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For A ⊆ {1, 2, . . .}, we consider R(A) = {a/a′ : a, a′ ∈ A}. If 
A is the set of nonzero values assumed by a quadratic form, 
when is R(A) dense in the p-adic numbers? We show that for 
a binary quadratic form Q, R(A) is dense in Qp if and only 
if the discriminant of Q is a nonzero square in Qp, and for 
a quadratic form in at least three variables, R(A) is always 
dense in Qp. This answers a question posed by several authors 
in 2017.
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1. Introduction

For a subset A ⊆ N = {1, 2, 3, . . .}, let R(A) = {a/a′ : a, a′ ∈ A} denote the corre-
sponding ratio set (or quotient set). The question of when R(A) is dense in the positive 
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real numbers has been examined by many authors over the years [6,10,12,13,21,20,5,16,
17,27,2–4,22,23,28,29]. Analogues in the Gaussian integers [8] and, more generally, in 
algebraic number fields [26], have recently been considered.

The study of quotient sets in the p-adic setting was initiated by Florian Luca and the 
second author [9]. Shortly thereafter several other papers on the topic appeared [7,19,24,
18]. In [7] it was shown that if A = {x2 + y2 : x, y ∈ Z}\{0}, then R(A) is dense in Qp

if and only if p ≡ 1 (mod 4). It is natural to wonder about possible extensions to other 
quadratic forms.

Fix a prime number p and observe that each nonzero rational number has a unique 
representation of the form r = ±pka/b, in which k ∈ Z, a, b ∈ N, and gcd(a, p) =
gcd(b, p) = gcd(a, b) = 1. The p-adic valuation of such an r is νp(r) = k and its p-adic 
absolute value is ‖r‖p = p−k. By convention, νp(0) = ∞ and ‖0‖p = 0. The p-adic metric
on Q is d(x, y) = ‖x − y‖p. We write ‖ · ‖ in place of ‖ · ‖p when no confusion can arise. 
The field Qp of p-adic numbers is the completion of Q with respect to the p-adic metric 
[11,14]. We let Q×

p = Qp\{0}.
A quadratic form is a homogeneous polynomial

Q(x1, x2, . . . , xr) =
r∑

i=1

r∑
j=i

aijxixj , (1.1)

of degree 2. We say that Q is integral if aij ∈ Z for all i, j, and we say that Q is 
primitive if there is no positive integer k > 1 so that k|aij for all i and j. We can write 
Q(�x) = 1

2�xT A�x for an r × r symmetric matrix A (which will have even diagonal entries, 
and integral off-diagonal entries). Two forms Q and Q′ are equivalent if there is an r × r

matrix M with integer entries and det(M) = ±1 so that Q′(�x) = Q(M�x).
In the case of binary forms, we will distinguish proper equivalence (the case that 

det(M) = 1) from improper equivalence (the case that det(M) = −1). Given a binary 
form

Q(x, y) = ax2 + bxy + cy2, (1.2)

the discriminant of Q is b2 − 4ac. Equivalent binary forms assume the same values and 
have the same discriminants.

Let F be a field. We say that Q is nonsingular over F if det(A) �= 0 (and singular
otherwise). We say that Q is isotropic over F if there is a nonzero vector �x ∈ Fr so that 
Q(�x) = 0. Otherwise, Q is anisotropic over F . If Q represents every value in F , then Q
is universal over F . It is known that if Q is isotropic and nonsingular over F , then Q is 
universal over F [15, Thm. I.3.4].

For brevity, the term “quadratic form” hereafter refers to a quadratic form that is 
nonsingular over Q, integral, and primitive. The quotient set generated by a quadratic 
form Q is

R(Q) = {Q(�x)/Q(�y) : �x, �y ∈ Zr, Q(�y) �= 0}.
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Is Q isotropic modulo p?

Is Q singular modulo p?
R(Q) not 

dense in Qp

(Theorem 2.1a)

Is p odd?
R(Q) dense 
in Qp (The-
orem 2.1b)

Is k odd? Is k odd?

R(Q) not 
dense in Qp

(Theorem 3.1b)
Is (�/p) = 1?

R(Q) dense 
in Qp (The-
orem 3.1a)

R(Q) not 
dense in Qp

(Theorem 3.1a)

R(Q) not 
dense in Q2

(Theorem 4.1a)
Is � ≡ 1 (mod 8)?

R(Q) dense 
in Q2 (The-
orem 4.1c)

R(Q) not 
dense in Q2

(Theorem 4.1b)
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Fig. 1. How to decide if R(Q) is dense in Qp. Here Q is an integral, binary, and primitive quadratic form of 
discriminant pk�, in which gcd(p, �) = 1. Here (�/p) denotes a Legendre symbol.

If Q and Q′ are equivalent, then R(Q) = R(Q′). It has been asked when R(Q) is dense in 
Qp [7, Problem 4.4]. The main result of this paper is a complete answer to this question.

Theorem 1.3. Let Q be an integral quadratic form in r variables. Assume that Q is 
primitive and is nonsingular over Q and let p be a prime number.

(a) If Q is binary, then R(Q) is dense in Qp if and only if the discriminant of Q is a 
square in Qp.

(b) If r ≥ 3, then R(Q) is dense in Qp.

We give two proofs of Theorem 1.3a. Our first approach is longer (Fig. 1), but com-
pletely elementary. The second approach is shorter, but requires the classification of 
values represented by quadratic forms over Qp (as can be found in Serre’s book [25]). 
This same tool is used to prove Theorem 1.3b.

The organization of this paper is as follows. The elementary proof of Theorem 1.3a 
constitutes sections 2, 3, and 4. In Section 2 we handle binary quadratic forms that are 
nonsingular over Fp; the results therein apply to all primes. Section 3 concerns binary 
quadratic forms that are singular modulo an odd prime and Section 4 treats forms that 
are singular modulo 2. In Section 5, we give a more sophisticated proof of Theorem 1.3a 
as well as the proof of Theorem 1.3b.
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2. Nonsingular (all primes)

Our aim in this section is to prove the following theorem, which addresses the two 
uppermost terminal nodes (blue) in Fig. 1.

Theorem 2.1. Let Q(x, y) = ax2 + bxy + cy2 be primitive and integral.

(a) If Q is anisotropic modulo p, then R(Q) is not dense in Qp.
(b) If Q is isotropic and nonsingular modulo p, then R(Q) is dense in Qp.

2.1. Proof of Theorem 2.1a

Suppose that Q is anisotropic over Z/pZ. We claim that νp(Q(x, y)) is even for all 
x, y ∈ Z. If Q(x, y) �≡ 0 (mod p), then νp(Q(x, y)) = 0, which is even. Suppose that 
Q(x, y) ≡ 0 (mod p). Then (x, y) ≡ (0, 0) (mod p) since Q is anisotropic; that is, x = mpj

and y = npk, in which j, k ≥ 1, p �m, and p �n. Without loss of generality, assume that 
j ≥ k. Then

νp(Q(x, y)) = νp(am2p2j + bmnpj+k + cn2p2k)

= νp

(
p2k(am2p2(j−k) + bmnpj−k + cn2)

)
= 2k + νp(Q(mpj−k, n)) = 2k

since p � n and Q is anisotropic. Thus, νp(Q(x, y)) − νp(Q(z, w)) �= 1 = νp(p) for all 
x, y, z, w ∈ Z and hence R(Q) is bounded away from p in Qp. Consequently, R(Q) is not 
dense in Qp. �
2.2. Proof of Theorem 2.1b for p odd

Before proceeding, we need two lemmas.

Lemma 2.2 (Lemma 2.3 of [7]). Let A ⊂ N and let p be a prime.

(a) If A is p-adically dense in N, then R(A) is dense in Qp.
(b) R(A) is p-adically dense in N if and only if R(A) is dense in Qp.

Proof. (a) If A is p-adically dense in N, it is p-adically dense in Z. Inversion is continuous 
on Q×

p , so R(A) is p-adically dense in Q, which is dense in Qp.
(b) Suppose that R(A) is p-adically dense in N. Since inversion is continuous on Q×

p , 
the result follows from the fact that N is p-adically dense in {x ∈ Q : νp(x) ≥ 0}. �
Lemma 2.3. Let Q be nonsingular modulo an odd prime p. If (x, y) �≡ (0, 0) (mod p) and 
Q(x, y) ≡ 0 (mod p), then 2ax + by �≡ 0 (mod p) or bx + 2cy �≡ 0 (mod p).



C. Donnay et al. / Journal of Number Theory 201 (2019) 23–39 27
Proof. We prove the contrapositive. Suppose that

2ax + by ≡ bx + 2cy ≡ 0 (mod p). (2.4)

Since Q is nonsingular, b2 �≡ 4ac (mod p). If p|b, then p �a and p � c. Thus, there are two 
cases: p �a and p �c, or p �b.

Case 1: If p �a and p �c, then (2.4) implies that

x ≡ − by

2a
(mod p). (2.5)

Thus,

0 ≡ Q

(
− by

2a
, y

)
≡

(
−b2 + 4ac

4a

)
y2 (mod p)

and hence y ≡ 0 (mod p). Then (2.5) implies that (x, y) ≡ (0, 0) (mod p).

Case 2: If p �b, then

x ≡ −2cy

b
(mod p) (2.6)

and hence

0 ≡ Q

(
−2cy

b
, y

)
≡ −cy2

(
b2 − 4ac

b2

)
(mod p).

Consequently, p|y or p|c.

• If p|y, then (2.6) implies that (x, y) ≡ (0, 0) (mod p).
• If p|c, then (2.6) implies that p|x. Since p � b, (2.4) ensures that p|y. Thus, (x, y) ≡

(0, 0) (mod p). �
Suppose that Q is isotropic and nonsingular modulo an odd prime p. By Lemma 2.2, 

it suffices to show that for each n ∈ Z and r ≥ 1, there exists an (x, y) ∈ Z2 such that 
Q(x, y) ≡ n (mod pr). To this, we add the requirement

p �(2ax + by) or p �(bx + 2cy) . (2.7)

We induct on r. The base case is r = 1.

• If n ≡ 0 (mod p), then since Q is isotropic we may find (x, y) �≡ (0, 0) (mod p) so 
that Q(x, y) ≡ 0 (mod p). Lemma 2.3 ensures that at least one of the two conditions 
in (2.7) hold.
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• If n �≡ 0 (mod p), then there is an (x, y) so that Q(x, y) ≡ n (mod p) since Q is 
isotropic and nonsingular [15, Prop. 3.4]. Since p is odd,

0 �≡ n ≡ Q(x, y) ≡ x

2 (2ax + by) + y

2(bx + 2cy) (mod p),

which implies that (2.7) holds.

Now suppose that Q(x, y) ≡ n (mod pr) and, without loss of generality, that p �
(2ax + by). Then Q(x, y) = n + mpr for some m ∈ Z. If

i ≡ −(2ax + by)−1m (mod p),

then the identity

Q(x + z, y) = Q(x, y) + az2 + bzy + 2axz (2.8)

yields

Q(x + ipr, y) = Q(x, y) + ai2p2r + bipry + 2axipr

= n + mpr + ai2p2r + bipry + 2axipr

≡ n + mpr + bipry + 2axipr (mod pr+1)

≡ n + pr(m + (2ax + by)i) (mod pr+1)

≡ n (mod pr+1),

in which 2a(x + ipr) + by = (2ax + by) + 2aipr is not divisible by p. This completes the 
induction. �
2.3. Proof of Theorem 2.1b for p = 2

Suppose that Q is isotropic and nonsingular modulo 2. Since 2 � (b2 − 4ac), it follows 
that b is odd and hence

Q(x, y) ≡ ax2 + xy + cy2 (mod 2).

Because Q is isotropic, a or c is even; see Table 1. Without loss of generality, suppose 
that a is even. By Lemma 2.2, it suffices to show that for each n ∈ Z and r ≥ 1, there 
is an (x, y) ∈ Z2 such that

Q(x, y) ≡ n (mod 2r) and y �≡ 0 (mod 2). (2.9)

We proceed by induction on r. For the base case r = 1, we may let (x, y) = (n − c, 1).
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Table 1
Values of Q(x, y) ≡ ax2 + xy + cy2 (mod 2).

x y Q(x, y) (mod 2) a, c odd a, c even a even, c odd a odd, c even
0 0 0 0 0 0 0
0 1 c 1 0 1 0
1 0 a 1 0 0 1
1 1 1 + a + c 1 1 0 0

Now suppose that (2.9) holds for some r. Then Q(x, y) = n + m2r for some m ∈ Z. 
If i ≡ mb−1y−1 (mod 2), then (2.8) yields

Q(x + 2ri, y) = Q(x, y) + a(2ri)2 + b(2ri)y + 2ax(2ri)

= (n + m2r) + 22rai2 + 2rbiy + 2r+1aix

≡ n + m2r + 2rbiy (mod 2r+1)

≡ n + 2r(m + biy) (mod 2r+1)

≡ n (mod 2r+1).

This completes the induction. �
3. Singular modulo an odd prime

Our aim in this section is to prove the following theorem, which addresses the three 
lower-left terminal nodes (red) in Fig. 1. Below (�/p) is a Legendre symbol.

Theorem 3.1. Let Q(x, y) = ax2 + bxy + cy2 be primitive and integral with discriminant 
pk�, in which k ≥ 1 and p is an odd prime that does not divide �.

(a) If k is even, then R(Q) is dense in Qp if and only if (�/p) = 1.
(b) If k is odd, then R(Q) is not dense in Qp.

3.1. Proof of Theorem 3.1a

We have b2 −4ac = pk� with k ≥ 2 even. Because Q is primitive, p cannot divide both 
a and c since otherwise it would divide a, b, and c. Without loss of generality, suppose 
that p � a. Let u ≡ 2−1a−1b (mod pk), so that 2ua − b ≡ 0 (mod pk). The forms Q(x, y)
and

Q′(x, y) = Q(−x − uy, y) = ax2 + (2ua − b)xy + (u2a − ub + c)y2

are (improperly) equivalent. Thus, Q and Q′ have the same discriminant and assume the 
same values, hence R(Q) = R(Q′). Since p �4a and

4a(u2a − ub + c) ≡ (2au − b)2 − (b2 − 4ac) ≡ 0 (mod pk),
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it follows that

B = 2ua − b

pk/2 and C = u2a − ub + c

pk

are integers. We may write

Q′(x, y) = ax2 + pk/2Bxy + pkCy2, (3.2)

which has discriminant

pk(B2 − 4aC) = pk�.

Consequently, the integral quadratic form

Q′′(x, y) = ax2 + Bxy + Cy2 (3.3)

has discriminant B2 − 4aC = �. Moreover,

4aQ′′(x, y) = (2ax + By)2 − �y2. (3.4)

Case 1: Suppose that (�/p) = −1. If Q′′(x0, y0) ≡ 0 (mod p), then (3.4) implies

(2ax0 + By0)2 ≡ �y2
0 (mod p)

since p �4a. The Legendre symbol of the left-hand side is 0 or 1; the Legendre symbol of the 
right-hand side is 0 or −1. Thus, both sides are congruent to 0 modulo p and hence y0 ≡
0 (mod p). Since p �2a, it follows that x0 ≡ 0 (mod p) and hence Q′′ is anisotropic modulo 
p. Theorem 2.1 ensures that R(Q′′) is not dense in Qp. Since Q′(x, y) = Q′′(x, pk/2y), 
we conclude that R(Q′), which equals R(Q), is not dense in Qp.

Case 2: Suppose that (�/p) = 1. Let 
√

� denote a square root of � modulo p and let 
(x0, y0) ≡ (

√
� − B, 2a) (mod p), which is not congruent to (0, 0) modulo p since p � 2a. 

Then (3.3) yields

4aQ′′(x0, y0) ≡
(
2a(

√
� − B) + B(2a)

)2 − �(2a)2 ≡ a� − a� ≡ 0 (mod p).

Since p � 4a, it follows that Q′′ is isotropic modulo p. Since the discriminant � of Q′′ is 
not divisible by p, Theorem 2.1b implies that R(Q′′) is dense in Qp. If Q′′(z, w) �= 0, 
then (3.2) provides

Q′′(x, y)
Q′′(z, w) = pkQ′′(x, y)

pkQ′′(z, w) = Q′′(pk/2x, pk/2y)
Q′′(pk/2z, pk/2w)

= Q′(pk/2x, y)
Q′(pk/2z, w)

,

and hence R(Q′) is dense in Qp. Since Q and Q′ are equivalent, R(Q) = R(Q′) is also 
dense in Qp. �
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3.2. Proof of Theorem 3.1b

As in the proof of Theorem 3.1a, we may assume that p �a. Since R(Q) = R(4aQ) and

4aQ(x, y) = (2ax + by)2 − (b2 − 4ac)y2,

we may assume without loss of generality that

Q(x, y) = x2 − pk�y2.

Suppose toward a contradiction that R(Q) is dense in Qp. Let n be a quadratic nonresidue 
modulo p. Then there are x, y, z, w ∈ Z, not all multiples of p, so that Q(z, w) �= 0 and

∥∥∥∥ Q(x, y)
Q(z, w) − n

∥∥∥∥ <
1
pk

. (3.5)

In particular, ‖Q(x, y)‖ = ‖Q(z, w)‖. Multiplying (3.5) by Q(z, w) gives

∥∥(x2 − nz2) − pk�(y2 − nw2)
∥∥ = ‖Q(x, y) − nQ(z, w)‖ <

‖Q(z, w)‖
pk

≤ 1
pk

.

If p �x or p �z, then x2 − nz2 �≡ 0 (mod p) and hence ‖Q(x, y) − nQ(z, w)‖ = 1, which is 
a contradiction.

Since p|x and p|z, we get p �y or p �w. Thus, y2 − nw2 �≡ 0 (mod p). Now observe that 
x2 − nz2 has even p-adic valuation (the form u2 − nv2 is anisotropic and nonsingular 
modulo p and the proof of Theorem 2.1a ensures that it has even p-adic valuation for 
all u, v). Consequently, Q(x, y) − nQ(z, w) is the sum of a p-adic integer with even 
valuation, and one with odd valuation k. Thus, ‖Q(x, y) − nQ(z, w)‖ ≥ p−k, which is a 
contradiction. Since n cannot be arbitrarily well approximated by elements of R(Q), it 
follows that R(Q) is not dense in Qp. �
4. Singular modulo 2

Our aim in this section is to prove the following theorem, which addresses the three 
lower-right terminal nodes (purple) in Fig. 1.

Theorem 4.1. Let Q(x, y) = ax2 + bxy + cy2 be primitive and integral with discriminant 
2k�, in which � is odd.

(a) If k is odd, then R(Q) is not dense in Q2.
(b) If k is even and � �≡ 1 (mod 8), then R(Q) is not dense in Q2.
(c) If k is even and � ≡ 1 (mod 8), then R(Q) is dense in Q2.
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4.1. Proof of Theorem 4.1a

The proof is similar in flavor to that of Theorem 3.1b, although there are a couple
modifications. Since R(Q) = R(4aQ) and 4aQ(x, y) = (2ax + by)2 − (b2 − 4ac)y2, we 
may assume without loss of generality that Q(x, y) = x2 − 2k�y2. Suppose that R(Q) is 
dense in Q2. Then there are x, y, z, w ∈ Z, not all even, so that Q(z, w) �= 0 and

∥∥∥∥ Q(x, y)
Q(z, w) − 5

∥∥∥∥ <
1

2k+2 .

We also see that ‖Q(x, y)‖ = ‖Q(z, w)‖ and from this we get

‖(x2 − 5z2) − 2k�(y2 − 5w2)‖ = ‖Q(x, y) − 5Q(z, w)‖ <
1

2k+2 . (4.2)

If x or z is odd, then x2 − 5z2 ≡ 1, 3, or 4 (mod 8). It follows that the power of 2 dividing 
x2 − 5z2 is even. If x and z are odd, then ‖Q(x, y) − 5Q(z, w)‖ ≥ 1/4, which contradicts 
(4.2). Thus, x and z are both even. However, in this case, the power of 2 dividing x2 −5z2

is even, and the power of 2 dividing 2k�(y2 − 5w2) is odd and at most 2k+2. It follows 
that

‖Q(x, y) − 5Q(z, w)‖ ≥ 1
2k+2 ,

which is a contradiction. Thus, R(Q) is not dense is Q2. �
4.2. Proof of Theorem 4.1b

In this section, we show that if b2 − 4ac = 2k� with k even and � ≡ 3, 5 or 7 (mod 8), 
then R(Q) is not dense in Q2. As before, if Q = ax2 +bxy +cy2, then R(Q) = R(4aQ) =
(2ax + by)2 − (b2 − 4ac)y2 and so if Q′(x, y) = x2 − 2k�y2, then R(Q) ⊆ R(Q′). Letting 
Q′′(x, y) = x2 − �y2, we have

Q′(x, y)
Q′(z, w) = Q′′(x, 2k/2y)

Q′′(z, 2k/2w)

for x, y, z, w ∈ Z and hence R(Q′) ⊆ R(Q′′). Consequently, it suffices to show that R(Q′′)
is not dense in Q2. We require a couple computational lemmas.

Lemma 4.3. If � ≡ 5 (mod 8), then R(Q′′) is not dense in Q2.

Proof. Write x = 2j x̃ and y = 2kỹ, in which j, k ≥ 0 and x̃, ỹ are odd.
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• If j < k, then

ν2(Q′′(x, y)) = ν2
(
(2j x̃)2 − �(2kỹ)2)

= ν2
(
22j x̃2 − 22k�ỹ2)

= 2j + ν2(x̃2 − 22(k−j)�ỹ2)

= 2j.

• If j > k, then

ν2(Q′′(x, y)) = ν2
(
(2j x̃)2 − �(2kỹ)2)

= ν2
(
22j x̃2 − 22k�ỹ2)

= 2k + ν2(22(j−k)x̃2 − �ỹ2)

= 2k.

• If j = k, then

ν2(Q′′(x, y)) = ν2
(
(2j x̃)2 − �(2kỹ)2)

= 2j + ν2
(
x̃2 − �ỹ2)

.

If � ≡ 5 (mod 8), then

x̃2 − �ỹ2 ≡ 4 (mod 8)

since x̃2 ≡ ỹ2 ≡ 1 (mod 8). Thus, ν2(Q′′(x, y)) is even.

It follows that ν2(Q′′(x, y)/Q′′(z, w)) is even, and so there are no solutions to
∥∥∥∥ Q′′(x, y)

Q′′(z, w) − 2
∥∥∥∥ <

1
2 .

Thus, R(Q′′) is not dense in Q2. �
Lemma 4.4. If � ≡ 3 or 7 (mod 8), then R(Q′′) is not dense in Q2.

Proof. Suppose that R(Q′′) is dense in Q2. Then there are x, y, z, w ∈ Z so that
∥∥∥∥ Q′′(x, y)

Q′′(z, w) − 3
∥∥∥∥ ≤ 1

23 .

We may assume at least one of x, y, z, w is odd. Multiplying by ‖Q′′(z, w)‖ gives

∥∥(x2 − �y2) − 3(z2 − �w2)
∥∥ ≤ 1

.
23
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For � = 3, a computation confirms that there are no solutions to x2 − 3y2 − 3z2 + 9w2 ≡
0 (mod 8) with at least one of x, y, z, w is odd. For � = 7, there are no solutions to 
x2 −7y2 −3z2 +21w2 ≡ 0 (mod 8) with at least one of x, y, z, w is odd. This contradiction 
tells us that R(Q′′) is not dense in Q2. �
4.3. Proof of Theorem 4.1c

Suppose that Q(x, y) = ax2 + bxy + cy2 is primitive and b2 − 4ac = 2k� where k ≥ 2
is even and � ≡ 1 (mod 8). Since b2 − 4ac ≡ 0 (mod 4), b must be even. By switching a
and c if necessary, we may assume that a is odd. The form Q(x, y) is equivalent to

Q′(x, y) = Q(x + qy, y) = ax2 + (2aq + b)xy + (aq2 + bq + c)y2

and hence R(Q) = R(Q′). We claim that we can choose a q such that

2aq + b ≡ 0 (mod 2k/2) and aq2 + bq + c ≡ 0 (mod 2k). (4.5)

Let

q ≡ − b

2a
+ 2k/2−1 (mod 2k).

Then

2aq + b ≡ (2a)
(

− b

2a
+ 2k/2−1

)
+ b ≡ −b + a2k/2 + b ≡ 0 (mod 2k/2),

which is the first condition in (4.5). The second condition follows from

aq2 + bq + c ≡ a

(
− b

2a
+ 2k/2−1

)2

+ b

(
− b

2a
+ 2k/2−1

)
+ c

≡ 2k−2a − b2

4a
+ c

≡ 2k−2a − 2k� + 4ac

4a
+ c

≡ 1
a

(
2k−2a2 − 2k−2�

)
(mod 2k)

≡ 0 (mod 2k)

since a is odd and � ≡ 1 (mod 8). Thus, we may define the integers

B = 2aq + b

2k/2 and C = c + bq + aq2

2k

so that the form
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Q′′(x, y) = ax2 + Bxy + Cy2

has discriminant

B2 − 4aC = (2aq + b)2 − 4a(c + bq + aq2)
2k

= b2 − 4ac

2k
= � ≡ 1 (mod 8). (4.6)

Since Q′(x, y) = Q′′(x, 2k/2y), we have R(Q′) ⊆ R(Q′′). Since

Q′(x, y)
Q′(z, w) = Q′(2k/2x, 2k/2y)

Q′(2k/2z, 2k/2w)
= Q′′(2k/2x, y)

Q′′(2k/2z, w)
,

we get R(Q′′) ⊆ R(Q′). Thus, R(Q′) = R(Q′′).
From (4.6), it follows that B is odd and hence B2 ≡ 1 (mod 8). Thus, either a or C

is even and it follows that Q′′ is isotropic modulo 2. Theorem 2.1b ensures that R(Q′′)
is dense in Q2. �
5. An alternative approach

In this section, we present an alternative approach to the proof of Theorems 2.1, 3.1, 
and 4.1. We also prove that if Q is a non-degenerate quadratic form in r ≥ 3 variables, 
then R(Q) is dense in Qp for all p. While the arguments given here are shorter, they rely 
heavily on the classification of quadratic forms over Qp and the values they represent. 
One convenient source for this material is [25].

Over a field, any quadratic form Q is equivalent to a diagonal one (by [25, Thm. IV.1]), 
namely

Q′ = a1x2
1 + a2x2

2 + · · · + arx2
r.

For the remainder of this section, we will use the classification of squares in Qp (see [25, 
Thms. 2.3 & 2.4]). If p > 2, then an element x = pnu ∈ Qp with u ∈ Zp and νp(u) = 0 is 
a square if and only if n is even and u mod p ∈ Fp is a square. If p = 2, then an element 
x = 2nu ∈ Q2 is a square if and only if n is even and u ≡ 1 (mod 8). It follows from this 
that Q×

p has four square classes if p > 2 and eight square classes if p = 2.
The corollary on page 37 of [25] gives a classification of the values represented by 

a quadratic form over Qp. We wish to record some consequences of this corollary. In 
particular, a binary quadratic form over Qp whose discriminant is not a square represents 
half of the square classes, while a binary quadratic form over Qp whose discriminant is a 
square represents everything in Qp. A quadratic form in three variables either represents 
everything in Qp, or represents all but one square class. Finally, a quadratic form in four 
or more variables over Qp is universal.

We begin by reproving Theorems 2.1, 3.1, and 4.1. We start with a result of Arnold 
(which he attributes to F. Aicardi) [1, Thm. 1].
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Lemma 5.1 (Arnold). Let Q(x, y) = ax2 + bxy + cy2 be a binary quadratic form with 
integer coefficients. If Q represents A, B and C, then it represents ABC.

One way of interpreting this statement is that the inverse of Q(x, y) = ax2 +bxy +cy2

in the class group is ax2 − bxy + cy2, which is improperly equivalent to Q. Because 
Q ◦ Q−1 ◦ Q = Q in the class group, if Q represents A, Q−1 represents B, and Q

represents C, then Q = Q ◦ Q−1 ◦ Q represents ABC.

Proof. If Q(x1, y1) = A, Q(x2, y2) = B and Q(x3, y3) = C, then Q(x, y) =
Q(x1, y1)Q(x2, y2)Q(x3, y3), in which

x = (ax1x2 − cy1y2)x3 + (c(y1x2 + x1y2) + bx1x2)y3

y = (a(x1y2 + x2y1) + by1y2)x3 + (−ax1x2 + cy1y2)y3. �
The following result provides an alternate representation of R(Q) based upon Arnold’s 

lemma.

Lemma 5.2. Let Q be a binary quadratic form and let a be a nonzero integer represented 
by Q. Then

R(Q) =
{

Q(x, y)
a

: x, y ∈ Q

}
.

Proof. Suppose that b = Q(x, y)/a, in which x, y ∈ Q and a = Q(z, w) for some z, w ∈ Z. 
Write x = c/f and y = d/f , in which c, d, f ∈ Z and f �= 0. Then

b = Q(c/f, d/f)
a

= Q(c, d)/f2

a
= Q(c, d)

af2 = Q(c, d)
Q(fz, fw) ∈ R(Q).

Now suppose that b ∈ R(Q). Then there are x1, y1, x2, y2 ∈ Q so that

b = Q(x1, y1)
Q(x2, y2) = aQ(x1, y1)Q(x2, y2)

aQ(x2, y2)2 .

By Lemma 5.1, there are X, Y ∈ Z so that Q(X, Y ) = aQ(x1, y1)Q(x2, y2). Thus,

b = Q(X/Q(x2, y2), Y/Q(x2, y2))
a

∈
{

Q(x, y)
a

: x, y ∈ Q

}
. �

Next we require an analogue of Lemma 5.2 that describes the p-adic closure R(Q)−

of R(Q).

Lemma 5.3. If a is a nonzero integer represented by Q, then

R(Q)− =
{

Q(x, y) : x, y ∈ Qp

}
.

a
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Proof. Suppose that b = Q(x, y)/a with x, y ∈ Qp. Write a = Q(z, w) with z, w ∈ Qp

and choose sequences xn, yn of rational numbers such that

lim
n→∞

xn = x and lim
n→∞

yn = y

in Qp. The continuity of Q ensures that

Q(x, y)
a

= limn→∞ Q(xn, yn)
a

= lim
n→∞

Q(xn, yn)
a

,

so Q(x, y)/a is a limit point of R(Q) by Lemma 5.2. Thus, Q(x, y)/a ∈ R(Q)−.
Now suppose that b ∈ R(Q)−. If b = 0, then b = Q(0, 0)/a and we are done. If b �= 0, 

Lemma 5.2 provides x, y ∈ Q such that
∥∥∥∥b − Q(x, y)

a

∥∥∥∥ ≤ ‖b‖
p3 , and hence

∥∥∥∥1 − Q(x, y)
ab

∥∥∥∥ ≤ 1
p3 ,

which implies that

1 − Q(x, y)
ab

∈ Zp and Q(x, y)
ab

≡ 1 (mod p3).

Since every element of Zp that is congruent to 1 modulo p3 is a square (by [25, Thms. 
II3 & II.4] mentioned above), there is a w ∈ Zp such that Q(x, y)/(ab) = w2. Then

b = Q(x, y)
aw2 = Q(x/w, y/w)

a
∈

{
Q(x, y)

a
: x, y ∈ Qp

}
. �

We can now reprove Theorems 2.1, 3.1, and 4.1. Lemma 5.3 implies that the p-adic 
closure of R(Q) depends only on the Qp-equivalence class of Q. A quadratic form over a 
field can be diagonalized, and so up to scaling, any binary quadratic form is equivalent to 
Q(x, y) = x2 −dy2, where d is a representative of the Qp-square class of the discriminant 
of Q. As mentioned earlier, the corollary on page 37 of [25] shows that Q represents 
every element of Qp if and only if d is a square in Qp. For this reason, R(Q) is dense 
in Qp if and only if the discriminant of Q is a square in Qp. In particular, if p > 2 and 
b2 − 4ac = pk�, then R(Q) is dense in Qp if and only if k is even and (�/p) = 1. If p = 2, 
and b2 − 4ac = 2k�, then R(Q) is dense in Q2 if and only if k is even and � ≡ 1 (mod 8).

Now, we turn to the situation of quadratic forms in r ≥ 3 variables. Suppose that 
Q(�x) = xT A�x is an integral quadratic form in r ≥ 3 variables and det(A) �= 0. The 
special case A = I and r = 3 was settled by Miska, Murru, and Sanna [19, Thm. 1.8c].

Theorem 5.4. If r ≥ 3, then R(Q) is dense in Qp for all primes p.

Proof. Fix an n ∈ Qp. If n = 0, then it is clear that n is in the p-adic closure of R(Q), 
since we can take a vector �y ∈ Zr so that Q(�y) �= 0, and note that 0 = Q(�x) ∈ R(Q).
Q(�y)
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Assume therefore that n �= 0. By the same corollary from page 37 of [25] quoted 
above, the forms Q and nQ each represent either everything in Qp or all but one square 
class in Qp. Since Qp has four square classes if p > 2 (and eight if p = 2), there must 
be some nonzero element d ∈ Qp represented by both Q and nQ. By scaling these 
representations by a power of p, we can assume that there are vectors �x ∈ Zr

p and �y ∈ Zr
p

so that Q(�x) = nQ(�y) = k with k ∈ Zp and k �= 0.
Fix ε > 0. Since Z is dense in Zp, there are vectors �z ∈ Zr and �w ∈ Zr (with 

components z1, . . ., zr and w1, . . ., wr) so that

‖zi − wi‖ < δ := min{ε‖k/n‖, ‖k/n‖, ε‖k/n2‖}

for all i (and similarly ‖yi − wi‖ < δ for all i). Since Q is a polynomial with integer 
coefficients, Q is p-adically continuous. In fact, the ultrametric inequality implies that if 
a1, . . . , ar and b1, . . . , br are elements of Qp with ‖ai − bi‖ < ε for all i, then

‖Q(a1, a2, . . . , ar) − Q(b1, b2, . . . , br)‖ < ε.

Using this, we have that

‖Q(�z) − nQ(�w)‖ = ‖Q(�z) − Q(�x) + Q(�x) − nQ(�y) + nQ(�y) − nQ(�w)‖
≤ max(‖Q(�z) − Q(�x)‖, ‖Q(�x) − nQ(�y)‖, ‖nQ(�y) − nQ(�w)‖)

< max(ε‖k/n‖, 0, ‖n‖ε‖k/n2‖) ≤ ε‖k/n‖.

Since ‖Q(�w) − Q(�y)‖ < ‖k/n‖ and Q(�y) = k/n, it follows that ‖Q(�w)‖ = ‖Q(�y)‖ =
‖k/n‖. Thus,

∥∥∥∥ Q(�z)
Q(�w) − n

∥∥∥∥ = 1
‖Q(�w)‖ · ‖Q(�z) − nQ(�w)‖ = 1

‖Q(�y)‖ · ‖Q(�z) − nQ(�w)‖

<
1

‖k/n‖ (ε‖k/n‖) < ε.

This proves that n is in the p-adic closure of R(Q), as desired. �
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