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Block Matrices in Linear Algebra

Stephan Ramon Garcia and Roger A. Horn

Abstract: Linear algebra is best done with block matrices. As evidence in sup-
port of this thesis, we present numerous examples suitable for classroom
presentation.

Keywords: Matrix, matrix multiplication, block matrix, Kronecker product,
rank, eigenvalues

1. INTRODUCTION

This paper is addressed to instructors of a first course in linear algebra,
who need not be specialists in the field. We aim to convince the reader
that linear algebra is best done with block matrices. In particular, flexible
thinking about the process of matrix multiplication can reveal concise
proofs of important theorems and expose new results. Viewing linear
algebra from a block-matrix perspective gives an instructor access to use-
ful techniques, exercises, and examples.

Many of the techniques, proofs, and examples presented here are
familiar to specialists in linear algebra or operator theory. We think that
everyone who teaches undergraduate linear algebra should be aware of
them. A popular current textbook says that block matrices “appear in
most modern applications of linear algebra because the notation high-
lights essential structures in matrix analysis…” [5, p. 119].

The use of block matrices in linear algebra instruction aligns math-
ematics pedagogy better with topics in advanced courses in pure
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mathematics, computer science, data science, statistics, and other fields.
For example, block-matrix techniques are standard fare in modern algo-
rithms [3]. Textbooks such as [2–7] make use of block matrices.

We take the reader on a tour of block-matrix methods and applica-
tions. In Section 2, we use right-column partitions to explain several
standard first-course results. In Section 3, we use left-column partitions
to introduce the full-rank factorization, prove the invariance of the num-
ber of elements in a basis, and establish the equality of row and column
rank. Instructors of a first linear algebra course will be familiar with these
topics, but perhaps not with a block matrix/column partition approach
to them. Section 4 concerns block-column matrices. Applications include
justification of a matrix-inversion algorithm and a proof of the unique-
ness of the reduced row echelon form. Block-row and block-column
matrices are used in Section 5 to obtain inequalities for the rank of sums
and products of matrices, along with algebraic characterizations of matri-
ces that share the same column space or null space. The preceding mater-
ial culminates in Section 6, in which we consider block matrices of
several types and prove that the geometric multiplicity of an eigenvalue is
at most its algebraic multiplicity. We also obtain a variety of determinan-
tal results that are suitable for presentation in class. We conclude in
Section 7 with Kronecker products and several applications.

Notation: We frame our discussion for complex matrices. However, all of
our numerical examples involve only real matrices, which may be pre-
ferred by some first-course instructors. We use Mm�n to denote the set of
all m � n complex matrices; Mn denotes the set of all n � n complex
matrices. Boldface letters, such as a; b; c; denote column vectors;
e1; e2; :::; en is the standard basis of Cn: We regard elements of Cm as col-
umn vectors; that is, m� 1 matrices. If A 2 Mm�n; then each column of
A belongs to Mm�1: The transpose of a matrix A is denoted by AT: The
null space and column space of a matrix A are denoted by nullA and
colA; respectively. The trace and determinant of a square matrix A are
denoted by trA and detA; respectively.

2. RIGHT-COLUMN PARTITIONS

If

A ¼ 1 2
3 4

� �
and B ¼ 4 5 2

6 7 1

� �
; (1)

then the entries of AB are dot products of rows of A with columns of B:
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AB ¼ 1 � 4þ 2 � 6 1 � 5þ 2 � 7 1 � 2þ 2 � 1
3 � 4þ 4 � 6 3 � 5þ 4 � 7 3 � 2þ 4 � 1
� �

¼ 16 19 4
36 43 10

� �
: (2)

However, there are other ways to organize these computations.
We examine right-column partitions in this section. If A 2 Mm�r

and B ¼ ½b1 b2 ::: bn� 2 Mr�n; then the jth column of AB is Abj:
That is,

AB ¼ Ab1 Ab2 ::: Abn½ �: (3)

An intentional approach to column partitions can facilitate proofs of
important results from elementary linear algebra.

Example 4. If A and B are the matrices from equation (1), then B ¼
½b1 b2 b3�; in which

b1 ¼ 4
6

� �
; b2 ¼ 5

7

� �
; and b3 ¼ 2

1

� �
:

Partitioned matrix multiplication yields the expected answer (2):

Ab1 Ab2 Ab3½ � ¼ 1 2

3 4

" #
4

6

" #
1 2

3 4

" #
5

7

" #
1 2

3 4

" #
2

1

" #" #

¼ 16

36

" #
19

43

" #
4

10

" #" #
¼ 16 19 4

36 43 10

" #

¼ AB:

Example 5. Matrix-vector equations can be bundled together. For
example, suppose that x1; x2; :::; xk are eigenvectors of A 2 Mn for the
eigenvalue k and let X ¼ ½x1 x2 ::: xk� 2 Mn�k: Then

AX ¼ Ax1 Ax2 ::: Axk½ � ¼ kx1 kx2 ::: kxk½ � ¼ kX :

This observation can be used to prove that the geometric
multiplicity of an eigenvalue is at most its algebraic multiplicity; see
Example 36.

The following example provides a short proof of an important impli-
cation in “the invertible matrix theorem,” which is in the core of a first
course in linear algebra.

Example 6 (Universal consistency yields right inverse). If Ax ¼ b is con-
sistent for each b 2 C

n; there are bi 2 C
n such that Abi ¼ ei for i ¼

1; 2; :::; n: Then
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A b1 b2 ::: bn½ � ¼ Ab1 Ab2 ::: Abn½ � ¼ e1 e2 ::: en½ � ¼ I;

so AB ¼ I for B ¼ ½b1 b2 ::: bn�:
In the preceding example, we obtained a right inverse for a square

matrix A. The fact that a right inverse for A is also a left inverse is nontri-
vial; it can fail for linear transformations if the underlying vector space is
not finite dimensional [2, P.2.7]. Here is an explanation that is based on
column partitions.

Example 7 (One-sided inverses are two-sided inverses). If A;B 2 Mn and
AB ¼ I, then AðBxÞ ¼ x for all x 2 C

n and hence colA ¼ C
n: The

Dimension Theorem [2, Cor. 2.5.4] ensures that nullA ¼ f0g: Partition
I�BA ¼ ½x1 x2 ::: xn� according to its columns. Then

Ax1 Ax2 ::: Axn½ � ¼ A x1 x2 ::: xn½ � ¼ A I�BAð Þ
¼ A� ABð ÞA ¼ A�IA ¼ 0;

so each xi ¼ 0 since nullA ¼ f0g: Thus, I�BA ¼ 0 and hence BA ¼ I.

Although it cannot be recommended as a practical numerical algo-
rithm, Cramer’s rule is an important concept. Why does it work?

Example 8 (Cramer’s rule). Let A ¼ ½a1 a2 ::: an� 2 Mn be invertible,
let b 2 C

n; and let Ai 2 Mn be the matrix obtained by replacing the ith
column of A with b: Then there is a unique x ¼ ½x1 x2 ::: xn�T 2 C

n

such that Ax ¼ b: Cofactor expansion along the ith row of A reveals that
(ith columns underlined)

xi ¼ det½e1 ::: ei�1 x eiþ1 ::: en�
¼ det A�1a1 ::: A�1ai�1 A�1b A�1aiþ1 ::: A�1an

� �
¼ det A�1 a1 ::: ai�1 b aiþ1 ::: an

� �� �
¼ det A�1Ai

� 	
¼ detAi

detA
:

3. LEFT-COLUMN PARTITIONS

We have gotten some mileage out of partitioning the matrix on the right-
hand side of a product. If we partition the matrix on the left-hand side of
a product, other opportunities emerge. If A ¼ ½a1 a2 ::: an� 2 Mm�n

and x ¼ ½x1 x2 ::: xn�T 2 C
n; then
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Ax ¼ x1a1 þ x2a2 þ � � � þ xnan: (9)

That is, Ax is a linear combination of the columns of A.
The next example illustrates that relationships between geometric

objects, such as vectors and subspaces, can often be framed algebraically.

Example 10 (Geometry and matrix algebra). Let A 2 Mm�n and B 2
Mm�k: We claim that

colB � colA () there exists an X 2 Mn�k such that AX ¼ B;

moreover, if the columns of A are linearly independent, then X is unique.
If each column of B ¼ ½b1 b2 ::: bk� 2 Mm�k is a linear combination
of the columns of A 2 Mm�n; then (9) ensures that there are xi 2 C

n such
that bi ¼ Axi for each i; if the columns of A are linearly independent,
then the xi are uniquely determined. Let X ¼ ½x1 x2 ::: xk� 2 Mn�k:

Then

B ¼ b1 b2 ::: bk½ �¼ Ax1 Ax2 ::: Axk½ �¼A x1 x2 ::: xk½ � ¼ AX :

Conversely, if AX ¼ B, then (9) indicates that each column of B lies
in colA:

The following example uses Example 10 to show that any two bases
for the same subspace of Cn have the same number of elements [1], [2,
P.3.38]. It relies on the fact that trXY ¼ trYX if both products are
defined; see [2, (0.3.5)].

Example 11 (Number of elements in a basis). If a1; a2; :::; ar and
b1; b2; :::; bs are bases for the same subspace of Cn; we claim that r ¼ s. If

A ¼ a1 a2 ::: ar½ � 2 Mn�r and B ¼ b1 b2 ::: bs½ � 2 Mn�s;

then colA ¼ colB: Example 10 ensures that B ¼ AX and A ¼ BY, in
which X 2 Mr�s and Y 2 Ms�r: Thus,

A Ir�XYð Þ ¼ A�AXY ¼ A�BY ¼ A�A ¼ 0:
Since A has linearly independent columns, each column of Ir�XY is
zero; that is, XY ¼ Ir. A similar argument shows that YX ¼ Is and hence

r ¼ tr Ir ¼ trYX ¼ trXY ¼ tr Is ¼ s:

Another consequence of the principle in Example 10 is a second
explanation of the equality of left and right inverses.

Example 12 (One-sided inverses are two-sided inverses). Suppose that
A;B 2 Mn and AB ¼ I. If Bx ¼ 0; then x ¼ Ix ¼ AðBxÞ ¼ A0 ¼ 0: This
shows that nullB ¼ f0g: The Dimension Theorem ensures that colB ¼
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C
n; so there is an X 2 Mn such that I ¼ BX (this is where we use

Example 10). Then BA ¼ BAI ¼ BABX ¼ BIX ¼ BX ¼ I:

A fundamental result from elementary linear algebra is the equality
of rankA and rankAT; that is, “column rank equals row rank.” The
identity (9) permits us to give a simple explanation.

Example 13 (Equality of row and column rank). For A 2 Mm�n; we
claim that rankA ¼ rankAT: We may assume that k ¼ rankA � 1: Let
the columns of B 2 Mm�k be a basis for colA: Example 10 ensures that
there is an X 2 Mk�n such that A ¼ BX. Thus, AT ¼ XTBT; so colAT �
colXT: Then

rankAT ¼ dim colAT � dim colXT � k ¼ rankA:

Now apply the same reasoning to AT and obtain rankA ¼ rankAT:
We finish this section with a matrix factorization that plays a role in

many block-matrix arguments.

Example 14 (Full-rank factorization). Let A ¼ ½a1 a2 ::: an� 2 Mm�n

be nonzero, let r ¼ rankA; and let the columns of X 2 Mm�r be a basis
for colA: We claim that there is a unique Y 2 Mr�n such that A ¼ XY;
moreover, rankY ¼ rankX ¼ r: Since the r columns of X are a basis for
colA; we have rankX ¼ r and colA ¼ colX : Example 10 ensures that
there is a Y 2 Mr�n such that A ¼ XY. Moreover, Y is unique because
each column of A is a unique linear combination of the columns of X.
Finally, invoke Example 13 to compute

r ¼ rankAT ¼ dim col YTXTð Þ � dim colYT � r:

Therefore, rankY ¼ rankYT ¼ dim colYT ¼ r:

In the preceding example, the matrix X is never unique. One way to
construct a basis for colA is related to the reduced row echelon form
(RREF) of A. Let A0 ¼ 0 2 C

n; for each j ¼ 1; 2; :::; n let Aj ¼
½a1 a2 ::: aj�: For j 2 f1; 2; :::; ng; we say that aj is a basic column of A
if aj 62 colAj�1 (that is, if rankAj > rankAj�1). The basic columns of A
comprise a basis for colA and correspond to the pivot columns of the
RREF of A; see [6, Problem 3.9.8].

4. BLOCK COLUMNS

Let A 2 Mm�r and B 2 Mr�n: Write

B ¼ B1 B2½ �;
in which B1 2 Mr�k and B2 2 Mr�ðn�kÞ; that is, group the first k columns
of B to create B1 and group the remaining n – k columns of B to create
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B2. Then,

AB ¼ A B1 B2½ � ¼ AB1 AB2½ �; (15)

this is the block version of (3). It can be generalized to involve multiple
blocks Bi. We consider two pedagogically-oriented applications of the
block-column approach (15) to matrix multiplication: a justification of
the “side-by-side” matrix inversion algorithm and a proof of the unique-
ness of the RREF of a matrix. First, we consider some examples that
illustrate (15).

Example 16. Let A and B be as in (1) and write B ¼ ½B1 B2�; in which

B1 ¼ 4 5
6 7

� �
and B2 ¼ 2

1

� �
:

Then

AB ¼ AB1 AB2½ � ¼ 16 19
36 43

� �
4
10

� �� �
;

as computed in (2).

Example 17 (Extending to a basis). If the list x1; x2; :::; xk 2 C
n is linearly

independent, then it can be extended to a basis of Cn: Equivalently, if
X 2 Mn�k has linearly independent columns, then there is a Y 2
Mn�ðn�kÞ such that ½X Y � 2 Mn is invertible. This observation has lots of
applications; see Example 36.

Example 18 (Inversion algorithm). Let A 2 Mn be invertible and let R be
a product of elementary matrices that encode a sequence of row opera-
tions that row reduces A to I. Then RA ¼ I; that is, R ¼ A�1: Then (15)
ensures that

R½A I� ¼ ½RA R� ¼ ½I A�1�:
Thus, if one can row reduce the block matrix ½A I� to ½I X �;
then X ¼ A�1:

Our second application of block columns is the uniqueness of the
RREF. The RREF underpins almost everything in a typical first linear
algebra course. It is used to parametrize solution sets of systems of linear
equations and to compute the rank of a small matrix (for practical com-
putations other procedures are preferred [3]).

Example 19 (Uniqueness of RREF). We claim that each A 2 Mm�n has a
unique reduced row echelon form E. If A¼ 0, then E¼ 0 so we assume
that A 6¼ 0 and proceed by induction on the number of columns of A. In
the base case n¼ 1, the RREF E ¼ e1 is uniquely determined. Suppose
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that n � 2; partition A ¼ ½A0 a�; and suppose that R 2 Mm encodes a
sequence of row operations (which need not be unique) that reduce A to
its RREF, which we partition as E ¼ ½E0 y�: Then RA ¼ ½RA0 Ra� ¼
½E0 y�: The induction hypothesis ensures that RA0 ¼ E0 is the unique
RREF of A0: Let r ¼ rankA0: There are two cases to consider: either a 2
colA0 or a 62 colA0: If a 62 colA0; then it is a basic column of A and y ¼
erþ1 is uniquely determined. If a 2 colA0; then it is a unique linear com-
bination of the basic columns of A0; that is, a ¼ A0x; in which x is
uniquely determined by the condition that it has a zero entry in each pos-
ition corresponding to a nonbasic column of A0: Then y ¼ Ra ¼ RA0x ¼
E0x; in which both E0 and x are uniquely determined.

5. BLOCK ROWS AND COLUMNS

What we have done for columns we can also do for rows. The follow-
ing examples illustrate a few results derived from block-matrix multi-
plication. Chief among these are several important rank inequalities
and characterizations of matrices with the same column space or
null space.

Example 20. A numerical example illustrates the general principle.
Write

A ¼
1 0 2
0 3 4
0 5 0

2
4

3
5 ¼ X Z½ � and B ¼

3 0
1 4
0 1

2
4

3
5 ¼ Y

W

� �
:

Then

AB ¼ X Z½ � Y

W

" #
¼ XY þ ZW

¼
1 0

0 3

0 5

2
64

3
75 3 0

1 4

" #
þ

2

4

0

2
64
3
75 0 1½ �

¼
3 0

3 12

5 20

2
64

3
75þ

0 2

0 4

0 0

2
64

3
75 ¼

3 2

3 16

5 20

2
64

3
75:

(21)

A computation verifies that this evaluation of AB agrees with the stand-
ard method.

The rank of A 2 Mm�n is the dimension of colA: Bundled row and
column partitions permit us to derive inequalities for rankðAþ BÞ and
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rankAB without fiddling with bases, linear combinations, and spans.
Block-matrix notation simplifies and streamlines our work.

Example 22 (Rank is subadditive). For A;B 2 Mm�n; we claim that

rank Aþ Bð Þ � rankAþ rankB: (23)

We may assume that r ¼ rankA � 1 and s ¼ rankB � 1 since there is
nothing to prove if r¼ 0 or s¼ 0. Let A ¼ XY and B ¼ ZW be full-rank
factorizations; see Example 14. Since ½X Z� 2 Mm�ðrþsÞ; we have

rank Aþ Bð Þ ¼ dim col Aþ Bð Þ ¼ dim col XY þ ZWð Þ

¼ dim col X Z½ � Y

W

" # !
� dim col X Z½ �

� rþ s ¼ rankAþ rankB:

The preceding result could be proved by a counting argument: produce
bases for colA and colB and observe that colðAþ BÞ � colAþ colB:
However, Example 22 has a natural advantage. Instead of dealing with the
notational overhead of columns and bases, we let a block matrix do the
work. This approach produces other applications too. For example, it is
difficult to see a counting argument that reproduces the following result.

Example 24 (Sylvester’s rank inequality). For A 2 Mm�k and B 2 Mk�n;
we claim that

rankAþ rankB � k � rankAB:

Let r ¼ rankAB: If r � 1; then let AB ¼ XY be a full-rank factorization
(Example 14), in which X 2 Mm�r and Y 2 Mr�n: Define

C ¼ A if r ¼ 0;
A X½ � 2 Mm� kþrð Þ if r � 1; and




D ¼
B if r ¼ 0;

B
�Y

� �
2 M kþrð Þ�n if r � 1:

8<
:

Then CD¼ 0, so colD � nullC and

rankAþ rankB � rankC þ rankD � rankC þ nullity C
¼ kþ r ¼ k þ rankAB

The following two examples reinforce an important point.
Relationships between geometric objects (subspaces here) can be revealed
by matrix arithmetic.
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Example 25 (Matrices with the same column space). Let A;B 2 Mm�n:

We claim that

colA ¼ colB () there is an invertible S 2 Mn such that A ¼ BS:

The implication ð(Þ is straightforward; we focus on ð)). Suppose
that colA ¼ colB and let the columns of X 2 Mm�r be a basis for
colA: Example 14 ensures that there are matrices Y ;Z 2 Mr�n such
that

A ¼ XY ; B ¼ XZ; and rankY ¼ rankZ ¼ r:

Let U;V 2 Mðm�rÞ�n be such that

R ¼ Y
U

� �
2 Mm and T ¼ Z

V

� �
2 Mm

are invertible. Then

A ¼ XY ¼ X 0½ � Y
U

� �
¼ X 0½ �R

and

B ¼ XZ ¼ X 0½ � Z
V

� �
¼ X 0½ �T;

so

A ¼ X 0½ �R ¼ X 0½ �TðT�1RÞ ¼ BS;

in which S ¼ T�1R is invertible.

In a first linear algebra course, row reduction is often used to solve
systems of linear equations. Students are taught that A and B have the
same null space if A ¼ EB, in which E is an elementary matrix. Since a
matrix is invertible if and only if it is the product of elementary matrices,
it follows that A and B have the same null space if they are row equiva-
lent. What about the converse?

Example 26 (Matrices with the same null space). Let A;B 2 Mm�n: Then
Example 25 ensures that

nullA ¼ nullB () colA	ð Þ? ¼ colB	ð Þ?
() colA	 ¼ colB	

() A	 ¼ B	 for some invertible S 2 Mm

() A ¼ RB for some invertible R 2 Mm

Thus, if a sequence of elementary row operations is performed on B to
obtain a new matrix A ¼ RB, then the linear systems Ax ¼ 0 and Bx ¼ 0
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have the same solutions. The latter are easily described if R is chosen so
that A is in row echelon form.

6. BLOCK MATRICES

Having seen the advantages of block row and column partitions, we are
now ready to consider both simultaneously. Let

A ¼ A11 A12

A21 A22

� �
and B ¼ B11 B12

B21 B22

� �
;

in which the sizes of the submatrices involved are appropriate for the fol-
lowing matrix multiplications to be defined:

AB ¼ A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

� �
: (27)

In particular, the diagonal blocks of A and B are square and the dimen-
sions of the off-diagonal blocks are determined by context.
Multiplication of larger block matrices is conducted in an analo-
gous manner.

Example 28. Here is a numerical example of block matrix multiplication.
We use horizontal and vertical bars to highlight our partitions, although
we refrain from doing so in later examples. If

A ¼
1 0 2
0 3 4
0 5 0

2
4

3
5 and B ¼

3 0
1 4
0 1

2
4

3
5;

then (27) ensures that

AB ¼

1 0

0 3

" #
3

1

" #
þ 2

4

" #
0½ � 1 0

0 3

" #
0

4

" #
þ 2

4

" #
1½ �

0 5½ � 3

1

" #
þ 0½ � 0½ � 0 5½ � 0

4

" #
þ 0½ � 1½ �

2
666664

3
777775

¼
3

3

" #
2

16

" #

5½ � 20½ �

2
664

3
775 ¼

3 2

3 16

5 20

2
64

3
75:
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This agrees with (21) and with the usual computation of the
matrix product.

We are now ready for a symbolic example. Although there are more
general formulas for the inverse of a 2� 2 block matrix [2, P.3.28], the
following special case is sufficient for our purposes.

Example 29 (Inverse of a block triangular matrix). We claim that if Y 2
Mn and Z 2 Mm are invertible, then

Y X
0 Z

� ��1

¼ Y�1 �Y�1XZ�1

0 Z�1

� �
: (30)

How can such a result be discovered? Perform row reduction with block
matrices, being careful to take into account the noncommutativity of
matrix multiplication:

i. Y�1 0
0 I

� �
Y X
0 Z

� �
¼ I Y�1X

0 Z

� �
multiply first row by Y�1;

ii.
I 0
0 Z�1

� �
I Y�1X
0 Z

� �
¼ I Y�1X

0 I

� �
multiply second row by Z�1;

iii. I �Y�1X
0 I

� �
I Y�1X
0 I

� �
¼ I 0

0 I

� �
add �Y�1X times the second

row to first row:

The formula (30) for the inverse of a 2� 2 block upper triangular
matrix can be used to prove that the inverse of an upper triangular
matrix is upper triangular.

Example 31 (Inverse of an upper triangular matrix). We claim that if
A ¼ ½aij� 2 Mn is upper triangular and has only nonzero diagonal entries,
then A�1 is upper triangular. We proceed by induction on n. The base
case n¼ 1 is clear. For the induction step, let n � 2 and suppose that
every upper triangular matrix of size less than n with only nonzero diag-
onal entries has an inverse that is upper triangular. Let A 2 Mn be upper
triangular and partition it as

A ¼ B ?
0 ann

� �
;

in which B 2 Mn�1 is upper triangular and ? indicates an ðn�1Þ � 1 sub-
matrix whose entries are unimportant. It follows from (30) that

A�1 ¼ B�1 ?
0 a�1

nn

� �
:

296 Garcia and Horn



The induction hypothesis ensures that B�1 is upper triangular and hence
so is A�1: This completes the induction.

Determinants are encountered in many introductory linear alge-
bra courses. Numerical recipes are often given for 2� 2 and 3� 3
matrices. Various techniques may be introduced to evaluate larger
determinants. Since the development of eigenvalues and eigenvectors
is often based upon determinants via the characteristic polynomial
(although this is not how modern numerical algorithms approach the
subject [3]), techniques to compute determinants of larger matrices
should be a welcome addition to the curriculum. This makes care-
fully-crafted problems involving 4� 4 or 5� 5 matrices accessible to
manual computation. Many of the following examples can be modi-
fied by the instructor to provide a host of interesting determinant and
eigenvalue problems.

To begin, we make an observation: if A 2 Mn; then

det
A 0
0 Im

� �
¼ detA ¼ det

Im 0
0 A

� �
: (32)

There are several ways to establish these identities, each suited to a differ-
ent approach to determinants. For example, one could establish the first
equality (32) by row reduction. The same row operations used to com-
pute the RREF of A are used to compute the RREF of the first block
matrix. Thus, the first two determinants are equal. One could also induct
on m. In the base case m¼ 0, the given block matrices are simply A itself.
The inductive step follows from Laplace (cofactor) expansion along
either the last or the first row of the the given block matrix. The identities
(32) also follow readily from the combinatorial definition of the
determinant.

If A 2 Mn; then its characteristic polynomial pAðzÞ ¼ detðzI�AÞ is a
monic polynomial of degree n and its zeros are the eigenvalues of A. The
following example indicates how to compute the characteristic polyno-
mial of a block triangular matrix.

Example 33. Let A and D be square. Then

A B
0 D

� �
¼ I 0

0 D

� �
I B
0 I

� �
A 0
0 I

� �
; (34)

so (32) and the multiplicativity of the determinant ensure that

det
A B
0 D

� �
¼ detAð Þ detDð Þ: (35)
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If M denotes the block matrix (34), then

pM zð Þ ¼ det
zI�A �B
0 zI�D

� �
¼ det zI�Að Þdet zI�Dð Þ ¼ pA zð ÞpD zð Þ:

This is an important property of block-triangular matrices: the character-
istic polynomial of the block matrix is the product of the characteristic
polynomials of the diagonal blocks. This has many consequences; see
Examples 36 and 37.

If A 2 Mn; then the geometric multiplicity of an eigenvalue k is
dimnullðA�kIÞ: The algebraic multiplicity of k is its multiplicity as a root
of pA. A fundamental result is that the geometric multiplicity of an eigen-
value cannot exceed its algebraic multiplicity. Strict inequality can occur
even for small matrices that arise in a first linear algebra course. For
example, the elementary matrices

A ¼ 1 c
0 1

� �
; c 6¼ 0

have this property. Fortunately, block-matrix multiplication provides a
way to explain what is going on.

Example 36 (Geometric multiplicity � algebraic multiplicity). Let A 2
Mn and let k be an eigenvalue of A. Suppose that the columns of X 2
Mn�k form a basis for the corresponding eigenspace; see Example 5.
Choose Y 2 Mn�ðn�kÞ such that S ¼ ½X Y � 2 Mn is invertible; see
Example 17. Then AX ¼ kX and

Ik 0
0 In�k

� �
¼ In ¼ S�1S ¼ S�1X S�1Y½ �; so S�1X ¼ Ik

0

� �
:

Thus,

S�1AS ¼ S�1A X Y½ � ¼ S�1 AX AY½ � ¼ S�1 kX AY½ �

¼ kS�1X S�1AY½ � ¼ kIk ?

0 C

" #
;

in which ? denotes a k � ðn�kÞ submatrix whose entries are of no inter-
est. Since similar matrices have the same characteristic polynomial,
Example 33 ensures that pAðzÞ ¼ pS�1ASðzÞ ¼ ðz�kÞkpCðzÞ:
Consequently, k ¼ nullityðA�kIÞ is at most the multiplicity of k as a
zero of pAðzÞ:

Students should be warned repeatedly that matrix multiplication is
noncommutative. That is, if A 2 Mm�n and B 2 Mn�m; then AB need not
equal BA, even if both products are defined. Students may be pleased to
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learn that AB 2 Mm and BA 2 Mn are remarkably alike, despite poten-
tially being of different sizes. This fact has an elegant explanation using
block matrices.

Example 37 (AB versus BA). If A 2 Mm�n and B 2 Mn�m; then

AB A
0 0n

� �
and

0m A
0 BA

� �
(38)

are similar since

Im 0
B In

� �
AB A
0 0n

� �
¼ 0m A

0 BA

� �
Im 0
B In

� �
;

in which the intertwining matrix is invertible. Since similar matrices have
the same characteristic polynomial, Example 33 ensures that

znpAB zð Þ ¼ zmpBA zð Þ: (39)

Thus, the nonzero eigenvalues of AB and BA are the same, with the same mul-
tiplicities. In fact, one can show that the Jordan canonical forms of AB and
BA differ only in their treatment of the eigenvalue zero [2, Thm. 11.9.1].

The preceding facts about AB and BA are more than just curiosities.
Example 37 can be used to compute the eigenvalues of certain large,
structured matrices. Suppose that a nonzero matrix A 2 Mn has rank r <
n. If A ¼ XY is a full-rank factorization (Example 14), then the eigenval-
ues of A are the eigenvalues of the r � r matrix YX, along with n – r zero
eigenvalues. Consider the following example.

Example 40. What are the eigenvalues of

A ¼

2 3 4 � � � nþ 1
3 4 5 � � � nþ 2
4 5 6 � � � nþ 3
..
. ..

. ..
. . .

. ..
.

nþ 1 nþ 2 nþ 3 � � � 2n

2
666664

3
777775?

The column space of A is spanned by

e ¼ 1 1 ::: 1½ �T and r ¼ 1 2 ::: n½ �T

since the jth column of A is rþ je: The list r; e is linearly independent, so
it is a basis for colA: Let X ¼ ½r e� and observe that the jth column of A
is X ½1 j�T: This yields a full-rank factorization (Example 14) A ¼ XY,
in which Y ¼ ½e r�T: Example 37 says that the eigenvalues of A ¼ XY
are n – 2 zeros and the eigenvalues of the 2� 2 matrix
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YX ¼ eT

rT

� �
r e½ � ¼ eTr eTe

rTr rTe

� �
¼

1
2
n nþ 1ð Þ n

1
6
n nþ 1ð Þ 2nþ 1ð Þ 1

2
n nþ 1ð Þ

2
664

3
775;

which are

n nþ 1ð Þ 1
2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
6 nþ 1ð Þ

s0
@

1
A:

Block-matrix computations can do much more than provide bonus
problems and alternative proofs of results in a first linear algebra course.
Here are a few examples.

Example 41 (Sylvester’s determinant identity). If X 2 Mm�n and Y 2
Mn�m; then

det Im þ XYð Þ ¼ det In þ YXð Þ: (42)

This remarkable identity of Sylvester relates the determinants of an m �
m matrix and an n � n matrix. It follows from (35):

det I þ XYð Þ ¼ det
I þ XY 0

Y I

" #
¼ det

I X

0 I

" #
I �X

Y I

" # !

¼ det
I X

0 I

" #
det

I �X

Y I

" #
¼ det

I �X

Y I

" #
det

I X

0 I

" #

¼ det
I �X

Y I

" #
I X

0 I

" # !
¼ det

I 0

Y I þ YX

" #

¼ det I þ YXð Þ:

Another explanation can be based on the fact that XY and YX have the
same nonzero eigenvalues, with the same multiplicities (see Example 37).
With the exception of the eigenvalue 1, the matrices Im þ XY and In þ
YX have the same eigenvalues with the same multiplicities. Since the
determinant of a matrix is the product of its eigenvalues, (42) follows.

The following elegant identity permits the evaluation of the determin-
ant of a rank-one perturbation of a matrix whose determinant is known. In
particular, (44) is a rare example of the determinant working well with
matrix addition.

Example 43 (Determinant of a rank-one update). If A 2 Mn is invertible and
u; v 2 C

n; then Sylvester’s identity (42) with X ¼ A�1u and Y ¼ vT yields
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detðAþ uvTÞ ¼ ðdetAÞdetðI þ A�1uvTÞ ¼ ðdetAÞð1þ vTA�1u|fflfflfflffl{zfflfflfflffl}
a scalar

Þ: (44)

The identity (44) can be used to create large matrices whose determinants
can be computed in a straightforward manner. For example,

2 1 1 1 1

1 0 1 1 1

1 1 2 1 1

1 1 1 0 1

1 1 1 1 2

2
6666664

3
7777775 ¼

1 0 0 0 0

0 �1 0 0 0

0 0 1 0 0

0 0 0 �1 0

0 0 0 0 1

2
6666664

3
7777775

þ

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
6666664

3
7777775 ¼ Aþ uvT

(45)

in which A ¼ diagð1;�1; 1;�1; 1Þ and u ¼ v ¼ ½1 1 ::: 1�T: Since A ¼
A�1 and detA ¼ 1; an application of (44) reveals that the determinant of
the matrix in (45) is 2.

If a 6¼ 0; then the right-hand side of

det
a b
c d

� �
¼ ad�bc (46)

equals aðd�ca�1bÞ; a formula that generalizes to 2� 2 block matrices.

Example 47 (Schur complement). Let

M ¼ A B
C D

� �
; (48)

in which A and D are square and A is invertible. Take determinants in

I 0

�CA�1 I

" #
A B

C D

" #
I �A�1B

0 I

" #
¼ A B

0 D�CA�1B

" #
I �A�1B

0 I

" #

¼ A 0

0 D�CA�1B

" #

(49)
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and use (35) to obtain

det
A B
C D

� �
¼ ðdet AÞdetðD�CA�1BÞ; (50)

there is an analogous formula if D is invertible. Schur’s formula (50)
reduces the computation of a large determinant to the computation of
two smaller ones. Since left- or right-multiplication by invertible
matrices leaves the rank of a matrix invariant, we derive the elegant
formula

rankM ¼ rankAþ rank M=Að Þ:

in which M=A ¼ D�CA�1B is the Schur complement of A in M.

Example 51. If A and C commute in (48), then A;B;C;D are square
matrices of the same size and (50) reduces to detðAD�CBÞ; which bears
a striking resemblance to (46). For example,

det

1 1 1 2

1 1 3 4

1 0 1 1

0 1 1 1

2
666664

3
777775¼ det

1 1

1 1

" #
1 1

1 1

" #
�

1 2

3 4

" #
1 0

0 1

" # !

¼ det
2 2

2 2

" #
�

1 2

3 4

" # !
¼ det

1 0

�1 �2

" #
¼�2:

Example 52. Partition

M ¼

2 0 0 1 1

0 2 0 1 1

0 0 2 1 1

1 1 1 4 1

1 1 1 1 4

2
6666664

3
7777775

as in (48). Then (51) ensures that
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det M ¼ det

2 0 0

0 2 0

0 0 2

2
64

3
75det 4 1

1 4

" #
� 1 1 1

1 1 1

" # 1
2 0 0

0 1
2 0

0 0 1
2

2
664

3
775

1 1

1 1

1 1

2
64

3
75

0
BB@

1
CCA

¼ 8 det
4 1

1 4

" #
�

3
2

3
2

3
2

3
2

" # !
¼ 8 det

5
2 � 1

2

� 1
2

5
2

" #

¼ 8 � 6 ¼ 48:

From a pedagogical perspective, such techniques are desirable since
they permit the consideration of problems involving matrices larger
than 3� 3.

7. KRONECKER PRODUCTS

We conclude with a discussion of Kronecker products. It illustrates again
that block-matrix arithmetic can be a useful pedagogical tool.

If A ¼ ½aij� 2 Mm�n and B 2 Mp�q; then the Kronecker product of A
and B is the block matrix

A
 B ¼
a11B a12B � � � a1nB
a21B a22B � � � a2nB
..
. ..

. . .
. ..

.

am1B am2B � � � amnB

2
6664

3
7775 2 Mmp�nq:

Example 53. If

A ¼ 1 2
3 4

� �
and B ¼ 5 6½ �;

then

A
 B ¼ B 2B
3B 4B

� �
¼ 5 6 10 12

15 18 20 24

� �
and

B
 A ¼ 5A 6A½ � ¼ 5 10 6 12
15 20 18 24

� �
:
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The Kronecker product interacts with ordinary matrix multiplication
and addition as follows (A;B;C;D are matrices and c is a scalar):

i. ðA
 BÞðC 
DÞ ¼ AC 
 BD;
ii. cðA
 BÞ ¼ ðcAÞ 
 B ¼ A
 ðcBÞ;
iii. ðAþ BÞ 
 C ¼ A
 C þ B
 C;
iv. A
 ðBþ CÞ ¼ A
 Bþ A
 C;
v. A
 ðB
 CÞ ¼ ðA
 BÞ 
 C:

If A and B are square matrices of the same size then the eigenval-
ues of AB need not be products of eigenvalues of A and B. However,
for square matrices A and B of any size, all of the eigenvalues of A

B are products of eigenvalues of A and B, and all possible products
(by algebraic multiplicity) occur; see [2, P.10.39]. This fact (and a
related version for sums of eigenvalues) can be used by instructors
who wish to construct matrices with prescribed eigenvalues and
multiplicities.

Example 54. If Ax ¼ kx and By ¼ ly; then

A
 Bð Þ x
 yð Þ ¼ Axð Þ 
 Byð Þ ¼ kxð Þ 
 lyð Þ ¼ kl x
 yð Þ

and

A
 Ið Þ þ I 
 Bð Þ� �
x
 yð Þ ¼ A
 Ið Þ x
 yð Þ þ I 
 Bð Þ x
 yð Þ

¼ Ax
 yþ x
 By

¼ kx
 yþ lx
 y

¼ kþ lð Þ x
 yð Þ:

That is, if k and l are eigenvalues of A and B, respectively, then kl is an
eigenvalue of A
 B and kþ l is an eigenvalue of A
 I þ I 
 B;
respectively.

Example 55. The eigenvalues of

3 4 6 8
2 1 4 2
12 16 9 12
8 4 6 3

2
664

3
775 ¼ 1 2

4 3

� �

 3 4

2 1

� �

are –5, –5, 1, and 25; these are 5� ð�1Þ; ð�1Þ � 5; ð�1Þ � ð�1Þ; and
5� 5. The eigenvalues of each factor are –1 and 5.
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Example 56. The eigenvalues of

4 4 2 0
2 2 0 2
4 0 6 4
0 4 2 4

2
664

3
775 ¼ 1 2

4 3

� �

 I2 þ I2 
 3 4

2 1

� �

are –2, 4, 4, and 10; these are ð�1Þ þ ð�1Þ; ð�1Þ þ 5; 5þ ð�1Þ; and 5þ 5.

We conclude with a proof of a seminal result in abstract algebra: the
algebraic numbers form a field. That such a result should have a simple
proof using block matrices indicates the usefulness of the method.

An algebraic number is a complex number that is a zero of a monic
polynomial with rational coefficients. Let

f zð Þ ¼ zn þ cn�1zn�1 þ cn�2zn�2 þ � � � þ c1zþ c0; n � 1:

The companion matrix of f is Cf ¼ ½�c0� if n¼ 1 and is

Cf ¼

0 0 ::: 0 �c0
1 0 ::: 0 �c1
0 1 ::: 0 �c2
..
. ..

. . .
. ..

. ..
.

0 0 ::: 1 �cn�1

2
666664

3
777775 if n � 2:

Induction and cofactor expansion along the top row of zI�Cf shows
that f is the characteristic polynomial of Cf. Consequently, a complex
number is algebraic if and only if it is an eigenvalue of a matrix with
rational entries.

Example 57 (The algebraic numbers form a field). Let a, b be algebraic
numbers and suppose that pðaÞ ¼ qðbÞ ¼ 0; in which p and q are monic
polynomials with rational coefficients. Then a, b are eigenvalues of the
rational matrices Cp and Cq, respectively, ab is an eigenvalue of the
rational matrix Cp 
 Cq; and aþ b is an eigenvalue of the rational matrix
Cp 
 I þ I 
 Cq: If a 6¼ 0 and p has degree k, then there is a rational
number c such that czkpðz�1Þ ¼ f ðz�1Þ; in which f is a rational monic
polynomial and f ða�1Þ ¼ 0:
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