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We consider collective excitations of a Fermi liquid near the Pomeranchuk transition to a state
with an order parameter characterized by the angular momentum l. For each value of l, we study
the evolution of longitudinal and transverse collective modes in the charge (c) and spin (s) channels

with the Landau parameter F
c(s)
l , starting from positive F

c(s)
l and all the way to the Pomeranchuk

transition at F
c(s)
l = −1. In each case, we identify a critical zero-sound mode, whose velocity

vanishes at the Pomeranchuk instability. For F
c(s)
l < −1, this mode is located in the upper frequency

half-plane, which signals an instability of the ground state. In a clean Fermi liquid the critical mode
may be either purely relaxational or almost propagating, depending on the parity of l and on whether
the response function is longitudinal or transverse. These differences lead to qualitatively different
types of time evolution of the order parameter following an initial perturbation. A special situation
occurs for the l = 1 order parameter that coincides with the spin or charge current. In this case the
residue of the critical mode vanishes at the Pomeranchuk transition. However, the critical mode can
be identified at any distance from the transition, and is still located in the upper frequency half-

plane for F
c(s)
1 < −1. The only peculiarity of the charge/spin current order parameter is that its

time evolution occurs on longer scales than for other order parameters. We also analyze collective

modes away from the critical point, and find that the modes evolve with F
c(s)
l on a multi-sheet

Riemann surface. For certain intervals of F
c(s)
l , the modes either move to an unphysical Riemann

sheet or stay on the physical sheet but away from the real frequency axis. In that case, the modes
do not give rise to peaks in the imaginary parts of the corresponding susceptiblities.

I. INTRODUCTION

A Pomeranchuk transition is an instability of a Fermi
liquid (FL) towards a spontaneous order which breaks
rotational symmetry but leaves translational symmetry
intact1. Examples include ferromagnetism2–4 and var-
ious forms of nematic order in quantum Hall systems,
Sr3Ru2O7, and cuprate and Fe-based superconductors5,6.
For a rotationally-invariant system in two dimensions
(2D), deformations of the Fermi surface (FS) can be clas-
sified by the value of the angular momentum l. In gen-
eral, a deformation with only one particular l develops
at a Pomeranchuk transition. A Pomeranchuk order pa-

rameter ∆
c(s)
l (q) =

∑
k f

c(s)
l (k)〈a†k+q/2,αt

c(s)
α,α′ak−q/2,α′〉

is bilinear in fermions and has the spin structure tcα,α′ =

δα,α′ or tsα,α′ = σzα,α′ in the charge (c) and spin (s)

channels, correspondingly (σz is the Pauli matrix). The
order parameter is assumed to vary slowly, i.e., q �
min{a−1

0 , kF }, where a0 is the lattice constant and kF is
the Fermi momentum. Under rotations, the form-factors

f
c(s)
l (k) transform as basis functions of the angular mo-

mentum and, in general, also depend on the magnitude

of |k| ≡ k. For example, f
c(s)
1 (k) = cos θf c(s)(k) or

f
c(s)
1 (k) = sin θf c(s)(k), where θ is the azimuthal angle of

k. According to the FL theory7,8, a Pomeranchuk order
with angular momentum l emerges when the correspond-

ing Landau parameter F
c(s)
l approaches the critical value

of −1 from above.

In this paper we focus on dynamical aspects of a
Pomeranchuk instability. We consider primarily the 2D
case, because examples of Pomeranchuk transitions have
been discussed mostly for 2D systems9–26. We consider
an isotropic FL but do not specifically assume Galilean
invariance, i.e., the single-particle dispersion in our model
is not necessarily quadratic in |k|. The main object of
our study is the dynamical susceptibility, χl(q, ω), which

corresponds to a particular order parameter ∆
c(s)
l . In

2D, there are two types of susceptibilities for any given
l: a longitudinal one, with the form-factor proportional
to cos lθ, and a transverse one, with the form-factor pro-
portional to sin lθ (for l = 0, there is only one type, with
an isotropic form-factor). In the low energy limit (q → 0
and ω → 0) the dynamical susceptibility is a function of
the ratio s = ω/v∗F q, where v∗F is the renormalized Fermi
velocity. As a function of complex variable, χ(s) has both
poles and branch cuts in the complex plane. We focus on
the retarded susceptibility, which is analytic in the upper
half plane Ims > 0, except for the case when the system
is below the Pomeranchuk instability, and, in general, has
poles and branch cuts in the lower half plane Ims < 0.
The poles of χ(s) correspond to zero-sound collective
modes whose frequency and momentum are related by
ω = sv∗F q. If the Landau parameter is positive and non-
zero for only one value of l, there is one longitudinal and
at most one transverse zero-sound mode for any l 6= 0.
These are conventional propagating modes with Res > 1
and infinitesimally small Ims in the clean limit, when the
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fermionic lifetime is infinite. The branch cuts are a conse-
quence of the non-analyticity of the free-fermion bubble
(the Lindhard function). Their significance is that the
zero-sound poles are defined on a multi-sheet Riemann
surface. In 2D, this non-analyticity is particularly sim-
ple, being just a square-root (see Sec. II A). As a result,
the Riemann surface is a genus 0, two-sheet surface. We
shall refer to the first sheet, which includes the analytic
half plane, as the “physical sheet”. In our work we mostly
discuss the properties of the physical sheet.

We obtain explicit results for the frequencies of collec-

tive modes in the whole range of −1 < F
c(s)
l <∞. First,

we consider a clean FL (Sec. II). We present explicit re-
sults for the zero-sound modes with l = 0, 1, 2 (Secs. II B,
II C, and II D, correspondingly) and analyze the struc-
ture of the zero-sound modes for arbitrary l (Sec. II E).
We show that for l = 0 and in the transverse channel
with l 6= 0, all zero-sound modes acquire a finite decay

rate already for an arbitrary small negative F
c(s)
l , i.e.,

s = ±a − ib, where a, b are real and b > 0. A positive
b implies that a perturbation of the order parameter de-
cays exponentially with time. The frequency of one of the
modes vanishes at the Pomeranchuk transition. We call
this mode the critical one. In the longitudinal channel,
the decay rate of one of the modes remains infinitesimally

small until the corresponding |F c(s)l | exceeds a threshold
value. Immediately below the threshold, this mode is lo-
cated at s = ±a− ib with a > 1 and b� 1. Even though
the mode frequency is almost real, the corresponding
pole is located below the branch cut and thus cannot be
reached from the real axis of the physical sheet. Accord-
ingly, the imaginary part of the susceptibility does not
have a peak above the particle-hole continuum for real s,
i.e., the mode is “silent”. Below the transition, i.e., for

F
c(s)
l < −1, the pole is located in the upper frequency

half-plane, and a perturbation of the order parameter
grows exponentially with time, which indicates that a FL
becomes unstable with respect to a Pomeranchuk order.
We obtain explicit results for the frequencies of collective

modes in the whole range of −1 < F
c(s)
l <∞.

In Sec. III, we analyze how the dispersion of collective
modes is modified in the presence of impurity scattering.
In the dirty limit, the critical modes in both longitudi-
nal and transverse channels become overdamped for all l.
Impurity scattering also smears the threshold, described
in the previous paragraph, i.e., the longitudinal collective

modes have non-zero damping rates for any F
c(s)
l < 0.

In Sec. IV, we analyze the susceptibility in the time
domain,

χ
c(s)
l (q, t) =

∫
dω

2π
χ
c(s)
l (q, ω)eiωt, (1)

which determines the time evolution of the order param-
eter following an initial perturbation. We obtain explicit

forms of χ
c(s)
l (q, t) for l = 0 and l = 1. Above the Pomer-

anchuk transition, the time dependence of χ
c(s)
l (q, t) in

the clean limit is a combination of an exponentially de-

caying part, which comes from the poles of χ
c(s)
l (q, ω),

and of an oscillatory (and algebraically decaying) part,
which comes from its branch cuts. At the transition,

χ
c(s)
0 (q, t) reaches a time-independent limit at t → ∞,

while χ
c(s)
1 (q, t) grows linearly with time in the clean

case and saturates at a finite value in the presence of

disorder. Below the transition, the poles of χ
c(s)
0,1 (q, ω)

are located in the upper half-plane of ω. Consequently,

both χ
c(s)
0 (q, t) and χ

c(s)
1 (q, t) increase exponentially with

time. This means that any small fluctuation of the cor-
responding order parameter is amplified, and thus the
ground state with no Pomeranchuk order is unstable. In
the case of finite disorder, the branch-cut contribution
also begins to decay exponentially, on top of its algebraic
and oscillatory behavior.

In Sec. V, we consider the special case of an order pa-
rameter that coincides with either the charge or spin cur-
rent. Previous studies26–28 found that the corresponding

static susceptibility, χ
c(s)
1 (q, 0), does not diverge at the

tentative Pomeranchuk instability at F
c(s)
1 = −1 because

of the Ward identities that follow from conservation of
total charge and spin. We analyze the dynamical sus-
ceptibility for such an order parameter. We show, using
both general reasoning and direct perturbation theory
for the Hubbard model, that while the static susceptibil-

ity indeed remains finite at F
c(s)
1 = −1, the dynamical

one still has a pole, which moves to the upper frequency
half-plane below the transition. The residue of this pole

vanishes as (1 + F
c(s)
1 )2 at F

c(s)
1 = −1, but is finite both

for F
c(s)
1 > −1 and F

c(s)
1 < −1. We argue that the

presence of the pole in the upper frequency half-plane

for F
c(s)
1 < −1 indicates that the state with no Pomer-

anchuk order becomes unstable, like for any other type of
the order parameter. We derive a Landau functional for
the charge/spin current order parameter and show that
it has a conventional form, except that the coupling be-
tween the order parameter and an external perturbation

has an additional factor of 1 + F
c(s)
1 . We argue that the

charge/spin current order does develop at 1 + F
c(s)
1 < 0,

just as for a generic l = 1 order parameter, but it takes
longer to reach equilibrium after an instantaneous per-
turbation. This result differs from earlier claims that
there is no Pomeranchuk transition to a state with the
charge/spin current order parameter26–28.

Before we move on, a comment is in order. It is well
known that the range of FL behavior shrinks as the sys-
tem approaches a Pomeranchuk instability and disap-
pears at the transition point, where the system displays
non-Fermi-liquid behavior down to the lowest energies.
In our analysis, we will be studying the collective modes
at finite s = ω/(v∗F q) and assume that ω and q are both
small enough so that at any given distance to the critical
point the system remains a Fermi liquid.
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II. DYNAMICAL QUASIPARTICLE
SUSCEPTIBILITY NEAR A POMERANCHUK
TRANSITION IN A CLEAN FERMI LIQUID

A. Quasiparticle susceptibility

According to the Kubo formula, the correlation func-

tion of an order parameter ∆
c(s)
l is related to the suscep-

tibility χ
c(s)
l (q, ω) with respect to the conjugated “field”.

In its turn, χ
c(s)
l (q, ω) is given by a fully renormalized

particle-hole bubble with external momentum q and ex-
ternal frequency ω. For free fermions, the particle-hole
bubble is just a convolution of two fermionic Green’s
functions, whose momenta (frequencies) differ by q (ω).
In the time-ordered representation, we define the normal-
ized susceptibility as

χ
c(s)
free,l(q, ω) = − 2i

NF

∫
dDk

(2π)D

∫
dε

2π

∣∣∣∣f c(s)l (k)

∣∣∣∣2Gfree

(
k +

1

2
q, ε+

1

2
ω

)
Gfree

(
k− 1

2
q, ε− 1

2
ω

)
(2)

where NF is the density of states at the Fermi energy
EF , Gfree(k, ε) = 1/ [ε− εk + EF + iδsgnε] is the (time-
ordered) Green’s function, εk is the single-particle dis-
persion, D is the spatial dimensionality, and a factor of
two comes from summing over spins. We will be inter-
ested only in the case of small q and ω, i.e., q � kF
and ω � EF . In this case, integration over the internal
fermionic momentum and frequency is confined to the
regions of small ε and εk − EF , i.e., the susceptibility
comes from the states near the FS or, for brevity, from
“low-energy fermions”.

For interacting fermions, the particle-hole bubble is
modified in several ways7,8,29. First, the self-energy cor-
rections transform a free-fermion Green’s function near
the FS into a quasiparticle Green’s function, in which the
bare velocity vF is replaced by the renormalized velocity
v∗F = vF (m/m∗), where m∗ is the renormalized mass,
and the Green’s function is multiplied by the quasipar-
ticle residue Z < 1. Second, interactions between low-
energy fermions generate multi-bubble contributions to
the susceptibility. These renormalizations transform the

free-fermion susceptibility χ
c(s)
free,l(q, ω) into the quasipar-

ticle susceptibility χ
c(s)
qp,l(q, ω). (The effect of damping

due to the residual interaction between quasiparticles is
a subleading effect in the range of q and ω of interest
to us, and will not be considered here.) Third, fermions
far away from the FS (“high-energy fermions”) also con-

tribute to the full susceptibility χ
c(s)
l (q, ω).

The general expression for the dynamic susceptibility
is29

χ
c(s)
l (q, ω) = (Λ

c(s)
l )2χ

c(s)
qp,l(q, ω) + χ

c(s)
inc,l. (3)

Here Λ
c(s)
l is the side vertex, renormalized by high-energy

fermions, and the stand-alone term χ
c(s)
inc,l represents the

contribution solely from high-energy fermions. This last
term does not have a singular dependence on q and ω
and will not play any crucial role in our analysis.

The quasiparticle contribution to the susceptibility de-
pends on the fully renormalized (and antisymmetrized)
interaction between low-energy fermions. usually de-
noted by Γαβ,γδ(k− p). This interaction includes renor-
malizations by high-energy fermions but not by low-
energy fermions. For a rotationally- and SU(2)-invariant
system, which we consider here, Γαβ,γδ(k − p) can be
expanded over harmonics characterized by orbital mo-
menta l, and the properly normalized coefficients of this

expansions are known as Landau parameters F
c(s)
l :

Γαβ,γδ = Γc(k− p)δαγδβδ + Γs(k− p)σαγ · σβδ,

Γc(s)(k− p) = Γ
c(s)
0 + 2

∞∑
l=1

Γ
c(s)
l cos l(θk − θp)

F
c(s)
l = νFΓ

c(s)
l , (4)

where

νF = 2NFZ
2m
∗

m
. (5)

and θk, θp are the azimuthal angles of k, p. The static

quasiparticle susceptibility, χ
c(s)
qp,l(q, 0), is expressed in

terms of just a single F
c(s)
l :

χ
c(s)
qp,l(q, 0) =

νF

1 + F
c(s)
l

. (6)
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The dynamical quasiparticle susceptibility cannot, in
general, be expressed in terms of a single Landau pa-
rameter, unless all Landau parameters except for a single

F
c(s)
l are small. In this special case,

χ
c(s)
qp,l(q, ω) = νF

χfree,l(q
∗, ω)

1 + F
c(s)
l χfree,l(q∗, ω)

, (7)

where q∗ = (m/m∗)q and χfree,l(q
∗, ω) is normalized

to χfree,l(q
∗, 0) = 1 (we recall that we consider small

q∗ � kF ). For all order parameters, except for the charge

or spin current, the vertex Λ
c(s)
l in Eq. (3) is expected to

remain finite at the Pomeranchuk transition. The behav-
ior of the full susceptibility is then determined entirely

by the quasiparticle χ
c(s)
qp,l(q, ω).

Although the calculations are straightforward and
some of the results have appeared before,26,28,30–38 we

include below the details of the derivation of χ
c(s)
qp,l(q, ω)

in 2D, as we will be interested in the pole structure of
the susceptibility not only near a Pomeranchuk transi-
tion but also away from it. In what follows we consider
separately the cases of l = 0, 1, 2, and then analyze the
case of arbitrary l. In these calculations we assume that

a single Landau parameter F
c(s)
l is much larger than the

rest and compute χ
c(s)
qp,l(q, ω) using Eq. (7). In Sec. II F,

we consider the case when F
c(s)
0 and F

c(s)
1 are compara-

ble, while all F
c(s)
l>1 can be neglected.

For definiteness, in this and the next two sections we
approximate the form-factors by their values on the FS,

as f
c(s)
l (kF ) =

√
2 cos(lθ) in the longitudinal channel and

f
c(s)
l (kF ) =

√
2 sin(lθ) in the transverse channel, where

kF = kFk/k and θ is the angle between the direction of
kF and the x axis.

B. l = 0

In this case the form-factor f
c(s)
0 (kF ) is just a constant.

The form of the retarded free-fermion susceptibility along
the real frequency axis is well known

χfree,0(q∗, ω) = 1 +
iω√

(vF q∗)2 − (ω + iδ)2

= 1 +
is√

(1− (s+ iδ)2
. (8)

where we used that vF q
∗ = v∗F q and defined s = ω/v∗F q.

Viewed as a function of complex s, χfree,0(s) has branch
cuts, which start at s = −iδ below the real axis and run
along the segments (−∞,−1) and (1,∞) along the real
axis.

Traditionally, δ in Eq. (8) is interpreted as an infinitesi-
mally small damping rate whose physical origin does need
not to be specified and whose sole purpose is to shift the
branch cut into the lower half-plane of complex s. We
will see, however, that such approach is not sufficient for

our purposes, because it would not allow us to resolve
the relative positions of the zero-sound poles and branch
cuts of the susceptibility in the complex plane of s. For
this reason, we will consider a specific damping mecha-
nism, namely, scattering by short-range impurities, and
treat δ as a finite albeit small number.

The order parameter in the l = 0 channel (charge
or spin) is conserved, i.e., the susceptibility must sat-

isfy χ
c(s)
0 (q = 0, ω) = 0 (see, e.g., Refs. 39 and 40).

Once δ is finite, Eq. (8) does not satisfy this condition
because it was obtained either by adding iδ self-energy
corrections to the Green’s functions or, which is equiv-
alent, by solving the kinetic equation in the relaxation
time approximation. To ensure that charge and spin are
conserved, one also has to include vertex corrections to
the particle-hole bubble or go beyond the relaxation time
approximation41. The corresponding free-fermion sus-
ceptibility is given by42

χfree,0(s) = 1 +
is√

(1− (s+ iδ)2 − δ
, (9)

where δ now stands for the dimensionless impurity scat-
tering rate. The −δ term next to

√
1− (s+ iδ)2 in

(9) comes from vertex corrections. Until Sec. III, we
will be assuming that impurity scattering is weak, i.e.,
δ � min{Res, Ims}.

For F
c(s)
0 > 0 we expect to have well-defined collective

modes with |s| > 1. In this case, one can safely neglect δ

in Eq. (9) and replace
√

1− (s+ iδ)2 by −isgns
√
s2 − 1.

Equation (9) is then reduced to

χfree,0(s) = 1− |s|√
s2 − 1

. (10)

Substituting this form into Eq. (7), we obtain

χ
c(s)
qp,0(s) = νF

1− |s|√
s2−1

1 + F
c(s)
0

(
1− |s|√

s2−1

) . (11)

The locations of the poles are determined from the equa-
tion

1 + F
c(s)
0 − F c(s)0

|s|√
s2 − 1

= 0. (12)

One can check that the solution s1,2 = ±sp with sp > 1

indeed exists only for F
c(s)
0 > 0:

sp =
1 + F

c(s)
0√

1 + 2F
c(s)
0

. (13)

We now widen the scope of our analysis and search for
solutions with complex s. To this end, we need to keep
δ terms in χfree,0(s). The quasiparticle susceptibility for
s in the lower half-plane is obtained by substituting (9)
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into (7). This yields

χ
c(s)
qp,0(s) = νF

1 + i s√
1−(s+iδ)2−δ

1 + F
c(s)
0

(
1 + i s√

1−(s+iδ)2−δ

) . (14)

Using Eq. (14), we can study the poles of χ
c(s)
qp,0(s) ev-

erywhere in the lower half-plane of complex s and in the

whole range of F
c(s)
0 .

The positions of the poles in the lower half-plane of s
are determined by

1 + F
c(s)
0

F
c(s)
0

= − is√
1− (s+ iδ)2 − δ

. (15)

For F
c(s)
0 > 0, the solutions of (15) are

s1,2 = ±sp,0 − iδ̃0, (16)

where

sp,0 =
1 + F

c(s)
0√

1 + 2F
c(s)
0

and δ̃0 = δ
1 + F

c(s)
0

1 + 2F
c(s)
0

. (17)

Up to the −iδ̃ term, this result coincides with Eq. (13),

as it should. We see that δ̃ is positive but smaller than δ
in (15). This implies that the poles are located above the
branch cuts. The purpose of starting with Eq. (9) with
small but finite δ was to resolve the difference between δ,
which determines the locations of the branch cuts, and
δ̃0, which determines the distance between the poles and
the real axis. Near the poles, the susceptibility reduces
to

χ
c(s)
qp,0(s) ∝ F

c(s)
0

(1 + 2F
c(s)
0 )3/2

(
1

s+ sp,0 + iδ̃0
−

1

s− sp,0 + iδ̃0

)
. (18)

This expression is valid for complex s above the branch
cut at Ims = −iδ. This includes the real axis. For real
s and vanishingly small δ̃0, Imχ

c(s)
0 (s) has δ−functional

peaks at s = ±sp,0 with sp,0 > 1, i.e., outside the
particle-hole continuum (see Fig. 1a).

For negative F
c(s)
0 we search for complex solutions of

Eq. (12) in the form s = ±a−ib. For F
c(s)
0 < −1/2, there

exists a purely imaginary solution s = −isi,0, where

si,0 =
1− |F c(s)0 |√
2|F c(s)0 | − 1

. (19)

The pole at s = −isi,0 describes a purely relaxational

zero-sound mode. As long as 1 + F
c(s)
0 > 0, the pole in

χ
c(s)
qp,0(q, ω) is in the lower half-plane of s, i.e., excitations

decay exponentially with time. Once 1 + F
c(s)
0 becomes

negative, the pole moves into the upper half-plane. Then
excitations grow exponentially with time, i.e., the system
becomes unstable (see Sec. IV for more detail). This
is corroborated by the fact that the static susceptibility
diverges as the system approaches a Pomeranchuk insta-
bility:

χ
c(s)
qp,0(q, 0) =

νF

1 + F
c(s)
0

. (20)

As F
c(s)
0 increases above −1, i.e., |F c(s)0 | gets smaller,

the frequency of the relaxational mode in (19) increases

in magnitude. It reaches si,0 = ∞ at F
c(s)
0 = −1/2.

At this value of F
c(s)
0 , the mode bifurcates into two

(si,0 → ±s̄p,0), and each new mode moves from imag-
inary to almost real s along infinite quarter-circles in the
complex s plane.

For −1/2 < F
c(s)
0 < 0 the mode frequency is given by

s = ±s̄p,0 − iδ̄0, where

s̄p,0 =
1− |F c(s)0 |√
1− 2|F c(s)0 |

, δ̄0 = δ
1− |F c(s)0 |
1− 2|F c(s)0 |

(21)

The real part varies from s̄p,0 = ∞ at F
c(s)
0 = −1/2 + 0

to s̄p,0 = 1 at F
c(s)
0 = 0. The pole positions are similar

to those for positive F
c(s)
0 (see Eq. (17)); however, now

δ̄0 ≥ δ, i.e., the poles are located below the branch cut
at Ims = −δ. At vanishingly small δ, which we consider
here, the poles are glued to the lower edge of the branch
cut immediately below the real axis. The evolution of

the real and imaginary parts of the poles with F
c(s)
0 is

shown in Fig. 2.
The existence of the poles glued to the lower edge of the

branch cut is a tricky phenomenon. At first glance, they
describe undamped collective excitations with velocity
larger than the Fermi velocity ( note that s̄p,0 > 1 in
Eq. (21)). Indeed, the susceptibility near the poles is

χ
c(s)
qp,0(s) ∝ |F c(s)0 |

(1− 2|F c(s)0 |)3/2

(
1

s+ s̄p,0 + iδ̄0

− 1

s− s̄p,0 + iδ̄0

)
. (22)

This form is very similar to that in Eq. (18) for positive

F
c(s)
0 . However, Eq. (22) is valid only for complex s below

the lower edge of the branch cut at |s| > 1, and cannot
be extended to real s. More precisely, Eq. (22) cannot
be extended to the real axis on the physical sheet of the
Riemann surface, which we recall is the sheet for which

χ
c(s)
qp,0(s) is analytic in the upper half-plane. Instead, it

can be extended to the real axis of the unphysical sheet,
the one for which

√
1− (s+ iδ)2 = i

√
(s+ iδ)2 − 1.

This means that the pole below the branch cut has no
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(a)
(b)

FIG. 1: (color online) The imaginary part of the susceptibility in the l = 0 channel, χ
c(s)
qp,0(s), where s = ω/v∗F q. (a)

Imχ
c(s)
qp,0(s) for different F

c(s)
0 > 0 in a clean system (a small impurity scattering rate δ = 10−3 was added to make

the poles visible). (b) Imχ
c(s)
qp,0(s) for different F

c(s)
0 < 0 in a clean system. Note that Imχ

c(s)
qp,0(s) is nonzero only for

|s| < 1 in this case. In this and all other figures, we omit the “qp” subscript and “c(s)” superscript of the
susceptibiliies, and set νF = 1.

effect on the behavior of Imχ
c(s)
qp,0(s) on the real axis, the

imaginary part of the susceptibility for real s,

Imχ
c(s)
qp,0(s) =

νFχ
′′
free,0(s)(

1 + F
c(s)
0 χ′free,0(s)

)2

+
(
F
c(s)
0 χ′′free,0(s)

)2

(23)

with χ′(s) ≡ Reχ
c(s)
free,0(s) and χ′′(s) ≡ Imχ

c(s)
free,0(s), has

no peak above the continuum. Therefore, the modes for

−1/2 < F
c(s)
0 < 0 are “silent”, in a sense that they can-

not be detected by a spectroscopic measurement which

probes Imχ
c(s)
qp,0(s).

C. l = 1

For l ≥ 1 we have to distinguish between the longitu-
dinal susceptibility with the form-factor

√
2 cos θ and the

transverse susceptibility with the form-factor
√

2 sin θ.
We consider the two cases separately. Here and in what
follows, we will suppress the c(s) superscript in the lon-
gitudinal and transverse susceptibilities for brevity, i.e.,

we will relabel χ
c(s),long
l → χlong

l and χ
c(s),tr
l → χtr

l .

1. l = 1, longitudinal channel

The computation of the free-fermion susceptibility
with

√
2 cos θ formfactors at the vertices is quite straight-

forward. In notations of the previous section, the re-

tarded susceptibility is given by

χlong
free,1(s) = 1 + 2s2

(
1 +

is√
1− (s+ iδ)2

)
. (24)

For real |s| > 1 Eq. (24) reduces to

χlong
free,1(s) = 1 + 2s2

(
1− |s|√

s2 − 1

)
. (25)

Substituting this form into Eq. (7), we obtain an equa-
tion for the poles:

1 + F
c(s)
1

F
c(s)
1

= −2s2 + 2s2 |s|√
s2 − 1

. (26)

A solution of Eq. (26) in the form s1,2 = ±sp,1 with
sp,1 > 1, i.e., outside the continuum, exists only for

F
c(s)
1 > 0. For small F

c(s)
1 , sp,1 = 1 + 2(F

c(s)
1 )2. As

F
c(s)
1 increases, the magnitude of sp,1 also increases, and

at large F
c(s)
1 becomes sp,1 ≈ (3F

c(s)
1 /4)1/2. Correspond-

ingly, Imχlong
qp,1(s) has peaks on the real axis at s = ±sp,1.

To find the actual position of the poles in the complex
plane, we will again need to treat δ as a finite albeit
small quantity. As for the l = 0 case, we associate δ with
weak impurity scattering. Because a generic l = 1 order
parameter is not a conserved quantity, vertex corrections
are not crucial43. Nevertheless, they are necessary to
correctly determine the location of the poles.

The expression for χlong
free,1(s) in the presence of impurity

scattering will be derived in Sec. III. Here, we just borrow
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(a) (b)

FIG. 2: (color online) Evolution of the poles of the dynamical susceptibility in the l = 0 channel. (a) The real (blue)

and imaginary (yellow) parts of the pole of the quasiparticle susceptibility χ
c(s)
qp,0(s) as a function of the Landau

parameter F
c(s)
0 . For clarity, we show only one pole (for F

c(s)
0 > −1/2 there are two poles with real parts of opposite

signs) (b) The path followed by the pole in the complex plane with increasing F
c(s)
0 . For F

c(s)
0 < −1 the pole is

purely imaginary and above the real axis, which indicates that the FL state is unstable. With increasing F
c(s)
0 , the

pole moves down along the imaginary axis, which corresponds to an overdamped zero-sound mode, and reaches −i∞
at F

c(s)
0 = −1/2. It then “jumps” to the lower edge of the branch cut. A pole located at the lower edge of the

branch cut corresponds to a ‘silent” zero-sound mode, which cannot be detected in measurements of χ
c(s)
0 (s) for real

s (i.e., real frequencies). At F
c(s)
0 = 0 the pole moves to the upper edge of the branch cut, where it becomes a

well-defined zero-sound mode, detectable by spectroscopic methods.

the result:

χlong
free,1(s) = 1 + 2s2

1 + i (s+iδ)√
1−(s+iδ)2

1− δ√
1−(s+iδ)2

. (27)

The equation for the poles becomes

− 1 + F
c(s)
1

F
c(s)
1

= 2s2

√
1− (s+ iδ)2 + i(s+ iδ)√

1− (s+ iδ)2 − δ
. (28)

If we assume that s is in the lower half-plane above the
branch cut, i.e., −δ ≤ Ims < 0 and

√
1− (s+ iδ)2 =

−isgns
√

(s+ iδ)2 − 1, we find that the solution actually

exists only for 0 ≤ F
c(s)
1 ≤ 3/5. For these F

c(s)
1 , the

poles are located at s1,2 = ±sp,1 − iδ̃1, where sp,1 is the

solution of Eq. (26) (which exists for all F
c(s)
1 > 0), and

δ̃1 = Q̃1δ, where

Q̃1 =
s2
p,1

2− s2
p,1 + sp,1

√
s2
p,1 − 1

. (29)

For 0 < F
c(s)
1 < 3/5, sp,1 varies between 1 and 2/

√
3,

and Q̃1 < 1, as we assumed. For F
c(s)
1 = 3/5, we have

sp,1 = 2/
√

3 and Q̃1 = 1, i.e., the pole merges with the

branch cut. For larger F
c(s)
1 , we have Q̃1 > 1, violating

our assumption that the pole is above the branch cut, so
that Eq. (28) has no solution. A more careful analysis
shows that the pole has moved to the unphysical Rie-
mann sheet on which

√
1− (a+ ib)2 near the branch cut

is defined as
√

1− (a+ ib)2 = i
√

(a+ ib)2 − 1 instead of√
1− (s+ iδ)2 = −isgns

√
(s+ iδ)2 − 1, which we used

to search for the poles on the physical Riemann sheet.

The absence of the zero-sound pole for F
c(s)
1 ≥ 3/5 is

a surprising result, but it has little effect on the form of

χlong
qp,1(s) for real s. The latter has a conventional form for

all positive F
c(s)
1 :

χlong
qp, 1(s) ∝

(
1

s+ sp,1 + iδ̃1
− 1

s− sp,1 + iδ̃1

)
, (30)

and Imχlong
qp,1(s) has peaks at s = ±sp,1, as shown in Fig. 3.

This is because the vicinity of the pole on the unphysical
sheet extends to the real s axis on the physical sheet, for
|s| > 1, via the branch cut.

There also exists another solution for F
c(s)
1 > 0, which

is purely imaginary: s = −isi,1. Assuming that si,1 � δ,
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FIG. 3: (color online) Imχlong
qp,1(s) for different F1. (A

small impurity scattering δ = 10−3 was added to make
the pole at positive F1 visible. )

we obtain an equation for si,1 from Eq. (28):

1 + F
c(s)
1

2F
c(s)
1

= s2
i,1

1 +
si,1√

1 + s2
i,1

 . (31)

For small positive F
c(s)
1 , si,1 ≈ 1/2

√
F
c(s)
1 � 1. As

F
c(s)
1 increases, si,1 decreases and eventually saturates

at si,1 = 1/
√

3. This additional solution will be relevant
for the case of finite damping, analyzed in Sec. III. Note
that Eq. (31) has a solution only for positive si,1, i.e., the
pole is in the lower half-plane, as it should be.

For negative F
c(s)
1 , we again search for complex solu-

tions in the form

s1,2 = ±a− ib, b > 0 (32)

Right above the Pomeranchuk instability, i.e, at F
c(s)
1 ≈

−1 but F
c(s)
1 > −1, we find

a =

(
1 + F

c(s)
1

2

)1/2

, b =
1 + F

c(s)
1

4
. (33)

In contrast to the l = 0 case, the collective modes are
almost propagating because a � b. Below the Pomer-

achuk transition, i.e., for F
c(s)
1 < −1, both poles become

purely imaginary and split away from each other along
the imaginary s axis:

s1,2 ≈ ±i
(
|1 + F

c(s)
1 |

2

)1/2

. (34)

One of these poles is now in the upper frequency half-
plane, i.e., a perturbation with the structure of the lon-
gitudinal l = 1 order parameter grows exponentially (see
Sec. III). This indicates a Pomeranchuk instability.

In the interval −1 ≤ F
c(s)
1 ≤ F

c(s)
1,cr , where F

c(s)
1,cr ≡

−1/9, we find s1,2 = ±a1 − ib1, where

a1 =
1 +

√
|F c(s)1 |

4

√
|F c(s)1 |

[(
1−

√
|F c(s)1 |

)(
1 + 3

√
|F c(s)1 |

)]1/2

,

b1 =
1−

√
|F c(s)1 |

4

√
|F c(s)1 |

[(
1 +

√
|F c(s)1 |

)(
3

√
|F c(s)1 | − 1

)]1/2

.

(35)

As |F c(s)1 | decreases, a1 monotonically increases, while
b1 first increases and then changes trend and start de-
creasing (see Fig. 4). The poles reach the lower edges of

the branch cuts at F
c(s)
1,cr . At this critical value of F

c(s)
1 ,

acr,1 = 2/
√

3 > 1 and b = 0 (up to a term of order δ). For

|F c(s)1 | slightly below F
c(s)
1,cr , a1 and b1 are approximately

given by

b1=

√
3

2

(
|F c(s)1 | − |F c(s)1,cr |

)1/2

,

a1=
2√
3
− 243

√
3

2

(
|F c(s)1 | − |F c(s)1,cr |

)
=

2√
3
−O(b21). (36)

When F
c(s)
1 approaches F

c(s)
1,cr , the poles approach the real

axis along the paths that are almost normal to it.
The existence of the solution with a1 > 1 but finite b1

for F
c(s)
1 ≤ F

c(s)
1,cr is at first glance questionable, because

conventional wisdom suggests that a mode with Res > 1
is located outside the particle-hole continuum and thus
should be purely propagating. However, as for the l =
0 case, these poles are located below the branch cuts,
cannot be accessed from the real axis and do not lead to
a peak in Imχlong

1 (s) for real s.

For F
c(s)
1,cr < F

c(s)
1 < 0, the poles are located at s1,2 =

±s̄p,1 − iδ̄1, where s̄p,1 is determined from

s̄2
p,1

1 +
s̄p,1√
s̄2
p,1 − 1

 =
1− |F c(s)1 |
|F c(s)1 |

(37)

and δ̄1 = Q̄1δ with

Q̄1 =
s̄2
p,1

2− s̄2
p,1 − s̄p,1

√
s̄2
p,1 − 1

. (38)

The magnitude of s̄p,1 varies between s̄p,1 = 2/
√

3 at

F
c(s)
1 = F

c(s)
1,cr and s̄p,1 = 1 + 2(F

c(s)
1 )2 for −F c(s)1 � 1, ,

i.e., at vanishing F
c(s)
1 the poles approach the end points

of the branch cuts. As follows from Eq. (38), Q̄1 ≥ 1

for s̄p,1 in this interval, hence δ̃1 ≥ δ, i.e., the poles are
located below the lower edges of the cuts, as expected.
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This is very similar to what we found in the l = 0 case

for −1/2 < F
c(s)
0 < 0. Like in that case, the l = 1

susceptibility for F
c(s)
1,cr < F

c(s)
1 < 0 has poles at s =

±s̄p,1 − iδ̄1:

χlong
qp,1(s) ∝

(
1

s+ s̄p,1 + iδ̄1
− 1

s− s̄p,1 + iδ̄1

)
. (39)

However, Eq. (39) is again only valid for complex s in
the lower half-plane below the branch cut, and cannot
be extended to real s. These poles correspond to silent
modes, and the susceptibility does not have peaks above

the particle-hole continuum. We plot Imχlong
qp,1(s) for real

s in Fig. 3. The evolution of the real and imaginary parts

of the poles with F
c(s)
1 is shown in Fig. 4.

2. l = 1, transverse channel

We next consider the transverse quasiparticle suscep-
tibility in the l = 1 channel. The retarded susceptibility
of free fermions with the

√
2 sin θ form-factors at the ver-

tices is

χtr
free,1(s) = 1− 2s2 + 2i

(
1− s2

) s√
1− (s+ iδ)2

.

(40)

For real |s| > 1 Eq. (40) is reduced to

χ tr
free,1(s) = 1− 2s2 + 2|s|

√
s2 − 1. (41)

Substituting this form into Eq. (7), we find that the po-
sitions of the poles on the real frequency axis and outside
the particle-hole continuum are determined by

1 + F
c(s)
1

F
c(s)
1

= 2s2 − 2|s|
√
s2 − 1. (42)

In contrast to the longitudinal case, the solutions of this

equation s1,2 = ±sp,1 exist not for any positive F
c(s)
1

but only for F
c(s)
1 ≥ 1 (Ref. 36). Slightly above the

threshold, sp,1 = 1 + (F
c(s)
1 − 1)2/8. For large positive

F
c(s)
1 , sp,1 ≈

√
F
c(s)
1 /2.

To obtain the solutions in the complex plane s, we
introduce impurity scattering in the same way as in the
previous cases. Equation (40) is then replaced by

χtr
free,1(s) = 1− 2s

(
s+ iδ − i

√
1− (s+ iδ)2

)
. (43)

There are no additional terms due to vertex corrections
because the form-factor is an odd function of the angle θ
and thus vertex corrections vanish upon angular integra-
tion.

Substituting Eq. (43) into Eq. (7), we find that for

F
c(s)
1 > 1, where Eq. (42) has a solution for real s, there

is actually no solution for the pole of χtr
qp,1(s) in the com-

plex plane of s, above the branch cut. Still, for real s,

Imχtr
qp,1(s) displays sharp peaks even for F

c(s)
1 > 1.

For 0 < F
c(s)
1 < 1 we assume that s is below the

branch cut and re-write the square root in Eq. (43) as√
1− (s+ iδ)2 = isgns

√
(s+ iδ)2 − 1. If we just neglect

δ after that, we find another propagating mode, located
at s1,2 = ±s̄p,1, where s̄p,1 ≥ 1 is the solution of

1 + F
c(s)
1

F
c(s)
1

= 2s̄p,1

(
s̄p,1 +

√
((s̄p,1)2 − 1

)
. (44)

However, if δ is treated as a small but finite quantity, we
find that there is no solution of (χtr

qp,1(s))−1 = 0 with
|Ims̄p,1| > δ, i.e., there is no pole below the branch cut.

Combining this with the absence of the pole for F
c(s)
1 >

1, we conclude that the l = 1 transverse susceptibility

does not have a pole on the physical sheet for F
c(s)
1 > 0.

However, as was the case for the longitudinal mode, the
poles do exist on the unphysical sheet.

For negative F
c(s)
1 the pole of χtr

qp,1(s) is on the imag-
inary axis: s = −isi,1. The value of si,1 is determined
by

1− |F c(s)1 |
|F c(s)1 |

= 2(si,1)2 + 2si,1

√
1 + (si,1)2. (45)

The solution exists for all negative F
c(s)
1 . When F

c(s)
1

approaches zero from below, si,1 ≈ 1/2|F c(s)1 |1/2. Near

1 + F
c(s)
1 = 0, we have si,1 ≈ (1 + F

c(s)
1 )/2, i.e., s =

−i(1 + F
c(s)
1 )/2. As before, when 1 + F

c(s)
1 changes sign

and becomes negative, the pole moves from the lower to
the upper frequency half-plane, i.e. an l = 1 perturbation
in the shape of the FS grows with time exponentially.
This behavior is similar to the one for l = 0. Yet, a
purely relaxational collective mode in the l = 1 transverse

channel exists for all −1 < F
c(s)
1 < 0, i.e., it appears

without a threshold.
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FIG. 4: (color online) The poles of χ
c(s)
qp,1(s) in the longitudinal and transverse channels. The use of colors and

notations is the same as in Fig. 2. See Sec. II C for a detailed discussion.

D. l = 2

1. l = 2, longitudinal channel

The retarded free-fermion susceptibility with the√
2 cos 2θ form-factors at the vertices is

χlong
free,2(s) = 1− 4s2 + 8s4 + 2i

(
2s2 − 1

)2 s√
1− (s+ iδ)2

.

(46)

The equation for the poles of χlong
qp,2(s) outside the contin-

uum, i.e., for s real and |s| > 1, now reads

− 1 + F
c(s)
2

F
c(s)
2

= 8s4−4s2−2(2s2−1)2 |s|√
s2 − 1

= 0. (47)

Similarly to the cases of l = 0 and of the longitudinal
channel for l = 1, the propagating solutions s1,2 = ±sp,2
exist for all positive F

c(s)
2 . For small F

c(s)
2 , sp,2 ≈ (1 +

2(F
c(s)
2 )2); for large F

c(s)
2 , sp,2 ≈ (F

c(s)
2 /2)1/2.

To obtain the solutions in the complex plane, we in-
troduce impurity scattering in the same way as before.
Combining the self-energy and vertex corrections, we ob-
tain after some algebra

χlong
free,2(s) = 1− 2i

s√
1− (s+ iδ)2 − δ

(
s+ iδ − i

√
1− (s+ iδ)2

)2

(1− 2s(s+ iδ)) . (48)

The equation for the pole becomes

1 + F
c(s)
2

2F
c(s)
2

=
is√

1− (s+ iδ)2 − δ
(
s+ iδ − i

√
1− (s+ iδ)2

)2

(1− 2s(s+ iδ)) . (49)

Solving for the pole at small but finite δ, we find s1,2 =

±sp,2 − iδ̃2, where δ̃2 = Q̃2δ. Evaluating Q̃2, we find

that it is smaller than 1 for F
c(s)
2 < 0.420, when sp,2 <

1.072. For these F
c(s)
2 , the pole is located above the

branch cut, as it should be. For larger F
c(s)
2 there are no

poles near the real axis. This is similar to the behavior
in the longitudinal channel for l = 1. We re-iterate that
the absence of a true pole in the complex plane does not

affect the behavior of χlong
2 (s) for real s; in particular,

Imχlong
2 (s) still displays sharp peaks at s = ±sp,2 and

that, in mathematical terms, the pole moves to a different

Riemann sheet at F
c(s)
2 = 0.420.

For negative F
c(s)
2 Eq. (49) has two solutions. One of

them is purely imaginary: s = −isi,2. For F
c(s)
2 ≈ −1,

si,2 = (1 − |F c(s)2 |)/2; for small negative F
c(s)
2 , si,2 ≈

1/(2|F c(s)2 |1/4). Another solution does not become criti-
cal at the Pomeranchuk transition. To detect this mode,

we notice that, for F
c(s)
2 = −1, Eq. (49) is satisfied not
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FIG. 5: (color online) The poles of χ
c(s)
qp,2(s) in the complex plane. The use of color and notation is the same as in

Fig. 2. See Sec. II D for a detailed discussion.

only by s = 0, but also by s1,2 = ±1/
√

2. The latter solu-
tions are on the real axis, but away from the branch cut.

At small deviation from the critical value F
c(s)
2 = −1,

these solutions evolve into s1,2 = ±a2 − ib2, where

a2 =
1√
2

(
1 +

1 + F
c(s)
2

4

)

b2 =

(
1 + F

c(s)
2

)2

8
√

2
. (50)

Observe that b2 remains positive even when 1 + F
c(s)
2 <

0. As F
c(s)
2 gets larger, the solutions first move away

from the real axis but then reverse the trend and, at

the threshold value F
c(s)
2,cr = −0.0632, reach the lower

edge of the branch cut at a2,cr ≈ ±1.046. As F
c(s)
2 is

varied from F
c(s)
2,cr to 0, the solutions “slide” along the

lower edge of the branch cut towards s = ±1. This is
very similar to what we found in the l = 0 case, for

−1/2 < F
c(s)
0 < 0, and in the l = 1 longitudinal channel,

for F
c(s)
1,cr < F

c(s)
1 < 0. At a small but finite δ, the two

sliding solutions are s1,2 = ±s̄p,2 − iδ̄2 with δ̄2 ≥ δ, i.e.,
the pole does exist but is located below the branch cut.

The evolution of the poles with F
c(s)
2 is shown in Fig. 5.

2. l = 2, transverse channel

The retarded free-fermion susceptibility with the√
2 sin 2θ formfactors at the vertices is given by

χtr
free,2(s) = 1 + 4s2 − 8s4 − 8is3(s2 − 1)√

1− (s+ iδ)2
. (51)

The equation for the poles outside the continuum, i.e.,
for s real and |s| > 1, reads

1 + F
c(s)
2

F
c(s)
2

= 8s4 − 4s2 − 8s2|s|
√
s2 − 1. (52)

For positive F
c(s)
2 , the solutions s1,2 = ±sp,2 exist

for F
c(s)
2 > 1/3. For F

c(s)
2 just slightly above 1/3,

sp,2 ≈ 1 + (81/128)(F
c(s)
2 − 1/3)2. For large F

c(s)
2 ,

sp,2 ≈ (F
c(s)
2 /2)1/2.

To obtain the solutions in the complex plane s, we
introduce impurity scattering in the same way as before.
There are no additional terms due to vertex corrections
because the form-factor is an odd function of the angle
θ. Equation (51) is then replaced by

χtr
free,2(s) = 1− 4s(s+ iδ)

(
s+ iδ − i

√
1− (s+ iδ)2

)2

.

(53)

For F
c(s)
1 > 1/3, we assume that s is above the branch

cut and use
√

1− (s+ iδ)2 = −isgns
√

(s+ iδ)2 − 1. If
we neglect δ after that, we obtain the same solution sp,2

as in (52). For 0 < F
c(s)
2 < 1/3, the same procedure but

with an assumption that the pole is below the branch
cut, yields another propagating mode, which slides along
the lower edge of the branch cut, much like it happens for
the pole of the transverse susceptibility for l = 1. Once
we take into account that δ is small but finite, we find
that the solution along the real axis does not survive in
either of the cases, i.e., there is no pole close to the real
axis on the physical Riemann sheet. This is similar to
the situation for the l = 1 transverse channel.

As for the l = 1 case, there also exists another mode

for F
c(s)
2 > 0, at s = −isi,2 on the imaginary axis. The

value of si,2 is determined from

1 + F
c(s)
2

4F
c(s)
2

= (si,2)2

(
si,2 +

√
1 + (si,2)2

)2

. (54)

For small F
c(s)
2 > 0, si,2 ≈ 1/(2F

c(s)
2 )1/4; for large F

c(s)
2 ,
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si,2 ≈ 1/2
√

2.

For negative F
c(s)
2 there is no solution on either real or

imaginary frequency axes, and we search for the solutions
in the form s = ±a2−ib2, where both a2 and b2 are finite.
In this situation, one can safely neglect δ and write the
equation for the poles as

1− |F c(s)2 |
4|F c(s)2 |

= s2
(

1− 2s2 + 2is
√

1− s2
)
. (55)

An analysis of this equation shows that the solution exists

for all F
c(s)
2 < 0. Near F

c(s)
2 = −1,

a2 ≈
(

1− |F c(s)2 |
4

)1/2

, b2 ≈
1− |F c(s)2 |

4
. (56)

For small negative F
c(s)
2 ,a2 ≈ b2 ≈ 1/(2

√
2|F c(s)2 |1/4).

The evolution of this pole with F
c(s)
2 is shown in Fig. 5.

E. arbitrary l

1. Equations for the poles

We now focus in more detail on negative F
c(s)
l and,

in particular, on the behavior of collective modes near
a Pomeranchuk instability. Comparing the results for
for the l = 0, 1, 2 modes, we see a difference between
even and odd l. Namely, near a Pomeranchuk instability
the critical mode in the longitudinal channel is purely
imaginary for even l = 0, 2 and almost real for odd l = 1.
For transverse channels the situation is the opposite – the
mode near a Pomeranchuk instability is purely imaginary
for l = 1 and almost real for l = 2. In this section we
analyze whether this trend persists for other values of l.

The retarded longitudinal and transverse susceptibili-
ties of free fermions can be obtained analytically for any
l. We have

χlong,tr
free,l>0(s) = K0 ±K2l, (57)

where

K2l = −
∫

cos 2lθ
cos θ

s+ iδ − cos θ
(58)

= δl,0 + i
s√

1− (s+ iδ)2
(s+ i

√
1− (s+ iδ)2)2l.

(59)

The equation for the pole on real frequency axis outside
the continuum, i.e., for |s| > 1, is

1 + F
c(s)
l

F
c(s)
l

=
|s|√

(s+ iδ)2 − 1

(
1± (|s| −

√
s2 − 1)2l

)
.

(60)
The upper and lower signs correspond to the longitudi-
nal and transverse channels, respectively. One can easily

verify that, for any l, a solution with real |s| > 1 exists

only for positive F
c(s)
l .

For negative F
c(s)
l , we search for complex solutions. In

this case, we re-write (60) as

1− |F c(s)l |
|F c(s)l |

=
is√

1− s2

(
1± (s− i

√
1− s2)2l

)
. (61)

In what follows, we consider the longitudinal and
transverse channels separately, first for even l and then

for odd l. We consider separately the limits of F
c(s)
l ≈ −1

and |F c(s)l | � 1, and then interpolate between the two
limits. We show that there are multiple solutions with
complex s in each channel. The structure of the solutions
in the longitudinal channel for even l are very similar to
those in the transverse channel for odd l. We do not
discuss here the solutions in the transverse channel for
positive F

c(s)
l , but below the threshold on the solution

with real s and s > 1.

2. even l, longitudinal channel

For F
c(s)
l ≈ −1, we first search for a solution with

small |s|. Expanding Eq. (61) in s, we find a pole on the
imaginary axis

s = si ≈ −i
1 + F

c(s)
l

2
. (62)

There exist additional non-critical solutions for which s
remains finite at F

c(s)
l = −1. To obtain these solutions,

we choose the plus sign in Eq. (61), set F
c(s)
l = −1, and

solve the resultant equation 1 + (s − i
√

1− s2)2l = 0.
There are l solutions sm = arccos [π(2m+ 1)/2l], where
0 ≤ m < l is an integer. They form l/2 pairs of solutions
with s1,2;p = ±ap, ap < 1, 0 ≤ p < l/2. For l = 2, we

have a single pair s1,2;0 = ±1/
√

2, consistent with what

we found earlier. At small deviations from F
c(s)
l = −1,

in any direction, these solutions become complex s1,2;p =

±ap− ibp, bp ∝ (1+F
c(s)
l )2. The imaginary part of these

solutions remains negative even for F
c(s)
s < −1.

Next, consider the interval 0 < −F c(s)l � 1. In this
limit, the magnitude of s must be large for the right-hand

side of Eq. (61) to match 1/|F c(s)l | � 1 on the left-hand

side of the same equation. Using
√

1− s2 ≈ is for s in

the lower half-plane, we reduce (61) at small |F c(s)l | to

1

|F c(s)l |
= (2s)2l (63)

This equation has l − 1 solutions with sm =

e−iπm/l/2|F c(s)l |1/2l, where 0 < m < l is an integer.
The solution with m = l/2 is purely imaginary, and
the other l − 2 solutions form p = (l − 2)/2 pairs of
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s1, 2; p = ±ap− ibp. The purely imaginary solution, sl/2,

evolves towards sl/2 = 0 as F
c(s)
l approaches −1 and

moves into the upper half-plane when |F c(s)l | > 1, sig-
naling a Pomeranchuk instability. The other solutions,

s1,2;p, evolve towards finite values at F
c(s)
l = −1. Com-

paring the number of solutions with s1,2;p = ±ap − ibp
at F

c(s)
l = −1 and 0 < −F c(s)l � 1, we see that they

differ by one pair, which exists for the former case but
not for the latter. From the analysis of the l = 2 case,
we know that the solution s1,2 = ±a− ib with a non-zero

b emerges when |F c(s)l | exceeds a threshold value. At the

threshold, s1,2 = ±a− iδ̃ with a > 1 and δ̃ ≤ δ.
For |F c(s)l | smaller than the threshold, the poles remain

below the branch cut at s = ±a − iδ, a ≥ 1. For vanish-
ingly small δ, which we consider in this section, the poles
are glued to the lower edge of the branch cut and slide
along the branch cut towards its lower end at |s| = 1 as

|F c(s)l | decreases. We see that for any even l there exists
exactly one such threshold solution, while other solutions

appear already for infinitesimally small negative F
c(s)
l .

3. even l, transverse channel

We start again with F
c(s)
l ≈ −1 and consider the solu-

tion with vanishingly small s. For the transverse channel
[for which we have to choose the minus sign in Eq. (61)],
the leading, linear-in-s term on the right-hand side of
Eq. (61) is absent, and one needs to include the sublead-
ing terms. A straightforward analysis then shows that
the poles of the transverse susceptibility are located near
the real axis, at

s1,2 ≈ ±
(

1 + F
c(s)
l

2l

)1/2

− i1 + F
c(s)
l

4
. (64)

When |F c(s)l | becomes larger than 1, this solution moves
into the upper half-plane, signaling an instability towards
the development of a Pomeranchuk order.

There also exist other solutions that remain finite at
F
c(s)
l → −1. These solutions are obtained by setting

F
c(s)
l = −1 in Eq. (61) and solving the resultant equa-

tion 1 − (s − i
√

1− s2)2l = 0. There are l − 2 solutions
sn = arccos(πn/l), where 0 < n < l and n 6= l/2. Such
solutions do not exist for l = 2, i.e., there is only a solu-

tion that vanishes at F
c(s)
l → −1.

For 0 < −F c(s)l � 1 we need to solve 1/|F c(s)l | =

−(2s)2l. The solutions are sn = e−iπ(1+2n)/(2l)/2|F el |1/2l
with 0 ≤ n < l. The number of solutions is l, and they
form l/2 pairs with s1,2;p = ±ap − ibp, 0 ≤ p < l/2. One

pair evolves towards s1,2;p = 0, as F
c(s)
l approaches −1,

while the other l − 2 solutions tend to finite values ±ap
at F

c(s)
l = −1. We see that the number of non-critical

solutions is the same, i.e., l− 2, both for 0 < −F c(s)l � 1

and at F
c(s)
l = −1.

4. odd l, longitudinal channel

The analysis for odd l proceeds along the same lines.
We do not present the details of calculations and just

state the results. For F
c(s)
l ≈ −1, there are l + 1 so-

lutions, which form (l + 1)/2 pairs s1,2;p = ±ap − ibp,
0 ≤ p < (l+1)/2. One pair is the same as in Eq. (64), the
other solutions tend to finite sm = arccos(π(1+2m)/(2l),

with 0 ≤ m < l, m 6= (l − 1)/2, at F
c(s)
l = −1.

For 0 < −F c(s)l � 1, there are l − 1 solutions sm =

e−iπm/l/2|F el |1/2l, with 0 < m < l. They form (l − 1)/2
pairs s1,2;p = ±ap − ibp, 0 ≤ p < (l − 1)/2. Com-

paring the number of solutions at F
c(s)
l ≈ −1 and for

0 < −F c(s)l � 1, we see that there exists one pair of
solutions s1,2 = ±a− ib with b > 0, which emerges once

|F c(s)l | exceeds a threshold value. For |F c(s)l | smaller than
the threshold, this pair of solutions remains glued to the
lower edge of the branch cut immediately below the real
axis.

5. odd l, transverse channel

For F
c(s)
l ≈ −1, there is one purely imaginary solu-

tion with vanishing s, as in Eq. (62), and l − 1 solutions

sn = arccos(πn/l), 0 < n < l. For 0 < −F c(s)l � 1,

there are l solutions sm = e−iπ(1+2m)/(2l)/2|F el |1/2l, with
0 ≤ m < l. One solution, with m = (l − 1)/2, is
purely imaginary, while the other solutions form (l−1)/2
pairs s1,2;p = ±ap − ibp, 0 ≤ p < (l − 1)/2. Com-

paring the number of solutions at F
c(s)
l ≈ −1 and for

0 < −F c(s)l � 1, we see that the number is the same,
i.e., all solutions develop already at infinitesimally small

F
c(s)
l . The purely imaginary solution moves into the up-

per frequency half-plane when F
c(s)
l + 1 becomes nega-

tive, signaling a Pomeranchuk instability, while other so-
lutions s1,2;p = ±ap − ibp remain in the lower frequency

half-plane even for F
c(s)
l < −1

Comparing the solutions for even and odd l, we see that

at F
c(s)
l ≈ −1, the solutions in the longitudinal channel

for even l are quite similar to those in the transverse
channel at odd l and vise versa. For smaller negative

F
c(s)
l there is a difference between the longitudinal and

transverse channels at any l. Namely, there exists one
solution in the longitudinal channel which remains glued
to the lower edge of the branch cut at |s| > 1, until

|F c(s)l | exceeds a threshold value, while in the transverse
channel all solutions with Ims < 0 emerge already at

infinitesimally small F
c(s)
l .
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F. The case of two comparable Landau parameters

As a more realistic example, we consider the case when

two Landau parameters, e.g., F
c(s)
0 and F

c(s)
1 , are compa-

rable in magnitude, while the rest of the Landau param-
eters are negligibly small. In this situation, the relation
between the quasiparticle and free susceptibilities is more
complicated than in Eq. (7) because the l = 0 and l = 1

channels are coupled at finite s via the F
c(s)
0 F

c(s)
1 term.

Resumming the coupled RPA series for χ
c(s)
qp,0 and χlong

qp,1

or, equivalently, solving the FL kinetic equation, one ar-
rives at26,35

χ
c(s)
qp,0(s) = νF

K0 − 2F
c(s)
1 K2

1

1+F
c(s)
1 (K0+K2)

1 + F
c(s)
0 K0 − 2F

c(s)
0 F

c(s)
1 K2

1

1+F
c(s)
1 (K0+K2)

,

χlong
qp,1(s) = νF

K0 +K2 − 2F
c(s)
0 K2

1

1+F
c(s)
0 K0

1 + F
c(s)
1 (K0 +K2)− 2F

c(s)
0 F

c(s)
1 K2

1

1+F
c(s)
0 K0

, (65)

where Kn are given by Eq. (58). Explicitly,

K0 = 1 + i
s√

1− (s+ iδ)2
,

K0 +K2 = 1 + 2s2 + 2i
s3√

1− (s+ iδ)2
,

and K1 = s+ i
s2√

1− (s+ iδ)2
. (66)

The denominators of χ
c(s)
qp,0 and χlong

qp,1 vanish when

(1+F
c(s)
0 K0)(1+F

c(s)
1 (K0+K2)) = 2F

c(s)
0 F

c(s)
1 K2

1 . (67)

Suppose that F
c(s)
1 is negative and close to −1 while

1 + F
c(s)
0 > 0 (F

c(s)
0 can be of either sign). In the pre-

vious sections, we saw that a critical zero-sound mode
corresponds to small s. Substituting the forms of Kn

into Eq. (67) and assuming that s is small, we obtain

(1 + F
c(s)
0 )(1 + F

c(s)
1 ) = 2s2 + 2is3 + iF

c(s)
0 (1 + F

c(s)
1 )s.

(68)

Iterating this equation in 1 + F
c(s)
1 � 1, we obtain its

approximate solution as

s = ±
(

1 + F
c(s)
1

2

)1/2

(1 + F
c(s)
0 )1/2

− i
4

(1 + F
c(s)
1 ). (69)

This form does not differ qualitatively from Eq. (33) for

the case F
c(s)
0 = 0, i.e., both the real and imaginary parts

of the zero-sound velocity vanish when F
c(s)
1 approaches

−1, and the imaginary part vanishes faster. The only

effect of non-zero F
c(s)
0 is to renormalize the prefactor of

Res.
In the opposite case, when F

c(s)
0 is close to −1 while

F
c(s)
1 is not close to −1 but otherwise arbitrary, we find

from (67)

s ≈ −i
[

1 + F
c(s)
0 +

(
1 + F

c(s)
0

)2 1− F c(s)1

1 + F
c(s)
1

]
. (70)

We see that the pole remains on the imaginary axis and
moves from the lower to upper frequency half-plane when

1 + F
c(s)
0 changes sign. The Landau parameter F

c(s)
1

affects only the subleading term. We expect this behavior

to hold when F
c(s)
l with l > 1 are also present, as long

as F
c(s)
l>1 are not close to −1.

The simultaneous presence of F
c(s)
0 and F

c(s)
1 , however,

changes the threshold for the existence of a propagating
zero-sound mode. ( For 3D systems, this effect was no-

ticed in Ref. 44. ) For example, if only F
c(s)
0 is non-

zero, a propagating mode exists only for positive F
c(s)
0 .

If F
c(s)
1 is also non-zero and positive, a propagating mode

exists also for negative F
c(s)
0 . Moreover, for large enough

F
c(s)
1 > 0, a propagating mode exists even at the l = 0

Pomeranchuk instability, i.e., when F
c(s)
0 = −1. Namely,

setting F
c(s)
0 = −1 and varying F

c(s)
1 > 0, we find the so-

lution of Eq. (67) in the form of a propagating zero-sound

mode for F
c(s)
1 > 1. The mode frequency is

s = ±1 + F
c(s)
1

2

√
F
c(s)
1

, |s| > 1. (71)

For large F
c(s)
1 , s ≈

√
F
c(s)
1 /2.

G. 3D systems

For comparison, we also briefly discuss the behavior of
zero-sound excitations near a Pomeranchuk instability in
a 3D system. We present the results for l = 0 and l = 1
and, in each case, consider only one non-zero Landau

parameter F
c(s)
l < 0.

1. l = 0

Zero-sound modes in the l = 0 channel were analyzed
in Refs. 30 and 44. The free-fermion susceptibility with

the form factor f
c(s)
0 (kF ) = 1 is

χfree,0(s) = 1− s

2
ln
s+ iδ + 1

s+ iδ − 1
. (72)

The equation for the pole reads

1

|F c(s)0 |
− 1 = −s

2

[
−iπ + ln

1 + s+ iδ

1− s− iδ

]
. (73)
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The pole is completely imaginary: s = −ib (hence, iδ
in (73) is irrelevant). In contrast to the 2D case, such

solution exists for all negative F
c(s)
0 , i.e., there is no

threshold. For F
c(s)
0 ≈ −1, b ≈ (2/π)(1 − |F c(s)0 |). For

0 < −F c(s)0 � 1, b ≈ 1/(π|F c(s)0 |).

2. l = 1

The eigenfunctions of angular momentum l = 1 are
spherical harmonics Y m1 (θ, φ). We normalize Y m1 as

Y 0
1 (θ) =

√
3 cos θ and Y ±1

1 (θ, φ) = ∓
√

3/2 sin θe±iφ.

Then the critical value of F
c(s)
1 for a Pomeranchuk in-

stability is F
c(s)
1 = −1.

In the longitudinal channel, the form-factor is

f
c(s)
1 (kF ) = Y 0

1 (θ). The free-fermion susceptibility is

χfree,0(s) = 1 + 3s

(
s+ iδ − 3(s+ iδ)2

2
ln
s+ iδ + 1

s+ iδ − 1

)
(74)

The equation for the zero-sound pole is

1− |F c(s)1 |
3|F c(s)1 |

= s

(
s+ iδ − (s+ iδ)2

2

(
−iπ + ln

s+ iδ + 1

1− s− iδ

))
(75)

When F
c(s)
1 ≈ −1, the solution is

s = ±ε1/2 − iπ
4
ε, ε =

1− |F c(s)1 |
3

. (76)

This is very similar to the 2D case, cf. Eq. (33). In
contrast to 2D case, however, a complex solution in 3D

exists for all negative F
c(s)
1 , i.e., there is no threshold.

When |F c(s)1 | is small,

s ≈
(

1

3π|F c(s)1 |

)1/3

e−iπ/6. (77)

The form-factor in the transverse channel is
f
c(s)
1 (kF ) = Y ±1

1 (θ, φ). The free-fermion suscepti-
bility is

χfree,0(s) = 1− 3

2
s2 − 3s(1− s2)

4
ln
s+ 1

s− 1
. (78)

The equation for the zero-sound pole is

4(1 + F
c(s)
1 )

3|F c(s)1 |
= −2s2−s(1−s2)

(
−iπ + ln

s+ 1

1− s

)
. (79)

One can easily verify that the pole is located on the imag-
inary axis, at s = −ia, where a is the solution of

4(1− |F c(s)1 |)
3|F c(s)1 |

= πa(1 + a2) + 2a2 + ia ln
1 + ia

1− ia (80)

Near F
c(s)
1 = −1, a ≈ (4/3π)(1− |F c(s)1 |). For small neg-

ative F
c(s)
1 , a ≈ (4/(3π|F c(s)1 |))1/3. This is again similar

to 2D, except for the solution s = −ia in 3D exists for

all negative F
c(s)
1 , i.e., there is no threshold.

III. FINITE DISORDER

A. General formalism

In this section we analyze how the results of the previ-
ous sections change in the presence of finite disorder. As
in the previous section, we consider separately the cases
of l = 0, 1, 2. Other cases can be analyzed in the same
manner as these two.

The free-fermion susceptibility in the presence of scat-
tering by short-range impurities consists of two parts: the
bubble part and the vertex part:

χfree,l(q, ωm) = χB
free,l(q, ωm) + χV

free,l(q, ωm). (81)

(cf. Fig. 6). The bubble part is formed from the
(Matsubara) Green’s functions G(k, νm) = (iνm − εk +
isgnνmγ̃/2)−1, where γ̃ is the impurity scattering rate:

χB
free,l(q, ωm) = − 2

NF

∫
d2k

(2π)2

∫
dνm
2π
|f c(s)l (k)|2G(k + q/2, νm + ωm/2, )G(k− q/2, νm − ωm/2). (82)

The vertex part is

χV
free,l(q, ωm) = − 2

NF

∫
d2k

(2π)2

∫
d2k′

(2π)2

∫
dνm
2π

f
c(s)
l (k)

(
f
c(s)
l (k′)

)∗
G(k + q/2, νm + ωm/2)G(k− q/2, νm − ωm/2)

×G(k′ + q/2, νm + ωm/2)G(k′ − q/2, νm − ωm/2)D(ωm, q; νm). (83)

where D(q, ωm; νm) is the diffusion propagator42

D(q, ωm; νm) =
γ̃

2πNF

θ(ωm + |νm|/2)θ(|νm|/2− ωm)√
(v∗F q)

2 + (|ωm|+ γ̃)2 − γ̃
.

(84)

Diagrammatically, D(q, ωm; νm) is represented by the
sum of ladder diagrams in the particle-hole channel (the
sequence of diagrams in the square brackets in Fig. 6).

The retarded forms of the susceptibilities are obtained
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+ [ + + · · ·]

FIG. 6: The susceptibility of non-interacting fermions in the presence of impurity scattering. The diagram on the
left corresponds to χBfree,l in Eq. (82), while the diagrams in the square brackets correspond to χVfree,l in Eq. (83).
The solid lines represent disorder-averaged fermionic propagators, the dashed lines represent the correlation
functions of the impurity potential.

by choosing ωm > 0 and replacing iωm → ω in the final
results. The vertex part is especially important for the
l = 0 case, because the corresponding order parameters
(charge or spin) are conserved quantities, and hence the
bubble and vertex parts of the susceptibility must cancel
each other at q = 0. For l > 0, the corresponding order
parameters are not conserved, but the vertex parts must
be also included in order to obtain the correct positions
of the zero-sound poles in the complex plane.

B. l=0

We recall that in a clean Fermi liquid with positive

F
c(s)
0 the pole of χ

c(s)
0 (s) is on the real axis at |s| > 1.

For negative F
c(s)
0 , the pole is on the imaginary axis, at

s = −i(1− |F c(s)0 |)/(2|F c(s)0 | − 1)1/2, when −1 < F
c(s)
0 <

−1/2. At F
c(s)
0 = −1/2, the pole at s = −∞ splits into

two, and the new poles instantly move to the s = ±∞
points on the real axis. At larger, but still negative F

c(s)
0 ,

the poles move towards s = ±1 along the lower edge of
the branch cut.

The bubble and vertex part for the l = 0 case are given
by

χB
free,0 = 1 +

is√
1− (s+ iγ)2

,

χV
free,0 =

isγ/
√

1− (s+ iγ)2√
1− (s+ iγ)2 − γ

, (85)

where γ = γ̃/v∗F q. Adding these up, we obtain

χfree,0(s) = 1 + i
s√

1− (s+ iγ)2 − γ
, (86)

which is the result quoted in Eq. (9), except that we
have changed the notations δ → γ to emphasize that
γ does not have to be small. This result, as well as a
corresponding result for the l = 1 case, holds for γ̃ � EF
while the ratio γ/s can be arbitrary. At q → 0, i.e.,
at s → ∞, the susceptibility vanishes, which guarantees
that the charge and spin are conserved.

For |s| � γ, Eq. (86) reduces to the well-known diffu-
sive form45,46

χfree,0(s) =
1

1− 2iγs
=

Dq2

Dq2 − iω , (87)

where D = (v∗F )2/2γ̃ is the diffusion coefficient in 2D.
Substituting Eq. (86) into Eq. (7) and solving for the

poles, we find that for F
c(s)
0 < −1/2 the pole is on the

imaginary axis, at

s = s1 = −iγ 1− |F c(s)0 |
2|F c(s)0 | − 1

√1 +
2|F c(s)0 | − 1

γ2
− 1

 .

(88)
For γ → 0, this reduces to Eq. (19). For large γ,

s1 = −i(1 − |F c(s)0 |)/2γ. In this limit, we have a dif-

fusion pole at Ω = −iD∗q2, where D∗ = D(1 − |F c(s)0 |)
is the renormalized diffusion coefficient47. In the ballis-
tic regime at small γ, the damping term accounts for a
small correction to the result for a clean Fermi liquid, cf.
Eq. (19).

When 1 + F
c(s)
0 becomes negative, s1 moves into the

upper half-plane of s, which signals a Pomeranchuk in-

stability. For positive 1 + F
c(s)
0 the pole s1 moves down

along the imaginary axis as 1 + F
c(s)
0 increases, but re-

mains finite at F
c(s)
0 = −1/2, in contrast to the behavior

in the clean limit. Expanding the square root in Eq. (88)

in 2|F c(s)0 | − 1, we find s1 = −i/(4γ) at F
c(s)
0 = −1/2.

At larger F
c(s)
1 , another solution,

s2 = −iγ 1− |F c(s)0 |
1− 2|F c(s)0 |

√1− 1− 2|F c(s)0 |
γ2

+ 1

 , (89)

appears in the lower half-plane, initially at s2 = −i∞.

As F
c(s)
0 keeps increasing, s1 and s2 move towards each

other. For γ < 1, the two solutions merge into a single

pole s1 = s2 = −i(1+γ2)/(2γ) at F
c(s)
0 = (γ2−1)/2 < 0

(see Fig. 7a). For F
c(s)
0 slightly larger than this value,

the double pole bifurcates into two poles with finite real
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FIG. 7: (color online) Evolution of the poles of χ
c(s)
qp,0(s) with Landau parameter F

c(s)
0 for finite disorder,

parameterized by the dimensionless scattering rate γ. The blue and yellow lines denote the behavior of the poles of

χ
c(s)
qp,0(s) for negative F

c(s)
0 (solid traces) and positive F

c(s)
0 (dashed traces). The horizontal dotted lines denote the

square-root branch cuts of χ
c(s)
qp,0(s) at Ims = −γ. The arrows identify the direction of the poles’ motion with F

c(s)
0

increasing from −1 to ∞. We use different colors to show how poles merge and then bifurcate.

parts. For even larger F
c(s)
0 , the two poles move along

arc-like trajectories s1,2 = ±a− ib in the complex plane.
In contrast to the case of γ = 0, the poles remain at a
finite distance from the lower edges of the branch cuts,

as long as F
c(s)
0 remains negative.

At F
c(s)
0 = 0, the poles reach the points s1,2 =

±
√

1− γ2 − iγ. At positive F
c(s)
0 , a increases and b be-

comes smaller than γ. This implies that the poles are
now located in between the branch cuts and real axis.
At F

c(s)
0 →∞, a→ (F

c(s)
0 /2)1/2 and b→ γ/2.

For γ > 1, the second pole s2 still emerges at F
c(s)
0 =

−1/2, but the poles at s = s1 and s = s2 on the imagi-
nary axis remain at finite distance from each other for all

negative F
c(s)
0 and merge only at F

c(s)
0 = (γ2 − 1)/2 > 0

(see Fig. 7b). At larger F
c(s)
0 , the poles again follow the

trajectories s1,2 = ±a − ib with a increasing and b de-

creasing with increasing F
c(s)
0 . For F

c(s)
0 � 1, the poles

reach the same values as for γ < 1: a ≈ (F
c(s)
0 /2)1/2 and

b ≈ γ/2. In Fig. 8 we plot Imχ
c(s)
0 (s) for real s for a

range of F
c(s)
0 , both for γ < 1 and γ > 1 (panels (a) and

(b), respectively).

C. l = 1

1. l = 1, longitudinal

We start with recalling the situation at vanishingly

small damping. For −1 < F
c(s)
1 < 0, the poles of

χlong
qp,1(s) are at s1,2 = ±a1 − ib1, where a1 and b1 are

given by Eq. (35). For F
c(s)
1 just above −1, a1 ≈

((1 − |F c(s)1 |)/2)1/2 and b1 ≈ (1 − |F c(s)1 |)/4, i.e., the

the poles are almost on the real axis. For larger F
c(s)
1

(smaller |F c(s)1 |), the two poles evolve such that a1 in-
creases monotonically, while b1 first increases and then
decreases. The poles approach the lower edges of the

branch cuts along the real axis at F
c(s)
cr,1 = −1/9, when

a1 = 2/
√

3 > 1. For larger F
c(s)
1 , the poles remain

slightly below the lower edge of the branch cut and move

towards a1 = ±1. For 0 < F
c(s)
1 < 3/5 the poles are lo-

cated slightly above the branch cuts for F
c(s)
1 < 3/5. For

F
c(s)
1 > 3/5 they move off from the physical Riemann

sheet. For all F
c(s)
1 > 0, there exists another, purely

imaginary solution s = −isi,1. For small damping, this
solution and the s1,2 solution are not connected.

We now show that the behavior of χlong
1 changes quali-

tatively in the presence of disorder. The bubble and ver-
tex parts of the free-fermion susceptibility are now given
by

χlong,B
free,1 (s) = 1 + 2s(s+ iγ)

(
1 + i

s+ iγ√
1− (s+ iγ)2

)
,

χlong,V
free,1 (s) = −2iγs

[√
1− (s+ iγ)2 + i(s+ iγ)

]2
√

1− (s+ iγ)2

× 1√
1− (s+ iγ)2 − γ

. (90)
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(a) (b)

FIG. 8: (color online) The imaginary part of χ
c(s)
qp,0(s) for finite disorder, characterized by the dimensionless coupling

constant γ. (a) Weak disorder (γ = 0.2). For −1 < F
c(s)
0 < −1/2, the shape of Imχ

c(s)
qp,0(s) has a characteristic

overdamped form. As F0 increases from −1/2 to 0, the shape changes its form due to the appearance of “hidden”

poles below the branch cut. For F
c(s)
0 > 0, Imχ

c(s)
qp,0(s) has a conventional form of a damped zero-sound mode. (b)

Strong disorder (γ = 1.5). In this case Imχ
c(s)
0 (s) has an overdamped shape for all F

c(s)
0 , negative and positive.

Adding these up, we obtain

χlong
free,1(s) = 1 + 2s2

√
1− (s+ iγ)2 + i(s+ iγ)√

1− (s+ iγ)2 − γ
, (91)

which is the result quoted in Eq. (27), up to a replace-
ment γ → δ. Note that the vertex part vanishes at q → 0,
i.e., at s → ∞, while the bubble part is reduced to a
form which is identical to the Drude conductivity at fi-
nite frequency ω. This indicates that the charge and spin
currents are not conserved in the presence of disorder.

The analysis of the evolution of the poles with F
c(s)
1

for different γ is straightforward but somewhat involved.
We omit the details of the calculations and present only
the results. These results are summarized graphically in
the panels of Fig. 10.

The beginning stage of the evolution is the same for

all γ: for 1 + F
c(s)
1 � 1, the poles are located at s1,2 =

±a1−ib1, where a1 ≈ ((1+F
c(s)
1 )/2)1/2 is independent of

γ, and b1 ≈ ((1 + F
c(s)
1 )/4)(

√
1 + γ2 + γ). However, the

behavior at larger F
c(s)
1 depends strongly on γ. We find

that there are three values of γ, at which the evolution
of the poles changes qualitatively: γ = 1/2, γ = 0.923,
and γ = 1.

For γ < 1/2 the evolution of the poles is similar to
that for vanishingly small γ (see Fig. 3), although the
interval, where the imaginary part of the pole frequency

varies non-monotonically with F
c(s)
1 , shrinks rapidly with

increasing γ. The pole positions s1,2 = ±a1 − ib1 cross

the line s = −iγ first at some negative F
c(s)
1 , when

a1 =
√

1− (1− γ)2, and then again at F
c(s)
1 = 0, when

a1 =
√

1− γ2. The pole moves to the other, unphysical

Riemann sheet at F
c(s)
1,R given by

1 + F
c(s)
1,R

2F
c(s)
1,R

=
(a2

1.R − γ2)(a1,R −
√
a2

1,R − 1)√
a2

1,R − 1
, (92)

where

a1,R =

(
2
√
γ4 − γ2 + 1 + 2− γ2

3

)1/2

. (93)

The values of F
c(s)
1,R and of a1,R decrease as γ increases,

but F
c(s)
1,R remains positive, and a1,R remains larger than

1 as long as γ < 1. For large F
c(s)
1 the pole on the

unphysical sheet is at s1 ≈
(√

3F
c(s)
1 − iγF c(s)1

)
/2, i.e.

Ims1 increases with F
c(s)
1 .

The purely imaginary pole s = −isi,1, which exists

only for F
c(s)
1 > 0, moves up the imaginary axis from

si,1 ≈ 1/2(F
c(s)
1 )1/2 � 1 for small F

c(s)
1 > 0 towards

smaller values for larger F
c(s)
1 . For F

c(s)
1 � 1, si,1 is

determined from the equation

s2
i,1

(
1 +

si,1√
1 + (si,1 − γ)2 − γ

)
= 1/2. (94)

For γ < 1/2, this limiting value si,1 > γ.
At γ = 1/2, the points at which the s1,2 poles cross

the s = −iγ line merge at F
c(s)
1 = 0, and the region

of the non-monotonic evolution of s1,2 for negative F
c(s)
1

disappears. At this γ, the limiting value of the purely

imaginary pole at F
c(s)
1 � 1 becomes si,1 = γ = 1/2.
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FIG. 9: (color online) Evolution of the poles of χlong
qp,1(s) with the Landau parameter F

c(s)
1 for finite disorder,

parameterized by the dimensionless coupling constant γ, as specified in the legend. Like in Fig. 7, we use different

colors to show how the poles merge and bifurcate. The × denotes the limiting position of the pole for F
c(s)
1 →∞.

The inset in the first panel depicts how, for small γ, the pole bypasses the s = 1 branching point before finally

moving to an unphysical Riemann sheet for s > 2/
√

3 (F
c(s)
1 > 3/5).
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FIG. 10: (color online) Imχlong
qp,1(s) for finite disorder

γ = 1/10 and various interaction strengths.

For 1/2 < γ < 0.923, the poles evolve in the complex
plane as shown in Fig 10, third panel. The s1,2 poles

cross the line s = −iγ first at F
c(s)
1 = 0, when a1 =√

1− γ2, and then again at some positive F
c(s)
1 , when

a1 =
√

1− (1− γ)2. The limiting value of the purely

imaginary pole for F
c(s)
1 � 1 is now smaller than γ. This

implies that, for large F
c(s)
1 , this pole gives the main

contribution to χlong
1 (t) in the time domain.

At γ = 0.923, the s1,2 poles touch the imaginary axis

of s at F
c(s)
1 ≈ 0.031. The corresponding value of a1 =

1.391. At this F
c(s)
1 , the purely imaginary pole is located

at the same point on the imaginary axis i.e., there are
three degenerate solutions.

For 0.923 < γ < 1, the poles, which initially move
away from the imaginary axis, return to this axis at some

positive value of F
c(s)
1 , at which the purely imaginary

is still located at a higher point on the imaginary axis
(see Fig. 10, fourth panel). The subsequent evolution

with increasing F
c(s)
1 involves two bifurcations. After

the second bifurcations, the two solutions approach the
upper edge of the branch cut and move to a different

Riemann sheet at F
c(s)
1 = F

c(s)
1,R given by Eq. (93).

At γ = 1, the first bifurcation occurs at F
c(s)
1 = 0, at

the point s = −iγ. After the bifurcation, one solution
moves up along the imaginary axis, while another moves
down. The one that moves up eventually reaches the

point s = −0.39i at F
c(s)
1 � 1. The second bifurcation

occurs at F
c(s)
1 = 0.022 at the point s = −2iγ. After

that, the two solutions s1,2 = ±a1 − ib1 move towards
the end point of the branch cut and reach a1 = 1, b1 = γ

at F
c(s)
1 = 1/3.

For γ > 1, the first bifurcation happens at F
c(s)
1 < 0

and, after bifurcation, the first (second) solution moves

up (down) the imaginary axis. At F
c(s)
1 = 0, these two

solutions are at s = −i(γ ±
√
γ2 − 1). For F

c(s)
1 > 0,

the third solution emerges on the imaginary axis and,

eventually, it merges with the solution that moves down
(see Fig. 10, fifth panel), that, the two solutions bifurcate
and move towards the branch cut. In distinction to the
case γ < 1, now they merge with the lower edge of the

branch cut at F
c(s)
1 = F̄

c(s)
1,R , where

1 + F̄
c(s)
1,R

2F̄
c(s)
1,R

=
(ā2

1,R − γ2)(ā1,R +
√
ā2

1 − 1)√
ā2

1,R − 1
(95)

and ā1,R is given by Eq. (93.) For large γ, ā1,R ≈ γ/
√

3

and F̄1,R ≈ 3/8γ2 � 1. For F
c(s)
1 > F̄

c(s)
1,R the poles again

move to a different Riemann sheet. The solution that
moves up the imaginary axis survives for all F

c(s)
1 > 0

and, for F
c(s)
1 � 1 and γ � 1, it approaches the point

s ≈ −i/2γ.
We note that there are certain similarities between the

evolution of the poles with F
c(s)
1 and the behavior of the

plasmon modes in a 2D electron gas with conductivity
exceeding the speed of light. This problem was stud-
ied some time ago48 and has recently been re-visited in
Ref. 49.

2. l = 1, transverse channel

For vanishingly weak damping (γ → 0), the pole moves

along the imaginary axis (s = −isi) for −1 < F
c(s)
1 < 0,

towards larger si, as |F c(s)1 | decreases. At F
c(s)
1 = 0+, si

tends to infinity. For positive F
c(s)
1 , there is no pole on

our Riemann sheet.
For finite γ, the evolution remains essentially the same.

There are still no solutions for F
c(s)
1 > 0, while for −1 <

F
c(s)
1 < 0 the pole is on the imaginary axis, at s = −isi,1,

where

si,1 =
S

1 + 2S

(√
γ2 + (1 + 2S)2 + γ

)
, S =

1− |F c(s)1 |
|F c(s)1 |

.

(96)

At F
c(s)
1 ≈ −1, si,1 ≈ (1−|F c(s)1 |)(

√
1 + γ2 +γ)/2. Note

that there is no diffusive behavior for large γ. In this

limit, si,1 ≈ γ(1 − |F c(s)1 |), i.e., ω ≈ −iγ̃(1 − |F c(s)1 |),
where γ̃ is the dimensionful impurity scattering rate. At

F
c(s)
0 → 0, si,1 ≈ 1/2|F c(s)1 |1/2 for all γ.

D. l = 2

1. l = 2, longitudinal channel

For vanishingly weak damping (γ → 0) and F
c(s)
2 < 0,

one of the poles is on the imaginary axis while the other

one is in the complex plane. For small negative F
c(s)
2 ,

the latter pole is at the lower edge of the branch cut.

When F
c(s)
2 crosses zero, the pole bypasses the end point
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of the branch cut, moves slightly above it, and continues

to stay there as F
c(s)
2 increases from 0 up to F

c(s)
2 ≈ 0.4.

For larger F
c(s)
2 , the pole is located on an unphysical

Riemann sheet.
For finite γ, the poles are determined from the equation

1 + F
c(s)
2

2F
c(s)
2

=
is√

1− (s+ iγ)2 − γ
(
s+ iγ − i

√
1− (s+ iγ)2

)2

(1− 2s(s+ iγ)) . (97)

As for the l = 1 case, the behavior of the poles is quite
involved, particularly for γ > 1, and we refrain from

presenting all the details. We note only that at F
c(s)
2 ≈

−1 the purely imaginary pole is located at s ≈ −i(1 −
|F c(s)2 |)(

√
1 + γ2+γ)/2. For large γ, s ≈ −i(1−|F c(s)2 |)γ,

i.e., ω ≈ −i(1−|F c(s)2 |)γ̃. This pole is not a diffusive one,
which to be is expected because the l = 2 order parameter
is not a conserved quantity.

2. l = 2, transverse channel

For vanishingly weak damping (γ → 0), the poles s =

±a2−ib2 are in the complex plane of s for negative F
c(s)
2 .

As F
c(s)
2 increases from −1 towards 0, the poles move

from the vicinity of the real axis at F
c(s)
1 ≈ −1 (a2 ∼

(1−|F c(s)2 |)1/2 � b2 ) towards a2 ≈ b2 ≈ 1/2
√

2|F c(s)2 |1/4
at 0 < −F c(s)2 � 1. For positive F

c(s)
2 , there is only a

single pole on the imaginary axis.
For finite γ, the equation for the pole is

s(s+ iγ)
(
s+ iγ − i

√
1− (s+ iγ)2

)2

= −1 + F
c(s)
2

F
c(s)
2

. (98)

At small 1 + F
c(s)
2 both solutions of Eq. (98) are

on the imaginary axis: one is a2 = 0, b2 ≈ (1 −
|F c(s)2 |)(

√
1 + γ2+γ)2/4γ and another one is a2 = 0, b2 ≈

−γ. Note that neither mode is diffusive for large γ. As

1+F
c(s)
2 increases, the two solutions moves towards each

other and merge at some critical value F
c(s)
2 = F

c(s)
2,cr .

For small γ, F
c(s)
2,cr ≈ −1 + γ2 and the solutions merge

at b2 ≈ γ/2. At F
c(s)
2 = F

c(s)
2,cr + 0, the poles split and

move away from the imaginary axis, i.e., a2 becomes fi-
nite. The subsequent evolution is essentially the same as

for vanishingly small γ. For large positive F
c(s)
2 , the pole

is located on the imaginary axis at b2 = 1/2/
√

2 for small
γ and at b2 = γ + 1/(4γ) for large γ.

IV. SUSCEPTIBILITY IN THE TIME DOMAIN

A. General results

In this section we study the real-time response of an
order parameter on both sides of the Pomeranchuk tran-
sition by analyzing the susceptibility in the time domain

χ
c(s)
l (q, t). For definiteness we consider l = 0 and the

longitudinal channel for l = 1. In both cases,

χ
c(s)
l (q, t) =

∫ ∞
−∞

dω

2π
χ
c(s)
l (q, ω)e−iωt, (99)

where χ
c(s)
l (q, ω) is the retarded susceptibility. Introduc-

ing t∗ = v∗F qt and going over from integration over ω to
integration over s = ω/v∗F q, we obtain

χ
c(s)
l (t∗) ≡ 1

v∗F q
χ
c(s)
l (q, t) =

∫ ∞
−∞

ds

2π
χ
c(s)
l (s)e−ist

∗
.

(100)

The time-dependent χ
c(s)
l (t∗) can be measured in pump-

probe experiment, by applying an instantaneous pertur-

bation hl(t
∗) = hδ(t∗)∆

c(s)
l with the symmetry of the

Pomeranchuk order parameter, to momentarily move the
system away from the FL state without Pomeranchuk or-
der (here δ(...) is the δ-function). The order parameter

∆
c(s)
l (t∗) will then relax to zero as ∆

c(s)
l (t∗) ∝ hχc(s)l (t∗),

if 1+F
c(s)
l > 0, and will grow with time, if 1+F

c(s)
l < 0.

Causality requires that χ
c(s)
l (t∗ < 0) = 0. The vanish-

ing of χ
c(s)
l (t∗) for t∗ < 0 is guaranteed because the poles

and branch cuts of the retarded susceptibility χ
c(s)
l (s)

are located in the lower frequency half-plane. For t∗ < 0,
e−ist

∗
vanishes at s → i∞, and the integration contour

can be closed in the upper half-plane of complex s, where
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χ
c(s)
l (s) is analytic. The integral over s in Eq. (100) then

vanishes. For t∗ > 0, the integration contour should be

closed in the lower-half-plane of s, where χ
c(s)
l has both

poles and branch cuts. In this situation, χ
c(s)
l (t∗) is finite.

The susceptibility in the time domain can be obtained
either by contour integration or directly, by using the

form of χ
c(s)
l (s) above the branch cut and integrating

over real s. In a clean system Eq. (100) can be re-written
as

χ
c(s)
l (t∗ > 0) =

1

π

∫ ∞
0

ds
(

Reχ
c(s)
l (s) cos st∗ + Imχ

c(s)
l (s) sin st∗

)
=

2

π

∫ 1

0

dsImχ
c(s)
l (s) sin st∗. (101)

In the last line we used that χ
c(s)
1 (t∗ < 0) = 0 and that

Imχ
c(s)
l (s) is non-zero only for |s| < 1. Equation (101) is

convenient for numerical calculations. To analyze of the

behavior of χ
c(s)
1 (t∗) analytically, it is more convenient to

integrate over the contour shown in Fig. 11, and evaluate
the contributions from the poles and branch cuts. This
way, we get

χ
c(s)
l (t∗) = χpole,l(t

∗)− χbcut,l(t
∗), (102)

where χpole,l(t
∗) is the sum of the residues of the poles,

multiplied by −i, and

χbcut,l(t
∗) =

∫ ∞
1

dx

π
cosxt∗ (103)

×
(
χ
c(s)
l (x− iδ − iε)− χc(s)l (x− iδ + iε)

)
,

where ε = 0+ is the combined contribution from the
two edges of the branch cut along |x| > 1. (By

χ
c(s)
l (x − iδ − iε), we mean the retarded susceptibility

χ
c(s)
l (s) computed at s = x − iδ − iε, where x is a real

variable and 0 < ε� δ).
In what follows, we focus on the on the behavior of

χ
c(s)
l (t∗) near the Pomeranchuk instability for l = 0 and

l = 1, when the corresponding F
c(s)
l ≈ −1. The analysis

of χ
c(s)
l (t∗) for larger F

c(s)
l requires a separate discus-

sion, particularly when the poles in χ
c(s)
l (s) are near the

lower edges of the branch cuts, and will be presented

elsewhere50. We will analyze the behavior of χ
c(s)
l (t∗) at

large t∗ � 1. For such t∗, the dominant contribution to

χ
c(s)
l (t∗) comes from the quasiparticle part of the suscep-

tibility (the first term in Eq. (3)), the contribution from
the incoherent part of the susceptibility is much smaller.

Accordingly, χ
c(s)
l (t∗) = (Λ

c(s)
l )2χ

c(s)
qp,l(t

∗), where χ
c(s)
qp,l(t

∗)

is the Fourier transform of χ
c(s)
qp,l(s). In this section we

consider a generic case when Λ
c(s)
l is finite near a Pomer-

anchuk transition, and focus on χ
c(s)
qp,l(t

∗). In the next

section we consider the special case of l = 1 charge/spin

current order parameter, for which Λ
c(s)
1 vanishes at a

Pomeranchuk transition. To simplify the expressions, be-

low we write χ
c(s)
qp,l(t

∗) simply as χ
c(s)
l (t∗).

B. l=0

We recall that near the Pomeranchuk transition the
only pole of χ

c(s)
0 (s) in the lower half-plane is located at

s = si ≈ −i(1− |F c(s)0 |) (see Eq. 19). Near this pole,

χ
c(s)
0 (s) ≈ νF

i

s+ i(1− |F c(s)0 |)
. (104)

Evaluating the residue, we obtain

χ
c(s)
pole,0(t∗) = νF e

−t∗(1−|F c(s)
l |). (105)

To obtain the branch cut contribution, we recall that

χ
c(s)
l (x− iδ ∓ iε) = νF

1± x√
x2−1

1− |F c(s)l |
(

1± x√
x2−1

) (106)

Hence

χ
c(s)
0 (x− iδ − iε)− χc(s)0 (x− iδ + iε)

= −2νF
x
√
x2 − 1

(1− |F c(s)0 |)2 + x2(2|F c(s)0 | − 1)
(107)

For large x, the r.h.s. of Eq. (107) approaches a constant
value (= −2), and the integral over x in (103) formally
diverges. This divergence is artificial and can be elimi-
nated by introducing a factor of exp(−αx) with α > 0
and taking the limit of α → 0 at the end of the calcula-
tion.

For F
c(s)
0 ≈ −1, the leading contribution to the inte-

gral in Eq. (103) comes from non-analyticity of the in-
tegrand at x = 1. For t∗ � 1, we use

∫
dy
√
y cos yt∗ =

−√π/(2t∗)3/2,
∫
dy
√
y sin yt∗ =

√
π/(2t∗)3/2 and obtain

χbcut,0(t∗) = −νF
√

2

π

cos(t∗ − π/4)

(F
c(s)
0 )2(t∗)3/2

. (108)

Comparing Eqs. (105) and (108), we see that the
pole contribution is the dominant one for 1 � t∗ �
(3/2)| ln(1− |F c(s)l |)|/(1− |F c(s)l |), while at longer times
the time-dependence of the response function comes from
the end point of the branch cut.

In Fig. 12 we show χ
c(s)
0 (t∗) computed numerically

using Eq. (101). As is obvious from this equation,
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FIG. 11: (color online) Integration contour for evaluation of χ
c(s)
l (t∗), defined in Eq. (100). The contour is shown for

the case of finite disorder, and the branch cuts are at s = −iγ + x, |x| > 1. The poles are located at finite distance
below the lower edges of the branch cuts.

χ
c(s)
0 (t∗) increases linearly with t∗ at short times t∗ ≤ 1

(the pole and branch contributions cancel each other
at t∗ = 0). At intermediate times 1 � t∗ �
(3/2) ln |1− |F c(s)l ||/(1 − |F c(s)l |), χc(s)0 (t∗) exhibits an
exponentially decay augmented by weak oscillations, in
agreement with Eqs. (105) and (108). This behavior is

shown in the left panel of Fig. 12. At long times, χ
c(s)
0 (t∗)

oscillates and decreases algebraically with time, in agree-
ment with Eq. (108). This behavior is shown in the right
panel of Fig. 12.

As F
c(s)
0 becomes closer to −1, the exponential de-

cay of χ
c(s)
0 (t∗) with t∗ becomes slower and the crossover

to a power-law behavior shifts to larger t∗. Right at

the Pomeranchuk instability, when F
c(s)
0 = −1, the form

χ
c(s)
0 (t∗) can be found directly from Eq. (101). In this

case, Imχ
c(s)
0 (s) = νF θ(1 − |s|)

√
1− s2/s. Substitut-

ing into (101) we find that χ
c(s)
0 (t∗) starts off linearly

for t∗ � 1, exhibits an oscillatory behavior for t∗ ∼ 1,

and approaches the limiting value of χ
c(s)
0 (t∗) = νF at

t∗ →∞.

For F
c(s)
0 < −1, a long-range order develops. Within

our approach, we can analyze the initial growth rate of

the order parameter ∆
c(s)
0 (t∗) induced by an instant per-

turbation h(t∗) ∝ hδ(t∗) such that ∆
c(s)
0 (t∗) ∝ hχc(s)0 (t∗).

The computation of χ
c(s)
0 (t∗) for F

c(s)
0 < −1 requires

some care because integrating Eq. (100) over the same

contour as in Fig. 11 we would find that χ
c(s)
0 (t∗ < 0) be-

comes finite, i.e., that causality is lost. This issue was
analyzed in Ref. 30 (see also, e.g., Ref. 51), where it
was shown that, to preserve causality, one has to mod-
ify the integration contour such that it goes above all
poles, as shown in Fig. 13c. Integrating along the modi-

fied contour, we find that χ
c(s)
0 (t∗ < 0) = 0, as required

by causality. For t∗ > 0 we now have

∆
c(s)
0 (t∗) ∝ het∗(|F

c(s)
0 |−1), (109)

i.e., a perturbation grows exponentially with time. This
obviously indicates that the FL state without Pomer-
anchuk order becomes unstable. To see how the sys-
tem eventually relaxes to the final equilibrium state with

∆
c(s)
0 (t∗) = ∆0, we would need to re-calculate χ

c(s)
0 (t) in

the broken-symmetry state.

1. l = 1, longitudinal channel

For small positive 1 + F
c(s)
1 , the poles of χlong

1 (s) are
given by Eq. (33). Near the poles,

χlong
1 (s) ∝ 1

(s− s1)(s− s2)
+ . . . (110)

where . . . stands for non-singular terms. Evaluating the

residues, we obtain the pole contribution to χlong
1 (t∗) as

χlong
pole,1(t∗) ∝ t∗ exp

(
−1− |F c(s)1 |

4
t∗

) sin

(√
1−|F c(s)

1 |
2 t∗

)
√

1−|F c(s)
1 |

2 t∗
.

(111)
The branch-cut contribution has the same structure as
for l = 0, i.e., χlong

bcut,1(t∗) ∝ cos(t∗−π/4)/(t∗)3/2 for t∗ �
1. We see that the pole contribution remains dominant

up to t∗ ∼ | ln(1 − |F c(s)1 )|/(1 − |F c(s)1 |), which becomes

progressively larger as |F c(s)1 | approaches one. We also
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FIG. 12: (color online) χ
c(s)
qp,0(t∗) (with νF = 1) as a function of the dimensionless time t∗, as defined in Eq. (100), for

F
c(s)
0 near −1. The solid line is the numerically computed response and the dashed lines are the analytic expressions

in Eqs. (104) and (108). Left: χ
c(s)
qp,0(t∗) at short and intermediate times. At intermediate time, the time dependence

is dominated by the exponentially decaying pole contribution. As F
c(s)
0 approaches −1, the decay time goes to

infinity. Right: long-time behavior, dominated by the oscillatory and power-law decaying contribution from the
branch cut.

see that the pole contribution contains two relevant scales

t∗a =
[
2/(1− |F c(s)1 |)

]1/2
and t∗b = 4/(1−|F c(s)1 |). (112)

Near the Pomeranchuk transition, t∗b � t∗a � 1. Ap-
plying an instant perturbation in the l = 1 channel

h(t∗) ∼ hδ(t∗) and analyzing the behavior of ∆long
1 (t∗) ∝

hχlong
1 (t∗), we find that it grows linearly with t∗ for t∗ �

t∗a, i.e., the system initially tends to move further away
from equilibrium. For t∗a � t∗ � t∗b , the order param-
eter oscillates between the quasi-equilibrium states with

∆long
1 (t∗) = ±∆q-eq, where ∆q-eq ∝ h

[
2/(1 + F

c(s)
1 )

]1/2
.

Finally, for t∗ � t∗b , ∆long
1 (t∗) decays exponentially to-

wards zero. At F
c(s)
1 = −1, both ta and tb diverge and,

following an instant perturbation at t = 0, the order pa-

rameter ∆long
1 (t∗) ∝ h increases linearly with t∗ until the

perturbation theory in h breaks down.

The difference with the l = 0 case, when ∆
c(s)
0 (t∗ →

∞) at F
c(s)
0 = −1 is finite, can be understood by noticing

that the behavior of χlong
free,1(t∗) for large t∗ is determined

by that of Imχlong
free,1(s) for small s. Equation (91) shows

that χlong
free,1(s) = 1 + 2s(s+ iδ) for |s| � 1. At F

c(s)
1 = 1,

therefore, we have χlong(s)1 ≈ −1/2s(s + iδ), and, at
vanishingly small δ, Imχlong(s) goes over to (π/2)δ(s)/s.

Substituting this into Eq. (101), we find that χlong
1 (t∗) ∝

t∗.

For F
c(s)
1 < −1 both poles of χlong,

1 (s) are located on

the imaginary axis, at s = ±(|1 + F
c(s)
1 |/2)1/2. One of

the poles is now in the upper half-plane of complex s.
Modifying the integration contour the same way as for

l = 0 to preserve causality, we obtain for t∗ > 0

χlong
1 (t∗) ∝ t∗

sinh

√
|F c(s)

1 |−1
2 t∗√

|F c(s)
1 |−1

2 t∗
. (113)

For t∗ � t∗a = (2/|1 + F
c(s)
1 |)1/2, both χlong

1 (t∗) and

∆long
1 (t∗) ∝ hχlong

1 (t∗) increase linearly with t∗. For
t∗ � t∗a, the perturbation grows exponentially, indicating
that the FL state becomes unstable.

We note in passing that the need to bend the integra-

tion contour around the pole for F
c(s)
1 < −1 can be also

understood by considering the behavior of χlong
1 (t∗) at

F
c(s)
1 approaching −1 from above. In the limit F

c(s)
1 →

−1 + 0+, the two poles of χlong
1 (s) coalesce into a single

double pole at the origin, as shown in Fig. 13b. Had

we tried to compute χlong
1 (t∗) by integrating along the

real axis of s, we would have intersected a divergence.
To eliminate the divergence, one needs to bend the in-
tegration contour and bypass the double pole along a
semi-circle above it. The extension of this procedure for

F
c(s)
1 < −1 yields the contour shown in Fig. 13c.

2. l = 1, transverse channel

For small 1 + F
c(s)
1 , the pole in the transverse suscep-

tibility for l = 1 is on the imaginary axis. The behavior
of χ tr

1 (t∗) is then the same as for the l = 0 case.
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(a) (b) (c)

FIG. 13: (color online) Positions of the poles and analyticity regions of χlong
1 (s) in the Fermi-liquid phase without

Pomeranchuk order [1 + F
c(s)
1 > 0, panel (a)], at the transition point [1 + F

c(s)
1 = 0, panel (b)], and in the ordered

phase [1 + F
c(s)
1 < 0, panel (c)]. In the ordered phase, the susceptibility in the time domain χlong

1 (t∗) is an increasing
function of time, and so its Fourier transform is only analytic at finite distance above the real axis.

C. Response in the time domain in the presence
of disorder

Near Pomeranchuk instabilities in the l = 0 and trans-
verse l = 1 channels, the poles are on the imaginary axis,
and adding weak impurity scattering will not change the
results obtained in Sec. IV B. Namely, the pole’s contri-

bution to χ
c(s)
0 (t∗) still decays exponentially with t∗ for

F
c(s)
0 > −1, becomes independent of t∗ at F

c(s)
0 = −1,

and increases exponentially with t∗ for F
c(s)
0 < −1.

In the longitudinal l = 1, the poles remain near the real
axis also in the presence of γ. Finite damping changes
the time scale t∗b from Eq. (112) to

t∗b = 4(
√

1 + γ2 − γ)/(1− |F c(s)1 |). (114)

After this change, the results for χlong
1 (t∗) remain the

same as in the absence of disorder. The time dependence

of χlong
1 in the presence of impurity scattering is shown

in Fig. 14.
In all cases, finite γ modifies the branch-cut contribu-

tion, so that in addition to the algebraic decay, there is
also an exponential decay. For l = 0 we find,

χbcut,0(t∗) ∝ e−γt∗ cos(t∗ − π/4)

(t∗)3/2
. (115)

Similar expressions holds for l > 0.
The presence of the exponentially decaying terms due

to damping is particularly relevant for l > 0 and F
c(s)
l >

0, as it allows one to distinguish between the cases of

smaller F
c(s)
l . For the former, the zero-sound pole is

present and located above the branch cut, at s = ±a −
ibγ, where a > 1 and b < 1. For the latter, the zero-sound
pole is located on the unphysical Riemann sheet. In both

FIG. 14: (color online) χlong
qp,1(t∗) with and without

impurity scattering. Solid: numerical calculation for

γ = 0 and γ = 1/2, both for F
c(s)
1 = −0.95. Dashed:

asymptotic expressions describing contributions that
decay exponentially with characteristic times t∗b
(Eq. (112) for γ = 0 and Eq. (114) for γ = 1/2) .

cases, Imχ
c(s)
l (s) at real s has a peak at s = ±a, but for

larger F
c(s)
l its width is b̄γ with b̄ > 1, i.e., it is larger

than γ. Accordingly, for smaller F
c(s)
l , the dominant

contribution to χl(t
∗) at large t∗ comes from the pole, and

χl(t
∗) ∝ e−bγt

∗
cos(at∗). For larger F

c(s)
l , χl(t

∗) at large

t∗ comes from the branch cut, and χl(t
∗) ∝ e−γt∗ cos(t∗−

π/4)/(t∗)3/2. Because this property holds only for l > 0
and in the presence of disorder, it was not discussed in
previous works, 31–38 which studied collective modes of
a 2D Fermi liquid either in the l = 0 channel or in the
absence of disorder.
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V. SPECIAL CASES OF CHARGE-CURRENT
AND SPIN-CURRENT ORDER PARAMETERS

A. Ward identities and static susceptibility in the
l = 1 channel

In previous sections, we assumed that the behavior of
the full susceptibility is at least qualitatively the same as
that of the quasiparticle susceptibility, i.e., the collective

modes, present in χ
c(s)
qp,l(q, ω), are also present in the full

χ
c(s)
l (q, ω). The full and quasiparticle susceptibilities dif-

fer by the factor (Λ
c(s)
l )2 [see Eq. (3)], which accounts

for renormalizations from high-energy fermions. For a

generic order parameter with a form-factor f
c(s)
l (k), the

vertex Λ
c(s)
l is assumed to be finite for all F

c(s)
l , includ-

ing F
c(s)
l = −1. The pole structure of χ

c(s)
l (q, ω) is then

fully determined by that of χ
c(s)
qp,l(q, ω).

We now consider the special case of order parameters

with l = 1, for which f
c(s)
1 (k) =

(
cos θ
sin θ

)
∂εk/∂k, up to

an overall factor. These order parameters correspond to
charge or spin currents. The special behavior of a FL
under perturbations of this form has been discussed in
recent studies of the static susceptibility in the l = 1
channel26–28. Namely, for the spin or charge current or-

der parameter, the vertices Λ
c(s)
1 satisfy the Ward iden-

tities which follow from conservation of the total number
of fermions (the total “charge”) and total spin. In the
static limit, the Ward identities read28,52

m∗

m
ZΛ

c(s)
1 = 1 + F

c(s)
1 . (116)

Under certain assumptions, these identities allow one to
decide which of three factors on the left vanishes at the
instability. First, we assume that the Z-factor, being a
high-energy property of the system, remains finite at the

instability. Therefore, the product (m∗/m)Λ
c(s)
1 should

vanish at F
c(s)
1 → −1. Next, we divide the versions of

Eq. (116) for the charge and spin channels by each other
and obtain

Λc1
Λs1

=
1 + F c1
1 + F s1

. (117)

We then rule out a very special case, when both F c1 and
F s1 reach the critical value of −1 simultaneously, and also
assume the charge (spin) vertex remains finite at an insta-

bility in the spin (charge) channel. Then Λ
c(s)
1 vanishes

as 1 + F
c(s)
1 , which implies that m∗/m remains finite.

Given that m∗/m remains finite while (Λ
c(s)
1 )2 vanishes

as (1 + F
c(s)
1 )2, the full static susceptibility χ

c(s)
1 (q, ω =

0) = (Λ
c(s)
1 )2χ

c(s)
qp,1(q, ω = 0) + χ

c(s)
inc,1 does not diverge

at F
c(s)
1 = −1, despite the fact that the quasiparticle

susceptibility χ
c(s)
qp,1(q, ω = 0) diverges as 1/(1 + F

c(s)
1 ).

What was said above does not apply to the special case
of a Galilean-invariant system. In this case, the charge
current is equivalent to the momentum and thus con-
served. The Ward identity for the momentum implies
that ZΛc1 = 1, i.e., Λc1 remains finite at 1 + F c1 = 0.
Equation (116) then implies that m∗/m = 1 +F c1 , which
is the standard result for a Galilean-invariant FL. The
static susceptibility still remains finite at 1 + F c1 → 0,
this time because the factor of m∗/m in the numerator
of χcqp,1 cancels out with 1 +F c1 in its denominator. Fur-
thermore, gauge invariance implies that in the Galilean-
invariant case the static l = 1 charge and spin suscepti-
bilites are not renormalized at all by the electron-electron

interaction29. On the other hand, m∗/m = 1+F
c(s)
1 does

vanish at the transition in the l = 1 charge channel. We
believe that the vanishing mass indicates a global insta-
bility of a non-Pomeranchuk type, which is not associated
with the l = 1 deformation of the FS.

B. Dynamical susceptibility in the l = 1 channel

Now, let us look at the dynamics. Consider for def-
initeness the l = 1 longitudinal susceptibility. Near

1 + F
c(s)
1 = 0, the quasiparticle susceptibility has poles

given by Eq. (33). One of the poles moves into the upper

frequency half-plane when 1 + F
c(s)
1 becomes negative.

To relate the full and quasiparticle dynamical suscepti-

bilities, we need to know Λ
c(s)
1 in the dynamical case.

The FL theory assumes that Λ
c(s)
1 can be computed by

setting both ω and q to zero. The argument is that Λ
c(s)
1

is renormalized only by high-energy fermions, hence its
frequency and momentum dependences come in a form
of regular functions of q/kF and ω/EF . If so, then the

relation between Λ
c(s)
1 and 1 + F

c(s)
1 , Eq. (116), holds in

the dynamical case as well. We will verify this statement
explicitly via a perturbative calculation in Sec. V D.

Taking Λ
c(s)
1 from Eq. (116) and substituting it

along with the dynamical quasiparticle susceptibility into

Eq. (3), we obtain the full susceptibility for F
c(s)
1 ≈ −1

χlong
1 (q, ω) ≈ −NF

m

m∗

(
1 + F

c(s)
1

)2

(v∗F q)
2

ω2 −
(

1 + F
c(s)
1

)
(v∗F q)

2/2

+χinc,1.
(118)

where we recall that the last term represents the con-
tribution from high-energy fermions. The static limit
of the first term in the equation above, i.e., NF (1 +

F
c(s)
1 )(m/m∗), in indeed non-singular at the transition,

in agreement with the conclusions of the previous section.

Nevertheless, one of the poles of χlong
1 (q, ω) moves into

the upper frequency half-plane when 1 + F
c(s)
1 becomes

negative, i.e., a dynamical perturbation with the struc-
ture of spin or charge current grows exponentially with
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time, which is an indication of a Pomeranchuk instabil-
ity. The peculiarity of the l = 1 case in that the residue
of the pole vanishes right at the transition, but it is finite
both above and below the transition.

C. The case of more than one non-zero Landau
parameters

It is instructive to derive an analog of Eq. (118) for
a more general case of several non-zero Landau param-
eters. We remind the reader that in this situation the
pole structure of χlong

1 (q, ω) is more complex than when

only F
c(s)
1 is present (see Eq. (65) for the case when

F
c(s)
1 and F

c(s)
0 are non-zero). The issue we address

is whether χlong
1 (q, ω) for charge/spin current still has

(Λ
c(s)
1 )2 ∝ (1 + F

c(s)
1 )2 as the overall factor. We argue

that it does.

To demonstrate this, we need to express the full suscep-
tibility via vertices Λ̄c(s)(q, ω), which include both high-
and low-energy renormalizations. Vertices Λ̄c(s)(q, ω)
can be expanded into a series of partial harmonics:

Λ̄c(s)(q, ω) =
∑
l alΛ

c(s)
l (s) cos lθ, where θ is the angle

between the momentum of the incoming fermion and q,

a0 = 1, and al 6=0 =
√

2. With this definition, the full
longitudinal susceptibility in the l = 1 channel can be
written as

χ
c(s),long
1 (s) =

− νF
∫
dθ

π

∑
l

alΛ̄
c(s)
l (s) cos lθ

cos2 θ

s− cos θ + iδ
Λ
c(s)
1 .

(119)

The vertex Λ̄
c(s)
l (q, ω) is given by a series of diagrams

which contain momentum and frequency integrals of the
product Gp+ q

2 ,ωp+ ω
2
Gp− q

2 ,ωp−ω
2

, convoluted with fully
renormalized four-fermion vertices. The diagrammatic
series can be represented as the sum of subsets of di-
agrams, each with a fixed number n = 0, 1, 2, 3... of
cross-sections which contain contributions from the re-
gions where the poles of Gp+ q

2 ,ωp+ ω
2

and Gp− q
2 ,ωp−ω

2
are

in the opposite half-planes of complex frequency. This
constraint binds the internal p and ωp to the FS. The
subset with n = 0 is non-zero only for l = 1 and gives

Λ
c(s)
1 , while the sum of contributions with different n > 0

gives Λ̄
c(s)
l (s). Combining the contributions from all n,

we find that the vertex Λ̄
c(s)
l (s) satisfies an integral equa-

tion with Λ
c(s)
1 as the source term:

Λ̄
c(s)
l (s) = Λ

c(s)
1 δl,1 +

Z2m∗

4π3

∑
l′

Λ̄
c(s)
l′ (s)al′

∫ 2π

0

dθ

∫ 2π

0

dθ′ cos lθ cos l′θ′
cos θ′

s− cos θ′ + iδ
Γc(s)(θ, θ′), (120)

where Γc(s)(θ, θ′) is the four-fermion (four-leg) vertex
with external fermions right on the FS. By construc-
tion, Γc(s)(θ, θ′) contains only renormalizations from
high-energy fermions (in the FL theory, such a vertex

is called Γω, see Ref. 7). Landau parameters F
c(s)
l

are related to the angular harmonics of Γc(s)(θ, θ′) via

F
c(s)
l = (Z2m∗/π)Γ

c(s)
l . When only F

c(s)
1 is non-

zero, i.e., (Z2m∗/π)Γc(s)(θ, θ′) = 2F
c(s)
1 cos θ′ cos θ, only

Λ̄
c(s)
1 (s) is non-zero as well. Then

Λ̄
c(s)
1 (s) =

Λ
c(s)
1

1− F c(s)1
1
π

∫ 2π

0
dθ cos3 θ

s−cos θ+iδ

=
Λ
c(s)
1

1 + F
c(s)
1 χlong

free,1(s)
. (121)

Substituting Eq. (121) into Eq. (119) and expanding near

F
c(s)
1 = −1, we reproduce Eq. (118). When, e.g., F

c(s)
0

and F
c(s)
1 are non-zero, the solution of Eq. (120) is

Λ̄
c(s)
1 (s) = Λ

c(s)
1

1

1 + F
c(s)
1 (K0 +K2)− 2F

c(s)
0 )F

c(s)
1 K2

1

1+F
c(s)
0 K0

,

Λ̄
c(s)
0 (s) = −Λ

c(s)
1

√
2F

c(s)
0 K1

1 + F
c(s)
1 (K0 +K2)− 2F

c(s)
0 F

c(s)
1 K2

1

1+F
c(s)
0 K0

,

(122)

where K0,1,2 are defined by Eq. (66). Substituting the
last two equations into Eq. (119), we obtain

χlong
1 (s) = νF (Λ

c(s)
1 )2

K0 +K2 − 2F
c(s)
0 K2

1

1+F
c(s)
0 K0

1 + F
c(s)
1 (K0 +K2)− 2F

c(s)
0 F

c(s)
1 K2

1

1+F
c(s)
0 K0

. (123)

Comparing the last result with χlong
qp,1 in Eq. (65), we see that χlong

1 (s) = (Λ
c(s)
1 )2χlong

qp,1(s), exactly as in the static
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case. This result implies that the residue of the pole is

proportional to (Λ
c(s)
1 )2 ∝ (1 +F

c(s)
1 )2 and thus vanishes

at the Pomeranchuk instability also for the case of two
non-zero Landau parameters, when the pole structure of
the susceptibility becomes more involved. Still, like in the

case when only F
c(s)
1 is non-zero, (Λ

c(s)
1 )2 is independent

of s = ω/(v∗F q), and it does not cancel the poles in χlong
qp,1.

At 1+F
c(s)
1 < 0, one pole moves into the upper frequency

half-plane, signaling a Pomeranchuk instability.

D. Perturbation theory for the vertex in the
dynamical case

We now return to the case of a single Landau param-

eter F
c(s)
1 and verify by a perturbative calculation that

(Λ
c(s)
1 )2 does not cancel the dynamical poles in the full

l = 1 susceptibility. We perform the calculation to sec-
ond order in the Hubbard (point-like) interaction U . For
simplicity we limit our attention to the spin channel and
also consider a Galilean-invariant system. We will show
that the dynamical vertex Λ̄s1(s) has the pole structure

of Eq. (121) with s-independent Λ
c(s)
1 . To demonstrate

this, it suffices to show that the vertex Λs1, which acts
as a source for the dynamical vertex Λ̄s1(s) in Eq. (120),
does not vanish at s which corresponds to the pole of
the dynamical vertex. Instead of calculating Λs1 directly,
we compute the product Λs1Z for reasons that will be-

come clear later in the section. Using the Ward identity
associated with the Galilean invariance, we express quasi-
particle Z as7

1

Z
= 1− i

2kF

∑
αβ

∫
d3p

(2π)3
Γωαβ,αβ(k, p)(G2

p)
ω(k̂ · p),

(124)
where the 2 + 1-momentum p = (p, ωp) is not necessary

close to the FS, and k = (kF k̂, 0) + ε is infinitesimally
close to the FS, i.e., ε = (q, ω) with both |q| and ω being

infinitesimally small. The direction of k̂ in Eq. (124) is
arbitrary. The Γωαβ,αβ is the dressed four-fermion ver-

tex and (G2
p)
ω(k̂ · p) is the regular part of the product

Gp+ε/2Gp−ε/2 of two exact Green’s functions, whose ar-
guments differ by ε. (Note that the q and ω in the def-
inition of the Z-factor do not need to coincide with the
corresponding variables describing the collective mode,
but we choose them to be the same for simplicity.) The
product Gp+ε/2Gp−ε/2 can be written as the sum of a

regular part and a singular contribution from the FS7:

Gp+ε/2Gp−ε/2 = (G2
p)
ω

+
2πiZ2

v∗F

p̂ · q̂
s− p̂ · q̂ + iδsgnωp

δ(ωp)δ(|p| − kF ),

(125)

where p̂ = p/|p| and, as before, s = ω/v∗F |q|.
To second order in U , Γωαβ,αβ is given by the diagrams

shown in Fig. 15. Explicitly,

Γωαβ,γδ(k, p) =
1

2
δαγδβδ

[
U + iU2

∫
d3k′

(2π)3
(2Gk′Gp−k+k′ +Gk′Gp+k−k′)

]
− 1

2
σαγ · σβδ

[
U + iU2

∫
d3k′

(2π)3
Gk′Gp+k−k′

]
≡ δαγδβδΓc(k, p) + σαγ · σβδΓs(k, p), (126)

where at the last step we defined the charge and spin
parts of the four-fermion vertex, Γc(k, p) and Γs(k, p),
respectively.

The renormalized spin-current vertex can be written
as (see Fig. 16)

Λs1σ
z
ββ = σzββ

− i

kF

∑
α

∫
d3p

(2π)3
Γωαβ,αβ(k, p)(G2

p)
ω(k̂ · p)σzαα.

(127)

where the internal momentum p = (p, ωp) is again not
confined to the FS. It is to be understood that Λs1 is a
function of the 2 + 1 momentum ε, and Λs1 6= 0 even for
ε = 0. Substituting the last formula in Eq. (126) into
Eqs. (124) and (129) and summing over spin indices, we

obtain

1

Z
= 1− 2i

kF

∫
d3p

(2π)3
Γc(k, p)(G2

p)
ω(k̂ · p) (128)

and

Λs1 = 1− 2i

kF

∫
d3p

(2π)3
Γs(k, p)(G2

p)
ω(k̂ · p). (129)

To second order in U , the product Λs1Z can then be writ-
ten as

Λs1Z = 1

− 2i

kF

∫
d3p

(2π)3
[Γc(k, p)− Γs(k, p)] k̂ · p(G2

p)
ω.

(130)
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FIG. 15: Diagrams for the four-fermion vertex Γωαβ,γδ to second order in the Hubbard-like interaction. One of

external 2 + 1 momenta, k = (k, ωk), is chosen to be on the FS, i.e., |k| = kF and ωk = 0, while the other, p, is
generically away from the FS. All internal momenta are away from the FS. In this sense, renormalization of Γωαβ,γδ
comes from high-energy fermions.
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FIG. 16: Diagrammatic representation of the
high-energy triple vertex Λs1. The shaded box is Γωαβ,γδ.

We now show that the product Λs1Z does not depend

on s = ω/v∗F |q|. To see this, we add a term kF s to k̂ · p
on the right-hand side of Eq. (130) and then subtract off
the same term. Equation (130) then goes over to

Λs1Z = 1−Q1 −Q2, (131)

where

Q1 = 2is

∫
d3p

(2π)3
[Γc(k, p)− Γs(k, p)] (G2

p)
ω (132)

and

Q2 = 2i

∫
d3p

(2π)3
[Γc(k, p)− Γs(k, p)] (k̂ · p

kF
− s)(G2

p)
ω.

(133)
We now use the fact that conservation of charge and
spin allows one to derive two independent relations for
Z (Refs. 3, 4, 7, and 28):

1

Z
= 1− i

2kF

∑
αβ

∫
d3p

(2π)3
Γc(k, p)(G2

p)
ω (charge);

1

Z
= 1− i

2kF

∑
αβ

∫
d3p

(2π)3
Γs(k, p)(G2

p)
ω (spin). (134)

Combining the two, we find that Q1 = 0, i.e., Λs1Z =
1−Q2.

We now analyze Q2. To first order in U , the vertex
remains static. Then O(U) terms in Γc(s) in Eq. (133)
vanish because of the double pole of (G2

p)
ω. Let us fo-

cus on the O(U2) terms. Substituting Eq. (125) into
Eq. (133) for Q2 and choosing the direction of k to be
along q, we obtain

Q2 = 2i

∫
d3p

(2π)3
(Γc(k, p)− Γs(k, p)) (k̂ · p

kF
− s)

(
Gp+ε/2Gp−ε/2 −

2πiZ2

v∗F

k̂ · p̂
s− k̂ · p̂+ iδ

δ(ωp)δ(|p| − pF )

)
(135)

= 2i

∫
d3p

(2π)3
(Γc(k, p)− Γs(k, p))

[
(v∗F |q|)−1(Gp−ε/2 −Gp+ε/2) +

2πiZ2

v∗F
k̂ · p̂δ(ωp)δ(|p| − pF )

]
. (136)

One can now verify that the first term in the r.h.s. of Eq. (136) is zero, i.e.,∫
d3p

(2π)3
(Γc(k, p)− Γs(k, p)) (Gp−ε/2 −Gp+ε/2) = 0.

(137)



30

This can be done by substituting the explicit expres-
sions for Γc(s) from Eq. (126) and changing integration
variables53. We are then left with a contribution coming
solely from the FS,

Q2 =
Z2

2πv∗F

∫
dθ′

π
cos θ′ (Γc(θ, θ′)− Γs(θ, θ′))

= F c1 − F s1 , (138)

where θ and θ′ are the azimuthal angles of k̂ and p̂, re-
spectively. This term is independent of s and only con-
tributes to the static vertex26. Going back to Eq. (131),
we obtain

Λs1Z = 1− F c1 + F s1 =
m

m∗
(1 + F s1 ), (139)

where we used the relation m∗/m = 1 + F c1 valid for a
Galilean-invariant system. This result agrees with the
analysis in the previous Section.

E. Charge/spin current order parameter:
Ginzburg-Landau functional and time evolution

We now analyze the structure of the Landau func-
tional that describes the l = 1 Pomeranchuk transi-
tion. Our purpose is to reconcile an apparent contra-
diction, by which the FL ground state becomes unstable

for F
c(s)
1 < −1, while the static l = 1 susceptibility re-

mains finite at F
c(s)
1 = −1 . The Ginzburg-Landau func-

tional can be derived from the Hamiltonian of interacting
fermions, coupled to an infinitesimal external perturba-

tion h
c(s)
1 , via a Hubbard-Stratonovich (HS) transforma-

tion with an auxiliary field ∆
c(s)
1 . For a generic l = 1

order parameter, the vertex remains finite at the Pomer-
anchuk transition. In this case, it is sufficient to consider
only the quasiparticle part of the Hamiltonian and ne-
glect the contributions from high-energy fermions. Then
the coupling to the external field is given by a bilinear

term h
c(s)
1 ∆

c(s)
1 , and the total susceptibility is identical

to the quasiparticle susceptibility. For the charge/spin

current order, the coupling is still given by the h
c(s)
1 ∆

c(s)
1

term, but the contributions from high-energy fermions
cannot be neglected, as with these contributions the ver-
tex vanishes at the transition. To see this, we explic-
itly separate the four-fermion interaction into the com-
ponents coming from the states near and away from the
FS.

Our point of departure is the effective, antisym-
metrized interaction between fermions, expressed via the
vertex function Γα,β;γ,δ(k,k

′; q), where q is a small mo-
mentum transfer:

Hint = (140)∑
k,k′,q,α,β,γ,δ

Γαβ;γδ(k,k
′; q)a†

k+ q
2 ,γ
a
k− q

2 ,α
.a†

k′− q
2 ,δ
a
k′+ q

2 ,β

The generic form of the l = 1 component of
Γαβ;γ,δ(k,k

′; q) is

Γl=1
αβ;γδ(k,k

′; q) = −k̂ · k̂′ (141)

× (U c1f
c(|k|, |k′|)δαγδβδ + Us1f

s(|k|, |k′|)σαγ · σβδ) ,

where k̂ = k/|k| and k̂′ = k′/|k′|. For simplicity, we
replace the formfactors f c,s(|k|, |k′|) by constants and

incorporate them into U
c(s)
1 . A instability in the l = 1

channel occurs only if U
c(s)
1 > 0. Below we approximate

the vertex function by its l = 1 component. Other com-
ponents are not necessarily small, but we assume they
are irrelevant for the low-energy theory near the l = 1
Pomeranchuk instability. In this approximation, the ef-
fective interaction is separable into two parts that depend

on k̂ and k̂′, and can be written as the sum of the charge
and spin components:

Hc(s)int = −U c(s)1

∑
q

∑
k,αγ

k̂a†
k+ q

2 ,γ
tc(s)αγ ak− q

2 ,α


·

∑
k′,β,δ

k̂′a†
k′− q

2 ,δ
t
c(s)
βδ ak′+ q

2 ,β

 , (142)

where, as before, tcµν = δµν and tsµν = σzµν . Next, we
rewrite the sums over the fermionic momenta as∑

k

a†
k+ q

2 ,γ
tc(s)αγ ak− q

2 ,α
(143)

=
∑
k

a†
k+ q

2 ,γ
tc(s)αγ ak− q

2 ,α
δε|k+ q

2 |,kF
δε|k− q

2 |,kF

+
∑
k

a†
k+ q

2 ,γ
tc(s)αγ ak− q

2 ,α
(1− δε|k+ q

2 |,kF
δε|k− q

2 |,kF
)

(and the same for the sum over k′). Here, δεa,b is nonzero

only for |a − b| < ε, and ε is small compared to kF and
will be taken to zero at the end of the calculation. The
purpose of the projectors δεa,b is to split the fermions into
those near the FS, which form the FL of quasiparticles,
and those away from the FS, whose role is to renormalize
the interaction between quasiparticles and their coupling
to an external perturbation. Below, we denote fermions
near the FS as ψ†(ψ), and fermions away from the FS as

ψ̃†(ψ̃). Using (143), we rewrite (142) as

Hint =

−U c(s)1

∑
q

×

∑
k,α,γ

k̂
(
ψ†
k+ q

2 ,γ
tc(s)αγ ψk− q

2 ,α
+ ψ̃†

k+ q
2
, γtc(s)αγ ψ̃k− q

2 ,α

)
·

 ∑
k′,β,δ

k̂′
(
ψ†
k′− q

2 ,δ
t
c(s)
βδ ψk′+ q

2 ,β
+ ψ̃†

k′− q
2 ,δ
t
c(s)
βδ ψ̃k′+ q

2 ,δ

) . (144)

The coupling of the charge/spin current order param-

eter to a weak external field h
c(s)
1,αβ(q, t) (which may be
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time-dependent) can be split into the low- and high-
energy parts in the same way:

Hh =
∑

k,q,α,β

h
c(s)
1,βα(q, t) · k̂

×
(
ψ†
k+ q

2 ,α
t
c(s)
αβ ψk− q

2 ,β
+ ψ̃†

k+ q
2 ,α
t
c(s)
αβ ψ̃k− q

2 ,β

)
.

Note that the field couples to both ψ and ψ̃.

The interaction in Eq. (144) contains one term involv-
ing four fermions near the FS, one term involving four
fermions away from the FS, and two mixed terms involv-

ing two fermions at the FS and two away from the FS. We
decouple the quartic term with fermions away from the
FS by transforming from a Hamiltonian to a Lagrangian,
upon which ψ†n and ψn with n = k, p, q become Grassman
fields, which depend on the 2+1 momentum n = (n, ωn).
Next, we introduce a momentum- and time-dependent
HS vector field

∆̃
c(s)
1 (q, t) = U

c(s)
1

∑
k,α,β

k̂
[
ψ̃†
k+ q

2 ,α
t
c(s)
αβ ψ̃k− q

2 ,β

]
(145)

and integrate out high-energy fermions. Up to constant

terms, the effective action for ∆̃
c(s)
1 is given by

S[∆̃
c(s)
1 ] =

∑
q

|∆̃c(s)
1 (q)|2

U
c(s)
1

+ 2
∑
k,α,β

∆̃
c(s)
1 (q)ψ†

k+ q
2 ,α
t
c(s)
αβ ψk− q

2 ,β
+
∑
k,α

lnMα,β(k, k′)|β=α,k=k′ (146)

with

Mαβ(k, k′) = G−1
0 (k)δk,k′t

c
α,β−

k̂ + k̂′

2
·

h
c(s)
1,αβ(q)− 2t

c(s)
αβ

∆̃
c(s)
1 (q) + U

c(s)
1

∑
p,γ,δ

p̂ψ†
p− q

2 ,γ
t
c(s)
γδ ψp+ q

2 ,δ

 |q=k′−k, (147)

where G0(k) is the free-fermion propagator.
Corrections to the low-energy theory from high-energy

fermions are obtained by expanding S[∆̃
c(s)
1 ] up to first

order in h
c(s)
1,αβ(q) and up to second order in ψ†ψ. For

definiteness, we consider the longitudinal l = 1 channel
and restrict the external field to a longitudinal compo-

nent, i.e., we set h
c(s)
1,αβ(q) = q̂h

c(s)
1,αβ(q). The new terms

generated by integration over ∆̃
c(s)
1 (q) affect the action

for low-energy fermions in three ways: (i) the propagator
of low-energy fermions acquires a Z-factor and vF gets
renormalized into v∗F ; (ii) the coupling to the external

field acquires a factor of Λ
c(s)
1 ; and (iii) the coupling con-

stant of the interaction between low-energy fermions is

renormalized from −U c(s)1 to F1/νF . With these modi-
fications, the action for properly normalized low-energy

fermions (ψ†k and ψk) becomes

S[ψ] = −
∑
k

ψ†kZ
−1(ωk − v∗F (|k| − kF ))ψk +

∑
k,q,α,β

h
c(s)
1,βα(q)Λ

c(s)
1 cos θkψ

†
k+q/2,αt

c(s)
αβ ψk−q/2,β

+
1

νF

∑
k,k′,q,α,β,γ,δ

F
c(s)
1 cos θk cos θk′ψ

†
k+q/2,γt

c(s)
αγ ψk−q/2,αψ

†
k′−q/2,δt

c(s)
βδ ψk′+q/2,β .

where the summation over k is confined to the vicinity

of the FS. We see that the factor Λ
c(s)
1 only changes the

response function to an external perturbation, but does
not affect the thermodynamic stability of the FL state. If
we compute the response function by differentiating the

partition function Z twice with respect to h
c(s)
1 (q), we

find the same expression as in Eq.(3):

χ
c(s)
1 (q) =

∑
αβ

∂2Z
∂h

c(s)
1,αβ(q)∂h

c(s)
1,βα(q)

=

〈∑
k,α

Λ
c(s)
1 ψ†k+q/2,αψk−q/2,α cos θk

2〉
S[ψ]

+ χ
c(s)
inc,1

= (Λ
c(s)
1 )2χ

c(s)
qp,1(q) + χ

c(s)
inc,1, (148)

where Z is the partition function, 〈. . . 〉S[ψ] denotes aver-
aging with action S[ψ], and χinc,1 is obtained by differen-
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tiating Z̃ =
∫
e−S[∆̃

c(s)
1 ] twice with respect to h

c(s)
1 with-

out taking into account a contribution from low-energy
fermions (the ψ†ψ terms in (147)). We recall that the

static susceptibility does not diverge at F
c(s)
1 = −1 be-

cause Λ
c(s)
1 = (m/m∗Z)(1 + F

c(s)
1 ) vanishes at F

c(s)
1 =

−1.

We now introduce a low-energy HS field ∆
c(s)
1 (q) ∝∑

k,α,β cos θkψ
†
k+q/2,αt

c(s)
αβ ψk−q/2,β to decouple the quar-

tic term in S[ψ]. Integrating out low-energy fermions, we

obtain the effective action for ∆
c(s)
1 in the form

S[∆
c(s)
1 ] =

∑
q

(
a|∆c(s)

1 (q)|2 + b|∆c(s)
1 (q)|4 (149)

+Λ
c(s)
1 h

c(s)
1 (q)∆

c(s)
1 (q)χ

c(s)
1,free(q) + c.c.

)
plus higher order terms.

In Eq. (149), a ∝ 1 + F
c(s)
1 changes sign at the critical

point, i.e., fluctuations of the order parameter ∆
c(s)
1 di-

verge at the critical point, like for any other order param-
eter. In this sense, Pomeranchuk order with the struc-

ture of spin/charge current does develop when 1 + F
c(s)
1

becomes negative. What makes the case of spin/charge
current special is that the response to an external field
gets critically reduced because of destructive interference
from high-energy fermions.

The presence of Λ
c(s)
1 ∝ 1 +F

c(s)
1 in the response func-

tion changes the time evolution of ∆
c(s)
1 (t∗) after an in-

stant perturbation h
c(s)
1 (t∗) = h

c(s)
1 δ(t∗). For 1 +F

c(s)
1 >

0, we have

∆
c(s)
1 (t∗) ∝ hc(s)1 (1 + F

c(s)
1 )2t∗e−(1+F

c(s)
1 )t∗/4

×
sin

√
1+F

c(s)
1

2 t∗√
1+F

c(s)
1

2 t∗
, (150)

The functional form of ∆
c(s)
1 (t∗) is the same as for

a generic l = 1 order parameter, when high-energy
renormalizations can be neglected, just the amplitude is

smaller. For 1 + F
c(s)
1 < 0, a deviation from the normal

state grows as

∆
c(s)
1 (t∗) ∝ hc(s)1 (1 + F

c(s)
1 )2t∗

sinh

√
|1+F

c(s)
1 |

2 t∗√
|1+F

c(s)
1 |

2 t∗
. (151)

The functional form is again the same as for a generic
l = 1 order parameter. The presence of the overall small

factor (1+F
c(s)
1 )2 just implies that it takes a longer time

for a deviation to develop. In particular, the ratio of

∆
c(s)
1 (t∗) in (151) and the initial perturbation h

c(s)
1 be-

comes O(1) only after ∆
c(s)
1 (t∗) begins to grow exponen-

tially.

VI. CONCLUSIONS

In this paper we analyzed zero-sound collective bosonic
excitations in different angular momentum channels in a
metal with an isotropic, but not necessary parabolic dis-
persion εk. We explicitly computed the longitudinal and

transverse dynamical susceptibility χ
c(s)
l (q, ω) in charge

and spin channels for l = 0, l = 1, and l = 2, and ex-
tracted zero-sound modes at ω = sv∗F q from the poles

of χ
c(s)
l (q, ω). We also presented the generic structure of

zero-sound excitations for arbitrary frequency. Our key
goal was to identify, in each case, the mode, whose fre-
quency moves from the lower to the upper half-plane as
the system undergoes a Pomeranchuk instability, when

the corresponding Landau parameter F
c(s)
l = −1. Right

at the transition, the mode is located at ω = 0, i.e. the

static susceptibility diverges. At F
c(s)
l < −1, the mode

moves to the upper frequency half-plane, and a pertur-
bation around a state with no Pomeranchuk order grows
exponentially with time, i.e., the system becomes unsta-
ble towards spontaneous development of a uniform order
parameter, bilinear in fermions.

We also discussed the evolution of the poles with

F
c(s)
l > −1 both for infinitesimally small and for fi-

nite fermionic damping rate. For infinitesimally small
damping, we found that in some channels, the poles are
located very close to a real frequency axis and outside
particle-hole continuum already for negative (attractive)

F
c(s)
l . This result is at a first glance an unexpected one

as naively one would expect the poles to be located inside
the continuum. We found that these poles are located be-
low the branch cut and cannot be gradually moved to real
axis without simultaneously moving from the physical
Riemann sheet to an unphysical one. As the consequence,
these poles are silent in the sense that, although they do
exist infinitesimally close to the real axis, they are not

visible in Im χ
c(s)
l (ω) for real ω. Besides, we found that

for l > 0, zero-sound poles for positive F
c(s)
l exist only if

F
c(s)
l is below a certain value. For larger F

c(s)
1 , the poles

move from the physical Riemann sheet to an unphysical
one. This does not eliminate the zero-sound peak in Im

χ
c(s)
l (ω) for real ω, but the width of the peak becomes

larger than fermionic damping γ. We argued that in this
situation the behavior of time-dependent susceptibility

χ
c(s)
l (t) at large t is determined by the end point of the

branch cut (ω = ±vF q) rather than by the zero-sound
peak.

We next showed that the situation is somewhat differ-
ent for l = 1 order parameters with the same form-factors
as that of spin or charge currents. In these two cases, the
bosonic response has a zero-sound pole that crosses to

the upper half-plane at F
c(s)
1 < −1, but its residue van-

ishes precisely at F
c(s)
1 = −1. We argued that in this

situation static uniform susceptibility does not diverge

at F
c(s)
1 = −1, yet at 1+F

c(s)
1 < 0 the system still devel-
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ops long-range Pomeranchuk order, and the shape of the
FS gets modified. It just takes more time for the system
to reach the steady ordered state.
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