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a b s t r a c t

Most factorization invariants in the literature extract extremal
factorization behavior, such as the maximum and minimum fac-
torization lengths. Invariants of intermediate size, such as the
mean, median, and mode factorization lengths are more subtle.
We use techniques from analysis and probability to describe the
asymptotic behavior of these invariants. Surprisingly, the asymp-
totic median factorization length is described by a number that is
usually irrational.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Let N denote the set of nonnegative integers. A numerical semigroup is an additive subsemigroup
S ⊂ N (that is, a subset that is closed under addition). Any numerical semigroup can be generated by
finitely many integers n1, n2, . . . , nk, so we usually specify a numerical semigroup S by writing

S = ⟨n1, . . . , nk ⟩ = {a1n1 + · · · + aknk : a1, . . . , ak ∈ N}.

In this paper, we assume n1 < · · · < nk and S has finite complement in N (or, equivalently, that
gcd(n1, . . . , nk) = 1), but we do not assume n1, . . . , nk minimally generate S. For an introduction to
numerical semigroups, we recommend [42].
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A factorization of an element n ∈ S is an expression

n = a1n1 + · · · + aknk

of n as a sum of generators of S, which we often represent with the k-tuple a = (a1, a2, . . . , ak) ∈ Nk.
The set of all factorizations of n is denoted ZS(n) ⊂ Nk. The length of a factorization a ∈ ZS(n) is the
number |a| = a1 + · · · + ak of generators appearing in the sum, and the length set of n is

LS(n) = {|a| : a ∈ ZS(n)}

of distinct factorization lengths of n ∈ S.
Much of the factorization theory literature centers around factorization invariants, which are

discrete quantities used to classify and quantify the underlying factorization structure. The study
of factorization invariants is a thriving area; see [9,27,38,39] for an overview. Two such invariants
include M(n) = max L(n) (the maximum factorization length of n), and m(n) = min L(n) (the
minimum factorization length of n). The asymptotic behavior of these two invariants, studied in [5,16],
is characterized as follows.

Theorem 1 ([5, Theorems 4.2 and 4.3]). If S = ⟨n1, n2, . . . , nk ⟩, then for large n ∈ S,

M(n) =
1
n1
n + c0(n) and m(n) =

1
nk
n + c ′

0(n), (2)

where c0(n) and c ′

0(n) are rational-valued n1- and nk-periodic functions, respectively.

One of the crowning achievements in factorization theory is the following structure theorem for
sets of length. As a consequence, most invariants derived from factorization length focus on extremal
lengths (e.g., M(n) or m(n)) since this is where the ‘‘interesting’’ behavior occurs.

Theorem 3 ([27, Theorem 4.3.6]). Let S = ⟨n1, n2, . . . , nk ⟩ be a numerical semigroup. There is an integer
M > 0 such that for all n ∈ S, the length set LS(n) equals an arithmetic sequence from which some subset
of the first and last M elements are removed.

In contrast, the goal of this paper is to initiate the study of factorizations of ‘‘medium’’ length. To do
so, we consider the length multiset LJnK of n, by which we mean the multiset of factorization lengths
in ZS(n). We focus specifically on the following factorization invariants.

(a) Themean factorization length µ(n) is the average factorization length of n:

µ(n) =
1

|LJnK|

∑
ℓ∈LJnK

ℓ.

(b) Themedian factorization length η(n) is the median of LJnK.
(c) The mode frequency ν(n) is the highest multiplicity among lengths in LJnK. Lengths with

multiplicity ν(n) comprise the set γ (n) ofmode factorization lengths.

Many results in the literature involving factorization invariants are asymptotic in nature [10,
22,26,31], in part because invariant behavior can be chaotic for ‘‘small’’ semigroup elements. For
instance, every multiset with elements from Z≥2 occurs as the length multiset of some squarefree
numerical semigroup element [28]. For some families of semigroups, including numerical semigroups,
asymptotic results take the form of an eventually quasipolynomial description like the one in Theo-
rem 1 [2,4,5,7,14,23,36,37].

We seek asymptotic results for the mean, median, and mode factorization lengths of n in the
spirit of Theorem 1. Although we focus on 3-generated numerical semigroups (as is common in the
literature [1,13,15,24,25,41]), getting a hold of these intermediate factorization invariants is subtle
enough to require several analytic and probabilistic techniques not standard in the factorization
theory literature. Moreover, we provide several examples which illustrate that the situation for four
or more generators is substantially more complicated (Example 32).
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Central to the study of factorization invariants is the notion of a trade, which encodes a relation
between semigroup generators. More precisely, a trade of a numerical semigroup S is a pair (z | z ′) of
factorizations z, z ′

∈ Z(n) for some element n ∈ S. A trade is length preserving if |z| = |z ′
|.

If S = ⟨n1, n2, n3 ⟩, then there is a unique trade of the form

(a, 0, c | 0, b, 0)

with a + c = b such that given a factorization of n of length ℓ, all other factorizations of n with the
same length ℓ are obtained by repeatedly performing this trade [12, Theorem 1.3]. Phrased in the
language of trades, we say S has exactly one minimal length-preserving trade. In this case, we refer to
the element

t = an1 + cn3 = bn2

as the trade element of S. Note that the same does not hold for numerical semigroups with more than
three generators [12, Example 1.4].

Example 4. The McNugget semigroup [46] is given by S = ⟨6, 9, 20 ⟩. Its minimal length-preserving
trade is (11, 0, 3 | 0, 14, 0), making its trade element

t = 11 · 6 + 3 · 20 = 14 · 9 = 126.

In this semigroup,

Z(132) = {(2, 0, 6), (0, 8, 3), (3, 6, 3), (6, 4, 3), (9, 2, 3), (12, 0, 3), (1, 14, 0),
(4, 12, 0), (7, 10, 0), (10, 8, 0), (13, 6, 0), (16, 4, 0), (19, 2, 0), (22, 0, 0)}

and

LJ132K = {{8, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22}}.

As guaranteed by Theorem 3, LS(132) forms an arithmetic progression fromm(132) = 8 toM(132) =

22 with step size 1 and elements 9 and 10 omitted. The mean factorization and median factorization
lengths of 132 are

µ(132) = 221/14 ≈ 15.7857 and η(n) =
1
2 (15 + 16) = 31/2,

respectively. Observe that 15 occurs twice in LJ132K because 132 has two distinct factorizations of
length 15, namely (1, 14, 0) and (12, 0, 3). No other factorization length appears this often, so the set
of mode factorization lengths is a singleton. In particular,

γ (132) = {15} and ν(132) = 2.

On the other hand, 1001 ∈ S has 5 factorizations of length 87, namely

(8, 57, 22), (19, 43, 25), (30, 29, 28), (41, 15, 31), (52, 1, 34) ∈ Z(1001).

Each factorization is obtained from (8, 57, 22) by repeatedly trading fourteen copies of 9 for eleven
copies of 6 and three copies of 20. The mode frequency of 1001 is ν(1001) = 8, which is the number
of factorizations of 1001 of each length in

γ (1001) = {107, 108, 110, 111, 112, 113, 114, 115} ⊂ L(1001).

This paper is devoted to the proofs of three theorems, which describe the limiting behavior of the
mode length and frequency (Theorem 5), the mean factorization length (Theorem 6), and the median
factorization length (Theorem 10). We state and discuss each theorem here.

Theorem 5 (Mode Length and Frequency). Fix a numerical semigroup S = ⟨n1, n2, n3 ⟩ and let t be the
trade element of S. For each n ∈ S,

ν(n) =
1
t n + c0(n),



S.R. Garcia, C. O’Neill and S. Yih / European Journal of Combinatorics 78 (2019) 190–204 193

in which c0(n) is a rational-valued periodic function with period t. Moreover,

γ (n + t) = γ (n) + t/n2 = {m + t/n2 : m ∈ γ (n)}

for all n ∈ S.

The proof of Theorem 5 is contained in Section 2. Although its proof is a relatively straightforward
combinatorial one, we leverage it and several analytic and probabilistic techniques to obtain themore
technical results below.

Theorem 6 (Mean Factorization Length). For any numerical semigroup S = ⟨n1, n2, n3 ⟩,

lim
n→∞

µ(n)
n

=
1
3

(
1
n1

+
1
n2

+
1
n3

)
. (7)

Theorem 6 states that µ(n) grows asymptotically like n times the reciprocal of the harmonic
mean of the generators of S. The largest value attained by (7) is 47/180 = 0.261, which occurs for
S = ⟨3, 4, 5 ⟩. On the other hand, (7) can be made arbitrarily small by selecting n1 large enough. This
prompts the following.

Problem 8. Which rational values in (0, 47
180 ) are of the form (7) for some numerical semigroup

S = ⟨n1, n2, n3 ⟩?

Remark 9. An Egyptian fraction is a finite sum of distinct rational numbers, each with numerator 1
(historically the ancient Egyptians also permitted 2/3 and 3/4, for which they had special symbols).
Every positive rational number can be expressed as an Egyptian fraction, although these representa-
tions are not unique [30, Section D11]. There are many rational numbers that cannot be expressed as
Egyptian fractions with three or fewer terms. For example,

8
11

=
1
2

+
1
5

+
1
37

+
1

4070
has sixteen decompositions of length 4, but none of length 3. Thus, there does not exist a numerical
semigroup S = ⟨n1, n2, n3 ⟩ so that (7) equals 8

33 = 0.24. There are other ‘‘forbidden’’ values of (7),
such as

8
51

≈ 0.156863,
3
19

≈ 0.157895, and
14
57

≈ 0.245614,

since none of 8/17, 9/19, and 14/19 can be expressed as a sum of three unit fractions [33]. These sorts
of problems are known to be extremely difficult. The famed Erdős–Straus conjecture asserts that for
each n ≥ 2,

4
n

=
1
n1

+
1
n2

+
1
n3

has a solution in nonnegative integers [18–20,29,45,47]. The numerator 4 is replaced by 5 in a closely-
related conjecture of Sierpiński [44]. Another conjecture along these lines is due to Schinzel [43]: for
each k ∈ N, the equation

k
n

=
1
n1

+
1
n2

+
1
n3

has a solution in nonnegative integers if n is sufficiently large. All of these conjectures remain
unresolved.

In a striking departure from other factorization invariants, which typically coincide with rational-
valued quasipolynomials for large semigroup elements, the expression (12) is often an irrational
number. This reinforces our assertion that obtaining information about intermediate factorization
invariants is both more difficult and more interesting than studying traditional extremal invariants.
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Theorem 10 (Median Factorization Length). Suppose S = ⟨n1, n2, n3 ⟩, and let

F =
n1(n3 − n2)
n2(n3 − n1)

. (11)

Then

lim
n→∞

η(n)
n

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n1

(
1 −

√
1 − F
2

)
+

1
n3

√
1 − F
2

if F ≤
1
2
,

1
n1

√
F
2

+
1
n3

(
1 −

√
F
2

)
if F ≥

1
2
.

(12)

Regarding n1 and n3 as fixed, we see that the expressions in (12) are convex combinations of 1/n1
and 1/n3 with coefficients in terms of the constant F (called the fulcrum constant, see Section 3). We
see from (11) that F varies from 0 to 1 as n2 varies from n3 to n1, and the coefficients of 1/n1 and
1/n3 vary between 1 − 1/

√
2 ≈ 0.29 and 1/

√
2 ≈ 0.71. Since the combinations are convex and

1/n1 > 1/n3, it follows that

lim
n→∞

η(n)
n

∈

[(
2 −

√
2

2

)
1
n1

+

(√
2
2

)
1
n3

,

(√
2
2

)
1
n1

+

(
2 −

√
2

2

)
1
n3

]
where the endpoints are attained at F = 0 and F = 1, respectively. In particular, these bounds are
sharp since F = 0 precisely when n2 = n3, and F = 1 precisely when n1 = n2. Furthermore,

F =
1
2

if and only if
1
n2

=
1
2

(
1
n1

+
1
n3

)
(that is, when n2 is the harmonic mean of n1 and n3). Moreover, our proof shows that this occurs if
and only if

lim
n→∞

µ(n)
n

= lim
n→∞

η(n)
n

=
1
n2

, (13)

which is entirely analogous to the formulas (2) that describe the asymptotic behavior of m(n) and
M(n).

In cases where (12) is rational, it is natural to ask whether the median function η(n) is eventually
quasilinear, in the spirit of Theorems 1 and 5. Indeed, preliminary computations indicate the answer
is ‘‘yes’’ for S = ⟨12, 15, 20 ⟩ and ‘‘no’’ for S = ⟨7, 16, 25 ⟩. With this in mind, we pose the following
question.

Problem 14. For which 3-generated numerical semigroups S = ⟨n1, n2, n3 ⟩ is the median function
η(n) eventually quasilinear?

2. Mode factorization lengths

In this section, we prove Theorem 5.

Proof of Theorem 5. Fix n ∈ S and ℓ ∈ γ (n), and suppose (a, 0, c | 0, b, 0) is the unique minimal
length-preserving trade in S. If n1 = n3, then t = n1 and t | n, so ν(n) = n/t . Otherwise,
since no element of the 2-generated semigroup ⟨n1, n3 ⟩ has multiple factorizations of the same
length [42], there is a unique length-ℓ factorization (a1, a2, a3) of n with maximal second coefficient.
The factorizations of nwith length ℓ can then be enumerated as

(a1, a2, a3), (a1 + a, a2 − b, a3 + c), . . . , (a1 + ma, a2 − mb, a3 + mc),

in whichm + 1 = ν(n). Each of these induces a factorization of n + t , namely

(a1, a2 + b, a3), (a1 + a, a2, a3 + c), . . . , (a1 + ma, a2 − (m − 1)b, a3 + mc),
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each with length ℓ + b. Thus,

ν(n + t) ≥ ν(n) + 1, (15)

with the last factorization of length ℓ + b given by(
a1 + (m + 1)a, a2 − mb, a3 + (m + 1)c

)
.

Conversely, let (b1, b2, b3) be the unique factorization of n + t with mode length ℓ′
∈ γ (n + t) and

maximal second coefficient, and letm′
= ν(n + t) − 1. As before, them′

+ 1 factorizations

(b1, b2, b3), (b1 + a, b2 − b, b3 + c), . . . ,
(
b1 + m′a, b2 − m′b, b3 + m′c

)
of n + t with length ℓ′ inducem′ factorizations of nwith length ℓ′

− b, namely

(b1, b2 − b, b3), (b1 + a, b2 − 2b, b3 + c), . . . ,(
b1 + (m′

− 1)a, b2 − m′b, b3 + (m′
− 1)c

)
.

Together with (15), we conclude ν(n + t) = ν(n) + 1, which immediately yields

ν(n) =
1
t n + c0(n)

for some t-periodic function c0(n). Lastly, the map between factorizations of n and n + t above yields
a bijection

γ (n) → γ (n + t)

that sends ℓ ↦→ ℓ + b. This completes the proof. □

3. Continuous approximation of length multiplicities

In this section, we develop machinery used in the proofs of Theorems 6 and 10. We begin by
studying the values of µ and η along certain subsequences of S, and then prove these values coincide
asymptotically with those over the entire semigroup. Before doing so, we need to introduce onemore
quantity.

Fix n ∈ S = ⟨n1, n2, n3 ⟩, and let

δ = gcd(n3 − n1, n3 − n2, n2 − n1).

This constant arises in factorization theory as the minimum element of the delta set of S; see [11] for
a full development. Most relevant to our setting, δ is the step size of every arithmetic sequence in the
structure theorem (Theorem 3).

Theorem16 demonstrates that δ is closely related to the trade element t for 3-generated numerical
semigroups.

Theorem 16 ([12, Theorem 1.3]). If S = ⟨n1, n2, n3 ⟩ is a numerical semigroup, then

δt = n2(n3 − n1),

where t denotes the trade element of S.

Theorems 1, 5, and 16 demonstrate that the constants δ, t , n1, n2, and n3 each contain important
information about the factorization structure of S, which suggests examining multiples of s =

δtn1n2n3. Since the only factorization of 0 ∈ S is the length 0 factorization (0, 0, 0), we obtain

ak = m(ks) =
1
n3
ks = kδtn1n2 and (17)

bk = M(ks) =
1
n1
ks = kδtn2n3 (18)

from Theorem 1 for each k ∈ N. Moreover, γ (ks) = {ck} is singleton and precisely dk minimal trades
can be made from the factorization (0, ck, 0) of ks, where
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Fig. 1. Factorization length multiplicity function of 630 ∈ ⟨3, 5, 7⟩ plotted against factorization length. In this semigroup,
δ = 2, so the function assumes the value 0 on every other length. Disregarding the frequent dips to zero, the function increases
roughly linearly from the minimum factorization length (90) to the mode length (126), then decreases roughly linearly from
mode length to maximum factorization length (210).

ck =
1
n2
ks = kδtn1n3 and

dk = ν(ks) − 1 =
1
t ks = kδn1n2n3

from Theorem 5. In what follows, let fk(x) denote the multiplicity of the length x ∈ L(sk). Fig. 1 depicts
the multiplicity function of 630 ∈ ⟨3, 5, 7 ⟩.

To characterize the asymptotic behavior of fk, we construct a step function Sk with the property
that

ℓ−1∑
i=ak

fk(i) =
1
δ

∫ ℓ

ak

Sk(x) dx

for all ℓ ∈ L(ks). We give Sk one step of width δ for each length ℓ ∈ L(ks). Steps corresponding to
ℓ ∈ [ak, ck) agree with fk(ℓ) on their left endpoints, leaving their right endpoints open, and steps
corresponding to ℓ ∈ (ck, bk] agreewith fk(ℓ) at their right endpoints, leaving their left endpoints open.
The value Sk(ck) is left undefined, which is not a problem sincewe intend to integrate Sk. Formally, this
yields

Sk(x) =

{
fk(ak + jδ) if x < ck, x ∈

[
ak + jδ, ak + (j + 1)δ

)
,

fk(ck + jδ) if x > ck, x ∈
(
ck + (j − 1)δ, ck + jδ

]
.

See Fig. 2 for a depiction of the step function constructed from Fig. 1.
In order to describe the asymptotic behavior of Sk as k → ∞, we prove that, after appropriate

affine transformations, Sk converges uniformly to a piecewise linear function Lk on [ak, bk] connecting
the points (ak, 1), (ck, dk + 1), and (bk, 1). More precisely, Lk is given by

Lk(x) =

⎧⎪⎨⎪⎩
n2n3

t(n3 − n2)
(x − ak) + 1 if x ∈ [ak, ck],

n1n2

t(n2 − n1)
(bk − x) + 1 if x ∈ [ck, bk].

This is depicted in Fig. 3 on the same axes as Sk.
We begin by showing that Lk is an upper bound for the step function Sk.

Lemma 19. For each integer x ∈ [ak, bk], the multiplicity fk(x) is at most Lk(x). In particular Sk(x) ≤ Lk(x)
for all x ∈ [ak, bk].
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Fig. 2. The step function corresponding to the same semigroup element as Fig. 1.

Proof. First, suppose x = ak + ℓ ∈ [ak, ck], so that

Lk(x) =
n2n3

t(n3 − n2)
ℓ + 1.

If no factorizations of length x exist, then we are done. Otherwise, it suffices to prove that any length
x factorization z = (z1, z2, z3) must satisfy

z2 ≤
n3

n3 − n2
ℓ,

as Theorem 16 then bounds the number of minimal length-preserving trades that can be applied to z.
Indeed, since ks = akn3 = z1n1 + z2n2 + z3n3, we see

n3ℓ = n3(z1 + z2 + z3) − n3ak = z1(n3 − n1) + z2(n3 − n2) ≥ z2(n3 − n2),

from which we draw the desired conclusion.
Since the case x ∈ [ck, bk] is analogous to the first, we omit its proof. □

We next exhibit a lower bound for Sk (also depicted in Fig. 3) that we will see also converges
uniformly to Lk as k → ∞ (after appropriate affine transformations).

Lemma 20. There is a constant C independent of k with the following properties.

(a) For any x ∈ [ak, ck), writing x = ak + t(n3 − n2)j + ℓ with 0 ≤ ℓ < t(n3 − n2) and 0 ≤ j < kδn1,
we have fk(x) ≥ n2n3(j − C) + 1.

(b) For any x ∈ (ck, bk], writing x = bk − t(n2 − n1)j − ℓ with 0 ≤ ℓ < t(n2 − n1) and 0 ≤ j < kδn3,
we have fk(x) ≥ n1n2(j − C) + 1.

In particular, |Lk − Sk| is bounded independent of k.

Proof. Suppose x < ck, and write x = ak + ℓ + t(n3 − n2)j with 0 ≤ ℓ < t(n3 − n2). By Theorem 3,
C can be chosen large enough to ensure fk(x) is positive for j = C . For j < C , the statement is trivial
since fk(x) is non-negative.

Now, for j > C , we proceed by induction on j. If fk(x) ≥ n2n3(j − C) + 1, then by Theorem 16 there
is some factorization z = (z1, z2, z3) of length x with second coordinate at least z2 ≥ tn3(j − C). By
Lemma 19, we must have

ak(n3 − n1) = z1n1 + z2n2 + z3n3 − akn1 = (x − z2 − z3)n1 + z2n2 + z3n3 − akn1

= (ℓ + t(n3 − n2)j)n1 + z2(n2 − n1) + z3(n3 − n1)
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Fig. 3. A depiction of the upper bound Lk (black diagonal lines) and lower bound (longer red steps) for fk (shorter blue steps) .
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

≤ (ℓ + t(n3 − n2)j)n1 +
n3

n3 − n2
(ℓ + t(n3 − n2)j)(n2 − n1) + z3(n3 − n1)

=
n2(n3 − n1)
n3 − n2

ℓ + tn2(n3 − n1)j + z3(n3 − n1),

which, by assumption on ℓ and j, yields

ak ≤
n2

n3 − n2
ℓ + tn2j + z3 < tn2 + tn2j + z3 < tn2 + kδtn1n2 + z3 = tn2 + ak + z3.

Thismeans (z1, z2+tn3, z3−tn2) is a factorization of kswith length x+t(n3−n2) and second coordinate
at least tn3(j − C) + tn3, so we conclude

fk(x + t(n3 − n2)) ≥ n2n3(j − C) + n2n3 + 1

by Theorem 16.
The case x > ck is similar. Since

0 ≤ Lk(x) − Sk(x) ≤ Cn1n2n3

for all x ∈ [ak, bk] by Lemma 19, the final claim holds as well. □

Now that we have obtained upper and lower bounds for Sk, we normalize Lk so it is a probability
distribution over [0, 1] by applying the invertible affine transformations Tk : [ak, bk] → [0, 1] given
by

Tk(x) =
x − ak
bk − ak

and dividing by the normalization factor

δ|ZS(ks)|
bk − ak

so the resulting function is nonnegative and integrates to 1 over [0, 1]. The image under each Tk of the
mode factorization length ck is the fulcrum constant

F =
n1(n3 − n2)
n2(n3 − n1)

. (21)

In order to make things more precise, we require Big-O and Big-Θ notation. For two real-valued
functions f and g , we say that f (x) = O(g(x)) if there is a constant C > 0 such that |f (x)| ≤ O(g(x)) for
sufficiently large x. We say that f (x) = Θ(g(x)) if there are constants C1, C2 so that C1|g(x)| ≤ |f (x)| ≤

C2|g(x)| for sufficiently large x.
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Fig. 4. The function L(x).

The linear component of Lk on [ak, ck] is mapped to the line
2
F
x +

bk − ak
δ|ZS(ks)|

=
2
F
x + Θ(1/k)

on [0, F ] since |ZS(ks)| = Θ(k2) by [36, Theorem 3.9] and bk − ak = Θ(k) by (17). An analogous
computation on the remaining linear component demonstrates that the normalized Lk converges
uniformly to the piecewise linear function

L(x) =

⎧⎪⎪⎨⎪⎪⎩
2
F
x if 0 ≤ x ≤ F ,

−
2

1 − F
x +

2
1 − F

if F < x ≤ 1,

depicted in Fig. 4, a standard triangular distribution over the interval [0, 1]. The properties of a
triangular distribution are well known [34]; in this case,

µL =

∫ 1

0
xL(x) dx =

1 + F
3

(22)

and

ηL =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

√
1 − F
2

if F ≤
1
2 ,√

F
2

if F ≥
1
2 .

(23)

The normalized Sk are bounded above by the normalized Lk by Lemma 19, and, as |Lk − Sk| is bounded
independent of k by Lemma 20, the difference between the normalized Sk and Lk tends to 0. In
particular, the normalized Sk converge uniformly to L.

4. Proving Theorems 6 and 10

In Section 3, we obtained an asymptotic description of the length multiset LJnK for elements of the
form n = ks = kδtn1n2n3. We begin by proving that the convergence of µ(n)/n and η(n)/n for this
subsequence implies convergence of the whole sequence (Lemma 24). Once this is done, we prove
Theorems 6 and 10.

Lemma 24. If S = ⟨n1, n2, n3 ⟩ is a numerical semigroup and s = δtn1n2n3, then

L = lim
n→∞

µ(n)
n

exists if and only if L′
= lim

k→∞

µ(sk)
sk

exists.

If either limit exists (equivalently, both limits exist), then they converge to the same limit. The same holds
with η in place of µ.
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Proof. If L exists, then every subsequence converges to the same limit, so L′
= L. Conversely, suppose

L′ exists. Since S has finite complement, every x ∈ S can be written as x = ks + r for some integer
k ≥ 0 and r ∈ S by [42, Lemma 1.6]. In order to prove L = L′, it suffices to show that for fixed r ∈ S,

lim
k→∞

µ(ks + r)
ks + r

= lim
k→∞

µ(ks)
ks

. (25)

Given any a ∈ L(r), there is an injective map

LJksK ↪→ LJks + rK
ℓ ↦→ ℓ + a.

Write LJks+rK = {{ℓ1, . . . , ℓM}}with ℓ1, . . . , ℓm lying in the image of the abovemap and ℓm+1, . . . , ℓM
lying outside the image; in particular,M = |Z(ks + r)| andm = |Z(ks)|. Using the facts that

|Z(n)| = Θ(n2) and |Z(n + r)| − |Z(n)| = Θ(n) (26)

for fixed r by [36, Theorem 3.9] and that each element of LJksK is O(k) by Theorem 1, we obtain
M = Θ(k2), m = Θ(k2),M − m = Θ(k), and

|µ(ks + r) − µ(ks)| =

⏐⏐⏐⏐⏐ 1M
M∑
i=1

ℓi −
1
m

m∑
i=1

(ℓi − a)

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
(

1
M

−
1
m

) m∑
i=1

ℓi +
1
M

M∑
i=m+1

ℓi + a

⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐
(

1
M

−
1
m

) m∑
i=1

ℓi

⏐⏐⏐⏐⏐+ 1
M

M∑
i=m+1

ℓi + a

= O
( 1
k3
)
O(k2)O(k) + O

( 1
k2
)
O(k)O(k) + O(1)

= O(1)

as k → ∞.
Now, the median value of {{ℓ1, . . . , ℓm}} can shift by at most M − m elements (counting mul-

tiplicity) upon including the lengths {{ℓm+1, . . . , ℓM}}. Lemmas 19 and 20 provide upper and lower
bounds for the multiplicities fk(x), respectively, that are O(k), so each length has multiplicity O(k) as
well. Moreover, LJksK limits to a triangular distribution, so since |LJksK| = Θ(k2), the lengths adjacent
to η(ks) on either side (which are all fixed distance δ apart) must havemultiplicityΘ(k) (in particular,
not just O(k)). As such, sinceM − m = Θ(k) by (26),

|η(ks + r) − η(ks)| =
Θ(k)
Θ(k)

δ = O(1),

at which point we conclude that (25) holds for fixed r for both η and µ. □

Using the continuous probability distribution function L, we are now ready to compute the limits
of µ(n)/n and η(n)/n as n → ∞, completing the proofs of Theorems 6 and 10, respectively.

Proof of Theorem 6. Uniform convergence of the normalized Sk and (22) yield

lim
k→∞

∫ 1

0
xSk(x) dx =

∫ 1

0
xL(x) dx =

1 + F
3

,

and upon inverting each transformation Tk, we obtain
1
3T

−1
k (1 + F ) =

1
3

[
(1 + F )(bk − ak) + ak

]
=

1
3 (ak + bk + ck)

as the mean of the original distributions. Lemma 24 now implies

lim
n→∞

µ(n)
n

= lim
k→∞

µ(ks)
ks

=
1
3

(
1
n1

+
1
n2

+
1
n3

)
,

which completes the proof. □
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Proof of Theorem 10. Applying (23), first suppose F ≥
1
2 . Computing the preimage under Tk and

applying Lemma 24 yields

lim
k→∞

η(ks)
ks

= lim
k→∞

T−1
k

(√
F
2

)
1
ks

= lim
k→∞

bk − ak
ks

√
F
2

+
ak
ks

=
1
n1

√
F
2

+
1
n3

(
1 −

√
F
2

)
.

The case F ≤
1
2 is similar.

The case F =
1
2 warrants special attention. For such numerical semigroups, the above demon-

strated equalities reveal

γ (ks) = {µ(ks)} = {η(ks)} =
{
ks/n2

}
,

from which we obtain (13). □

5. Realizable median constants

The potentially irrational quantities that appear in the formula (12) for the asymptotic median
factorization length raise interesting questions. Is it possible for (12) to be rational? What sort
of quadratic irrational numbers can be obtained? We provide partial answers here, exhibiting (i)
infinitely many numerical semigroups whose median constant is rational (Theorem 27) and (ii)
infinitely many numerical semigroups whose median constant is an irrational element of Q(

√
d), in

which d is any square-free positive integer (Theorem 28). Both constructions consist of numerical
semigroups minimally generated by arithmetic sequences, a family of semigroups known in the
literature for being particularly well-behaved [3,8,40].

Theorem 27. There are infinitely many minimally generated numerical semigroups S = ⟨n1, n2, n3⟩ so
that η(n)/n tends to a rational number.

Proof. Let a, b, c denote a primitive Pythagorean triple; that is, gcd(a, b, c) = 1 and a2 + b2 = c2. It
is well-known that there are infinitely many such triples and that a, b ≥ 3. Suppose that a > b. Let

n1 = a2 − b2, n2 = a2, n3
= a2 + b2 = c2,

and S = ⟨n1, n2, n3 ⟩. Then the fulcrum constant is

F =
n1(n3 − n2)
n2(n3 − n1)

=
(a2 − b2)b2

a2(2b2)
=

a2 − b2

2a2
<

1
2
.

Thus, we are in the first case of Theorem 10. To show that the limit of η(n)/n is rational, we verify that
the expression

(n2 − n1)(n3 − n1)
2n2n3

=
b2(2b2)
2a2c2

=
b4

a2c2
=

(
b2

ac

)2

under the radical in (12) is the square of a rational number.
To complete the proof, notice that n1, n2, n3 is aminimal generating set since it forms an arithmetic

sequence whose minimal element a2 − b2 is relatively prime to the step size b2 [3]. □

It is a folklore theorem that for any α ∈ R \ Z, the sequence ⌊nα⌋ contains infinitely many
prime numbers. According to [32, p. 240], this was first observed either by Heilbronn, as asserted
by Vinogradov [48, p. 180], or by Fogels, as suggested by Leitmann and Wolke [35]. In particular,
the number of primes at most x of the form ⌊nα⌋ is asymptotic to π (x)/α, in which π (x) denotes
the number of primes at most x. For algebraic α, one can be more explicit: the counting function is
π (x)/α + O(x0.875+ϵ) for every ϵ > 0, in which the implied constant depends on α and ϵ [6].
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Theorem28. If d ≥ 2 is a square-free positive integer, then there are infinitelymanyminimally generated
numerical semigroups S = ⟨n1, n2, n3⟩ so that η(n)/n tends to an irrational element of Q(

√
d).

Proof. Let d be a square-free positive integer and let t ∈ N be so that

p = ⌊t
√
d⌋ > max{2, d} (29)

is prime. In particular, p > d and hence p ∤ d. Since d is not a square,

t2d = p2 + ℓ

for some ℓ ≥ 1 and

p2 < p2 + ℓ < (p + 1)2. (30)

In particular,

ℓ < 2p + 1. (31)

We claim that p ∤ ℓ. Suppose toward a contradiction that p|ℓ. Then p|t2d. Since p ∤ d, we have p|t2
and hence p|t because p is prime. Therefore,

p
√
d − 1 ≤ t

√
d − 1 < ⌊t

√
d⌋ = p

and hence

p(
√
d − 1) ≤ 1,

which is a contradiction because both factors on the left-hand side are greater than 1. Therefore, p ∤ ℓ.
Define

n1 = p2 − ℓ, n2 = p2, n3 = p2 + ℓ  
t2d

and S = ⟨n1, n2, n3⟩. Then the fulcrum constant is

F =
n1(n3 − n2)
n2(n3 − n1)

=
(p2 − ℓ)ℓ
p2(2ℓ)

=
1
2

·
p2 − ℓ

p2
<

1
2
.

Thus, we are in the first case of Theorem 10. The radical in (12) is√
(n2 − n1)(n3 − n1)

2n2n3
=

√
ℓ(2ℓ)

2p2(p2 + ℓ)
=

ℓ

p
1√

p2 + ℓ
=

ℓ

pt
√
d

=
ℓ

ptd

√
d,

which is a nonrational element of Q(
√
d) since ℓ ̸= 0.

As in Theorem27, the semigroup in question is generated by an arithmetic sequencewith relatively
prime minimal element p2 − ℓ and step size ℓ, and as such is minimally generated [3]. □

6. Numerical semigroups with 4 or more generators

We close with an example that demonstrates the difficulty in generalizing the results presented
here to more general numerical semigroups.

Example 32. Let S = ⟨4, 5, 6, 7 ⟩ and n = 1680, whose factorization length multiplicity function
is plotted in Fig. 5. Taking common differences reveals points of inflection at n/6 and n/5, a fact that
remains true empirically as n → ∞. For larger n, the length multiplicity function appears to fit a
piecewise quadratic function with boundaries at n/6 and n/5. On the other hand, the peak of the
length multiplicity function for n = 2520 in S = ⟨5, 7, 8, 9, 11 ⟩ does not occur at n/8, and the two
visible points of inflection do not appear to occur at n/9 and n/7.
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Fig. 5. Factorization length multiplicity functions of 1680 ∈ ⟨4, 5, 6, 7 ⟩ (left) and 2520 ∈ ⟨5, 7, 8, 9, 11 ⟩ (right) each plotted
against factorization length.
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