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ABSTRACT

Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using
synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be
calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or
upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data.
Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long
Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects.
Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently
captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of
including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general
relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained
with the current and future EHT array for different weather conditions.
Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant.
Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array
after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned
addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range.
In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in
reconstructed images.

Key words. galaxies: nuclei – black hole physics – telescopes – atmospheric effects – techniques: high angular resolution –
techniques: interferometric
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1. Introduction

The giant elliptical galaxy M 87 hosts an active galactic nucleus
(AGN) with a radio jet extending to kpc scales (e.g. Owen et al.
2000). The radio core of M 87 shifts inwards with increasing fre-
quency as the jet becomes optically thin closer to the central black
hole, resulting in a flat radio spectrum as predicted by analytical
models (Blandford & Königl 1979; Falcke & Biermann 1995).
The radio core of M 87 coincides with the central engine at
43 GHz (Hada et al. 2011). At millimetre wavelengths, emis-
sion near the event horizon becomes optically thin. Due to
strong gravitational lensing, the black hole is predicted to cast
a “shadow” on this emission (Falcke et al. 2000; Dexter et al.
2012; Mościbrodzka et al. 2016). The shadow is a region exhibit-
ing an emission deficit produced by the capture of photons by
the event horizon, with a size enhanced by strong gravitational
lensing.

For a Schwarzschild (non-spinning) black hole, the apparent
radius of the black hole shadow is

√
27Rg, with Rg = GM/c2 the

gravitational radius where G is Newton’s gravitational constant,
M is the black hole mass, and c is the speed of light. The differ-
ence in shadow size between a rotating black hole (Kerr 1963)
and the Schwarzschild solution is marginal (.4%), since the
apparent size is nearly independent of the black hole spin
(Bardeen 1973; Takahashi 2004; Johannsen & Psaltis 2010). Esti-
mates for the mass of the supermassive black hole at the cen-
tre of M 87 have historically ranged between (3.5+0.9

−0.7) × 109 M�
from gas-dynamical measurements (Walsh et al. 2013), and (6.6±
0.4) × 109 M� from stellar-dynamical measurements (Gebhardt
et al. 2011). At a distance of (16.4 ± 0.5) Mpc (Bird et al. 2010),
the mass measurements correspond to an apparent diameter of the
shadow between ∼22 µas and 42 µas.

At 230 GHz, Earth-sized baselines give a nominal resolu-
tion of ∼23 µas, which is certainly sufficient to resolve the
black hole shadow of M 87 for the high-mass estimate. M 87
is therefore one of the prime targets of the Event Horizon Tele-
scope (EHT), the Earth-sized mm-Very Long Baseline Interfero-
metry (VLBI) array aiming to image a black hole shadow (Event
Horizon Telescope Collaboration 2019a). The other prime candi-
date is Sagittarius A* (Sgr A*). With a better constrained shadow
size of ∼53 µas, this is the black hole with the largest predicted
angular size in the sky. Interstellar scattering effects and vari-
ability on short time scales (minutes) may make reconstructing
the black hole shadow challenging for this source. On the other
hand, it provides us with opportunities to study scattering effects
(Johnson 2016; Dexter et al. 2017; Johnson et al. 2018) and real-
time dynamics of the accretion flow (e.g. Doeleman et al. 2009;
Fish et al. 2009; Dexter et al. 2010; Medeiros et al. 2017; Roelofs
et al. 2017; Johnson et al. 2017; Bouman et al. 2017). In this
paper, we focus on synthetic EHT observations of M 87, where
orbital timescales are much larger than those of the observations.

With the EHT data sets and images, it is possible to test gen-
eral relativity in a unique environment (e.g. Bambi & Freese
2009; Johannsen & Psaltis 2010; Psaltis et al. 2015; Goddi et al.
2017; Event Horizon Telescope Collaboration 2019b). Also,
constraints can be put on models of the accretion flow around
supermassive black holes (e.g. Falcke & Markoff 2000; Yuan
et al. 2003; Dexter et al. 2010, 2012; Mościbrodzka et al. 2014,
2016; Chan et al. 2015; Broderick et al. 2016; Gold et al. 2017;
Event Horizon Telescope Collaboration 2019c).

In 2017, the EHT consisted of the IRAM 30 m telescope
on Pico Veleta in Spain, the Large Millimeter Telescope (LMT)
in Mexico, the Atacama Large Millemeter Array (ALMA), the
Atacama Pathfinder Experiment (APEX) telescope in Chile,

the Sub-Millimeter Telescope (SMT) in Arizona, the Sub-
Millimeter Array and James Clerk Maxwell Telescope (JCMT)
in Hawaii, and the South Pole Telescope (SPT). In the April
2017 observing run (hereafter EHT2017) and a subsequent
two-year analysis period, the EHT imaged the M 87 black hole
shadow within a 42 ± 3 µas asymmetric emission ring (Event
Horizon Telescope Collaboration 2019d,e). The measured ring
size, when associated with a black hole shadow, leads to an
angular size of one gravitational radius of 3.8 ± 0.4 µas (Event
Horizon Telescope Collaboration 2019e). At the adopted dis-
tance of 16.8+0.8

−0.7 Mpc that was calculated from multiple mea-
surements (Bird et al. 2010; Blakeslee et al. 2009; Cantiello et al.
2018), this angular size corresponds to a black hole mass of
(6.5 ± 0.2|stat ± 0.7|sys) × 109 M�, which is consistent with the
stellar-dynamical mass measurement by Gebhardt et al. (2011).

Over the years, synthetic data have proven to be of impor-
tance for demonstrating the capabilities of the EHT. They were
also essential for developing new strategies to increase the sci-
entific output of the rich, yet challenging, observations.

Doeleman et al. (2009) and Fish et al. (2009) used the Astro-
nomical Image Processing System (AIPS)1 task UVCON to
calculate model visibilities for the EHT array, showing that sig-
natures of source variability could be detected in Sgr A* by
using interferometric closure quantities and polarimetric ratios.
The MIT Array Performance Simulator (MAPS)2 was used in
several EHT synthetic imaging studies. Lu et al. (2014) used
it to test the ability of the EHT to reconstruct images of the
black hole shadow for several models of the accretion flow of
M 87. Fish et al. (2014) demonstrate that for Sgr A*, the blur-
ring effect of interstellar scattering could be mitigated if the
properties of the scattering kernel are known. Lu et al. (2016)
showed that source variability could also be mitigated by observ-
ing the source for multiple epochs and applying visibility aver-
aging, normalization, and smoothing to reconstruct an image of
the average source structure.

Typically, the only data corruption included in these syn-
thetic data sets is thermal noise, although Fish et al. (2009)
also included instrumental polarization. More corruptions can
be added with the eht-imaging library3. Chael et al. (2016,
2018) simulated polarimetric EHT images of Sgr A* and
M 87, and included randomly varying complex station gains
and elevation-dependent atmospheric opacity terms. With the
stochastic optics module in eht-imaging, the input model
images can be scattered using a variable refractive scattering
screen, and the scattering can be mitigated by solving for the
scattering screen and image simultaneously (Johnson 2016).
However, scattering effects are only relevant for observations of
Sgr A*. eht-imaging can also simulate observations following
a real observing schedule, and copy the uv-coverage and thermal
noise directly from existing data sets. It also includes polarimet-
ric leakage corruptions (Event Horizon Telescope Collaboration
2019d).

Despite these recent advances in synthetic data genera-
tion, there are still differences between synthetic and real mm-
VLBI data sets. So far, synthetic EHT data sets have not been
frequency-resolved, and gain offsets have only been included as
random relative offsets drawn from a Gaussian with a fixed stan-
dard deviation, rather than being based on a physical model.

Moreover, no calibration effects are taken into account in the
synthetic data products. It is essentially assumed that residual

1 http://www.aips.nrao.edu
2 https://www.haystack.mit.edu/ast/arrays/maps
3 https://github.com/achael/eht-imaging
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delays, phase decoherence due to atmospheric turbulence, and
signal attenuation caused by the atmospheric opacity are per-
fectly calibrated. In eht-imaging, atmospheric turbulence can
be included by fully randomizing the phases (with the option
of fixing them within a scan). In real mm-VLBI data, atmo-
spheric turbulence results in rapid phase wraps. The correlated
phases are not fully randomized, but evolve continuously over
frequency and time, allowing to perform fringe fitting and aver-
age complex visibilities coherently on time scales set by the
atmospheric coherence time.

In this paper, we present the SYnthetic Measurement creator
for long Baseline Arrays (SYMBA) – a new synthetic VLBI data
generation and calibration pipeline4.

We generate raw synthetic data with MeqSilhouette5

(Blecher et al. 2017; Natarajan et al., in prep.), which includes
a tropospheric module and physically motivated antenna point-
ing offsets (Sect. 2). We then calibrate the raw data using the
new CASA (McMullin et al. 2007) VLBI data calibration pipeline
rPICARD6 (Janssen et al. 2019a), applying a fringe fit and a priori
amplitude calibration (Sect. 3). The overall computing workflow
of SYMBA is outlined in Sect. 4. We describe our simulated obser-
vational setup (antenna and weather parameters and observing
schedule) in Sect. 5 and our input source models for the syn-
thetic data generation in Sect. 6. In Sect. 7, we demonstrate the
effects of simulated data corruptions and subsequent calibration.
We illustrate the capabilities of SYMBA in Sect. 8 based on three
scientific case studies. In these studies we show (1) how well we
can distinguish between two example general relativistic magne-
tohydrodynamics (GRMHD) models with different descriptions
for the electron temperatures with the current and future EHT
array, (2) how the EHT would perform under different weather
conditions, and (3) how pre-2017 models of M 87 compare to the
observed image of the black hole shadow. In Sect. 9, we summa-
rize our conclusions and discuss future work.

2. Synthetic data generation with MeqSilhouette

MeqSilhouette (Blecher et al. 2017; Natarajan et al., in prep.)
is a synthetic data generator designed to simulate high fre-
quency VLBI observations. While visibilities of real radio inter-
ferometric observations are produced by correlating recorded
voltage streams from pairs of telescopes, MeqSilhouette pre-
dicts visibilities directly from the Fourier Transform of an
input sky model. For simple ASCII input models (e.g. a set
of Gaussian components, each with an independent spectral
index), MeqTrees (Noordam & Smirnov 2010) is used for
the visibility prediction. FITS-based7 sky models are converted
with the wsclean (Offringa et al. 2014) algorithm. The sig-
nal path is described by the Measurement Equation formalism
(Hamaker et al. 1996), breaking down the various effects on
the visibilities into a chain of complex 2 × 2 Jones matrices
(Jones 1941; Smirnov 2011a,b,c). MeqSilhouette generates
frequency-resolved visibilities, with a bandwidth and number
of channels set by the user. Frequency-resolved visibilities are
required for the calibration of signal path variations intro-
duced by the troposphere. In particular, synthetic data from
MeqSilhouette has been used to validate the CASA-based data
reduction path of the EHT. Moreover, channelized data allows

4 https://bitbucket.org/M_Janssen/symba
5 https://github.com/rdeane/MeqSilhouette_public_v0.1
6 https://bitbucket.org/M_Janssen/picard
7 See https://fits.gsfc.nasa.gov/fits_documentation.

html for a definition of the FITS standard.

for the introduction of frequency dependent leakage of polar-
ized signals at telescopes’ receivers, the inclusion of wavelength
dependent Faraday rotation and spectral indices in source mod-
els, and multi-frequency aperture synthesis, which can yield
significant improvements to the uv-coverage8. It is also possible
to generate corrupted data sets from time-dependent polarized
emission models in full Stokes and to follow an observed sched-
ule from a VEX file9. A key design driver of MeqSilhouette
is to generate synthetic data (and associated meta-data) in a for-
mat that is seamlessly ingested by the CASA software package.
The native format is the MeasurementSet (MS)10, but the visibil-
ities can also be exported to UVFITS11. We briefly describe the
added tropospheric and instrumental corruptions below, refer-
ring to Blecher et al. (2017) and Natarajan et al. (in prep.) for
more details.

2.1. Tropospheric corruptions

The effects of the troposphere on the measured visibilities can be
separated into those resulting from a mean atmospheric profile,
and those resulting from atmospheric turbulence.

2.1.1. Mean troposphere

The mean troposphere causes time delays, resulting in phase
slopes versus frequency and an attenuation of the visibility
amplitudes due to absorption of radiation in molecular transi-
tions (Thompson et al. 2017). In the mm-wave regime, absorp-
tion lines are mostly caused by rotational transitions of H2O and
O2. Apart from the individual lines, there is a general increase
of the opacity with frequency due to the cumulative effect
of pressure-broadened H2O lines peaking in the THz-regime
(Carilli & Holdaway 1999).
MeqSilhouette calculates the attenuation and time delays

using the Atmospheric Transmission at Microwaves (ATM) soft-
ware (Pardo et al. 2001). It integrates the radiative transfer equa-
tion

dIν(s)
ds

= εν(s) − κν(s)Iν(s), (1)

where Iν(s) is the specific intensity at frequency ν at path length
coordinate s, and εν and κν are the emission and absorption coef-
ficients, respectively. In thermodynamic equilibrium, the latter
are related through Kirchhoff’s law,

εν

κν
= Bν(T ), (2)

where Bν(T ) is the Planck spectrum at temperature T . In order to
integrate Eq. (1), ATM calculates κν as a function of altitude. For
a specific transition, κν is proportional to the photon energy, the
transition probability (Einstein coefficient), molecular densities
of the lower and upper states, and the line shape including pres-
sure and Doppler broadening. κν is related to the refractive index
of the medium via the Kramers-Kronig relations. The introduced
time delay is then calculated from the refractive index.

8 For example, the EHT is currently able to observe with two sidebands
separated by 18 GHz, which MeqSilhouette can replicate.
9 See https://vlbi.org/vlbi-standards/vex/ for a definition
of the VEX file format.
10 See https://casa.nrao.edu/Memos/229.html for the definition
of the MeasurementSet format.
11 See ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/

PUBL/AIPSMEM117.PS for a description of the UVFITS file data
format.

A5, page 3 of 19



A&A 636, A5 (2020)

As is evident from Kirchhoff’s law (Eq. (2)), the atmo-
sphere not only absorbs, but also emits radiation. This process
leads to an increase in system temperature (sky noise), which
also follows from the integration in ATM and is included in the
noise budget with an elevation and therefore time-dependent
contribution.

2.1.2. Turbulent troposphere

Apart from the mean troposphere induced amplitude attenuation,
signal delay, and sky noise, a major source of data corruptions
in the mm regime is tropospheric turbulence. Rapid evolution of
the spatial distribution of tropospheric water vapour causes the
signal path delay to vary on short (∼10 s) time scales. This then
leads to rapid and unpredictable rotations of the visibility phase,
posing challenges for fringe fitting. Because of atmospheric tur-
bulence, uncalibrated visibilities can not be coherently averaged
beyond the atmospheric coherence time. Absolute phase infor-
mation can only be recovered with phase-referencing (Beasley
& Conway 1995). For imaging mm-VLBI data, one often needs
to rely on closure phases (e.g. Chael et al. 2018). Closure phase
is the sum of visibility phases on a triangle of baselines, in which
many station-based instrumental and atmospheric corruptions
cancel out (Jennison 1958; Rogers et al. 1974).

In MeqSilhouette, turbulent phase errors are added to the
visibilities assuming that the atmospheric turbulence can be rep-
resented by a thin phase-changing scattering screen. Similar
to simulations of interstellar scattering (e.g. Johnson & Gwinn
2015), the turbulent substructure of the screen is assumed to be
constant in time while the screen itself is moving with a constant
transverse velocity v. The screen velocity sets the atmospheric
coherence time together with the spatial phase turbulence scale
on the screen. The introduced phase offsets are described by a
phase structure function that takes a power law form,

Dφ(x, x′) = 〈[φ(x + x
′) − φ(x)]2〉 ≈ µ(r/r0)β, (3)

where x and x
′ are spatial coordinates on the screen, r2 =

(x − x
′)2, r0 is the phase coherence length such that Dφ(r0) = 1

rad, µ = csc (elevation) is the airmass towards the horizon12, and
β = 5/3 if one assumes Kolmogorov turbulence, which is sup-
ported by Carilli & Holdaway (1999). The nature of the scatter-
ing is set by the ratio of r0 and the Fresnel scale rF =

√
λDos/2π,

where Dos is the distance between the observer and the scatter-
ing screen. With r0 measured to be ∼50−700 m (Masson 1994;
Radford & Holdaway 1998) and a water vapour scale height
of 2 km, we have rF ≈ 0.45 m <r0 and are in the weak scatter-
ing regime. This means that most of the received power on the
ground originates from a screen area Aweak ≈ πr2

F, rather than
from disjoint patches, as is the case for interstellar scattering.
At a distance of 2 km, 1 mas corresponds to ∼10 µm, and the
Field of View (FoV) of the array is much smaller than r0. The
phase error is therefore assumed to be constant across the FoV,
and the structure function can be written as D(t) = D(r)|r=vt,
where v is the bulk transverse velocity of the phase screen. From
this, a phase error time sequence can be computed directly. Due
to the long baselines, atmospheric corruptions can be modelled
independently at each station (Carilli & Holdaway 1999). For

12 The csc (elevation) dependence of the airmass is an approximation
assuming a planar rather than a spherical atmosphere, which breaks
down at elevations below ∼10◦ (Paine 2019). For the synthetic obser-
vations in this work, we set the elevation limit to 10◦ as is typically
done for real VLBI observations. Hence, the csc (elevation) approxima-
tion has a negligible effect on our results.

a given coherence time tc = r0/v (Treuhaft & Lanyi 1987) at
a reference frequency ν0, Blecher et al. (2017) showed that the
temporal variance of the phase for a power-law turbulence as a
function of frequency ν can be modelled as

σ2
φ(tc, ν) =

[

µ

β2 + 3β + 2

] (

tint

tc

)β (
ν

ν0

)

rad2, (4)

where tint is the data integration time and ν0 is taken as the
lowest frequency in the data. MeqSilhouette uses Eq. (4) to
compute the tropospheric phase turbulence using β = 5/3. A
constant amount of precipitable water vapour at zenith (PVW0)
is assumed, mixed evenly into the atmosphere. An increase in
the phase variance due to the PWV therefore enters through the
amount of airmass towards the horizon in Eq. (4). The specified
coherence time tc = tc(PWV0) should decrease with increasing
precipitable water vapour content in the atmosphere, although
other factors such as wind speed also affect tc. No sudden phase
jumps due to inhomogeneities in the atmosphere (e.g. clouds or
airmass boundary kinks) along the line of sight are simulated.
Phase turbulence and resulting decorrelation within an integra-
tion time tint are not simulated by MeqSilhouette. For realistic
results, tint should therefore preferably be set to well within tc,
as is the case for real observations. Delay-related decoherence
effects within individual frequency channels are also not simu-
lated. It is assumed that frequency resolution is sufficiently high
to make this effect negligible, as it is done in modern correlators.

2.2. Receiver noise

The System Equivalent Flux Density (SEFD) of a station is
a measure for its overall noise contribution. MeqSilhouette
reads Srx, the contribution from the receiver noise to the SEFD,
from input files. Receiver temperatures Trx are typically deter-
mined from real data by extrapolating system temperatures to
zero airmass and the receiver noise contribution in units of
Jansky (Jy) follows as

Srx =
Trx

DPFU
· (5)

Here, the DPFU is the telescope’s “degree per flux unit” gain,
defined as DPFU = ηapAdish/ (2kB), with ηap the aperture effi-
ciency (taken to be constant during observations), Adish the geo-
metric area of the dish, and kB the Boltzmann constant.

2.3. The full noise budget

Visibilities on all baselines are corrupted by the addition of noise
as a complex Gaussian variable with standard deviation

σmn =
1
ηQ

√

SEFDmSEFDn

2∆νtint
, (6)

where SEFDm is the system equivalent flux density from sta-
tion m with combined contributions from the atmosphere and
receiver, ∆ν is the channel bandwidth, tint is the correlator inte-
gration time, and ηQ is a quantization efficiency factor, set to
0.88 for standard 2-bit quantization. We assume perfect quan-
tization thresholds when simulating the cross-correlation data.
Therefore, we do not need to simulate the auto-correlations to
correct for erroneous sampler thresholds. All noise sources along
the signal chain (sky noise, turbulence, and thermal noise from
the instrument) enter into σmn. MeqSilhouette produces visi-
bilities in a circular polarization basis, that is LL, RR, LR, and
RL. The noise on, for example, the Stokes I data is a factor

√
2

smaller.

A5, page 4 of 19



F. Roelofs et al.: SYMBA: An end-to-end VLBI synthetic data generation pipeline

2.4. Antenna pointing errors

Pointing offsets of individual antennas manifest as a time and
station dependent amplitude error. They cause a drop of the vis-
ibility amplitudes Zmn on a m–n baseline as the maximum of the
antenna primary beam is not pointed on the source. The primary
beam profile of a station m is modelled as a Gaussian with a
full width at half maximum PFWHM,m, which is related to the
Gaussian’s standard deviation by a factor of 2

√
2 ln 2 ≈ 2.35. A

Gaussian beam is justified since the pointing offsets are not large
enough that a Gaussian and Bessel function deviate (i.e. near
the first null), see Middelberg et al. (2013). No further system-
atic point effects, such as refraction, are considered here. Point-
ing offsets ρm are drawn from a normal distribution N centred
around zero, with a standard deviation given by a specified rms
pointing offset Prms,m. The resulting visibility amplitude loss

∆Zmn

Zmn

= exp















−8 ln2 2
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n
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


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



















, (7)

ρm = N
(

µ = 0, σ = Prms,m
)

,

describes a data corruption effect caused by an erroneous source
tracking of the telescopes.

In SYMBA, we employ two types of pointing offsets, which
occur on short and long timescales, respectively. The short
timescale variations are caused by the atmospheric seeing and
wind shaking the telescope, resulting in a displacement of the
sky source with respect to an otherwise perfectly pointed tele-
scope beam. Here, SYMBA draws values of ρm from Prms,m on
timescales set by the atmospheric coherence time. The long
timescale variations are caused by sub-optimal pointing solu-
tions adopted by a telescope. SYMBA simulates these by adopting
a new value of ρm every N ∼ 5 scans and letting these pointing
offsets deteriorate by ξ ∼ 0.1 in every scan until a new offset
is determined. For simplicity, the ρm are drawn from the same
Prms,m, multiplied by a factor α ∼ 1.5. For a scan number M, the
effect of an incorrect pointing model is thus given as

ρm = (1 + ξ)M mod N N (

µ = 0, σ = αPrms,m
)

. (8)

2.5. Leakage and gain errors

Complex gain errors G, that would translate to errors in
the DPFUs and phase gains in real observations, and com-
plex leakage effects (D-terms) can be added as well. For
observed/corrupted (obs) visibilities from a baseline of stations
m and n, D-terms cause artificial instrumental polarization as a
rotation of the cross-hand visibilities in the complex plane by
twice the station’s feed rotation angles χ (Conway & Kronberg
1969):

RLobs
mn = RLtrue

mn +
[

DR
me2iχm +

(

DL
n

)∗
e2iχn

]

I, (9)

LRobs
mn = LRtrue

mn +
[

DL
me−2iχm +

(

DR
n

)∗
e−2iχn

]

I. (10)

Here, D are the leakage terms, with a superscript indicating
the polarization, and i=

√
−1. The star denotes complex con-

jugation. More complex and realistic polarimetric effects are
available in the forthcoming release of MeqSilhouette v2
(Natarajan et al., in prep.).

3. Synthetic data calibration with rPICARD

The goal of SYMBA is to create synthetic observations which
match real data as closely as possible. After the simulation

of physically motivated data corruptions by MeqSilhouette,
the synthetic data are passed through the rPICARD calibration
pipeline (Janssen et al. 2019a). The data are treated in the same
way as actual correlated visibilities and a model-agnostic cali-
bration (Smirnov 2011a) of phases and amplitudes is performed
based on information typically available for real observations.

The atmospheric signal attenuation introduced by
MeqSilhouette is corrected by recording opacity values
for each station at the start of each scan. This is the equivalent
of measuring opacity-corrected system temperatures with a hot-
load calibration scan in real VLBI observations (Ulich & Haas
1976), which leaves intra-scan opacity variations unaccounted
for. As MeqSilhouette does not simulate the digitization
when radio telescopes record data, nor the correlation process,
the simulated visibilities are already scaled to units of flux
density, as derived from the input source model. Therefore,
unity amplitude gains are used and the system temperatures are
set to exp (τ) for the amplitude calibration, with τ describing
the atmospheric opacity (see Sect. 4.2 in Janssen et al. 2019a).
Amplitude losses due to pointing offsets can not be corrected
with this standard VLBI amplitude calibration method.

The phases are calibrated with the CASA Schwab-Cotton
(Schwab & Cotton 1983) fringe fitter implementation. With this
method, station gains for phases, rates, and delays are solved
with respect to a chosen reference station. rPICARD uses a pri-
oritized list of reference stations (based on availability). For
the EHT, these are ALMA→LMT→APEX→SMT→PV. All
solutions are re-referenced to a single common station in the
end. Optimal fringe fit solution intervals are found based on the
signal-to-noise ratio (S/N) of the data in each scan. The search
intervals range from twice the data integration time (typically
∼0.5−1 s) to 60 s. Within this interval, the smallest timescale
which yields fringe detections with S/N > 5.5 on all base-
lines for which the source can be detected, is chosen (Janssen
et al. 2019b). Figure 1 shows estimated S/N values for a range
of fringe fit solution intervals and different simulated coherence
times. The presence of (frequency independent) atmospheric
delays and absence of instrumental delays in the synthetic data
warrants a combined fringe fit solution over the whole frequency
band for a maximum S/N. Usually, rPICARD would smooth
solved delays within scans to remove potential outliers. This
is done under the assumption that an a priori delay model like
Calc/Solve13 has been applied at the correlation stage, which
already takes out the bulk of the delay offsets. For the syn-
thetic data generation, no atmospheric delay model is applied
and rPICARD has to solve for steep residual delay gradients
caused by the wet and dry atmospheric components within scans
(Fig. 2). Smoothing of solved delays is therefore disabled here.

The last step of the calibration pipeline is the application of
the amplitude and phase calibration tables, and averaging of the
data in frequency within each spectral window. The calibrated
and averaged data are then exported in the UVFITS file format.
Optionally, an additional UVFITS file can be provided as input.
SYMBA then uses eht-imaging to reproduce the uv-coverage
from that file. For a UVFITS file from a real observation, this
means taking into account time periods where telescopes drop
out of the observed schedule and all non-detections. Thereby,
a comparison of synthetic and real data is unaffected by uv-
coverage.

Finally, the synthetic UVFITS data are averaged in 10 s inter-
vals and a “network calibration” (Fish et al. 2011; Johnson &
Gwinn 2015; Blackburn et al. 2019; Event Horizon Telescope

13 http://astrogeo.org/psolve/
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Fig. 1. S/N estimates for rPICARD fringe solutions. The plotted
points indicate the estimated average FFT S/N values by the CASA
fringefit code for different integration times (solution intervals), seg-
menting a 15 min long scan of a MeqSilhouette observation of a 4 Jy
point source on the ALMA-APEX baseline. Different symbols corre-
spond to different coherence times (Eq. (4)) used for the simulation of
atmospheric turbulence. The dashed line shows the expected increase in
S/N for an infinite coherence time without added noise corruptions.

Collaboration 2019f) is performed with the eht-imaging soft-
ware. The gains of non-isolated (redundant) stations, which have
a very short baseline to another nearby station can be calibrated
if the model of the observed source is known at large scales. For
the 2017 EHT observations, ALMA was able to provide accu-
rate large-scale source models, allowing for a network calibra-
tion of the co-located ALMA/APEX and SMA/JCMT sites. For
our synthetic observations, we use the known total flux density
of the input model.

4. Computing workflow

SYMBA is controlled by a single input ASCII file. The observed
schedule can either follow a VEX file or explicitly set start time,
duration, number of scans, and gaps between scans. If the VEX
file has been used for a real observation, a UVFITS file can
be provided to match the uv-coverage. All antenna and weather
parameters are also set in ASCII files. The input source model
can be provided as FITS or ASCII file, as a single model or
multiple frames from a time-variable source, and contain only
Stokes I or full polarization information. The input model is
Fourier Transformed and corrupted by MeqSilhouette. The
resultant visibilities are calibrated by rPICARD, and optionally
network calibrated and imaged by eht-imaging. SYMBA out-
puts a FITS file of the final reconstructed source model, the cali-
brated and self-calibrated visibilities in UVFITS and ASCII for-
mat, and diagnostic plots of the calibration process. The pipeline
is fully dockerized14. An overview of the workflow is shown in
Fig. 3.

5. Simulated observation setup

SYMBA is able to create synthetic observations for any VLBI
array. Here, we outline the antenna and weather parameters and

14 https://www.docker.com/

Fig. 2. Delay between ALMA and LMT. The delay is solved a function
of time by the fringe fitting calibration step. The input source model is
a 4 Jy point source.

observing schedules adopted for the creation of our synthetic
data sets.

5.1. EHT2017 array

Our primary array consists of the 2017 EHT stations, exclud-
ing the SPT station for which M 87 is always below the horizon.
The antenna parameters are summarized in Table 1. The receiver
SEFDs of the primary array have been estimated by extrapolat-
ing system temperature measurements to zero airmass, follow-
ing Janssen et al. (2019a). Full width at half maximum 230 GHz
beam sizes (PFWHM) and dish diameters (D) were taken from the
websites and documentation for each individual site. Pointing
rms offsets (Prms) have been based on a priori station informa-
tion and typical inter- and intra-scan amplitude variations seen
in EHT data. All offsets lie within official telescope specifi-
cations. Aperture efficiencies (ηap) were estimated with ∼10%
accuracy from planet observations (Janssen et al. 2019b; Event
Horizon Telescope Collaboration 2019f). In our synthetic obser-
vations, we have added gain errors (Gerr) listed in Table 1 in
accordance with these uncertainties. Additionally, a polarization
leakage corruption has been added at a D = 5% level for all
stations. This corruption has been left uncalibrated by rPICARD,
to mimic the current capabilities of the EHT, which did not per-
form a polarization calibration for the first scientific data release
(Event Horizon Telescope Collaboration 2019f).

The weather parameters are summarized in Table 2. For the
ground temperature Tg, pressure Pg, andprecipitable water vapour
PWV, we used the median values measured during the EHT
2017campaign(5−11April)at theindividualprimarysites, logged
by the VLBI monitor (Event Horizon Telescope Collaboration
2019a).NoweatherinformationwasavailablefromtheVLBImon-
itor for ALMA. We adopted the values measured at the nearby sta-
tion APEX.

The radiometers at the sites measure the atmospheric opacity
τ, while MeqSilhouette takes the PWV as input. The 225 GHz
opacity can be converted to PWV in mm using

PWV =
τ − τdry−air

B
, (11)

where τdry−air is the dry air opacity and the slope B is in
mmH2O−1. B and τdry−air have been measured at some sites
and both tend to decrease with site altitude, but the errors on
these measurements are not well known (Thompson et al. 2017;
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steps that may be skipped (for example, imaging could be done without network calibration). Yellow boxes are auxiliary input files; the master
input file is indicated by the red box. Green ellipses are actions, and blue boxes are data products. Text next to arrows lists the information from
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Table 1. Antenna parameters adopted in our synthetic observations.

Year Antenna X (m) Y (m) Z (m) D (m) ηap Srx (Jy) Gerr D Prms (′′) PFWHM (′′)

2017 ALMA 2225061 −5440057 −2481681 70 0.73 60 1.02 0.05 1.0 27
APEX 2225040 −5441198 −2479303 12 0.63 3300 0.97 0.05 1.0 27
JCMT −5464585 −2493001 2150654 15 0.52 6500 1.05 0.05 1.0 20
LMT −768716 −5988507 2063355 32 0.31 2400 0.85 0.05 1.0 10
PV 5088968 −301681 3825012 30 0.43 1000 1.03 0.05 0.5 11

SMA −5464555 −2492928 2150797 16 0.73 3300 0.96 0.05 1.5 55
SMT −1828796 −5054407 3427865 10 0.57 7700 0.93 0.05 1.0 32

2018 GLT 541647 −1388536 6180829 12 0.63 3300 1.08 0.05 1.0 27
2020 KP −1994314 −5037909 3357619 12 0.63 3300 0.96 0.05 1.0 27

PDB 4523951 468037 4460264 47 0.52 750 0.95 0.05 1.0 20
2020+ AMT 5627890 1637767 −2512493 15 0.52 1990 1.03 0.05 1.0 20

Thomas-Osip et al. 2007, and references therein): the calibration
of B needs an accurate independent measure of the water vapour
column density at the same site as the radiometer, which is only
available for a few EHT sites. Also, τdry−air is generally small
(order 10−2), making it challenging to measure.

For these reasons, climatological modelling likely provides
better estimates than empirical measurements here. To estimate
B and τdry−air, we use the Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2) from the
NASA Goddard Earth Sciences Data and Information Services
Center (GES DISC; Gelaro et al. 2017). In a reanalysis model
like MERRA-2, variables such as the air temperature and mixing
ratios of different molecules are computed based on ground-
and space-based measurements. They depend on time, atmo-
spheric pressure level, and latitude and longitude coordinates.
We use 2006−2016 MERRA-2 data averaged over seasons (per
three months) and latitude zones (antarctic and arctic, southern

and northern mid-latitudes, and tropical)15. For each pressure
layer and latitude zone, we then perform radiative transfer at
225 GHz with the am atmospheric model software (Paine 2019)
with and without water vapour included to calculate B and
τdry−air in the March-April-May season (which is the usual EHT
observing season). We then interpolate these to the pressure level
of each EHT site and calculate the PWV from the measured τ
using Eq. (11).

Atmospheric coherence times tc were estimated based on
the characteristics of the 2017 EHT measurements for the pri-
mary array. Precise station-based coherence times are difficult
to obtain and will vary from day to day due to changes in the
weather conditions. For this paper, estimates are taken that match
well to decent to poor weather. The values are summarized in

15 As available on https://www.cfa.harvard.edu/~spaine/am/
cookbook/unix/zonal/
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VLBI arrays and different frequencies (e.g. 86 GHz GMVA,
345 GHz EHT, or cm VLBI observations) could also be done.
In particular, we plan to extend the pipeline to handle wide-field
ionospheric simulations. The elementary weather study shown
in this work could be extended to a more in-depth study of the
influence of various weather parameters across different sites,
which is particularly useful for scheduling observations and
commissioning new sites. Synthetic data from SYMBA can also
be used to test VLBI calibration (e.g., fringe-fitting) and self-
calibration routines. Station’s gain curves, which enter as an ele-
vation dependent factor into the aperture efficiency, frequency
dependent D-terms, and the simulation of inhomogeneous atmo-
spheres will be added in future work. Furthermore, while this
study has focused on investigating the effects of signal corrup-
tions and the addition of new sites on the measured visibilities
and reconstructed images, one could also investigate the preci-
sion with which model parameters, such as the black hole spin,
electron temperature prescription, or inclination angle, can be
fitted to the visibilities in different scenarios.

Finally, we believe that our open source end-to-end pipeline
will have useful pedagogical applications. It could be used to
teach students about a large variety of data corruption and cali-
bration effects and their impact on the visibility data, and result
in a rapid development of intuition and expertise in (mm-)VLBI
calibration and imaging.
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