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ABSTRACT

3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum.
We use an ultra-high angular resolution technique—global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz)—to resolve the
innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma-ray emission is thought
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to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope (EHT)
at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of ∼ 20 µas (at a redshift of
z=0.536 this corresponds to ∼ 0.13 pc∼ 1700 Schwarzschild radii with a black hole mass MBH = 8×108 M�). Imaging and model-fitting techniques
were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the
northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is
consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to
its compactness and brightness, we associate the northern nuclear structure as the VLBI “core.” This morphology can be interpreted as either a
broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced
on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two
inner jet components move non-radially at apparent speeds of ∼ 15 c and ∼ 20 c (∼ 1.3 and ∼ 1.7 µas day−1, respectively), which more strongly
supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the
3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the
outer jet. The intrinsic brightness temperature of the jet components are . 1010 K, a magnitude or more lower than typical values seen at ≥ 7 mm
wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C279 becomes optically thin at short
(mm) wavelengths.

Key words. galaxies: active — galaxies: jet — galaxies: individual: 3C 279 — techniques: interferometric

1. Introduction

Relativistic jets in active galactic nuclei (AGN) are believed
to originate from the vicinity of a supermassive black hole
(SMBH), which is located at the center of the galaxy. Under-
standing the detailed physical processes of jet formation, accel-
eration, collimation, and subsequent propagation has been one
of the major quests in modern astrophysics (see, e.g., Boccardi
et al. 2017; Blandford et al. 2019 and references therein for re-
cent reviews).

Extensive studies on these topics have been carried out
over the last several decades, in particular by using the tech-
nique of millimeter-wave (mm) very long baseline interferom-
etry (VLBI), which provides especially high angular resolution
and can penetrate regions that are opaque at longer wavelengths.
Notably, recent Event Horizon Telescope (EHT) observations of
M 87 at 1.3 mm (230 GHz) have revealed a ring-like structure on
event horizon scales surrounding the SMBH, interpreted as the
black hole “shadow” (Event Horizon Telescope Collaboration
et al. 2019a,b,c,d,e,f; hereafter Papers I-VI). Although the EHT
results for M 87 provide an important step toward understand-
ing jet formation near a BH and in AGN systems in general, the
first EHT images of M 87 do not yet provide a direct connection
between the SMBH and the large-scale jet. Therefore, imaging
of fine-scale structures of AGN jets close to the SMBHs still
remains crucial in order to better understand the accretion and
outflow activities. Also, a more comprehensive understanding of
AGN jet formation will require systematic studies over a wider
range of AGN classes, given intrinsic differences such as lumi-
nosity, accretion rate, and environmental effects (e.g., Yuan &
Narayan 2014). We also note that M 87 and the Galactic Center
SMBH Sagittarius A* are relatively weak sources of γ-ray emis-
sion (e.g., Lucchini et al. 2019), while many other AGN produce
prominent and variable high-energy emission, often from com-
pact regions in their jets (e.g., Madejski & Sikora 2016). There-
fore, studies of the high-power, high-luminosity AGN also pro-
vide more clues regarding γ-ray emission mechanisms (see, e.g.,
Blandford et al. 2019 for a review).

Unfortunately, most high-power AGN are located at much
larger luminosity distances than M 87 and Sgr A*. Observing
frequencies up to 86 GHz have thus limited us in the past to
studying relatively large-scale jet morphology and evolution in
many different types of AGN. However, it is only with the EHT
at 230 GHz and beyond that the finest details at the base of those
gigantic dynamic structures become accessible. Combined with
other VLBI arrays, for example the Very Long Baseline Array
(VLBA) or Global Millimeter VLBI Array (GMVA) at 86 GHz,

the EHT can also connect the innermost regions of jets with the
downstream sections, revealing detailed profiles of the jet colli-
mation and locations of the collimation profile changes to better
constrain jet collimation and propagation theories (e.g., Asada &
Nakamura 2012; Hada et al. 2013).

The blazar 3C 279 (1253−055) is one of the sources that
provided the first evidence of rapid structure variability (Knight
et al. 1971) and apparent superluminal motions in compact AGN
jets (Whitney et al. 1971; Cohen et al. 1971). Since the discov-
ery of the apparent superluminal motions, the detailed structure
of the radio jet in 3C 279 has been imaged and its properties have
been studied by a number of VLBI observations until the present
day. The 3C 279 jet consists of a compact core and straight jet ex-
tended from subparsec (sub-pc) to kiloparsec (kpc) scales. The
compact core has high apparent brightness temperature at cen-
timeter wavelengths (TB,app & 1012 K; see, e.g., Kovalev et al.
2005). Both the core and the extended jet show high fractional
linear polarization (& 10%), and strong circular polarization on
the order of ∼ 1% is also detected in the core region at ≤ 15 GHz
(e.g., Homan & Wardle 1999; Homan & Lister 2006; Homan
et al. 2009b) and ≤ 43 GHz (Vitrishchak et al. 2008). The ex-
tended jet components show various propagation speeds (bulk
Lorentz factor Γ ∼ 10 − 40; e.g., Bloom et al. 2013; Homan
et al. 2015; Jorstad et al. 2017), indicating the presence of not
only underlying bulk plasma motions, but also patterns associ-
ated with propagating shocks or instabilities. Interestingly, the
inner jet components of 3C 279 often display various position
angles (see, e.g., Homan et al. 2003; Jorstad et al. 2004 and ref-
erences therein), but later on such components tend to align with
the larger-scale jet direction while propagating toward the jet
downstream (e.g., Kellermann et al. 2004; Homan et al. 2009a).
Based on the small viewing angle of the 3C 279 jet of θ ∼ 2◦

(Jorstad et al. 2017), the misaligned jet components are often
modeled as spatially bent (and perhaps helical) jet structures, in
which the jet Lorentz factor is constant along the outflow but the
jet viewing angle changes (e.g., Abdo et al. 2010; Aleksić et al.
2014). We also note that jet bending on VLBI scales is common
in many blazar jets (e.g., Hong et al. 2004; Lobanov & Roland
2005; Zhao et al. 2011; Perucho et al. 2012; Fromm et al. 2013).
For the innermost region of the 3C 279 jet (.100 µas∼ 0.65 pc
projected1), earlier pilot VLBI studies at 230 GHz revealed a
complex microarcsecond-scale substructure within the nuclear
region of the milliarcsecond scale jet (Lu et al. 2013; Wag-

1 At the redshift of 3C 279 (z = 0.536, Marziani et al. 1996), 1 mas
corresponds to a linear scale of 6.5 pc. An angular separation rate of
1 mas yr−1 therefore corresponds to an apparent speed of βapp ∼ 33 c.
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ner et al. 2015). However, the (u, v) coverage, and therefore the
imaging fidelity, of these observations was very limited. We also
note that 3C 279 is well known for its highly time-variable flux
densities, from radio to γ-rays (e.g., Chatterjee et al. 2008; Abdo
et al. 2010; Aleksić et al. 2014; Kiehlmann et al. 2016; Rani
et al. 2018; Larionov et al. 2020), while the exact locations of the
gamma-ray emission zones are often controversial (e.g., Patiño-
Álvarez et al. 2018, 2019). In particular, 3C 279 shows flux den-
sity variations down to minute timescales, which are often diffi-
cult to interpret given the size scales and Doppler factors inferred
from radio VLBI observations (e.g., Ackermann et al. 2016).

In April 2017, 3C 279 was observed with a significantly
expanded EHT array over four nights. The EHT 2017 obser-
vations result in new and more detailed maps of the core re-
gion of 3C 279, providing an angular resolution of 20 µas, or
∼ 0.13 pc (corresponding to ∼ 1700 Rs for a SMBH of mass
MBH ∼ 8 × 108M�; Nilsson et al. 2009). This paper presents
the main results from the EHT observation in 2017 and their
scientific interpretations. In §2 we briefly describe the observa-
tions, imaging procedures, and model-fitting techniques. In §3
the source images and model-fit parameters are presented. In
§4 we discuss some physical implications of the peculiar com-
pact jet structure, in relation to the observed rapid variation of
the source structure and brightness temperature. §5 summarizes
our results. Throughout this paper we adopt a cosmology with
H0 = 67.7 km s−1 Mpc−1, Ωm = 0.307, and ΩΛ = 0.693 (Planck
Collaboration et al. 2016)2.

2. Observations and data processing

2.1. Observations and calibration

3C 279 was observed by the EHT on 2017 April 5, 6, 10,
and 11. We refer to Papers II and III, and references therein
for details of the scheduling, observations, data acquisition,
calibration, and data validation. Here we briefly outline the
overall procedures. A total of eight stations at six geographic
sites participated in the observations: Atacama Large Millime-
ter/submillimeter Array (ALMA), Atacama Pathfinder Experi-
ment telescope (APEX), Large Millimeter Telescope Alfonso
Serrano (LMT), IRAM 30 m Telescope (PV), Submillimeter
Telescope Observatory (SMT), James Clerk Maxwell Telescope
(JCMT), Submillimeter Array (SMA), and South Pole Telescope
(SPT). The signals were recorded at two 2 GHz bands (centered
at 227 and 229 GHz), using dual circularly polarized feeds (RCP
and LCP). JCMT observed only in one circular polarization.
ALMA observed using dual linear feeds. Because of this, the
polconvert software (Martí-Vidal et al. 2016) was applied to
the correlated data to convert the ALMA visibilities from linear
to circular polarization.

The (u, v) coverage is shown in Fig. 1. The high data record-
ing rate of 32 Gbps (corresponding to a total bandwidth of 2 GHz
per polarization per sideband) allowed robust fringe detections
up to a ∼ 8.7Gλ baseline length, including the SPT, which signif-
icantly improved the fringe spacing toward 3C 279 in the north-
south direction. The correlated data were then calibrated using
various radio astronomical packages and validated through a se-
ries of quality assurance tests (see Paper III for details). The flux-
calibrated visibility amplitude distributions are shown in Fig. 2.

2 Adopting H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7 leads to
∼ 2% changes in the distances and apparent speeds, which we ignore.

Table 1. CLEAN beam sizes of the EHT toward 3C 279.

Epoch FWHMmaj FWHMmin P.A.
(µas) (µas) (◦)

April 05 25.8 17.2 20.1
April 06 21.0 18.0 15.6
April 10 21.6 15.1 82.8
April 11 22.6 13.9 88.3

Notes. The beam sizes were obtained using Difmap and uniform
weighting. We adopt a 20µas circular Gaussian beam for all 3C 279
CLEAN images.

2.2. Imaging and model-fitting analysis

For imaging, we used frequency-averaged visibility data from
the EHT-HOPS pipeline (see Paper III and Blackburn et al. 2019).
We note that image reconstruction with 1.3 mm wavelength EHT
data is particularly challenging because of the sparse (u, v) cov-
erage, total loss of absolute atmospheric phase, and large gain
fluctuations at some stations. In addition, the 2017 EHT obser-
vations lack relatively short baselines at . 1 Gλ to robustly re-
cover extended emission structure on VLBI scale at & 100 µas
(Paper IV). To ensure that the features we identified in our re-
constructed images are robust, the source images were gener-
ated by both traditional CLEAN and newer regularized maxi-
mum likelihood algorithms implemented in the following pro-
grams: Difmap (Shepherd et al. 1994), eht-imaging (Chael
et al. 2016, 2018), and SMILI (Akiyama et al. 2017a,b). We
used imaging pipelines for these three programs (see Paper IV)
to generate a total of 12 images of 3C 279 (i.e., one per epoch per
imaging method) within a limited field of view of ∼ 100 µas due
to lack of short EHT 2017 baselines (Paper IV). In all methods,
emission from the further extended milliarcsecond-scale jet (Fig.
4), which lies beyond the compact EHT field of view, was repre-
sented by a single large-scale Gaussian (see Paper IV for details).
We then averaged the three pipeline images to obtain a represen-
tative image of the source at each epoch. We refer to Paper IV
for the details of the imaging pipelines and image averaging pro-
cedures. In order to illustrate the EHT angular resolution toward
3C 279, we show in Table 1 the CLEAN beam sizes of the EHT
3C 279 data calculated by Difmap.

In order to parameterize bright and compact features in the
source, we also performed Gaussian model-fitting analyses in
two distinct ways. The first is the traditional VLBI model-fitting
procedure (DIFMAP modelfit, which employs the Levenberg-
Marquardt algorithm for non-linear fits) to reconstruct a static
model with more than six components on each observation day.
Related components were then identified and the evolution in
their relative positions measured.

The second method utilizes Themis, an EHT-specific analy-
sis package, using a parallel-tempered, affine invariant Markov
chain Monte Carlo sampler (Broderick et al. in prep., and refer-
ences therein). In this case, a fully time-variable, ten-component
(nine compact and one large-scale) Gaussian component model
was reconstructed to naturally facilitate the identification of fea-
tures in subsequent observations and directly reconstruct their
evolution. From this time variable model, component parame-
ters and uncertainties are reconstructed for individual days. Ad-
ditional descriptions of the underlying model and Themis anal-
ysis can be found in Appendix A (also see Paper VI for more
general details for the EHT model-fitting and model-comparison
analysis).
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Fig. 7. Same as Fig. 6, but using C0-1 (top) and C0-2 (bottom) as kine-
matic references. We note the more complicated motions of other jet
features in both panels compared to Fig. 6.

when C0-2 is chosen as the reference. Therefore, choosing C0-0
as the kinematic reference provides a smoother transition of the
kinematics from the inner EHT scale to the outer large jet (see
Fig. 3), and also helps avoid unnecessary complexity in the in-
terpretation given the limited available data, although this choice
alone does not allow us to determine which of the three C0 sub-
components remains more stationary in time (see §4.3 for more
discussions from a physical perspective).

We also note that adopting C0-0 as the kinematic reference
helps avoid false identification of the other C0 subcomponents,
such as counterjet features. The expected jet-to-counterjet ra-
tio of discrete emission features in 3C 279 can be computed as
((1 + β cos θ)/(1 − β cos θ))m−α, where β is the jet speed in units
of c; m = 2 or 3 for a continuous jet or a single component,
respectively (see, e.g., Urry & Padovani 1995); and α is the opti-
cally thin spectral index (i.e., flux density S ∝ ν+α). If we adopt
α = −0.7, θ = 2◦, m = 3, and β = βapp/(sin θ + βapp cos θ), where

βapp & 10 based on the observations, the expected brightness ra-
tio is & 1010; however, the observed brightness ratios of the C0
subcomponents are within an order of magnitude (Table D.1).
Therefore, we should expect to find no counterjet features situ-
ated to the north of the VLBI “core” (see Fig.7), although emit-
ting features moving in a helically bent jet could perhaps produce
this apparent backward motion if the jet is closely aligned to the
line of sight (see §4 for a discussion).

In addition, we further note that the VLBI core is usually
defined as the most compact and brightest jet feature in the ob-
tained images, and thus has the highest brightness temperature.
It is interesting to note in Fig. 8 that the brightest component is
not C0-0, but either C0-1 or C0-2, depending on the observing
epochs. With this criterion, C0-1 and C0-2 might be still classi-
fied as the VLBI core. However, long-term and high-resolution
observations of blazar jets find that compact and bright jet com-
ponents near the VLBI core often have higher brightness temper-
atures than the cores determined by the jet kinematics (see, e.g.,
Lisakov et al. 2017; Bruni et al. 2017; Jorstad et al. 2017). Thus,
identifying C0-1 and C0-2 as the potential VLBI core based on
the flux density and brightness temperature may not be strongly
supported in our observations. Therefore, we adopt C0-0 as the
VLBI core of 3C 279 in the following analysis.

4. Discussion

4.1. Elongated nuclear structure

The nuclear (C0 region) structure of 3C 279 resolved at the high-
est 20 µas angular resolution is elongated perpendicular to the
large-scale jet. This structure is seen in both independent imag-
ing and model-fitting methods, and can be modeled as three
bright features separated by ∼ 30−40 µas. This corresponds to a
projected spatial scale of ∼ 2500−3400 Rs for MBH = 8×108M�.
This morphology has not been commonly seen for 3C 279 by
VLBA at 15 and 43 GHz (Jorstad et al. 2017; Lister et al.
2018). If the jet emission represents distribution of underlying
synchrotron-emitting plasma, this peculiar structure can be in-
terpreted in various ways. Below we provide four possible inter-
pretations.

Standard jet formation scenarios suggest relativistic jet
launching by either angular momentum extraction from the spin-
ning SMBH (Blandford & Znajek 1977) or magneto-centrifugal
acceleration by an accretion disk (Blandford & Payne 1982), or
by both mechanisms at the same time. In this context, a spatially
resolved jet base, similar to the jet base morphology found in
several nearby radio galaxies, in particular with limb-brightened
jets (e.g., 3C 84; Giovannini et al. 2018, Cygnus A; Boccardi
et al. 2016) is also possible. However these are viewed at a much
larger angle to the line of sight than for 3C 279 and could provide
an edge-on view of the limb-brightened jet base or the disk (thus
thin elongated geometry if the accretion flow is not a sphere but
has a finite height-to-radius ratio of, e.g., H/R . 1; see, e.g.,
Yuan & Narayan 2014). However, for 3C 279 a nearly face-on
view (θ ∼ 2◦) and thus a more rounded, thick emission geom-
etry is expected on the sky for the base of a circular jet or the
accretion flow, in contrast to the observed images which show a
narrow width along the global direction of the jet.4

4 This holds true, unless the plasma in the jet base moves at highly
relativistic speeds. In this case we could effectively observe the jet sys-
tem in an edge-on view because most of observed radiation would have
been emitted perpendicular to the jet in the jet co-moving frame, due to
strong relativistic aberration.
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Table 2. Summary of geometric and dynamical properties of the jet
components discussed in §4.2.1 and §4.2.2.

ID βapp θ Γ δ
(c) (◦)

Curved jet casea

C0-1 16+3
−2 ≤ 1.5 ≥ 20 ≥ 32

C0-2 20 ± 1 ≤ 2.9 ≥ 20 ≥ 20
C1-0/1/2 (13 − 15) ± 2 ≥ 6 − 8 ≥ 20 ≤ 5 − 7

Straight jet caseb

C1-0/1/2 (13 − 15) ± 2 2 16 − 17 24 − 25

Notes. (a) The same Lorentz factor but different viewing angles for the
jet features. For C0 subcomponents we presume the small θ case, while
for C1 we presume the large θ case (see §4.2.1 and §4.2.2). (b) Assumes
a constant fixed viewing angle of θ = 2◦.

4.2.2. C1 region

In contrast to the C0 region, the three subcomponents in C1 have
comparable apparent speeds (βapp ∼ 13 − 15), and their posi-
tion angles with respect to C0-0 are all in a narrow range of
∼ −(173◦ − 178◦), which are aligned to the directions of their
motion vectors (PA∼ −(160◦−180◦)). Therefore, we can reason-
ably presume that these components share common kinematic
and geometric properties.

We could extend the analysis in §4.2.1 to the C1 region, that
is assuming a constant Γ = 20 for all the components to esti-
mate their different viewing angles. We show in Fig. 10 the same
βapp and δ plane but for the C1 subcomponents, which is used to
constrain reasonable ranges of θ and the corresponding δ. For
βapp = 13 − 15, there are two possible sets of parameters, which
are (i) θ ∼ 6◦ − 8◦ and δ ∼ 5 − 7, and (ii) θ ∼ 1.0◦ − 1.5◦ and
δ ∼ 33−35. We note that there is a similar ambiguity in determin-
ing whether the jet bends closer to or away from the line of sight.
Nevertheless, we could consider that weaker time variability of
the C1-0 and C1-1 components might prefer smaller Doppler
factor values (i.e., larger θ), while C1-2 shows stronger variabil-
ity and thus could have larger Doppler boosting (i.e., smaller θ).

Alternatively, dynamical properties of C1 could be better es-
timated by simply adopting the viewing angle of the larger-scale
jet (θ ∼ 2◦; Jorstad et al. 2017) because the motions of the C1
subcomponents are nearly parallel to the jet downstream (Fig.
3). Using θ = 2◦, we obtain Γ ∼ 16 − 17 and δ ∼ 24 − 25.

Taken all together, the ranges of Lorentz factors for C1 are
comparable to those found from the 3C 279 jet on larger scales
and at longer wavelengths (& 103pc or & 105Rs projected;
Bloom et al. 2013; Lister et al. 2016; Jorstad et al. 2017; Rani
et al. 2018), and also those estimated from radio total flux vari-
ability (e.g., Hovatta et al. 2009). The values of θ, Γ, and δ for
C1 are also summarized in Table 2.

4.3. Physical implications

In conclusion, it appears that the peculiar C0 structure could be
described by a jet closely aligned to the line of sight, but bent
by small angles, and the projection of the overall bent geome-
try to the sky. In this perspective, it is also worth noting that in
a previous 230 GHz VLBI experiment on 2011 Mar 29 – Apr
4, a similar nuclear morphology was found in 3C 279 based on
a model-fitting approach (Lu et al. 2013). After 2011 Decem-
ber, this structure became resolved by the VLBA at 43 GHz as
a bright moving feature situated at a position angle of initially
∼ 150◦, and later at ∼ −170◦ relative to the 43 GHz core (Alek-

sić et al. 2014; Jorstad et al. 2017), confirming the jet bending
scenario (the VLBA 7mm kinematics is shown in Fig. E.1 in Ap-
pendix E). Notably, the overall situation of the source in 2011 is
similar to the jet geometry we discussed in §4.2.1. This suggests
that the inner jet bending may commonly occur in 3C 279. In
this respect it is interesting to note that a similar extremely bent
jet morphology is sometimes observed in several AGN on small
angular scales, especially when the object is in a flaring state at
multiple wavelengths (e.g., 1156+295 – Hong et al. 2004; Zhao
et al. 2011; PKS 2136+141 – Savolainen et al. 2006; OJ 287 –
Agudo et al. 2012; Hodgson et al. 2017; 3C 345 – Lobanov &
Roland 2005; CTA 102 – Fromm et al. 2013; Casadio et al. 2015;
0836+710 – Perucho et al. 2012). The flare is often interpreted
as the result of an increase in Doppler beaming of the emission
due to the jet bending closer to the line of sight.

There are several possible explanations for the physical ori-
gin of the jet bending. First, precession of a jet nozzle, which is
induced by propagation of perturbations originating from the ac-
cretion disk and BH due to the Lense-Thirring effect (Bardeen
& Petterson 1975) or even binary black holes, may display
somewhat periodic jet wobbling over time. Abraham & Carrara
(1998) and more recently Qian et al. (2019) suggest such a phys-
ical model for 3C 279 with a precession period of ∼ 22 yrs. How-
ever, we note that the similar erratic inner jet position angle in
2011 and 2017 seen by the EHT implies a precession period of
. 6 yrs if the jet wobbling is periodic. The mismatching periods
would exclude this possibility. Second, it should be noted that the
C0-1 component is moving toward C1 and the jet downstream
(Fig. 3), and thus the component is being aligned to the larger
scale jet during the observing period. The above-mentioned time
evolution of the 3C 279 jet structure during 2011 also suggests
that the initially bent jet component in the source later aligned
with the downstream emission. The jet alignment in a single
preferred direction could indicate that the outflow is being ac-
tively collimated to a pre-established channel on these small spa-
tial scales, as similarly observed in other sources as well (see
discussions in Homan et al. 2015). Third, an internally rotating
jet, in which emission regions are located along strong toroidal
magnetic field lines, can also reproduce gradual jet bending fea-
tures in the images (e.g., Molina et al. 2014). Such a scenario
is supported by theoretical studies of jet launching and propaga-
tion (see, e.g., Tchekhovskoy 2015 and references therein), and
also observations of inner jet dynamics in nearby radio galaxies
(e.g., Mertens et al. 2016) and smooth variation of linear polar-
ization of many AGN jets in time and space (e.g., Asada et al.
2002; Marscher et al. 2008; Hovatta et al. 2012; Kiehlmann et al.
2016). Whether one of these scenarios is more favored than oth-
ers is difficult to determine, however. Joint constraints on the
model parameters with additional data, for instance with lin-
ear polarization time variability information (Nalewajko 2010),
should prove fruitful.

We also note that the apparent jet speed and Lorentz fac-
tor of C1 are comparable to those in the outer jet (§4.2.2).
This suggests that intrinsic acceleration of the jet (i.e., increas-
ing Γ) would occur upstream of C1. This puts upper limits on
the spatial extension of the intrinsic jet acceleration zone of
3C 279 to be within . 100 µas from the core, C0-0, which is
0.65 pc∼ 8500 Rs projected distances (∼ 19 pc∼ 2.4 × 106Rs

deprojected with θ = 2◦). If the observed motions of C0-1 and
C0-2 can be described by similar bulk Lorentz factors as C1,
the intrinsic acceleration zone should be located at much more
upstream of the jet, that is within . 30 − 40 µas core sepa-
ration ∼ 0.20 − 0.26 pc∼ 2600 − 3400 Rs projected distances
(∼ 6 − 7 pc∼ (7.3 − 9.7) × 104Rs deprojected).
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4.4. Low brightness temperature at 230 GHz

The innermost jet brightness temperature provides us with in-
sight about the jet plasma acceleration and radiative evolu-
tion further downstream (e.g., Readhead 1994; Marscher 1995;
Schinzel et al. 2012; Fromm et al. 2013). The observed bright-
ness temperatures of the subnuclear components within C0 are
in the range of TB ∼ 1010 − 1011 K (Fig. 8). We note that these
measurements are made in the observer’s frame, while the intrin-
sic brightness temperature of the plasma in the fluid frame, T ′B,
is lowered by the Doppler factor δ, that is T ′B = TB(1+z)/δ. Con-
sidering Doppler factors of δ ∼ 20 or even larger values due to
possibly curved jet geometry (§4.2), an order of magnitude lower
intrinsic brightness temperature of T ′B ∼ 109−1010 K is possible.
This is a significantly low value compared to the long millimeter
or centermeter wavelength VLBI core T ′B (e.g., TB > 1012 K and
T ′B ∼ 1011−12 K; Kovalev et al. 2005; Jorstad et al. 2017) and
also the inverse Compton limit, T ′B ∼ 5 × 1011 K (Kellermann &
Pauliny-Toth 1969).

It is challenging to make a straightforward interpretation of
the low brightness temperature without knowing the level of syn-
chrotron opacity at 230 GHz on 20 µas scales. Nevertheless, we
provide two possible implications below.

First, it is worth noting that a trend of decreasing brightness
temperature with increasing observing frequencies was previ-
ously seen in a number of AGN jet cores in the frequency range
of 2− 86 GHz (e.g., Lee et al. 2016; Nair et al. 2019). This trend
is often interpreted as an indication of acceleration of underly-
ing jet outflow, based on the following considerations. In the
standard model of relativistic jet (Blandford & Königl 1979),
the stationary radio VLBI core structure corresponds to a region
with high synchrotron opacity (τ ∼ 1) at the corresponding ob-
serving frequency. In multiwavelength VLBI observations, the
opacity effect appears as a shift in the apparent core position
at different frequencies (i.e., the core located more upstream of
the outflow at higher frequencies), which is commonly referred
to as a “coreshift” (e.g., Lobanov 1998). In this picture, higher
frequency TB measurements reveal physical conditions of the jet
closer to its origin, if the core TB represents surface brightness of
underlying plasma outflow. In addition, we could further assume
that the intrinsic brightness temperature of the plasma underly-
ing the compact core is not frequency-dependent and remains the
same over short distances (i.e., the coreshift distances). It then
follows that higher TB at lower frequencies could only be ex-
plained by higher outflow speed further downstream, and conse-
quent Doppler boosting of the emission to increase the observed
TB.

It is tempting to apply this framework to the EHT 230 GHz
brightness temperature measurement of 3C 279. The consistent
apparent jet speeds of ∼ 10 − 20c seen near the EHT core and
further downstream in the jet at centimeter wavelengths, how-
ever, does not strongly support the jet acceleration scenario. In-
stead, the brightness temperature can simply decrease with in-
creasing frequency if the observing frequency is higher than
the synchrotron self-absorption turn-over frequency (Rybicki &
Lightman 1979). The low brightness temperature at 230 GHz can
therefore be alternatively understood as a signature of low opac-
ity in the core region at 1.3 mm. The ALMA phased-array data
of 3C 279 from our observations show a steep spectral index of
α = −(0.6 ± 0.06) at 230 GHz (see Goddi et al. 2019), which
supports this conclusion, although the ALMA measurements do
not spatially resolve the microarcsecond-scale jet.

If, however, the compact VLBI core region still remains op-
tically thick up to 230 GHz, the observed low TB values could

be compared to the energy equipartition brightness tempera-
tures (T ′B,eq ∼ 5 × 1010 K; Readhead 1994), which is signif-
icantly higher than T ′B derived from the EHT measurements.
The lower T ′B than the particle-to-magnetic field energy den-
sity equipartition T ′B,eq would then suggest that the innermost
jet of 3C 279 may be magnetically dominated, contrary to pre-
vious conclusions that the jet plasma has low magnetization in
3C 279 (see, e.g., discussions in Hayashida et al. 2015; Acker-
mann et al. 2016). While high particle-to-magnetic energy den-
sity ratios are seen in other AGN especially during flaring activ-
ities (e.g., Jorstad et al. 2017; Algaba et al. 2018), low bright-
ness temperature associated with potentially magnetically dom-
inated jet is also seen in the nuclear region of other nearby AGN
jets, such as M 87 (e.g., see discussions in Kim et al. 2018). Ac-
cording to the standard model of jet launching and propagation,
magnetic energy density is expected to be dominant in a jet up to
central engine distances of ∼ 105Rs (see Boccardi et al. 2017 and
references therein). Considering the spatial scales of the EHT
observations of 3C 279 (20 µas∼ 1700 Rs), it is not impossible
that the observed innermost 3C 279 jet is indeed magnetic energy
dominated. Nevertheless, future spectral decomposition and po-
larimetric analysis on the 20 µas scale with multifrequency EHT
observations should determine the jet core opacity at 230 GHz,
in order to provide an unambiguous interpretation of the remark-
ably low T ′B values.

4.5. Connection to γ-ray emission in 3C 279

During the EHT observations in April 2017, 3C 279 was in a
highly active and variable state at γ-ray energies (see, e.g., Lari-
onov et al. 2020). Here we briefly discuss possible implications
of the innermost 3C 279 jet kinematics revealed by the EHT ob-
servations on the γ-ray emission of the source. Generally, the
jet speeds measured closest to the jet origin are important in or-
der to understand the origin of γ-ray emission in blazars. One
of most plausible scenarios explaining γ-ray emission in blazars
is inverse Compton (IC) scattering of seed photons from within
or around the relativistic jet, while details of the IC models vary
depending on the assumptions of the background photon fields
(see, e.g., Madejski & Sikora 2016). Observationally, bright γ-
ray flares from blazars are often associated with emergence from
the VLBI core of new, compact jet features, which travel toward
the jet downstream (e.g., Jorstad & Marscher 2016). This asso-
ciation implies that the IC process may occur near (or even up-
stream of) the VLBI core. Therefore, observational constraints
on the innermost jet speed is crucial for an accurate modeling of
the IC process.

The EHT measurements of the proper motion suggest a min-
imum Lorentz factor of Γ & 20 at core separations ≤ 100 µas.
On the other hand, much higher Lorentz factors of Γ & 100
are derived from the observations of rapid γ-ray flares (Acker-
mann et al. 2016). To accommodate the lower limit of Γ from
the EHT observations with the larger Lorentz factors from the
jet kinematics and γ-ray variability, viewing angles smaller than
θ < 1◦ in the region C0-1 and C0-2 may be considered. For such
small angles, Doppler factors of ∼ 100 could be reached, which
are sufficient to explain the observed γ-ray variability. On the
other hand, we note that the continued VLBA 43 GHz monitor-
ing of the source during 2015−2018 now suggests faster motion
and higher Lorentz-factors of Γ & 37 than in the past (Larionov
et al. 2020). As the authors note, the local values of Γ can be
even larger (e.g., ∼ 70) if fast “mini-jets” are embedded within
the main flow (e.g., Giannios et al. 2009) or if multiple, tur-
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bulent emitting zones are present (e.g., Narayan & Piran 2012;
Marscher 2014). The latter could increase the local Γ values by
factors of a few. Future detailed modeling of the broadband spec-
tral energy distribution during the EHT 2017 campaign will pro-
vide more detailed tests of the relation between the jet dynamics
and the γ-ray emission in 3C 279.

5. Summary

In this paper, we presented the first 1.3 mm VLBI images of
the archetypal blazar 3C 279 at the extreme angular resolution
of 20 µas. The sharpest-ever images of 3C 279 obtained at four
different epochs within a week reveal (i) peculiar substructures
in the millimeter VLBI core, which can be interpreted as a
bent jet, or perhaps a linear, knotty structure that could result
from large-scale magnetic reconnection or plasma instabilities;
(ii) rapid day-to-day closure phase variations pronounced in the
longest baselines, which are associated with proper motions of
∼ 1.1 − 1.7 µas day−1 and rapid flux variability; and (iii) low
apparent (TB . 1011 K) and intrinsic brightness temperatures
(T ′B . 1010 K) after correcting for Doppler boosting of at least
δ ∼ 10 − 20. This suggests that either the jet core is optically
thin at 230 GHz, or that the innermost jet of 3C 279 is domi-
nated by magnetic energy if the synchrotron turn-over frequency
were close to 230 GHz.

More details of the source properties, such as the magnetic
field configuration and detailed jet energy balance, will be sub-
ject to follow-up studies, for example by EHT full-Stokes imag-
ing of the 3C 279 jet (EHT Collaboration et al., in prep.). As
mentioned in §4.5, 3C 279 was also in a highly active and vari-
able state at γ-ray energies during the EHT observations in April
2017. Follow-up work (EHT Collaboration et al., in prep.), com-
bining the results from this paper with other multiwavelength
data obtained close in time, will provide a more detailed under-
standing of the physical processes in the jet, allowing detailed
tests of the potential curvature in the innermost jet, and possible
jet acceleration and alternative physical scenarios, as discussed
in §4.3 and §4.5.
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Appendix A: Themis model-fitting analysis

Using Themis, we fit a time variable, ten-component elliptical
Gaussian model to the scan-averaged visibility amplitude and
closure phase EHT data in both observing bands and across
the four observation nights simultaneously using a parallel-
tempered, ensemble Markov chain Monte Carlo method. Nine of
the components are compact, modeling the structures apparent
in the images, and one is large (milliarcsecond scale), represent-
ing the extended flux associated with large-scale structures that
are detected only by intra-site baselines (ALMA-APEX, JCMT-
SMA; see Paper IV and Paper VI).

For Themis, all components are characterized by a total flux,
size, asymmetry, orientation, position, and their time derivatives
(except for orientation). Priors were imposed on the time vari-
ability to prevent large changes (e.g., factors of two). A mini-
mum component FWHM of 10 µas was required; the fit quality
and parameter estimates are insensitive to decreases in this value.
The result of this process is the joint posterior distributions of all
of the individual component parameters. The simultaneous fit of
the time-variable model produced results consistent with fits on
individual days and frequency bands. Of the compact compo-
nents, only six were robustly recovered on each day individually
and simultaneously; we focus on these in §3.3.

Appendix B: Reconstructed antenna gains from

imaging and model-fitting methods

In Fig. B.1 we show the reconstructed antenna gains obtained
by using independent images or models from three imaging
pipelines and model-fitting analysis. The consistent antenna
gains across different methods suggest that the results are robust
against possible biases in each analysis.

Appendix C: Images per day per method

Here we show the 3C 279 images from all days and all the indi-
vidual methods before averaging.

Appendix D: Model-fit parameters

In Table D.1 we show the parameters of the Gaussian model-
fit components for all epochs. We also show in Fig. D.1 sample
plots of visibility amplitudes and closure phases of the data ver-
sus the models for April 11.

Appendix E: Long-term 3C 279 jet component

positions from VLBA 43 GHz monitoring
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Table D.1. Component parameters from dynamical Gaussian model-fitting of 3C 279 evaluated at 6 UTC on each observation day. From left to right
the columns indicate component ID, observation day, total flux, component positions in Cartesian coordinates with respect to the kinematic center
(C00), full width at half maximum (FWHM) size of the major axis, the corresponding brightness temperature, minor-to-major axis ratio, major
axis position angle measured E of N (PA), and relative apparent velocity in the source rest frame. For each, median posterior values are quoted
with 95% confidence intervals that were obtained by the MCMC fitting with ∼ 1.5% systematic amplitude errors added to the data (equivalently
2◦ phase errors) (see §2 and Appendix A).

ID Day Flux Relative RA Relative Dec fwhmmaj TB Min/Maj PA Relative βapp

(Jy) (µas) (µas) (µas) (1010 K) (deg)

C0-0

Apr 5 0.48 ± 0.04 — — 17 ± 2 6.0+0.6
−0.5 0.66+0.05

−0.04

47 ± 3

—
Apr 6 0.56 ± 0.04 — — 18 ± 1 5.9 ± 0.4 0.65 ± 0.03 —
Apr 10 0.89 ± 0.05 — — 24.2+0.6

−0.5 4.7 ± 0.2 0.75 ± 0.03 —
Apr 11 0.97 ± 0.06 — — 25.4+0.8

−0.6 4.4+0.3
−0.2 0.79 ± 0.04 —

C0-1

Apr 5 1.7 ± 0.1 16.8 ± 0.3 −15.3+0.3
−0.4 16.2 ± 0.5 19 ± 1 0.81+0.05

−0.06

170+7
−12 16+3

−2
Apr 6 1.58 ± 0.10 16.1 ± 0.3 −16.4+0.3

−0.4 17.4+0.4
−0.5 15.3+0.8

−0.7 0.78+0.04
−0.05

Apr 10 1.0 ± 0.1 13.3 ± 0.5 −21.0+0.7
−1.2 23.3+0.8

−0.9 6.4+0.4
−0.5 0.67 ± 0.03

Apr 11 0.9 ± 0.1 12.6+0.5
−0.6 −22.1+0.9

−1.4 25 ± 1 5.0+0.4
−0.6 0.65+0.05

−0.04

C0-2

Apr 5 0.29+0.06
−0.04 33.6+0.8

−0.9 −20 ± 1 18+4
−2 3.4 ± 0.4 0.57+0.07

−0.08

142+1
−2 20 ± 1Apr 6 0.47+0.08

−0.05 32.0+0.7
−0.8 −19.6+1.2

−1.0 20+3
−2 5.1 ± 0.4 0.53 ± 0.05

Apr 10 1.2 ± 0.1 25.6+0.5
−0.7 −17.6+0.7

−0.6 28.7+0.9
−0.8 8.8+0.7

−0.6 0.38 ± 0.01
Apr 11 1.4+0.2

−0.1 24.0+0.6
−0.7 −17.1 ± 0.6 31.5+0.8

−0.7 9.2+0.9
−0.7 0.35 ± 0.01

C1-0

Apr 5 1.00 ± 0.06 −2.9 ± 0.4 −90.6+0.7
−0.8 20 ± 1 11.4+0.7

−0.6 0.52 ± 0.03

22 ± 1 15 ± 2Apr 6 1.03 ± 0.05 −2.9 ± 0.4 −91.9+0.7
−0.8 22.1 ± 1.0 10.4 ± 0.5 0.47 ± 0.02

Apr 10 1.14 ± 0.05 −3.0 ± 0.6 −96.8+0.8
−1.1 32+2

−1 7.5+0.5
−0.4 0.33 ± 0.02

Apr 11 1.16+0.06
−0.05 −3.0 ± 0.7 −98.0+0.9

−1.2 35 ± 2 7.0 ± 0.5 0.31 ± 0.02

C1-1

Apr 5 0.53 ± 0.07 −10.4+0.6
−0.5 −117 ± 1 18 ± 1 3.9+0.3

−0.2 0.96+0.03
−0.07

70+10
−20 14 ± 2Apr 6 0.54 ± 0.06 −10.7+0.6

−0.5 −118.4 ± 0.9 18 ± 1 3.9 ± 0.2 0.95+0.03
−0.06

Apr 10 0.59+0.05
−0.04 −12.2+0.7

−0.6 −122.7+0.5
−0.6 20.4+0.9

−0.8 3.8 ± 0.3 0.87+0.04
−0.05

Apr 11 0.60 ± 0.05 −12.6+0.8
−0.7 −123.8+0.5

−0.6 21 ± 1 3.7+0.3
−0.4 0.85+0.04

−0.05

C1-2

Apr 5 0.19 ± 0.06 −10 ± 1 −87 ± 1 26+2
−1 0.9 ± 0.3 0.66+0.01

−0.03

42+6
−5 13 ± 2Apr 6 0.25 ± 0.05 −9.8 ± 1.0 −87.8 ± 0.9 25 ± 1 1.5 ± 0.3 0.62+0.01

−0.02
Apr 10 0.51 ± 0.05 −10.7+0.8

−0.7 −92.0 ± 0.3 16.2 ± 0.6 6.9+0.7
−0.6 0.64 ± 0.02

Apr 11 0.57 ± 0.05 −10.9 ± 0.8 −93.0 ± 0.3 14.6 ± 0.5 9.0 ± 0.8 0.69+0.03
−0.02
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Fig. D.1. Visibility amplitudes (top) and closure phases (bottom) of the data (gray error bars) and Gaussian models (colored diamonds) for all
epochs, for both observing frequency bands (HI and LO), and plotted against the baseline length and quadratic sum of the three baseline lengths in
triangles (u1, u2, and u3), respectively. In both panels the bottom subpanels show residuals (i.e., differences between data and model) normalized
by the uncertainties of each data point.
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Fig. E.1. Positions of jet components in 3C 279 between 2007 and 2013
from VLBA 43 GHz monitoring of the source and reported by Jorstad
et al. (2017). Upper and lower panels show the overall and inner jet
component positions, respectively. The color bars denote the observing
epoch in decimal year. The dark cross indicates the core component
position. Symbol sizes are proportional to the component flux density.
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