref. 44. ) For example, if only FOC(S) is non-

zero, a propagating mode exists only for positive Fj; ),

If Fy (*) is also non-zero and positive, a propagating mode

)

exists also for negative Fy ), Moreover, for large enough

Ff(s) > 0, a propagating mode exists even at the [ = 0
Pomeranchuk instability, i.e., when FOC o) — 1. Namely,
setting F£®) = —1 and varying F{*) > 0, we find the so-
lution of Eq. (67) in the form of a propagating zero-sound

c(s)

mode for £’ > 1. The mode frequency is

14 F{©)

s== sl > 1. (71)

2 lyf(s)

For large Ff(s), ERS Ff(s)/Z.

G. 3D systems

For comparison, we also briefly discuss the behavior of
zero-sound excitations near a Pomeranchuk instability in
a 3D system. We present the results for l =0 and [ =1
and, in each case, consider only one non-zero Landau

parameter Ff(s) < 0.

1. 1=0

Zero-sound modes in the [ = 0 channel were analyzed
in Refs. 30 and 44. The free-fermion susceptibility with

the form factor fg(s) (kp)=11is

s. s+i0+1
Tee =1—-=1 —— 2
Xiree,0(5) 2 ns—i—zé—l (72)

The equation for the pole reads
1 S 145414

=S lpeme ST
A —

e (73)
|lﬂ)( )| 2



The pole is completely imaginary: s = —ib (hence, 0
in (73) is irrelevant). In contrast to the 2D case, such
solution exists for all negative Fy ) ie., there is no
threshold. For Fi™ ~ —1, b ~ (2/m)(1 — |FS¥)|). For
0< —F™ <1, b~ 1/ (x| FE9)).

2. 1l=1

The eigenfunctions of angular momentum [ = 1 are
spherical harmonics Y (6,¢). We normalize Y] as

Y2(#) = V3cosh and YEH(0,¢) = F+/3/2sinfhet?.
Then the critical value of F£'®) for a Pomeranchuk in-
stability is F©) = —1.

In the longitudinal channel, the form-factor is
£89 (kp) = Y0(0). The free-fermion susceptibility is

B o 3(s+i6)? s+id+1
Xfree70(5)1+35(5+7,5 3 ]
(74)

The equation for the zero-sound pole is

- c(s) . \2 .
1—|F} |:s s+i5_(s—|—15) —z'7r+1ns+25+_1
1—s—1id

3 2
(75)
When Flc(s) ~ —1, the solution is
1—|Fe®
s::tel/z—i%, e:%. (76)

This is very similar to the 2D case, cf. Eq. (33). In
contrast to 2D case, however, a complex solution in 3D

exists for all negative F} )

When |Ff(s)| is small,

, i.e., there is no threshold.
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The form-factor in the transverse channel is

fi (S)(kp) Ylj[l(e7 ¢). The free-fermion suscepti-
bility is
B 3, 3s(1—s?), s+1
Xfree,O(s) =1 55 1 In s_1 . (78)

The equation for the zero-sound pole is

A(1 4+ FE9)
3| F]

1
= —25%—5(1—5%) (—iﬂ—i—ln i i ) . (79)

— S

One can easily verify that the pole is located on the imag-
inary axis, at s = —ia, where a is the solution of

41— |F{©)
31| —ia
Near Ff( )=_1,a~ (4/3m)(1 — |Ff(s)|). For small neg-
ative Ff(s), a = (4/(37r|F1C(s)|))1/3. This is again similar

to 2D, except for the solution s = —ia in 3D exists for
(s)

14
= ma(1+ a®) + 2a® +ialn 1+m

all negative F;"”, i.e., there is no threshold.

III. FINITE DISORDER

A. General formalism

In this section we analyze how the results of the previ-
ous sections change in the presence of finite disorder. As
in the previous section, we consider separately the cases
of [ = 0,1,2. Other cases can be analyzed in the same
manner as these two.

The free-fermion susceptibility in the presence of scat-
tering by short-range impurities consists of two parts: the
bubble part and the vertex part:

Xfrcc,l(q; Wm) = chc,l(qa wm) + Xch,l(q’ wm)' (81)

(cf. Fig. 6). The bubble part is formed from the

1 1/3 _ (Matsubara) Green’s functions G(k,v,,) = (ivi, — € +
5~ (c(&)> e i/, (77)  isgny,/2) 71, where 7 is the impurity scattering rate:
3| Fy |
2 d’k [ dv
B S =1 1) (k) PGk + q/2 2,)G(k — /2, vy — Wi /2 82
Xtree (d:&m) NF/(QW)Z/ o [T R Gk+a/2, v + W /2,)G(k = /2, vm —wm/2). (82)

The vertex part is

X?ﬁee,l (Qa wm) =

" Ng 2m)2 | (27)? o 71

2 / (d% / 2E / dvm, ) (k) (f;(”(k’))* Gk +a/2, v + wimn/2)G(k — a/2, Vi — Wi /2)

XG(K +q/2,Vm + wm/2)G(K — a/2, Vm — wm/2)D(Wm, G Vm)- (83)

where D(q, wp; Vim) is the diffusion propagator®?
gl 0 m 'm 2)0 m 2 — m
D(qawm;Vm) = il (w +|V |/ ) (|V |{ w~ )
2rNp  /(0590)% + (lwm| +7)2 — 7
(84)

(

Diagrammatically, D(q,wpm;Vm) is represented by the

sum of ladder diagrams in the particle-hole channel (the

sequence of diagrams in the square brackets in Fig. 6).
The retarded forms of the susceptibilities are obtained
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FIG. 6: The susceptibility of non-interacting fermions in the presence of impurity scattering. The diagram on the
left corresponds to Xgee,l in Eq. (82), while the diagrams in the square brackets correspond to X}feeJ in Eq. (83).
The solid lines represent disorder-averaged fermionic propagators, the dashed lines represent the correlation

functions of the impurity potential.

by choosing w,, > 0 and replacing iw,, — w in the final
results. The vertex part is especially important for the
I = 0 case, because the corresponding order parameters
(charge or spin) are conserved quantities, and hence the
bubble and vertex parts of the susceptibility must cancel
each other at ¢ = 0. For [ > 0, the corresponding order
parameters are not conserved, but the vertex parts must
be also included in order to obtain the correct positions
of the zero-sound poles in the complex plane.

B. 1=0

We recall that in a clean Fermi liquid with positive
F£ the pole of X&) (s) is on the real axis at |s| > 1.
For negative Fj; (S), the pole is on the imaginary axis, at
s = —i(1— |F9) /@FS® | = 1)Y/2, when —1 < FS®) <
—1/2. At FOC(S) = —1/2, the pole at s = —oco splits into
two, and the new poles instantly move to the s = o0
points on the real axis. At larger, but still negative Fj; (),
the poles move towards s = 41 along the lower edge of
the branch cut.

The bubble and vertex part for the [ = 0 case are given
by

is
XfBree,o =1+ Wv

X = - )
free,0 1— (S T 27)2 —

where v = 4/v}.q. Adding these up, we obtain

S
T s)=1+1 s 86
Xiree,0(8) G (86)

which is the result quoted in Eq. (9), except that we
have changed the notations § — v to emphasize that
~ does not have to be small. This result, as well as a
corresponding result for the [ = 1 case, holds for ¥ < Ep
while the ratio 7/s can be arbitrary. At ¢ — 0, i.e.,
at s — oo, the susceptibility vanishes, which guarantees
that the charge and spin are conserved.

For |s| < 7, Eq. (86) reduces to the well-known diffu-
sive form?5:46
1 D¢?

Dq? —iw’ (87)

Xfree,O(S) = 1_ 2275

where D = (v§)?/27 is the diffusion coefficient in 2D.
Substituting Eq. (86) into Eq. (7) and solving for the

poles, we find that for FOC(S) < —1/2 the pole is on the
imaginary axis, at

i I R S I
S:Slz—i’y c(ls)o ‘ 1—‘1-7' 0 2| —1
2 FS| — 1 2l
(88)
For v — 0, this reduces to Eq. (19). For large ~,

s1 = —i(l — \FOC(S)D/ny. In this limit, we have a dif-
fusion pole at © = —iD*¢?, where D* = D(1 — |[F£'¥))
is the renormalized diffusion coefficient*”. In the ballis-
tic regime at small v, the damping term accounts for a
small correction to the result for a clean Fermi liquid, cf.
Eq. (19).

When 1 + FOc (s) becomes negative, s; moves into the
upper half-plane of s, which signals a Pomeranchuk in-

stability. For positive 1 + F ) the pole s; moves down

along the imaginary axis as 1 + Fjy (®)
mains finite at FOC(S) = —1/2, in contrast to the behavior
in the clean limit. Expanding the square root in Eq. (88)
in 2|FOC(S)| — 1, we find s; = —i/(4y) at FOC(S) = —1/2.

At larger Fy (s), another solution,

1—|Fe® 1—2|F®
szz—m——i%E% w1———J§LJ+1 , (89)
1—2|F"| v

appears in the lower half-plane, initially at so = —ioo.

increases, but re-

As FOc (s) keeps increasing, s; and s; move towards each
other. For v < 1, the two solutions merge into a single
pole s1 = sy = —i(14+72)/(27) at F{) = (y2-1)/2 <0
(see Fig. 7a). For Fg(s) slightly larger than this value,
the double pole bifurcates into two poles with finite real
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Res

FIG. 7: (color online) Evolution of the poles of Xc( *) (s) with Landau parameter F¢®) for finite disorder,
parameterized by the dimensionless scattering rate 'y The blue and yellow lines denote the behavior of the poles of

X:S%)( ) for negative F () (sohd traces) and positive F| c(s) (dashed traces). The horizontal dotted lines denote the

square-root branch cuts of x

( ) at Ims = —v. The arrows identify the direction of the poles’ motion with F

c(s)

increasing from —1 to oco. We use different colors to show how poles merge and then bifurcate.

parts. For even larger Fj, (5), the two poles move along
arc-like trajectories s; o = a — b in the complex plane.
In contrast to the case of v = 0, the poles remain at a
finite distance from the lower edges of the branch cuts,

as long as F{*)

At FOC(S) = 0, the poles reach the points 512 =
++4/1 —~2 —ivy. At positive FOC(S), a increases and b be-
comes smaller than ~. This implies that the poles are
now located in between the branch cuts and real axis.
At Fg(s) — 00, 4 — (F(;:(S)/Q)l/2 and b — /2.

For v > 1, the second pole ss still emerges at Fg(s) =
—1/2, but the poles at s = s; and s = s2 on the imagi-
nary axis remain at finite distance from each other for all
@ =(2-1)/2>0
(see Fig. 7b). At larger Fg(s), the poles again follow the
trajectories s12 = *a — b with a increasing and b de-

remains negative.

negative F, ) and merge only at F;

creasing with increasing Fg(s). For FOC(S) > 1, the poles
reach the same values as for y < 1: a = (FOC(S)/2)1/2 and
~ /2. In Fig. 8 we plot Imy® (s) for real s for a

range of FO(S) both for v < 1 and v > 1 (panels (a) and
(b), respectively).

C. I=1
1. 1 =1, longitudinal

We start with recalling the situation at vanishingly

small damping. For —1 < Ff(s) < 0, the poles of

1 .
Xqp.1(8) are at s19 = +a; — iby, where a; and by are

given by Eq. (35). For Ff(s) just above —1, a1 =~
(1 = |FE9))/2)2 and by ~ (1 — |FF¥))/4, ie., the
the poles are almost on the real axis. For larger Fc(s)

(smaller |Fy (S)|), the two poles evolve such that a; in-
creases monotonically, while b; first increases and then
decreases. The poles approach the lower edges of the

branch cuts along the real axis at F (ffsl) = —1/9, when
a; = 2/v/3 > 1. For larger F1( ), the poles remain
slightly below the lower edge of the branch cut and move
towards a; = £1. For 0 < Ff(s) < 3/5 the poles are lo-
cated slightly above the branch cuts for Ff(s) < 3/5. For
Ff®) > 3/5 they move off from the physical Riemann

sheet. For all F} SN 0, there exists another, purely
imaginary solution s = —is; 1. For small damping, this
solution and the s; 5 solution are not connected.

We now show that the behavior of x\*"® changes quali-
tatively in the presence of disorder. The bubble and ver-
tex parts of the free-fermion susceptibility are now given

by
s+ 1y >
1—(s+i7)?2)’
{ 1—(s+i7)2+i(s+i7)]2
1—(s+1iv)?

lef:eg’lB(s) =1+ 2s(s+iv) <1 +1

long,V
f(;:egil (s)

= —2iys

1
T—(s+in)?—7

(90)
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FIG. 8: (color online) The imaginary part of ngg)(s) for finite disorder, characterized by the dimensionless coupling

constant . (a) Weak disorder (y = 0.2). For —1 < FOC(S) < —1/2, the shape of Imxg(s) (s) has a characteristic

p,0

overdamped form. As Fy increases from —1/2 to 0, the shape changes its form due to the appearance of “hidden”

c(s)

poles below the branch cut. For FS(S) >0, Imx;, o

Strong disorder (y = 1.5). In this case Imy_” (s) has an overdamped shape for all F¢®

Adding these up, we obtain

1—(s+iv)% +i(s+iv)

TGP

which is the result quoted in Eq. (27), up to a replace-
ment v — J. Note that the vertex part vanishes at ¢ — 0,
i.e., at s — 00, while the bubble part is reduced to a
form which is identical to the Drude conductivity at fi-
nite frequency w. This indicates that the charge and spin
currents are not conserved in the presence of disorder.

long
free,1

(s) =1+ 25 , (91)

The analysis of the evolution of the poles with F} (®)
for different + is straightforward but somewhat involved.
We omit the details of the calculations and present only
the results. These results are summarized graphically in
the panels of Fig. 10.

The beginning stage of the evolution is the same for
all v: for 1+ Ff(s) < 1, the poles are located at s1 9 =
+a; —iby, where a; ~ ((1+F*)/2)1/2 is independent of
v, and by =~ ((1+ Ff(s))/él)(\/l + 2 + 7). However, the

behavior at larger F©*) depends strongly on . We find
that there are three values of v, at which the evolution
of the poles changes qualitatively: v = 1/2, v = 0.923,
and v = 1.

For v < 1/2 the evolution of the poles is similar to
that for vanishingly small v (see Fig. 3), although the
interval, where the imaginary part of the pole frequency
varies non-monotonically with F} () shrinks rapidly with
increasing . The pole positions si 2 = +a; — ib; cross

the line s = —iy first at some negative Ff(s), when

1 =+/1— (1 —7)2, and then again at Ff(s) = 0, when

a1 = y/1 —~2. The pole moves to the other, unphysical

(s) has a conventional form of a damped zero-sound mode. (b)

), negative and positive.

<(s)

Riemann sheet at F| 5’ given by
14+ 7% (af g —9)(ar—faf p— 1) (92)
2Flc,(ls%) a’%,R -1

where

1/2
2yt =2 +1+2—72
a1r = 3 . (93)
The values of ny(lfc) and of a; rp decrease as 7y increases,
but Ff,(é) remains positive, and a; g remains larger than

1 as long as v < 1. For large Ff(s) the pole on the

unphysical sheet is at s; ~ <\/3Flc(s) - i'ny(S)> /2, i.e.

Ims; increases with F} )

The purely imaginary pole s =
only for Fy SUEN 0, moves up the imaginary axis from
Si1 A 1/2(Ff(s))1/2 > 1 for small Ff(s) > 0 towards

smaller values for larger Flc(s). For Ff(s) > 1, s is
determined from the equation

—1i8;,1, which exists

2 Si1
s2o(1+ ’ =1/2. (94
’1< 1+(3i,1_7)2_7) { 9

For v < 1/2, this limiting value s; 1 > 7.
At v = 1/2, the points at which the s 2 poles cross

the s = —iv line merge at Ff(s) = 0, and the region
of the non-monotonic evolution of s; 2 for negative F! T (s)
disappears. At this vy, the limiting value of the purely

imaginary pole at Ff(s) > 1 becomes s;1 =7 =1/2.
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FIG. 9: (color online) Evolution of the poles of x5 (s) with the Landau parameter Fy ) for finite disorder,
parameterized by the dimensionless coupling constant -, as specified in the legend. Like in Fig. 7, we use different
colors to show how the poles merge and bifurcate. The X denotes the limiting position of the pole for Fy ) 5 .
The inset in the first panel depicts how, for small -, the pole bypasses the s = 1 branching point before finally
moving to an unphysical Riemann sheet for s > 2/1/3 (Flc(s) > 3/5).
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FIG. 10: (color online) Imxg)pri £(s) for finite disorder

~ = 1/10 and various interaction strengths.

For 1/2 < v < 0.923, the poles evolve in the complex
plane as shown in Fig 10, third panel. The s;» poles

cross the line s = —i~y first at Ff(s) = 0, when a; =
1 —~2, and then again at some positive F} (S), when

a; = m The limiting value of the purely
imaginary pole for F} (*) > 1 is now smaller than ~. This
implies that, for large F} (S), this pole gives the main
contribution to x\°™8(¢) in the time domain.

At v = 0.923, the s1 2 poles touch the imaginary axis
of s at F©¥ ~ 0.031. The corresponding value of a; =

1.391. At this Ff(s), the purely imaginary pole is located
at the same point on the imaginary axis i.e., there are
three degenerate solutions.

For 0.923 < « < 1, the poles, which initially move
away from the imaginary axis, return to this axis at some
positive value of Fy (s), at which the purely imaginary
is still located at a higher point on the imaginary axis
(see Fig. 10, fourth panel). The subsequent evolution
with increasing Fy ) jnvolves two bifurcations. After
the second bifurcations, the two solutions approach the
upper edge of the branch cut and move to a different
Riemann sheet at F{*) = Ff’(;) given by Eq. (93).

At v =1, the first bifurcation occurs at Ff(s) =0, at
the point s = —iy. After the bifurcation, one solution
moves up along the imaginary axis, while another moves
down. The one that moves up eventually reaches the
point s = —0.39¢ at Ff(s) > 1. The second bifurcation
occurs at Ff(s) = 0.022 at the point s = —2ivy. After
that, the two solutions s12 = +a; — ib; move towards
the end point of the branch cut and reach a1 = 1,61 =y
at F{*®) =1/3,

For v > 1, the first bifurcation happens at Fy ®) <9
and, after bifurcation, the first (second) solution moves
up (down) the imaginary axis. At Fy ® = 0, these two
solutions are at s = —i(y £ v/v*—1). For Flc(s) > 0,
the third solution emerges on the imaginary axis and,

20

eventually, it merges with the solution that moves down
(see Fig. 10, fifth panel), that, the two solutions bifurcate
and move towards the branch cut. In distinction to the
case v < 1, now they merge with the lower edge of the

branch cut at Ff(s) = Fffg), where

LA @ )aet VAT
2R ifp 1

and @y g is given by Eq. (93.) For large v, @1,z ~ v/V3
and Fy g ~ 3/8y? < 1. For Ff(s) > Ff’(g) the poles again
move to a different Riemann sheet. The solution that
moves up the imaginary axis survives for all F;*” > 0

and, for Ff(s) > 1 and v > 1, it approaches the point
s~ —i/2y.

We note that there are certain similarities between the
evolution of the poles with Fy *) and the behavior of the
plasmon modes in a 2D electron gas with conductivity
exceeding the speed of light. This problem was stud-
ied some time ago®® and has recently been re-visited in
Ref. 49.

2. 1 =1, transverse channel

For vanishingly weak damping (v — 0), the pole moves
along the imaginary axis (s = —is;) for —1 < Ff(s) <0,
towards larger s;, as |Ff(s)\ decreases. At Ff(s) =0+, s;
tends to infinity. For positive Fy (s), there is no pole on

our Riemann sheet.
For finite v, the evolution remains essentially the same.

There are still no solutions for Ff(s) > 0, while for —1 <

Ff(s) < 0 the pole is on the imaginary axis, at s = —is; 1,
where
5 1— | P
i = VA2 H (A28 +79), S=—1—
1 = g (VIR HIH257 41 Vgl
(96)

At FE x 1 50~ (1= |[FEO ) (VT + 12 +7)/2. Note
that there is no diffusive behavior for large . In this
limit, s;; ~ y(1 - [F7)), ie, w ~ —if(1 - |F),
where 7 is the dimensionful impurity scattering rate. At
FE™) 50, 550 ~ 1/2|FF V2 for all .

D. [=2

1. 1 =2, longitudinal channel

For vanishingly weak damping (v — 0) and F ) <,

one of the poles is on the imaginary axis while the other

one is in the complex plane. For small negative Fy (S),

the latter pole is at the lower edge of the branch cut.
When Fy ) crosses zero, the pole bypasses the end point



of the branch cut, moves slightly above it, and continues

to stay there as F5'® increases from 0 up to F5™) ~ 0.4.

1+ FyY is
275" T—(s+i7)? -~y

As for the [ = 1 case, the behavior of the poles is quite
involved, particularly for v > 1, and we refrain from
presenting all the details. We note only that at F, ) ~
—1 the purely imaginary pole is located at s ~ —i(1 —

[F5 ) (V1 +7247)/2. Forlarge v, s ~ —i(1-|F;" ),
ie., w~ —i(1—|FS*)|)4. This pole is not a diffusive one,
which to be is expected because the [ = 2 order parameter
is not a conserved quantity.

s(s +iv) (s—l—z’v—i 1—(s+ify)2>2:_

At small 1 + F;(S) both solutions of Eq. (98) are
on the imaginary axis: one is ag = 0,by =~ (1 —
|F20(S)|)(\/1 + ~2+47)2 /4~ and another one is as = 0, by ~
—~. Note that neither mode is diffusive for large . As

1+ Fy (®) increases, the two solutions moves towards each
) — FC(S)

other and merge at some critical value F£®* P

For small v, F;(Csr) ~ —1 + ~? and the solutions merge

at by &~ v/2. At FQC(S) = F;(CST) + 0, the poles split and
move away from the imaginary axis, i.e., as becomes fi-
nite. The subsequent evolution is essentially the same as
for vanishingly small . For large positive Fy (S), the pole
is located on the imaginary axis at by = 1/2/+/2 for small
~v and at by =y 4 1/(4y) for large .

IV. SUSCEPTIBILITY IN THE TIME DOMAIN
A. General results

In this section we study the real-time response of an
order parameter on both sides of the Pomeranchuk tran-
sition by analyzing the susceptibility in the time domain

xlc(s)(q,t). For definiteness we consider [ = 0 and the
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For larger FQC(S)
Riemann sheet.
For finite =y, the poles are determined from the equation

, the pole is located on an unphysical

(s +iv—ivI™ (s+i7)2)2 (1 2s(s + ). 97)

2. 1 =2, transverse channel

For vanishingly weak damping (v — 0), the poles s =
+ay —iby are in the complex plane of s for negative Fy ),
As Fy (*) increases from —1 towards 0, the poles move
from the vicinity of the real axis at F©¥) ~ —1 (ag ~
(1= |FS)1/2 > by ) towards ay & by & 1/2y/2|FE)|1/4
at 0 < 7F2c(s) < 1. For positive FQC(S), there is only a
single pole on the imaginary axis.

For finite -y, the equation for the pole is

1 _|_ FC(S)
— (98)
F,
[
longitudinal channel for [ = 1. In both cases,
c(s < dw c(s —tw
W= [ SO aee @)

where ch(s) (g,w) is the retarded susceptibility. Introduc-

ing t* = v}qt and going over from integration over w to
integration over s = w/v}q, we obtain

ey = L ey oy [T A8 es), st
)= iV = [ S e
(100)

The time-dependent ch(s) (t*) can be measured in pump-
probe experiment, by applying an instantaneous pertur-
bation h;(t*) = hé(t*)Alc(S) with the symmetry of the
Pomeranchuk order parameter, to momentarily move the
system away from the FL state without Pomeranchuk or-
der (here §(...) is the d-function). The order parameter

Alc(s)(t*) will then relax to zero as Alc(s)(t*) x thC(S)(t*)7
if 14 F*) > 0, and will grow with time, if 1+ Ff*) < 0.

Causality requires that ch(s)(t* < 0) = 0. The vanish-

ing of ch(s)

(t*) for t* < 0 is guaranteed because the poles
and branch cuts of the retarded susceptibility ch(s)(s)
are located in the lower frequency half-plane. For ¢* <0,
e %t vanishes at s — ioo, and the integration contour
can be closed in the upper half-plane of complex s, where



Xf(s)(s) is analytic. The integral over s in Eq. (100) then
vanishes. For t* > 0, the integration contour should be
closed in the lower-half-plane of s, where ch(s) has both

poles and branch cuts. In this situation, X?(S) (t*) is finite.

Xt > 0) =

In the last line we used that XT(S) (t* < 0) =0 and that
Imxlc(s)(s) is non-zero only for |s| < 1. Equation (101) is
convenient for numerical calculations. To analyze of the

behavior of XC(S (t*) analytically, it is more convenient to
integrate over the contour shown in Fig. 11, and evaluate

the contributions from the poles and branch cuts. This
way, we get
ch(s)(t ) = Xpole,l (t*) — Xbeut,1 (t7), (102)

where Xpole,i(t*) is the sum of the residues of the poles,
multiplied by —z, and

< d
Xbeut, (t") :/ & cosat* (103)
1

™

X (ch(s)(a: — 00 — i€) — ch(s) (x —id + ze)) ,

where ¢ = 01 is the combined contribution from the
two edges of the branch cut along |z| > 1. (By

X

Xf(s)(s) computed at s = z — id — i€, where x is a real
variable and 0 < € < §).

In what follows, we focus on the on the behavior of
Xf(s)(t*) near the Pomeranchuk instability for [ = 0 and
)~

x — id — i€), we mean the retarded susceptibility

! =1, when the corresponding F, “*) ~ —1. The analysis

of XC(S)( t*) for larger Fl( *) requires a separate discus-
sion, particularly when the poles in ch(s) (s) are near the
lower edges of the branch cuts, and will be presented
elsewhere®®. We will analyze the behavior of xc(s (t*) at
large t* > 1. For such t*, the dominant contribution to
ch(s) (t*) comes from the quasiparticle part of the suscep-
tibility (the first term in Eq. (3)), the contribution from
the incoherent part of the susceptibility is much smaller.

Aceordingly, (1) = (A2 1 0°), where i (1)

is the Fourier transform of X 3(8) In this section we
( )

consider a generic case when A;** is finite near a Pomer-
anchuk transition, and focus on XC(S)(t*). In the next
section we consider the special case of I =1 charge/spin

current order parameter, for which Ai(s) vanishes at a
Pomeranchuk transition. To simplify the expressions, be-

low we write XC( )(t*) simply as Xc( )(t*)

1 [ c c .
7/ ds (Rexl( )( ) cos st™ + Imy, (s )( ) sin st*
T Jo
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The susceptibility in the time domain can be obtained
either by contour integration or directly, by using the
form of Xl( )( ) above the branch cut and integrating
over real s. In a clean system Eq. (100) can be re-written
as

(101)

sin st*.

) 2 ! c(s)
=— [ dsImy, ’(s)
T Jo

B. 1=0

We recall that near the Pomeranchuk transition the

only pole of x5 (s) in the lower half-plane is located at
s =s5; ~ —i(1 — |[F{)]) (see Eq. 19). Near this pole,

1

c(s)
Xo  (8)=vp O (104)
’ s+i(1—|F))
Evaluating the residue, we obtain
c(s « w1 me(s)
Xp(ollo(t ) = vpe " UTIFTD, (105)

To obtain the branch cut contribution, we recall that

ch(s)(x —i0 Fie) = vp L \/% (106)
1 |FeO)) (1 + \/;771)
Hence
Yo (@ — 6 — ie) — x2) (2 — 06 + ie)
= —2up zva? — 1 (107)

(1 |ESS))2 + 222 Fg| - 1)

For large x, the r.h.s. of Eq. (107) approaches a constant
value (= —2), and the integral over z in (103) formally
diverges. This divergence is artificial and can be elimi-
nated by introducing a factor of exp(—ax) with o > 0
and taking the limit of & — 0 at the end of the calcula-
tion.

For F§ () ~ 1, the leading contribution to the inte-
gral in Eq. (103) comes from non-analyticity of the in-
tegrand at z = 1. For t* > 1, we use fdy\/gjcosyt* =

—/m/(2t7)3/2, [ dy\/ysinyt* = \/m/(2t*)3/? and obtain

B 2 cos(t* —m/4
Xbcut,O(t ) = _VF\/ic((s)/).
T (e
Comparing Egs. (105) and (108), we see that the
pole contribution is the dominant one for 1 <K t* <
(3/2)|In(1 — |FF™)))|/(1 — |FF™))), while at longer times

the time-dependence of the response function comes from
the end point of the branch cut.

(108)

In Fig. 12 we show x, ols )(t*) computed numerically
using Eq. (101). As is obvious from this equation,
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FIG. 11: (color online) Integration contour for evaluation of Xf(s)(t*), defined in Eq. (100). The contour is shown for

the case of finite disorder, and the branch cuts are at s =

below the lower edges of the branch cuts.

X5 (#*) increases linearly with t* at short times t* < 1
(the pole and branch contributions cancel each other
at t* = 0). At intermediate times 1 <« t* <
3/2)m 1= [F)l/(1 = [F)), X6 (#) exhibits an
exponentially decay augmented by weak oscillations, in
agreement with Eqgs. (105) and (108). This behavior is

shown in the left panel of Fig. 12. At long times, XS(S) (t*)
oscillates and decreases algebraically with time, in agree-
ment with Eq. (108). This behavior is shown in the right
panel of Fig. 12.

As FOC(S) becomes closer to —1, the exponential de-

cay of XS(S)

to a power-law behavior shifts to larger t*.

(t*) with t* becomes slower and the crossover
Right at
the Pomeranchuk instability, when FOC(S) = —1, the form
XS(S)(t*) can be found directly from Eq. (101). In this
case, Imy.™ (s) = wp(1 — |s|)v/1— s2/s. Substitut-
ing into (101) we find that XS(S)(t*) starts off linearly
for t* < 1, exhibits an oscillatory behavior for ¢* ~ 1,
and approaches the limiting value of XS(S)(t*) = vp at
t* — oo.

For F; ) o —1, a long-range order develops. Within
our approach, we can analyze the initial growth rate of
the order parameter AL (¢*) induced by an instant per-
turbation h(t*) oc hd(t*) such that AS(S)(t*) x hxg(s)(t*).
The computation of XS(S)(t*) for FOC(S) < —1 requires
some care because integrating Eq. (100) over the same
contour as in Fig. 11 we would find that Xg(s)(t* < 0) be-
comes finite, i.e., that causality is lost. This issue was
analyzed in Ref. 30 (see also, e.g., Ref. 51), where it
was shown that, to preserve causality, one has to mod-
ify the integration contour such that it goes above all
poles, as shown in Fig. 13c. Integrating along the modi-

—iy + z,|z| > 1. The poles are located at finite distance

fied contour, we find that XS(S)(t* < 0) = 0, as required

by causality. For ¢t* > 0 we now have
(o * c(s)
AL (1) oc het (FT =1, (109)
i.e., a perturbation grows exponentially with time. This
obviously indicates that the FL state without Pomer-
anchuk order becomes unstable. To see how the sys-
tem eventually relaxes to the final equilibrium state with
Ag(s)(t*) = Ay, we would need to re-calculate Xg(s) (t) in
the broken-symmetry state.

1. 1 =1, longitudinal channel

(

For small positive 1 + Fy %) the poles of Xllong(s) are
given by Eq. (33). Near the poles,
long 1
X1 E(s) X ————— + ... (110)

(s —s1)(s — s2)

where ... stands for non-singular terms. Evaluating the
residues, we obtain the pole contribution to y\™8(¢*) as

1 Tl P i
on. *
Xpoto1 (E7) o< t™exp | — 1 t* — :
2

(111)
The branch-cut contribution has the same structure as
forl =0, i.e., Xtocrﬁg(t*) o cos(t* —m/4)/(t*)3/? for t* >
1. We see that the pole contribution remains dominant
up to t* ~ |In(1 — |[FE9)|/(1 = |[FF™))), which becomes
progressively larger as |F}"”’| approaches one. We also
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FIG. 12: (color online) X;S%(t*) (with v = 1) as a function of the dimensionless time t*, as defined in Eq. (100), for

Fy (*) near —1. The solid line is the numerically computed response and the dashed lines are the analytic expressions
in Eqgs. (104) and (108). Left: X2 (t*) at short and intermediate times. At intermediate time, the time dependence

qp,0

is dominated by the exponentially decaying pole contribution. As Fy (®) approaches —1, the decay time goes to
infinity. Right: long-time behavior, dominated by the oscillatory and power-law decaying contribution from the

branch cut.

see that the pole contribution contains two relevant scales
e(s)y]? c(s)
to= 2/ 1F“)] " and t = 4/(-[F{®)). (112)

Near the Pomeranchuk transition, t; > ¢ > 1. Ap-
plying an instant perturbation in the [ = 1 channel
h(t*) ~ hé(t*) and analyzing the behavior of A8 (%) o
hx P8 (t*), we find that it grows linearly with ¢* for t* <
t’, i.e., the system initially tends to move further away
from equilibrium. For ¢} < t* < t;, the order param-
eter oscillates between the quasi-equilibrium states with

1/2
APPE(1%) = £ A oq, Where Ageq x h [2/(1 + Fr)y
Finally, for t* > ¢}, A"8(¢*) decays exponentially to-
wards zero. At Ff(s) = —1, both ¢, and #, diverge and,
following an instant perturbation at ¢ = 0, the order pa-

rameter A"8(*) o h increases linearly with ¢* until the
perturbation theory in h breaks down.

The difference with the [ = 0 case, when AS(S)(t* —

00) at Fg(s) = —1 is finite, can be understood by noticing
that the behavior of yi-"%, (t*) for large t* is determined

free,1

by that of Imy[>"%, (s) for small s. Equation (91) shows

free,1
that X;fgfl(s) =1+ 2s(s+10) for |s| < 1. At FF¥) =1,
therefore, we have x!°"8(s); ~ —1/2s(s + id), and, at
vanishingly small §, Imy'°"2(s) goes over to (7/2)d(s)/s.
Substituting this into Eq. (101), we find that x:*"8(¢*) o
t*.

For F£*) < —1 both poles of y'*"®(s) are located on
the imaginary axis, at s = (|1 + F£*|/2)1/2. One of
the poles is now in the upper half-plane of complex s.
Modifying the integration contour the same way as for

I = 0 to preserve causality, we obtain for t* > 0

c(s)
sinh 4/ (L et
Xllong(t*) x t* 2 )
1
2

For t* < & = (2/|1 + FF9))Y2 both x'°"8(#*) and
APPE(t%) o hy?"8(t*) increase linearly with ¢*. For
t* > t7, the perturbation grows exponentially, indicating
that the FL state becomes unstable.

(113)

We note in passing that the need to bend the integra-

(s)

tion contour around the pole for F** < —1 can be also

understood by considering the behavior of x\"%(¢*) at

Ff(s) approaching —1 from above. In the limit Ff(s) —

—1+ 07, the two poles of Xllong(s) coalesce into a single

double pole at the origin, as shown in Fig. 13b. Had
we tried to compute x"8(¢*) by integrating along the
real axis of s, we would have intersected a divergence.
To eliminate the divergence, one needs to bend the in-
tegration contour and bypass the double pole along a
semi-circle above it. The extension of this procedure for

F®) < —1 yields the contour shown in Fig. 13c.

2. 1 =1, transverse channel

For small 1 + Fy (*)_the pole in the transverse suscep-
tibility for [ = 1 is on the imaginary axis. The behavior
of x{"(t*) is then the same as for the [ = 0 case.
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FIG. 13: (color online) Positions of the poles and analyticity regions of x;

(b) ()

long (6) in the Fermi-liquid phase without

Pomeranchuk order [1 + F} ) 5 0, panel (a)], at the transition point [1 + F} ) — 0, panel (b)], and in the ordered

phase [1+ Ff(s) < 0, panel (¢)]. In the ordered phase, the susceptibility in the time domain x,

1 . . .
C"8(t*) is an increasing

function of time, and so its Fourier transform is only analytic at finite distance above the real axis.

C. Response in the time domain in the presence
of disorder

Near Pomeranchuk instabilities in the [ = 0 and trans-
verse | = 1 channels, the poles are on the imaginary axis,
and adding weak impurity scattering will not change the
results obtained in Sec. IV B. Namely, the pole’s contri-
bution to XS(S)(t*) still decays exponentially with ¢* for
FOC(S) > —1, becomes independent of t* at Fg(s) = -1,
and increases exponentially with t* for F; )« 1.

In the longitudinal I = 1, the poles remain near the real
axis also in the presence of . Finite damping changes
the time scale t; from Eq. (112) to

th =4(V1T+72 —7)/(1 - |F)).

After this change, the results for y""#(t*) remain the

same as in the absence of disorder. The time dependence

(114)

of x\°™® in the presence of impurity scattering is shown
in Fig. 14.

In all cases, finite v modifies the branch-cut contribu-
tion, so that in addition to the algebraic decay, there is
also an exponential decay. For [ = 0 we find,

_yprcos(tt —7/4)

G (115)

Xbcut,O(t*) x e

Similar expressions holds for [ > 0.
The presence of the exponentially decaying terms due
to damping is particularly relevant for [ > 0 and Flc(s) >

0, as it allows one to distinguish between the cases of
smaller Flc(s). For the former, the zero-sound pole is
present and located above the branch cut, at s = +a —
iby, where a > 1 and b < 1. For the latter, the zero-sound
pole is located on the unphysical Riemann sheet. In both
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FIG. 14: (color online) X}gﬁ(t*) with and without

impurity scattering. Solid: numerical calculation for
v =0 and v = 1/2, both for FI*) = —0.95. Dashed:
asymptotic expressions describing contributions that

decay exponentially with characteristic times ¢;,
(Eq. (112) for v = 0 and Eq. (114) for v =1/2) .

cases, Imxlc(s)(s) at real s has a peak at s = +a, but for
larger Flc(s) its width is by with b > 1, i.e., it is larger
than . Accordingly, for smaller Flc(s), the dominant
contribution to x; (¢*) at large t* comes from the pole, and
xi(t*) oc e cos(at*). For larger Flc(s), xi1(t*) at large
t* comes from the branch cut, and x;(t*) oc e~ cos(t* —
7/4)/(t*)3/2. Because this property holds only for I > 0
and in the presence of disorder, it was not discussed in
previous works, 31738 which studied collective modes of
a 2D Fermi liquid either in the { = 0 channel or in the
absence of disorder.



V. SPECIAL CASES OF CHARGE-CURRENT
AND SPIN-CURRENT ORDER PARAMETERS

A. Ward identities and static susceptibility in the
{ =1 channel

In previous sections, we assumed that the behavior of
the full susceptibility is at least qualitatively the same as

that of the quasiparticle susceptibility, i.e., the collective
(s)
p,l

ch(s) (q,w). The full and quasiparticle susceptibilities dif-
fer by the factor (AZC(S))2 [see Eq. (3)], which accounts
for renormalizations from high-energy fermions. For a

modes, present in X; (q,w), are also present in the full

generic order parameter with a form-factor flc(s)(k), the

(s)

vertex Af(s) is assumed to be finite for all Flc , includ-

ing Flc(s) = —1. The pole structure of ch(s)(q,w) is then

fully determined by that of Xg(;)l(q, w).

We now consider the special case of order parameters
with { = 1, for which ff(s)(k) = ( Z?ﬁg ) Oe /Ok, up to
an overall factor. These order parameters correspond to
charge or spin currents. The special behavior of a FL
under perturbations of this form has been discussed in
recent studies of the static susceptibility in the [ = 1
channel?6-28. Namely, for the spin or charge current or-
der parameter, the vertices Af(s) satisfy the Ward iden-
tities which follow from conservation of the total number
of fermions (the total “charge”) and total spin. In the
static limit, the Ward identities read?®:°2

T ZA® =1 4 ),
m

(116)

Under certain assumptions, these identities allow one to
decide which of three factors on the left vanishes at the
instability. First, we assume that the Z-factor, being a
high-energy property of the system, remains finite at the
instability. Therefore, the product (m* /m)Ai(S) should

vanish at F®) — —1. Next, we divide the versions of
Eq. (116) for the charge and spin channels by each other
and obtain

A 14+ FY
As 1+ FF

(117)

We then rule out a very special case, when both Fy and
F} reach the critical value of —1 simultaneously, and also
assume the charge (spin) vertex remains finite at an insta-

bility in the spin (charge) channel. Then Ai(s) vanishes
as 1+ Ff(s), which implies that m*/m remains finite.
Given that m* /m remains finite while (Ai(s))2 vanishes
as (1+ Ff(s))27 the full static susceptibility XT(S)(q,w =
0) = (Ai(s))zxgg)l(q,w =0)+ Xfé?l does not diverge
at Fy () — —1, despite the fact that the quasiparticle

susceptibility Xflii)l (g,w = 0) diverges as 1/(1 + Ff(s)).
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What was said above does not apply to the special case
of a Galilean-invariant system. In this case, the charge
current is equivalent to the momentum and thus con-
served. The Ward identity for the momentum implies
that ZA§ = 1, ie., Af remains finite at 1 + F{ = 0.
Equation (116) then implies that m*/m = 1+ Fy, which
is the standard result for a Galilean-invariant FL. The
static susceptibility still remains finite at 1 + Ff — 0,
this time because the factor of m*/m in the numerator
of xgp,1 cancels out with 1+ FY in its denominator. Fur-
thermore, gauge invariance implies that in the Galilean-
invariant case the static [ = 1 charge and spin suscepti-
bilites are not renormalized at all by the electron-electron
interaction?. On the other hand, m*/m = 1+ FS) does
vanish at the transition in the [ = 1 charge channel. We
believe that the vanishing mass indicates a global insta-
bility of a non-Pomeranchuk type, which is not associated
with the [ = 1 deformation of the FS.

B. Dynamical susceptibility in the | =1 channel

Now, let us look at the dynamics. Consider for def-
initeness the [ = 1 longitudinal susceptibility. Near
1+ Fy &) — 0, the quasiparticle susceptibility has poles
given by Eq. (33). One of the poles moves into the upper
frequency half-plane when 1 + Fy ) hecomes negative.
To relate the full and quasiparticle dynamical suscepti-

c(s)

bilities, we need to know A]"" in the dynamical case.

The FL theory assumes that Ai(s) can be computed by
setting both w and ¢ to zero. The argument is that A‘i(s)
is renormalized only by high-energy fermions, hence its
frequency and momentum dependences come in a form
of regular functions of ¢/kr and w/Ep. If so, then the
relation between Ai(s) and 1+ Ff(s), Eq. (116), holds in
the dynamical case as well. We will verify this statement
explicitly via a perturbative calculation in Sec. V D.
Taking A‘f(s) from Eq. (116) and substituting it
along with the dynamical quasiparticle susceptibility into
Eq. (3), we obtain the full susceptibility for F} SUPON|

2
long m (1 + Fl( )> (viq)?
M w2 — (14 F) (v5.0)2/2

%_Xﬁnc71-
(118)

where we recall that the last term represents the con-
tribution from high-energy fermions. The static limit
of the first term in the equation above, i.e., Np(l +
FE*)Y(m/m*), in indeed non-singular at the transition,
in agreement with the conclusions of the previous section.

Nevertheless, one of the poles of Xllong(q,w) moves into

the upper frequency half-plane when 1 + F; ) becomes
negative, i.e., a dynamical perturbation with the struc-
ture of spin or charge current grows exponentially with



time, which is an indication of a Pomeranchuk instabil-
ity. The peculiarity of the [ = 1 case in that the residue
of the pole vanishes right at the transition, but it is finite
both above and below the transition.

C. The case of more than one non-zero Landau
parameters

It is instructive to derive an analog of Eq. (118) for

a more general case of several non-zero Landau param-

eters. We remind the reader that in this situation the
long .

pole structure of x; (g, w) is more complex than when

(*) (65) for the case when

Fy ) and FOC(S) are non-zero). The issue we address

is whether x\°"#(¢,w) for charge/spin current still has

(Ai(s))2 x (1+ Ff(s))2 as the overall factor. We argue
that it does.

To demonstrate this, we need to express the full suscep-
tibility via vertices A°(*)(q,w), which include both high-
and low-energy renormalizations. Vertices A¢(®) (q,w)
can be expanded into a series of partial harmonics:
A (quw) = 3, alAlC(s)(s) coslf, where 0 is the angle
between the momentum of the incoming fermion and q,

only F[*” is present (see Eq.

J
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- ng* 3 2m 2
RO (s) = AS) g, + ZAZC/(S)(S)QI// d9/ df’ cos 10 cosl'¢’
m 0 0 s

where T¢()(,6') is the four-fermion (four-leg) vertex
with external fermions right on the FS. By construc-
tion, T°*)(9,6") contains only renormalizations from
high-energy fermions (in the FL theory, such a vertex

is called T%, see Ref. 7). (®)
are related to the angular harmonics of T°(*)(,6’) via
Flc(s) (sz*/w)I‘lc(S). When only Ff(s) is non-
zero, i.e., (Z2m*/m)T)(0,0") = 2Ff(s) cos @’ cos 6, only
/_Xi(s)(s) is non-zero as well. Then

Landau parameters F, lc
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ap = 1, and a;zo = V2. With this definition, the full
longitudinal susceptibility in the [ = 1 channel can be
written as

c(s),lon
X (s) =

df xc(s) COS2 0 c(s)
— — A 10— A7
VF/ T zl:al v (s) cos s—cosh+id !

(119)

The vertex Af(s)(q,w) is given by a series of diagrams
which contain momentum and frequency integrals of the
product Gerg’prrﬂGp,%’wp,%, convoluted with fully
renormalized four-fermion vertices. The diagrammatic
series can be represented as the sum of subsets of di-
agrams, each with a fixed number n = 0,1,2,3... of
cross-sections which contain contributions from the re-
gions where the poles of Gp+%)wp+% and Gp_%,wp_% are
in the opposite half-planes of complex frequency. This
constraint binds the internal p and w, to the FS. The
subset with n = 0 is non-zero only for [ = 1 and gives
A% while the sum of contributions with different n > 0
gives I_ch(s)(s). Combining the contributions from all n,
we find that the vertex ]\lc(s)(s) satisfies an integral equa-

tion with Af(s) as the source term:

cos ¢’

— cos 6’ + Z(SFC(S)(Gv 6/)7

(120)

(

Substituting Eq. (121) into Eq. (119) and expanding near
Ff(s) = —1, we reproduce Eq. (118). When, e.g., Fg(s)
and Ff(s) are non-zero, the solution of Eq. (120) is

_ . 1
AC(S) s) = AL(S) ,
1 ( ) 1 1 4 Fc(s) (K n K ) B QF(;J(S))F{—'(S)K%
1 0 2 1+FOC(S)K0
ﬂFOC(S)Kl

A(C)(S)(S) = 7A§(S) o(s) me(s) )
1+ FEO (K + K,) — 2o KG

~ Ac(s) 1+FOC(S)K0
A (5) = L 122
' L= F{L 07 do ety "
Ai(S)
= (s . (121) where Ky 1o are defined by Eq. (66). Substituting the
(s) . long 1,
1+ F Xfree,l(s) last two equations into Eq. (119), we obtain
Ko+ K, — 25 KL
0 2 ()
lon, c(s 1+F, K
xE(s) = e (A7) ——— e (123)
1+F1 (KQ"‘KQ)—W

long

ap.1 in Eq. (65), we see

Comparing the last result with x

(

that Y "8(s) = (Ai(s))Qxlqurﬁ(s), exactly as in the static



case. This result implies that the residue of the pole is
proportional to (AS*)2 o (1+ F*))2 and thus vanishes
at the Pomeranchuk instability also for the case of two
non-zero Landau parameters, when the pole structure of
the susceptibility becomes more involved. Still, like in the
case when only FC(S) is non-zero, (Ac(s)) is independent

of s = w/(viq), and it does not cancel the poles in qu g.

At 1+ Fy ) < 0, one pole moves into the upper frequency
half-plane, signaling a Pomeranchuk instability.

D. Perturbation theory for the vertex in the
dynamical case

We now return to the case of a single Landau param-
eter Fy *) and verify by a perturbative calculation that

(Ai(s))2 does not cancel the dynamical poles in the full
I = 1 susceptibility. We perform the calculation to sec-
ond order in the Hubbard (point-like) interaction U. For
simplicity we limit our attention to the spin channel and
also consider a Galilean-invariant system. We will show
that the dynamical vertex A(s) has the pole structure

of Eq. (121) with s-independent Ai(s). To demonstrate
this, it suffices to show that the vertex Aj, which acts
as a source for the dynamical vertex A$(s) in Eq. (120),
does not vanish at s which corresponds to the pole of
the dynamical vertex. Instead of calculating Aj directly,
we compute the product AjZ for reasons that will be-

J

&K
(27)?

1 o [ K
—§Ua7'0B6 l:U+ZU /W

1 .
F§B7,\/§(k,p) == 56057665 |:U + ZUQ/

where at the last step we defined the charge and spin
parts of the four-fermion vertex, I'°(k,p) and T'°(k,p),
respectively.

The renormalized spin-current vertex can be written
as (see Fig. 16)

Mogs = 0pg
Z/ T sl )G 0 P
(127)
where the internal momentum p = (p,wp) is again not
confined to the FS. It is to be understood that Aj is a
function of the 2 + 1 momentum ¢, and Aj # 0 even for

e = 0. Substituting the last formula in Eq. (126) into
Egs. (124) and (129) and summing over spin indices, we
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come clear later in the section. Using the Ward identity
associated with the Galilean invariance, we express quasi-
particle Z as”

Z/ e s 0) G ),

(124)
where the 2 + I-momentum p = (p,w,) is not necessary
close to the FS, and k = (kgk,0) + ¢ is infinitesimally
close to the FS, i.e., € = (q,w) with both |q| and w being
infinitesimally small. The direction of k in Eq. (124) is
arbitrary. The I'y; 5 is the dressed four-fermion ver-
tex and (Gg)“’(ﬁ: - p) is the regular part of the product
Gpie/2Gp—e/2 of two exact Green’s functions, whose ar-
guments differ by e. (Note that the q and w in the def-
inition of the Z-factor do not need to coincide with the
corresponding variables describing the collective mode,
but we choose them to be the same for simplicity.) The
product Gpyc/2Gp_c/2 can be written as the sum of a
regular part and a singular contribution from the FS7:

Gpies2Gp—c/2 = (G?o)w
o 72 B
vy 8 —P-q+idsgnw,

d(wp)d(Ipl =
(125)
where p = p/|p| and, as before, s = w/v}|q].

To second order in U, I'y 5 5 1s given by the diagrams
shown in Fig. 15. EXphCltly7

(2Gr Gkt + G Gpiio— k’)]

Gk’Gp+k—k/:| = 5av655rc(k‘ap) + Oay - 0-55Fs(k7p)7 (126)
[
obtain
1 2i d3p e
—=1-= e Yk - 12
7 i | e (k,p)(G)*(k-p)  (128)
and
27 d3p
A =1- 2 [ () (@2 (k- p). (129)
kr ) (2m)?

To second order in U, the product A{Z can then be writ-
ten as

Az =1
2 d3p c s 7. 2\w

(130)

kr),
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FIG. 15: Diagrams for the four-fermion vertex I'y; 5 to second order in the Hubbard-like interaction. One of
external 2 + 1 momenta, k = (k,wy), is chosen to be on the FS, i.e., |k| = kr and wi = 0, while the other, p, is
generically away from the FS. All internal momenta are away from the F'S. In this sense, renormalization of I'* 8,46

comes from high-energy fermions.

1 / and
3

= + KEl = Sh ks - relG 2 -G

(2m)?
\\ (133)
We now use the fact that conservation of charge and
spin allows one to derive two independent relations for
Z (Refs. 3, 4, 7, and 28):

l—l_LZ/ d3p Pc(k )(GQ)w(h )
7 2%k a,B (2m)3 PGy charge);

FIG. 16: Diagrammatic representation of the
high-energy triple vertex Aj. The shaded box is I'y 5 _ ;.

We now show that the product A{Z does not depend . , P
0ns=wv*q.Toseethis,weaddatermkpstOEp R / P s 2\w in).
on the rig/htli}|1a|nd side of Eq. (130) and then subtract off Z ! 2kp QZB (27T)3F (,2)(Gp)" (spin). (134)
the same term. Equation (130) then goes over to
Combining the two, we find that @; = 0, i.e, AjZ =
sz _1_ 0. _ 1—Qo.
MZ=1- =, (131) We now analyze Q5. To first order in U, the vertex
remains static. Then O(U) terms in T¢*) in Eq. (133)
where vanish because of the double pole of (G2)“. Let us fo-
e cus on the O(U?) terms. Substituting Eq. (125) into
Q1= 2@'3/ b [Tk, p) —T*(k,p)] (G)* (132)  Eq. (133) for Q2 and choosing the direction of k to be
(2m)? b along q, we obtain

[ Bp . . omiZ?  k-p
Qo =2 [ 5 (T (k) =T (k) (- £ =) (Gp+e/2epe/2— e ]fma(wp)mm—m) (135)
3 i 2
=2 [ e (U500 = T*() [ (0F1a) ™ (G = Govera) + T 500,00l = )| (136)

(

One can now verify that the first term in the r.h.s. of  Eq. (136) is zero, i.e.,

d3p . .
/ @n) (T°(k,p) — T°(k,p)) (Gp—e/2 — Gpies2) = 0.
(137)



This can be done by substituting the explicit expres-
sions for I°(*) from Eq. (126) and changing integration
variables®®. We are then left with a contribution coming
solely from the F'S,

Qs = 2WUF{/‘cosy(r%9 0y — 1°(0,0))

= Ff — F}, (138)
where 6 and ¢’ are the azimuthal angles of k and P, re-
spectively. This term is independent of s and only con-
tributes to the static vertex?¢. Going back to Eq. (131),
we obtain
NZ=1—-F+F=

m
—(1+ F} 1
D+ R, (139)

where we used the relation m*/m = 1 4 Ff valid for a
Galilean-invariant system. This result agrees with the
analysis in the previous Section.

E. Charge/spin current order parameter:
Ginzburg-Landau functional and time evolution

We now analyze the structure of the Landau func-
tional that describes the I = 1 Pomeranchuk transi-
tion. Our purpose is to reconcile an apparent contra-
diction, by which the FL ground state becomes unstable
for Fy (*) < _1, while the static I = 1 susceptibility re-
mains finite at Fy () = _1 . The Ginzburg-Landau func-
tional can be derived from the Hamiltonian of interacting
fermiorés), coupled to an infinitesimal external perturba-
S

tion h{'”, via a Hubbard-Stratonovich (HS) transforma-

tion with an auxiliary field A;:(s). For a generic | =
order parameter, the vertex remains finite at the Pomer-
anchuk transition. In this case, it is sufficient to consider
only the quasiparticle part of the Hamiltonian and ne-
glect the contributions from high-energy fermions. Then
the coupling to the external field is given by a bilinear
term hC(S)Ai(S), and the total susceptibility is identical
to the quasiparticle susceptibility. For the charge/spin
current order, the coupling is still given by the hf(s)Af(s)
term, but the contributions from high-energy fermions
cannot be neglected, as with these contributions the ver-
tex vanishes at the transition. To see this, we explic-
itly separate the four-fermion interaction into the com-
ponents coming from the states near and away from the
FS.

Our point of departure is the effective, antisym-
metrized interaction between fermions, expressed via the
vertex function I'y g.y,5(k, k’; q), where q is a small mo-
mentum transfer:

Hine = (140)

. T T
> Tapno( K@y g 0 g 00050009 5
kk',q,a,8,7,0
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The generic form of the I = 1 component of

Togyo(k,k';q) is

I sk Kq) = —k- &
x (U (K|, [K'[)dar0ps + U f°

(141)
(k. [K')oay - 085) ,

where k = k/|k| and K = k'/|k’|. For simplicity, we
replace the formfactors f<°(|k|,|k’|) by constants and
incorporate them into Uf(s). A instability in the | = 1

channel occurs only if U; =) 5 0. Below we approximate
the vertex function by its [ = 1 component. Other com-
ponents are not necessarily small, but we assume they
are irrelevant for the low-energy theory near the | = 1
Pomeranchuk instability. In this approximation, the ef-
fective interaction is separable into two parts that depend
on k and k', and can be written as the sum of the charge
and spin components:

c(s) ce)
D S L I

q k,ay
/ot c(s)
> Kaf, asths Gy | (142)
k’,3,6
where, as before, 17, = 0, and t;,, = oj,. Next, we
rewrite the sums over the fermionic momenta as
T
Z Uyyg ’ytg(’i)ak—%,a (143)

_ c(s)
E:ak#‘ tav k-9,

+Zak+q tfcms k-9, o1

€ €
a0t 21 kr Ok 21 kp
€ €
~ 01t 9k Ok k)

(and the same for the sum over k). Here, 05 1s nonzero
only for |a — b| < ¢, and ¢ is small compared to kp and
will be taken to zero at the end of the calculation. The
purpose of the projectors d7  is to split the fermions into
those near the FS, which form the FL of quasiparticles,
and those away from the F'S, whose role is to renormalize
the interaction between quasiparticles and their coupling
to an external perturbation. Below, we denote fermions
near the FS as (1), and fermions away from the FS as
Yt (¢)). Using (143), we rewrite (142) as

Hint =

C(S)ZX Z k(’lkarq tC(S /(/)k qa—|—'l/1k+q77tc S)wk qa)

k,a,y

w( ot s) c(s) 7
>k (1/’1«'—% sts Vit g ol a.6tps Viorg, 5)
K86

The coupling of the charge/spin current order param-

eter to a weak external field hi(;)ﬁ (q,t) (which may be

(144)



time-dependent) can be split into the low- and high-
energy parts in the same way:

= > hl,Boc a.t) &

k,q,a,

(Ul gales g T gl g s)-

Note that the field couples to both v and 1/;

The interaction in Eq. (144) contains one term involv-
ing four fermions near the FS, one term involving four
fermions away from the FS, and two mixed terms involv-

~()
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ing two fermions at the FS and two away from the F'S. We
decouple the quartic term with fermions away from the
FS by transforming from a Hamiltonian to a Lagrangian,
upon which ¢! and 1,, with n = k, p, ¢ become Grassman
fields, which depend on the 2+1 momentum n = (n, wy,).
Next, we introduce a momentum- and time-dependent
HS vector field

Ai(q,1) = (145)

Uy Z k [@M a 25 ¢k

k.o, 8

and integrate out high-energy fermions. Up to constant

c(s)

terms, the effective action for Al is given by

A c(s ‘Zk c(s c
S[Al( )]:Z Uc(s +2 Z A( wk+qo¢ apB wk*£ﬂ+zlnMaﬁ(k k)‘ﬁ a,k=k’ (146)
q 1 k,a,B k,«
with
— k 4_ kl c(s c A C(s c(s A c(s
Mok, k') = Gol(k)sk,k,tgﬁ—T- h(®(q) — 2655 | A (g) + U7 pr;_%ﬁtvgwﬁgﬁ otk (147)

where G (k) is the free-fermion propagator.

Corrections to the low-energy theory from high-energy
fermions are obtained by expanding S[AS™] up to first
order in hf(i)ﬁ(q) and up to second order in 1f1). For
definiteness, we consider the longitudinal [ = 1 channel
and restrict the external field to a longitudinal compo-

nent, i.e., we set hi(i)ﬁ(q) = thi(Z)ﬁ(q) The new terms
generated by integration over Ai(s)(q) affect the action

J

,7Z¢2Z7

where the summation over k is confined to the vicinity

of the F'S. We see that the factor Ai(s) only changes the
response function to an external perturbation, but does
not affect the thermodynamic stability of the FL state. If
we compute the response function by differentiating the

partition function Z twice with respect to hi(s)(q), we

(wr — vp(K| = kp)e + > RS

k,q,,8

P70

(

for low-energy fermions in three ways: (i) the propagator
of low-energy fermions acquires a Z-factor and vp gets
renormalized into vj; (ii) the coupling to the external
field acquires a factor of A] “*); and (iii) the coupling con-
stant of the interaction between low-energy fermions is
renormalized from —U; ) to Fy/vp. With these modi-
fications, the action for properly normalized low-energy
fermions (’L/JZ and 1) becomes

DA oSl o alos Vimaf2s

Flc(S) cos Oy cos ok/¢Z‘,+q/2,fyt(cx(’$)wk_Q/2va¢Z‘/—q/2,6t,2’(;)¢k'+Q/2;5'

[
find the same expression as in Eq.(3):

> T

c(s)
X1 (q) = p (s
= OhS) () ons). (q)

2

= < Z Atlj(S)wZ;_A,_q/Q’awqu/Z,a COS ek > + XICIEC)
e Sty

_ (Ac(9)y2, c(s) c(s)
- (A ) qu (q) + ch 1

where Z is the partition function, (...)sy) denotes aver-
aging with action S[¢], and Xinc,1 is obtained by differen-

(148)



tiating Z = J e=S131] twice with respect to hi(s) with-

out taking into account a contribution from low-energy
fermions (the 17y terms in (147)). We recall that the

static susceptibility does not diverge at Fy () — _1 be-
cause Ai(S) = (m/m*Z)(1 + Ff(s)) vanishes at Ff(s) =

—1.
We now introduce a low-energy HS field Ai(s) (q)

kaﬂ cos kalﬂmﬂt;(;)i/)k_q/gﬁ to decouple the quar-
tic term in S[¢]. Integrating out low-energy fermions, we
(s)

obtain the effective action for AT*” in the form

SIA) = 3 (alAf @) + bla (@

q
+AT R (@) AT (@) e (@) + C~C~)

(149)

plus higher order terms.

In Eq. (149), a o< 1 + Ff(s) changes sign at the critical
point, i.e., fluctuations of the order parameter AT(S) di-
verge at the critical point, like for any other order param-
eter. In this sense, Pomeranchuk order with the struc-
ture of spin/charge current does develop when 1 + Fy (s)
becomes negative. What makes the case of spin/charge
current special is that the response to an external field
gets critically reduced because of destructive interference
from high-energy fermions.

The presence of A‘f(s) o< 14 Ff(s) in the response func-
tion changes the time evolution of Ai(s) (t*) after an in-
stant perturbation h‘i(s)(t*) = hf(s)é(t*). For 1—|—Ff(s) >
0, we have

AT (1) o S (14 F{©))2prem (HFT /4

(s)
. J14+F
sin +21 t*

1+F1L(b)
2

x ., (150)

t*

The functional form of AT(S)(t*) is the same as for
a generic | = 1 order parameter, when high-energy
renormalizations can be neglected, just the amplitude is
smaller. For 1+ F} ) < 0, a deviation from the normal
state grows as

A (%) o hS (1 + P2

The functional form is again the same as for a generic
I = 1 order parameter. The presence of the overall small
factor (1+ Fy (8))2 just implies that it takes a longer time
for a deviation to develop. In particular, the ratio of
A% (#*) in (151) and the initial perturbation 75 be-
comes O(1) only after Af(s)
tially.

(t*) begins to grow exponen-
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VI. CONCLUSIONS

In this paper we analyzed zero-sound collective bosonic
excitations in different angular momentum channels in a
metal with an isotropic, but not necessary parabolic dis-
persion €. We explicitly computed the longitudinal and
transverse dynamical susceptibility ch(s)(%w) in charge
and spin channels for [ = 0, = 1, and [ = 2, and ex-
tracted zero-sound modes at w = svpq from the poles
of ch(s)(q,w). We also presented the generic structure of
zero-sound excitations for arbitrary frequency. Our key
goal was to identify, in each case, the mode, whose fre-
quency moves from the lower to the upper half-plane as

the system undergoes a Pomeranchuk instability, when
the corresponding Landau parameter FZC(S) = —1. Right
at the transition, the mode is located at w = 0, i.e. the
static susceptibility diverges. At Flc(s) < —1, the mode
moves to the upper frequency half-plane, and a pertur-
bation around a state with no Pomeranchuk order grows
exponentially with time, i.e., the system becomes unsta-
ble towards spontaneous development of a uniform order
parameter, bilinear in fermions.

We also discussed the evolution of the poles with
Flc(s) > —1 both for infinitesimally small and for fi-
nite fermionic damping rate. For infinitesimally small
damping, we found that in some channels, the poles are
located very close to a real frequency axis and outside
particle-hole continuum already for negative (attractive)

Flc(s). This result is at a first glance an unexpected one
as naively one would expect the poles to be located inside
the continuum. We found that these poles are located be-
low the branch cut and cannot be gradually moved to real
axis without simultaneously moving from the physical
Riemann sheet to an unphysical one. As the consequence,
these poles are silent in the sense that, although they do
exist infinitesimally close to the real axis, they are not

c(s)

visible in Im x;,*"/(w) for real w. Besides, we found that

for [ > 0, zero-sound poles for positive Flc(s) exist only if

Flc(s) is below a certain value. For larger Ff(s), the poles
move from the physical Riemann sheet to an unphysical
one. This does not eliminate the zero-sound peak in Im
ch(s)(w) for real w, but the width of the peak becomes
larger than fermionic damping . We argued that in this
situation the behavior of time-dependent susceptibility
ch(s)(t) at large t is determined by the end point of the
branch cut (w = Fwvpgq) rather than by the zero-sound
peak.

We next showed that the situation is somewhat differ-
ent for [ = 1 order parameters with the same form-factors
as that of spin or charge currents. In these two cases, the
bosonic response has a zero-sound pole that crosses to

the upper half-plane at F} (®)

< —1, but its residue van-
ishes precisely at Ff(s) = —1. We argued that in this
situation static uniform susceptibility does not diverge

at Flc(S) = —1, yet at 1+Ff(s) < 0 the system still devel-



ops long-range Pomeranchuk order, and the shape of the
FS gets modified. It just takes more time for the system
to reach the steady ordered state.
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