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real numbers has been examined by many authors over the years [6,10,12,13,21,20,5,16,
17,27,2-4,22,23,28,29]. Analogues in the Gaussian integers [8] and, more generally, in
algebraic number fields [26], have recently been considered.

The study of quotient sets in the p-adic setting was initiated by Florian Luca and the
second author [9]. Shortly thereafter several other papers on the topic appeared [7,19,24,
18]. In [7] it was shown that if A = {2% + y* : z,y € Z}\{0}, then R(A) is dense in Q,
if and only if p = 1 (mod4). Tt is natural to wonder about possible extensions to other
quadratic forms.

Fix a prime number p and observe that each nonzero rational number has a unique
representation of the form r = 4p*a/b, in which k € Z, a,b € N, and ged(a,p) =
ged(b, p) = ged(a,b) = 1. The p-adic valuation of such an r is v,(r) = k and its p-adic
absolute value is ||r||, = p~*. By convention, v,(0) = oo and ||0||, = 0. The p-adic metric
on Q is d(z,y) = ||z — y||,- We write || - || in place of || - ||, when no confusion can arise.
The field Q,, of p-adic numbers is the completion of Q with respect to the p-adic metric
[11,14]. We let Q) = Q,\{0}.

A quadratic form is a homogeneous polynomial

Q(ry,w2,...,2,) :Zzaijxi%‘, (1.1)

i=1 j=i

of degree 2. We say that @ is integral if a;; € Z for all 4,5, and we say that @ is
primitive if there is no positive integer k£ > 1 so that k|a,; for all ¢ and j. We can write
Q(Z) = 1#T AT for an r x r symmetric matrix A (which will have even diagonal entries,
and integral off-diagonal entries). Two forms @ and Q' are equivalent if there is an r x r
matrix M with integer entries and det(M) = £1 so that Q'(Z) = Q(MX).

In the case of binary forms, we will distinguish proper equivalence (the case that
det(M) = 1) from improper equivalence (the case that det(M) = —1). Given a binary
form

Q(z,y) = az’® + bay + ¢y, (1.2)

the discriminant of Q is b?> — 4ac. Equivalent binary forms assume the same values and
have the same discriminants.

Let F be a field. We say that @ is nonsingular over F if det(A) # 0 (and singular
otherwise). We say that Q) is isotropic over T if there is a nonzero vector & € F” so that
Q(Z) = 0. Otherwise, @ is anisotropic over F. If ) represents every value in F, then Q
is universal over . It is known that if @ is isotropic and nonsingular over ', then @ is
universal over F [15, Thm. 1.3.4].

For brevity, the term “quadratic form” hereafter refers to a quadratic form that is
nonsingular over Q, integral, and primitive. The quotient set generated by a quadratic
form Q@ is

R(Q) ={Q(@)/Q(Y) - ,§ € Z",Q(Y) # 0}
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Fig. 1. How to decide if R(Q) is dense in Q,. Here Q is an integral, binary, and primitive quadratic form of
discriminant p*¢, in which ged(p, £) = 1. Here (£/p) denotes a Legendre symbol.

If Q and Q' are equivalent, then R(Q) = R(Q’). It has been asked when R(Q) is dense in
Qp [7, Problem 4.4]. The main result of this paper is a complete answer to this question.

Theorem 1.3. Let Q be an integral quadratic form in r wvariables. Assume that Q s
primitive and is nonsingular over Q and let p be a prime number.

(a) If Q is binary, then R(Q) is dense in Q, if and only if the discriminant of Q is a
square in Qp.
(b) Ifr >3, then R(Q) is dense in Q,.

We give two proofs of Theorem 1.3a. Our first approach is longer (Fig. 1), but com-
pletely elementary. The second approach is shorter, but requires the classification of
values represented by quadratic forms over Q, (as can be found in Serre’s book [25]).
This same tool is used to prove Theorem 1.3b.

The organization of this paper is as follows. The elementary proof of Theorem 1.3a
constitutes sections 2, 3, and 4. In Section 2 we handle binary quadratic forms that are
nonsingular over F; the results therein apply to all primes. Section 3 concerns binary
quadratic forms that are singular modulo an odd prime and Section 4 treats forms that
are singular modulo 2. In Section 5, we give a more sophisticated proof of Theorem 1.3a
as well as the proof of Theorem 1.3b.
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2. Nonsingular (all primes)

Our aim in this section is to prove the following theorem, which addresses the two
uppermost terminal nodes (blue) in Fig. 1.

Theorem 2.1. Let Q(x,y) = ax? + bxy + cy? be primitive and integral.

(a) If Q is anisotropic modulo p, then R(Q) is not dense in Q.
(b) If Q is isotropic and nonsingular modulo p, then R(Q) is dense in Q.

2.1. Proof of Theorem 2.1a

Suppose that @ is anisotropic over Z/pZ. We claim that v,(Q(xz,y)) is even for all
z,y € Z. If Q(z,y) # 0 (modp), then v,(Q(z,y)) = 0, which is even. Suppose that
Q(x,y) =0 (mod p). Then (z,y) = (0,0) (mod p) since Q is anisotropic; that is, x = mp’
and y = np¥, in which j,k > 1, pfm, and pfn. Without loss of generality, assume that
7 > k. Then

vp(Q(z,y)) = Vp(am2p2j + bmnpj+k + cn2p2k)

=, (pzk(ameQ(j_k) + bmnp? 7F + cng))
=2k + v, (Q(mp'~* n)) = 2k
since ptn and @ is anisotropic. Thus, v,(Q(z,vy)) — Vp(Q(z,w)) # 1 = vp(p) for all

z,y, 2, w € Z and hence R(Q) is bounded away from p in Q,. Consequently, R(Q) is not
dense in Q,. O

2.2. Proof of Theorem 2.1b for p odd

Before proceeding, we need two lemmas.

Lemma 2.2 (Lemma 2.3 of [7]). Let A C N and let p be a prime.

(a) If A is p-adically dense in N, then R(A) is dense in Q,.
(b) R(A) is p-adically dense in N if and only if R(A) is dense in Q,.

Proof. (a) If A is p-adically dense in N, it is p-adically dense in Z. Inversion is continuous
on Q), so R(A) is p-adically dense in Q, which is dense in Q,,.

(b) Suppose that R(A) is p-adically dense in N. Since inversion is continuous on Q,
the result follows from the fact that N is p-adically dense in {x € Q : vp(z) > 0}. O

Lemma 2.3. Let Q be nonsingular modulo an odd prime p. If (z,y) # (0,0) (modp) and
Q(z,y) =0 (mod p), then 2azx + by #Z 0 (mod p) or bx + 2¢cy # 0 (mod p).
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Proof. We prove the contrapositive. Suppose that
2azx + by = bx + 2cy = 0 (mod p). (2.4)

Since @ is nonsingular, b # 4ac (mod p). If p|b, then pta and pfc. Thus, there are two
cases: pta and ptc, or ptb.

CASE 1: If pfa and pfe, then (2.4) implies that

by
=-— . 2.
x 50 (mod p) (2.5)
Thus,
. by =V +4dac\
—o(2.) = () oy

and hence y = 0 (mod p). Then (2.5) implies that (z,y) = (0,0) (mod p).
CASE 2: If ptb, then
_ Y
T=——= (mod p) (2.6)

and hence

Consequently, p|y or plc.

o If ply, then (2.6) implies that (x,y) = (0,0) (mod p).
o If p|e, then (2.6) implies that p|x. Since ptb, (2.4) ensures that p|y. Thus, (z,y) =
(0,0) (modp). O

Suppose that @ is isotropic and nonsingular modulo an odd prime p. By Lemma 2.2,
it suffices to show that for each n € Z and r > 1, there exists an (x,y) € Z? such that
Q(z,y) =n (modp"). To this, we add the requirement

pt(2ax +by)  or  pt(bz+2cy). (2.7)
We induct on r. The base case is r = 1.

o If n = 0 (modp), then since @ is isotropic we may find (z,y) #Z (0,0) (modp) so
that Q(x,y) =0 (mod p). Lemma 2.3 ensures that at least one of the two conditions
n (2.7) hold.
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e If n # 0 (modp), then there is an (z,y) so that Q(z,y) = n (modp) since Q is
isotropic and nonsingular [15, Prop. 3.4]. Since p is odd,

0Zn=Q(z,y) = =(2az + by) + %(bx + 2cy) (mod p),

N8

which implies that (2.7) holds.

Now suppose that Q(z,y) = n (modp”) and, without loss of generality, that p {
(2az + by). Then Q(z,y) = n+ mp” for some m € Z. If

i = —(2ax + by)"'m (modp),
then the identity
Q(z + z,y) = Q(z,y) + az® + bzy + 2axz (2.8)
yields

Qx +ip",y) = Q(x,y) + ai’p* + bip"y + 2axip”
=n+4+mp" + ai’p® + bip"y + 2axip”
=n+mp" + bip"y + 2axip” (modp™ )

=n+p"(m+ (2azx + by)i) (modp™*)

=n (modp"™),

in which 2a(z + ip") 4+ by = (2ax + by) + 2aip” is not divisible by p. This completes the
induction. O

2.83. Proof of Theorem 2.1b for p =2

Suppose that @ is isotropic and nonsingular modulo 2. Since 2¢(b% — 4ac), it follows
that b is odd and hence

Q(z,y) = ax® + 2y + cy® (mod 2).
Because @ is isotropic, a or ¢ is even; see Table 1. Without loss of generality, suppose
that a is even. By Lemma 2.2, it suffices to show that for each n € Z and r > 1, there
is an (x,y) € Z? such that

Q(z,y) =n (mod2") and y Z 0 (mod 2). (2.9)

We proceed by induction on r. For the base case r = 1, we may let (z,y) = (n — ¢, 1).
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Table 1 )
Values of Q(x,y) = ax? + zy + cy? (mod 2).
T Yy Q(z,y) (mod2) a,c odd a, c even a even, ¢ odd a odd, ¢ even
0 0 0 0 0 0 0
0 1 c 1 0 1 0
1 0 a 1 0 0 1
1 1 l1+a+c 1 1 0 0

Now suppose that (2.9) holds for some r. Then Q(z,y) = n + m2" for some m € Z.
If i = mb~'y~! (mod 2), then (2.8) yields
Q(z +2"1,y) = Q(z,y) + a(27)* + b(27i)y + 2ax(274)
= (n+m2") + 2% ai?® + 2"biy + 2" aix
n 4+ m2" + 2"biy (mod 2" 1)
n +2"(m + biy) (mod2"*1)

n (mod 271,

This completes the induction. O
3. Singular modulo an odd prime

Our aim in this section is to prove the following theorem, which addresses the three
lower-left terminal nodes (red) in Fig. 1. Below (¢/p) is a Legendre symbol.

Theorem 3.1. Let Q(z,y) = ax? + by + cy? be primitive and integral with discriminant
pFe, in which k > 1 and p is an odd prime that does not divide /.

(a) If k is even, then R(Q) is dense in Q) if and only if ({/p) = 1.
(b) If k is odd, then R(Q) is not dense in Q.

3.1. Proof of Theorem 3.1a

We have b? —4ac = pF¢ with k > 2 even. Because @ is primitive, p cannot divide both
a and c since otherwise it would divide a, b, and ¢. Without loss of generality, suppose
that pta. Let u = 27 'a~'b (mod p*), so that 2ua — b = 0 (mod p*). The forms Q(x,y)
and

Q' (,y) = Q(—x — uy,y) = ax® + (2ua — b)zy + (v’ a — ub + ¢)y”

are (improperly) equivalent. Thus, @ and @’ have the same discriminant and assume the
same values, hence R(Q) = R(Q’). Since pt4a and

4a(u’a — ub + ¢) = (2au — b)? — (b*> — 4ac) = 0 (mod p~),
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it follows that

Qua — 2q —
B ui2b and C:ua ub+ ¢
pr/ P

are integers. We may write
Q'(z,y) = az’ + p** By + p*Cy/?, (3:2)
which has discriminant
pF(B? — 4aC) = p"o.
Consequently, the integral quadratic form
Q" (z,y) = ax® + Bxy + Cy? (3.3)
has discriminant B% — 4aC = ¢. Moreover,

4aQ" (x,y) = (2azx + By)? — ty*. (3.4)

CASE 1: Suppose that (¢/p) = —1. If Q" (x9,y0) = 0 (mod p), then (3.4) implies
(2azo 4+ Byo)® = Ly2 (mod p)

since pf4a. The Legendre symbol of the left-hand side is 0 or 1; the Legendre symbol of the
right-hand side is 0 or —1. Thus, both sides are congruent to 0 modulo p and hence yy =
0 (mod p). Since p{2a, it follows that 2o = 0 (mod p) and hence Q" is anisotropic modulo
p. Theorem 2.1 ensures that R(Q") is not dense in Q,,. Since Q'(z,y) = Q" (z,p*/?y),
we conclude that R(Q"), which equals R(Q), is not dense in Q,,.

CASE 2: Suppose that (¢/p) = 1. Let v/¢ denote a square root of £ modulo p and let
(z0,90) = (V€ — B,2a) (modp), which is not congruent to (0,0) modulo p since pf2a.
Then (3.3) yields

4aQ" (x0, y0) = (2a(VE — B) + B(2a))? — £(2a)> = al — al = 0 (mod p).

Since pt4a, it follows that Q" is isotropic modulo p. Since the discriminant ¢ of Q" is
not divisible by p, Theorem 2.1b implies that R(Q") is dense in Q,. If Q"(z,w) # 0,
then (3.2) provides

Q”(a:,y) _ kaII($7y) _ Q//(pk/2x7pk/2y) _ Q’(p’“/%,y)
Q"(z,w)  prFQ"(z,w)  Q'(pF/ 22, pF/2w) Q' (p*/?z,w)’

and hence R(Q') is dense in Q,,. Since @ and Q' are equivalent, R(Q) = R(Q') is also
dense in Q,. O
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3.2. Proof of Theorem 3.1b
As in the proof of Theorem 3.1a, we may assume that pta. Since R(Q) = R(4aQ) and
4aQ(z,y) = (2az + by)” — (b* — dac)y?,
we may assume without loss of generality that
Q(z,y) = a® — p"ty?.

Suppose toward a contradiction that R(Q) is dense in Q,. Let n be a quadratic nonresidue
modulo p. Then there are x,y, z, w € Z, not all multiples of p, so that Q(z,w) # 0 and

o <= (3.5)

g
zZ,w) P

In particular, ||Q(z,y)| = ||Q(z, w)||. Multiplying (3.5) by Q(z,w) gives

[0 = n22) = e = )] = Q) — @ w) < L2 < L
If ptx or pfz, then 22 — nz? # 0 (mod p) and hence ||Q(x,y) — nQ(z,w)| = 1, which is
a contradiction.

Since p|z and p|z, we get pty or pfw. Thus, y?> — nw? # 0 (mod p). Now observe that
22 — nz? has even p-adic valuation (the form u? — nv? is anisotropic and nonsingular
modulo p and the proof of Theorem 2.1a ensures that it has even p-adic valuation for
all u,v). Consequently, Q(z,y) — nQ(z,w) is the sum of a p-adic integer with even
valuation, and one with odd valuation k. Thus, ||Q(z,y) — nQ(z,w)| > p~*, which is a
contradiction. Since n cannot be arbitrarily well approximated by elements of R(Q), it
follows that R(Q) is not dense in Q,. O

4. Singular modulo 2

Our aim in this section is to prove the following theorem, which addresses the three
lower-right terminal nodes (purple) in Fig. 1.

Theorem 4.1. Let Q(z,y) = ax? + by + cy? be primitive and integral with discriminant
2k¢. in which ¢ is odd.

(a) If k is odd, then R(Q) is not dense in Q.
(b) If k is even and £ # 1 (mod8), then R(Q) is not dense in Qs.
(c) If k is even and £ =1 (mod 8), then R(Q) is dense in Q.



32 C. Donnay et al. / Journal of Number Theory 201 (2019) 25-39

4.1. Proof of Theorem j.1a

The proof is similar in flavor to that of Theorem 3.1b, although there are a couple
modifications. Since R(Q) = R(4aQ) and 4aQ(x,y) = (2az + by)? — (b* — dac)y?, we
may assume without loss of generality that Q(z,y) = 2% — 2¥¢y?. Suppose that R(Q) is
dense in Q2. Then there are x,y, z,w € Z, not all even, so that Q(z,w) # 0 and

52 -5 < e

We also see that ||Q(x,y)|| = ||Q(z, w)|| and from this we get

1
I(a? ~ 52%) — 2*4(y? ~ 5u?)]| = |Q(,y) — 5Q= W)l < gy (4.2)
If x or z is odd, then 22 — 522 =1, 3,0r4 (mod 8). It follows that the power of 2 dividing
22 — 522 is even. If x and 2 are odd, then ||Q(z,y) — 5Q(2,w)| > 1/4, which contradicts
(4.2). Thus, z and z are both even. However, in this case, the power of 2 dividing x? — 522
is even, and the power of 2 dividing 2¥¢(y? — 5w?) is odd and at most 2¥*2. It follows
that

Q(,9) ~ 50w = 5.
which is a contradiction. Thus, R(Q) is not dense is Q3. O
4.2. Proof of Theorem /.1b
In this section, we show that if b — 4ac = 2¥¢ with k even and ¢ = 3,5 or 7 (mod 8),
then R(Q) is not dense in Qq. As before, if Q = ax?+bry+cy?, then R(Q) = R(4aQ) =

(2az + by)? — (b? — 4dac)y? and so if Q'(z,y) = 22 — 28442, then R(Q) C R(Q’). Letting
Q" (z,y) = 2 — ly?, we have

Q(zy) _ Q"(z,2"?y)
Q'(z,w)  Q"(2,28w)

for z,y, z,w € Z and hence R(Q") C R(Q"). Consequently, it suffices to show that R(Q")
is not dense in Q5. We require a couple computational lemmas.

Lemma 4.3. If £ =5 (mod8), then R(Q") is not dense in Q3.

Proof. Write x = 2/% and y = 2%, in which j, k > 0 and Z, §j are odd.
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o If j <k, then

v (Q" (w,y)) = 12 ((277)* — £(2"9)°)
= vy (22]52 _ 221@@2)
= 2j + (3% — 2292
=2j.

o If j > k, then

va(Q"(x,y)) = 1 ((272)* — £(2")?)
=1y (2957 — 221c@2)
= 2k 4 1, (22070 32 _ 15?)
= 2k.

o If j =k, then

If £ =5 (mod8), then

since 72 = 2 = 1 (mod 8). Thus, v5(Q"(z,y)) is even.

It follows that v2(Q"(z,y)/Q"(z,w)) is even, and so there are no solutions to

LZei AE
Q//

Thus, R(Q") is not dense in Q5. O
Lemma 4.4. If £ = 3 or 7 (mod38), then R(Q") is not dense in Qs.

Proof. Suppose that R(Q") is dense in Q5. Then there are z,y, z,w € Z so that

H Q/I
Q//

1
DRk EFS
We may assume at least one of x,y, z, w is odd. Multiplying by ||Q"(z, w)|| gives

(2 — ty?) — 3(z% — tw?)|| < R

33
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For ¢ = 3, a computation confirms that there are no solutions to 22 — 3y? — 322 4+ 9uw? =
0 (mod 8) with at least one of z,y,z,w is odd. For ¢ = 7, there are no solutions to
22 —Ty? — 322 +21w? = 0 (mod 8) with at least one of x,y, 2, w is odd. This contradiction
tells us that R(Q") is not dense in Q2. O

4.8. Proof of Theorem /j.1c

Suppose that Q(x,y) = az? + bxy + cy? is primitive and b? — 4ac = 2¥¢ where k > 2
is even and ¢ = 1 (mod 8). Since b*> — 4ac = 0 (mod4), b must be even. By switching a
and c if necessary, we may assume that a is odd. The form Q(z,y) is equivalent to

Q'(z,y) = Q(z + qy,y) = az® + (2aq + b)zy + (ag® + bqg + c)y”

and hence R(Q) = R(Q'). We claim that we can choose a ¢ such that

2aq +b=0 (mod2¥/?) and aq®+ bg+ ¢ =0 (mod 2¥). (4.5)
Let
qg= _b + 2F/271 (mod 2F).
2a
Then

2aq+bz(2a)(—%+2k/21) +b=—b+a2"? +b=0 (mod2+/?),

which is the first condition in (4.5). The second condition follows from

b 2 b
aq2+bq+cza<—%+2k/2—1> +b<_%+2k/2—1>_~_c

since a is odd and £ =1 (mod 8). Thus, we may define the integers

_ 2aq+b

2
B and (- CHbatad

2k/2 2k

so that the form
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Q" (z,y) = az® + By + Cy?
has discriminant

2aq + b)? — 4a(c + bg + aq® b? — dac
8274(10:( ) 2; ) _ 57 =/=1 (mod8). (4.6)

Since Q'(z,y) = Q" (x, 2"/2y), we have R(Q’") C R(Q"). Since

Q' (=, 2/) Q/(Qk/%‘, 2k/2y) Q"(Qk/zx, y)

Q(zw)  Q(2822,262w) — Q"(2H/2z,w)’

we get R(Q") C R(Q'). Thus, R(Q') = R(Q").

From (4.6), it follows that B is odd and hence B2 = 1 (mod8). Thus, either a or C
is even and it follows that Q" is isotropic modulo 2. Theorem 2.1b ensures that R(Q")
is dense in Q. O

5. An alternative approach

In this section, we present an alternative approach to the proof of Theorems 2.1, 3.1,
and 4.1. We also prove that if @) is a non-degenerate quadratic form in r > 3 variables,
then R(Q) is dense in Q,, for all p. While the arguments given here are shorter, they rely
heavily on the classification of quadratic forms over Q, and the values they represent.
One convenient source for this material is [25].

Over a field, any quadratic form @ is equivalent to a diagonal one (by [25, Thm. IV.1]),
namely

/ 2 2 2
Q' = a7 +agx; + -+ arx;.

For the remainder of this section, we will use the classification of squares in Q,, (see [25,
Thms. 2.3 & 2.4]). If p > 2, then an element z = p"u € Q,, with u € Z,, and v,(u) =0is
a square if and only if n is even and u mod p € [, is a square. If p = 2, then an element
x = 2"u € Q4 is a square if and only if n is even and v = 1 (mod 8). It follows from this
that Q, has four square classes if p > 2 and eight square classes if p = 2.

The corollary on page 37 of [25] gives a classification of the values represented by
a quadratic form over QQ,. We wish to record some consequences of this corollary. In
particular, a binary quadratic form over QQ,, whose discriminant is not a square represents
half of the square classes, while a binary quadratic form over QQ,, whose discriminant is a
square represents everything in Q,. A quadratic form in three variables either represents
everything in Q,, or represents all but one square class. Finally, a quadratic form in four
or more variables over QQ,, is universal.

We begin by reproving Theorems 2.1, 3.1, and 4.1. We start with a result of Arnold
(which he attributes to F. Aicardi) [1, Thm. 1].
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Lemma 5.1 (Arnold). Let Q(z,y) = ax? + bry + cy?® be a binary quadratic form with
integer coefficients. If QQ represents A, B and C, then it represents ABC'.

One way of interpreting this statement is that the inverse of Q(z,y) = ax?+ bxy + cy?
in the class group is axz? — bxy + cy?, which is improperly equivalent to Q. Because
QoQ 'o@ = Q in the class group, if Q represents A, Q! represents B, and Q
represents C, then Q = Q o Q™! o Q represents ABC.

Proof. If Q(z1,y1) = A, Q(z2,92) = B and Q(as,y3) = C, then Q(z,y) =
Q(z1,y1)Q(2,y2)Q(x3,y3), in which

x = (ax172 — cyry2)x3 + (c(y122 + 21y2) + br122)Y3
y = (a(x1y2 + x2y1) + bnye)zs + (—az1x2 + caye)ys. O

The following result provides an alternate representation of R(Q) based upon Arnold’s
lemma.

Lemma 5.2. Let Q) be a binary quadratic form and let a be a nonzero integer represented

by Q. Then

m= {229y o)

Proof. Suppose that b = Q(z,y)/a, in which 2,y € Q and a = Q(z, w) for some z,w € Z.
Write = ¢/f and y = d/f, in which ¢,d, f € Z and f # 0. Then

QLA QEed/f  Qed) | Qled
=T o " aff Qe fw) <T@

Now suppose that b € R(Q). Then there are z1,y1, x2,y2 € Q so that

h— Qz1,y1) _ aQ(x1,y1)Q(x27y2).

Q(-rQay2) aQ(mQayQ)Q
By Lemma 5.1, there are X,Y € Z so that Q(X,Y) = aQ(z1,y1)Q(22,y2). Thus,

- Q(X/Q(x2,12),Y/Q(x2,12)) c {Q(“z’y) 3,y € Q}. O

a

Next we require an analogue of Lemma 5.2 that describes the p-adic closure R(Q)~

of R(Q).
Lemma 5.3. If a is a nonzero integer represented by Q, then

rQ = {40 0y c0,).
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Proof. Suppose that b = Q(z,y)/a with z,y € Q,. Write a = Q(z,w) with z,w € Q,
and choose sequences x,,, Y, of rational numbers such that

lim z, =z and lim y, =y
n—oo n—o0

in Qp. The continuity of () ensures that

Qz,y) _ limyyoo Q@nyyn) _ o Q@0 Yn)

a a n—o0 a

so Q(z,y)/a is a limit point of R(Q) by Lemma 5.2. Thus, Q(x,y)/a € R(Q)~.
Now suppose that b € R(Q)~. If b =0, then b = Q(0,0)/a and we are done. If b # 0,
Lemma 5.2 provides =,y € Q such that

1
b— Q('/I’"y) S ||b||7 and hence 1 _ Q(x7y) S —,
a P ab p3
which implies that
Q(z,y) Q(z,y) 3
1-=—=€Z — =1 .
o SLp and s (mod p°)

Since every element of Z, that is congruent to 1 modulo p? is a square (by [25, Thms.
113 & I1.4] mentioned above), there is a w € Z,, such that Q(z,y)/(ab) = w?. Then

aw? a

,_ QY _ Qfwy/w) {Q@;y) oy GQP}. .

We can now reprove Theorems 2.1, 3.1, and 4.1. Lemma 5.3 implies that the p-adic
closure of R(Q) depends only on the Q,-equivalence class of Q). A quadratic form over a
field can be diagonalized, and so up to scaling, any binary quadratic form is equivalent to
Q(z,y) = x? —dy?, where d is a representative of the Q,-square class of the discriminant
of Q. As mentioned earlier, the corollary on page 37 of [25] shows that @ represents
every element of Q, if and only if d is a square in Q. For this reason, R(Q) is dense
in Q, if and only if the discriminant of @) is a square in Q,. In particular, if p > 2 and
b? — 4ac = p*¢, then R(Q) is dense in Q,, if and only if k is even and (¢/p) = 1. If p = 2,
and b? — 4ac = 2%/, then R(Q) is dense in Qg if and only if k is even and £ = 1 (mod 8).

Now, we turn to the situation of quadratic forms in r > 3 variables. Suppose that
Q%) = 2T AZ is an integral quadratic form in r > 3 variables and det(A) # 0. The
special case A = I and r = 3 was settled by Miska, Murru, and Sanna [19, Thm. 1.8c|.

Theorem 5.4. If r > 3, then R(Q) is dense in Q, for all primes p.

Proof. Fix an n € Q,. If n = 0, then it is clear that n is in the p-adic closure of R(Q),

since we can take a vector ¢ € Z" so that Q(¥) # 0, and note that 0 = % € R(Q).
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Assume therefore that n # 0. By the same corollary from page 37 of [25] quoted
above, the forms @ and n() each represent either everything in Q, or all but one square
class in Q. Since Q, has four square classes if p > 2 (and eight if p = 2), there must
be some nonzero element d € Q, represented by both @ and n@. By scaling these
representations by a power of p, we can assume that there are vectors Z € Z; and § € Zj,
so that Q(&) = nQ(y) = k with k € Z,, and k # 0.

Fix € > 0. Since Z is dense in Z,, there are vectors Z € Z" and @ € Z" (with
components z1, ..., 2. and wi, ..., w,) so that

i — will < & := min{ellk/nl], [k/nll, e[l k/n*|}

for all ¢ (and similarly ||y; — w;|| < § for all ¢). Since @ is a polynomial with integer
coefficients, @ is p-adically continuous. In fact, the ultrametric inequality implies that if
ai,...,a, and by, ..., b, are elements of Q, with ||a; — b;|| < € for all 7, then

||Q(a1,a2, ey ar) — Q(bh bo, ... s br)” < €.
Using this, we have that
1Q(2) — nQ(w)|| = [|Q(Z) — Q(F) + Q(Z) — nQ(¥) + nQ() — nQ(w)]|

< max([|Q(2) — Q(@)], [QF) — nQ() |, [[nQ(Y) — nQ(D)]))
< max(e|[k/nl|, 0, |n|lellk/n?|)) < ellk/n]|.

Since [|Q(@) — Q) < |[k/nll and Q(#) = k/n, it follows that [Q(@)| = Q@) =
Ik/n]|. Thus,

Q) = nQ(D)| = == - [Q(Z) — nQ(D)]|

HQE - H HQ( 9l
(ellk/nll) < €

IIQ( gl

<
Hk/nll

This proves that n is in the p-adic closure of R(Q), as desired. O
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