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Figure 1: Visualization of trajectories of RLA-G and BCA-G generalized to egocentric representative and exocentric standard
scenarios. The lower AO metric of RLA-G than that of BCA-G results from the fact that much fewer RLA-G agents can avoid

obstacles and reach destinations.

ABSTRACT

Crowd simulation, the study of the movement of multiple agents in
complex environments, presents a unique application domain for
machine learning. One challenge in crowd simulation is to imitate
the movement of expert agents in highly dense crowds. An imita-
tion model could substitute an expert agent if the model behaves
as good as the expert. This will bring many exciting applications.
However, we believe no prior studies have considered the critical
question of how training data and training methods affect imi-
tators when these models are applied to novel scenarios. In this
work, a general imitation model is represented by applying either
the Behavior Cloning (BC) training method or a more sophisti-
cated Generative Adversarial Imitation Learning (GAIL) method,
on three typical types of data domains: standard benchmarks for
evaluating crowd models, random sampling of state-action pairs,
and egocentric scenarios that capture local interactions. Simulated
results suggest that (i) simpler training methods are overall better
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than more complex training methods, (ii) training samples with
diverse agent-agent and agent-obstacle interactions are beneficial
for reducing collisions when the trained models are applied to new
scenarios. We additionally evaluated our models in their ability to
imitate real world crowd trajectories observed from surveillance
videos. Our findings indicate that models trained on representative
scenarios generalize to new, unseen situations observed in real
human crowds.
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1 INTRODUCTION

Imitating the movement of a goal-directed expert agent in a com-
plex scenario, involving obstacles and other agents, has recently
received attention from machine learning community. Researchers
aim to create data-driven models to predict the next movement
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decision (velocity) of an agent given current state (local observa-
tion on environment and neighboring agents), by imitating the
demonstrated crowd movement of an expert. A good imitator could
substitute the expert, with potentialities in some applications. For
instance, we may want to imitate the controlling signals (steering
angle, acceleration, etc.) demonstrated by a real person steering
a vehicle in parallel parking scenarios, whose decisions are based
on the person’s successive local observations, and then replace
the human efforts with the imitator to provide controlling signals
given the observations of a camera equipped on the vehicle in new
parallel parking scenarios.

In this paper, the term “scenario” refers to the configuration of
environment obstacles as well as the tasks (initial positions and
destination positions) for all involved agents. Agents may have
different destination positions. Existing works, e.g., [Qiao et al.
2018], train and test models over the same environment with only
initial and goal positions and the number of agents varied, or over
environments with small obstacle adjustment [Long et al. 2017]. To
the best of our knowledge, no prior studies have considered the
critical question of how training data and training paradigms affect
imitation models when these models are generalized to substantially
different scenarios.

The generalization ability of an imitator to new scenarios is sub-
tly but essentially different from the regular generalization ability of
a model, in three aspects. (1) For regular generalization, the model
has full knowledge about a scenario such as the initial/destination
positions of all agents and the positions of all obstacles, while in
scenario generalization, each agent assigned with an imitator may
only know its own destination and make a decision based on its
own partial observation, without knowing the destinations and
observations of other agents. (2) For regular generalization, test
samples are usually isolated: a previous test sample does not influ-
ence the next test sample. In contrast, in scenario generalization
all agents (each agent is equipped with an imitator) move step by
step and synchronously, during which the previous observation
and decision of an agent influence its next observation and decision
successively. (3) Instead of measuring on isolated state-action pairs
in regular generalization, measurement in scenario generalization
is on the overall generated trajectories with multiple metrics, and
some of them might be mutually balanced.

Unlike most previous works that focus on improving a specific ex-
pert model, or imitating an expert model for a specific behavior/in a
specific scenario, our main goal is to investigate the effect of training
paradigm and training data on the scenario generalization ability
of an imitator, by comparing the combinations of representative
training paradigms and representative data domains. Specifically,
two training paradigms are studied: (1) Behavior Cloning (BC):
an approximation of maximum likelihood estimation by fitting a
neural network regressor, capable of representing many classic
regressors (support vector regressor, random forest, etc.) and (2)
Reinforcement Learning (RL): a Markov decision process solved
by Generative Adversarial Imitation Learning (GAIL) [Ho and Er-
mon 2016], leading to a solution that is theoretically equivalent to
any two-step reward estimation followed by policy search proce-
dures. Although only two paradigms are studied, encompassing
two distinct families of training approaches, the former focusing on
imitating simple reactive behaviors, while the latter considering the
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impact of local actions on accumulated outcomes, they are generic
modeling approaches and represent most data-driven models in
crowd simulation.

In addition to training paradigms, three data domains are de-
veloped: (1) a set of six standard scenarios which serve as bench-
marks for evaluating crowd simulation, (2) a random sampling
of inter-agent interactions at a single time step, and (3) a set of
representative scenarios to capture inter-agent and agent-obstacle
interactions during the overall navigation procedure. These data
domains span the spectrum of a few but complex and crowded
scenarios, to many random discrete snapshots for the immediate
response of a model to inter-agent interactions, and a large number
of sampling of small-scale, but general interaction situations that
individuals encounter.

Combinations of training paradigms and data domains are sys-
tematically evaluated in the ability to emulate expert trajectories
while avoiding collisions with other agents and environment obsta-
cles in substantially new scenarios. Our empirical results suggest
that (i) a simpler training method is better than a more complex
training method, (ii) training samples with diverse agent-agent and
agent-obstacle interactions are beneficial for reducing collisions
when the trained models are applied to new scenarios.

We additionally evaluated all five models in their ability to imi-
tate real world crowd trajectories observed from surveillance videos.
Results indicate that models trained on representative scenarios
generalize to new, unseen situations observed in real human crowds.

2 PRIOR WORK

Crowd simulation and analysis are paramount examples of dis-
tributed Al modeling, with application across a variety of domains
including computer graphics, crowd tracking, crowd trajectory
estimation and optimization [Ali et al. 2013; Cheng et al. 2018; Ju-
nior et al. 2010; Kapadia et al. 2015; Lee et al. 2018; Liu et al. 2017;
Qiao et al. 2018]. We provide a brief summary of the most related
literature below.

2.1 Crowd Simulation Approach

Methods in this approach rely on pre-determined physical, social
or geometric rules or computational procedures to decide a velocity
for an agent to execute in the next time duration [Karamouzas
et al. 2014; Kim et al. 2013, 2012; Knob et al. 2019; Ren et al. 2017;
Vicsek et al. 1995], and hence they are not data-driven models.
In social force method [Helbing and Molnar 1995], an agent is si-
multaneously attracted by its goal and repelled by other agents
and obstacles. Each force obeys the gravitation-like inverse-square
law, and the composition of all forces of an agent determines the
acceleration of that agent. Geometric methods such as velocity
obstacles [Fiorini and Shiller 1998] define a geometrical cone in
the relative velocity space, inside which a collision will occur. Ex-
tensions to this work [Van Den Berg et al. 2011] define the set of
collision-avoiding velocities and induce Optimal Reciprocal Col-
lision Avoidance (ORCA) that provides a sufficient condition for
collision avoidance if agents are not densely packed.
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2.2 Behavior Cloning (BC) Approach

This approach view state-action (s, a) pairs as independent samples
and use these samples to fit a regression model based on maximum
likelihood estimation (MLE). Thus, models [Long et al. 2017; Qiao
et al. 2018; Torabi et al. 2018] within this approach are data-driven
models. If the regression model is represented by a neural network
(NN), it stands for a general function and covers many traditional
learning models. [Long et al. 2017] randomly places neighboring
agents around a reference agent and randomly samples the current
velocities for all agents. Given a preferred velocity for the reference
agent, they use ORCA [Van Den Berg et al. 2011] to produce the
corresponding action (velocity) for the reference agent in that state.
Such a uniform sampling over state space yields a sufficient amount
of state-action pairs to fit an NN model. Similarly, [Qiao et al. 2018]
simulates the social force model to collect expert trajectories, and
treat state-action pairs from the expert trajectories as independent
samples to fit an NN model. However, the trained model is used
to provide a velocity prior used for trajectory interpolation, where
the actions of individual agents become seemingly decoupled from
each other, leading to a computationally efficient solution.

2.3 Reinforcement Learning (RL) Approach

RL methods [Arora and Doshi 2018; Finn et al. 2016; Ho and Ermon
2016; Kuefler et al. 2017; Pautrat et al. 2018; Schulman et al. 2015;
Ziebart et al. 2008] alternate between sampling trajectories with
a policy model in an environment and updating the policy model
based on reward signal. The goal is to maximize the expected accu-
mulated reward by balancing environment exploration and reward
exploitation. [Torrey 2010] introduces RL to crowd simulation and
proposes several new challenges when it scales from single-agent to
multi-agent setting. A recent work presents an agent-based, RL nav-
igation method that learns a single unified policy to be applicable to
several scenarios and settings, without considering environmental
obstacles [Lee et al. 2018]. Some other works [Casadiego 2014]
also use RL to approach the problem of data-driven trajectories
learning [Cheng et al. 2018] in crowd simulation.

The reward function in RL is either human-defined [Long et al.
2018], or learned with inverse-RL (IRL) methods [Arora and Doshi
2018; Finn et al. 2016; Ziebart et al. 2008]. For fair comparison, we
consider only data-driven models and thus the reward function is
estimated via IRL from demonstrated expert trajectories.

[Finn et al. 2016] proposes guided cost learning for IRL, which
alternates between (1) estimating the partition function (so as to
search for the current optimal parameter point) by sampling the
proposal distribution, and (2) optimizing the proposal distribution
to reduce the variance of the partition function. Given estimated
reward function, [Schulman et al. 2015] proposes to optimize the
policy by searching at each iteration within a region centered at
previously estimated parameter point, which could be considered as
KL-constrained natural gradient ascend. Recently, [Ho and Ermon
2016] proposes generative adversarial imitation learning (GAIL), an
imitator of demonstration. It is model-free, without the need to es-
timate the dynamics explicitly. More importantly, they proved that
any two-step reward estimation and policy optimization procedures
(IRL-RL) are equivalent to the one-step adversarial learning. Thus
GAIL covers most traditional data-driven RL methods, avoiding
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us the need to develop a specific RL model. We will describe this
training paradigm in detail in the following section, and apply it
within the context of multi-agent goal-directed collision avoidance.

2.4 Comparison of Three Approaches

The three categories of approaches have their own characteristics,
which make them complementary to others. (1) Some methods de-
scribe certain movement knowledge of physical particles, geometric
objects, animals or humans, and represent the knowledge explic-
itly for making velocity decisions in crowd simulation, rather than
focusing on imitating/learning implicit knowledge from demon-
strated data. (2) Provided with expert trajectories, BC suffers from
the well-known compounding error problem [Ross and Bagnell
2010]. That is, when BC’s decision deviates a little from the expert’s
decision, the next state would be less represented in expert trajecto-
ries, leading to further deviation from the expert decisions. When
such error accumulates, it might end up with invalid situation (e.g.,
off-road driving). (3) RL methods are much more sophisticated in
training compared with BC. (4) One can anticipate that the physics-
based approach has the best scenario generalization ability, followed
by BC, while RL have the least scenario generalization ability. This
might be explained by Occam’s razor law: physics-based methods
follow a few rules or computational procedures, BC learn indepen-
dently from (s, a) pairs, while RL explore and learn from the same
environment repeatedly.

Despite these insights, it is still not clear to which extent the data-
driven models differ from each other, in the sense of generalization
capacity to new scenarios. Therefore, we specifically seek to deter-
mine what training paradigm / training data is the most suitable for
developing generalizable models for multi-agent goal-directed col-
lision avoidance. Considering the above-mentioned characteristics
of the three approaches, we use physics-based methods to generate
different types of expert trajectories and utilize these trajectories
for training with BC/RL approaches, followed by comparing the
scenario generalization capacities of those trained models.

3 PROBLEM FORMULATION

Let S and A be the state and the action space, respectively, of an
agent given an environment &. Let s; € S denote the state of an
agent at time ¢, where t is the discrete step index with t = 0,1..T
and T is the maximal number of steps. An agent’s state typically
includes what the agent locally observes about the world around
itself, and may also incorporate some guidance signals received
from external sources. Let a; € A denote the action of the agent at
time t, determined by the agent’s policy function (decision-making
function) based on s;. That is, a; = 7n(s;), with 7(-) representing
the policy function adopted by the agent. The action could be high-
dimensional controlling signal (steering angle, acceleration, etc.),
but in its simplest form, it may represent the velocity that will take
the agent to a new position, leading to a new local observation of the
world. At each step t, assume the next state s;41 of an agent depends
only on its current state s; and current action a;. For comparison,
we further assume all agents are homogeneous, i.e., they utilize
the same policy 7 for their execution, however no agent knows
what policies other agents adopt. Therefore, the dynamics, s;4+1 ~
P(:|s¢,azt), is probabilistic due to partial observation of the agent
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and unknowing about other agents’ decisions at step t. Furthermore,
a state-action pair (s, 7(s¢)) can be evaluated by a cost function
associated with the world system: c(s¢, 7(s¢)) = rt, where r; € R
is a reward value for the action the policy decides based on s;. For
instance, the cost function may evaluate a lower reward if executing
a; incurs agent-agent/agent-obstacle collisions and a higher reward
otherwise.

Given the above definitions, the problem can be formulated as a
Markov Decision Process (MDP). For a given cost function c(-, -),
the goal is to find 7* that maximizes the accumulated rewards along
the expected trajectory:

T
Z yee(st, at)} , (1)

x* = argmaxE,
T =1

where y; € [0, 1) denotes the discount factor.

One issue is that the cost function is usually unknown or implicit,
and the demonstrated expert trajectories also conceal the reward
signals. In other words, the demonstrated expert trajectories are
{(s0, a0, 51, a1, ... sT, ar)}, not {(so, ao, 0, $1, a1, 71, ..., ST, AT, 'T) }-
Another important issue is that neither the stochastic dynamics
nor the expert policy 7g is known, stemming from the complex
nature of the crowd simulation task. Typically, there are four ways
to handle these challenges: (1) use IRL to estimate a cost function
that favors the expert trajectories with high accumulated rewards
(in the following, we denote the cost function estimated from expert
trajectories as c*), (2) estimate the dynamics from data, (3) use RL
to estimate 7* to mimic the expert policy 7 using the IRL-found
cost function ¢*, and (4) use BC to directly estimate 7* from the
expert trajectories. We focus on (3) and (4) in this work.

4 BEHAVIOR CLONING AGENTS

Behavior cloning methods could be viewed as a special case of the
formulation in Eq. 1: a reduction when the cost function ¢(s¢, ar)
of BC is a differentiable training loss function, with discount factor
v+ = 1, and the dynamics of BC depends only on the data distribu-
tion, independent from the current (s¢, a;) pair.

Training a model in BC paradigm is identical to fitting a super-
vised regressor. For instance, one can fit a Neurual Network (NN)
regressor with the cost function c(:, -) set to L2 loss:

ar = fNN (st ONN) . (2

where s; is the state of an expert agent, including its local visibility
(e.g., arange map, a velocity map) from the center point of this agent,
as well as a local guidance velocity and a global guidance velocity —
see details on state representation in the evaluation part. @ is the
model parameter. Such NN based model can also represent many
traditional regressors including support vector regressor, random
forest, etc.

As mentioned earlier, in crowd simulation agents are goal di-
rected. To arrive the final destination, it is critical for the state s;
of an agent to contain not only the local observation about where
neighboring agents/obstacles exist and what the relative velocities
of neighboring agents/obstacles are wrt the agent, but also a local
guidance direction (or local guidance velocity) that leads the agent
to its own nearest sub-goal location. Such local guidance velocity is
agent-specific and dependent on the current location of the agent.
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In addition, due to the existence of environmental obstacles, the
local guidance velocity may not coincide with the global guidance
velocity that directly points to the final destination of the agent.

The local guidance velocity can be either learned from expe-
rience (e.g., from expert trajectories) or planned by an external
planner provided with the environment configuration and the ini-
tial/destination positions of an agent. When the movement of expert
agents forms a flow pattern, indicating that two nearby agents have
similar trajectories, the flow can be learned with a Gaussian Pro-
cess (GP). With the learned GP, when an imitator is generalized to
that environment, the prediction of the GP could provide the local
guidance velocity for the imitator in s;:

@ ~ GP (-|(x, y, t), Xtrain: 0GP) (3)

where (x, y, )T € R3 is the spatial-temporal location of the imitator,
Xirain 18 the training data, Ogp is the hyper-parameter, and altocal is
the local guidance velocity at the current spatial-temporal location.

On the other hand, when the movement of expert agents does
not form a flow pattern, one may use a path-planning algorithm to
provide the local guidance velocity in s;.

5 REINFORCEMENT LEARNING AGENTS

Reinforcement learning first estimates ¢* from expert trajectories,
then estimates the optimal policy 7* to approximate the underlying
but unknown expert policy 7. One approach to recover c* is the
maximum causal entropy IRL [Ziebart et al. 2008]:

argmax min —H(x) + Ey [c(s, a)] = B [c(s, a)], (4)
ceC mell

where H(r) £ E,, [~log z(als)], C is the family of cost functions,
IT is the family of policy functions, and 7r denotes the expert
policy that generates the expert trajectories. Here ¢* minimizes the
expected cost of expert trajectories while maximizes the cost of
the policy trajectories. If such ¢* is obtained, the optimal policy 7*
satisfies

argmin—H(x) + E [c(s,a)], (5)
mell
and can be estimated in a regularized RL procedure.

The two-step IRL-RL are complex. Recently, [Ho and Ermon
2016] have proposed GAIL, in which they have shown that the
two-step IRL-RL is identical to a one-step occupancy matching
procedure.

To induce GAIL paradigm, they first add a closed, proper convex
cost function regularizer i : RS*A _ R to alleviate the overfitting
issue stemming from the finite dataset size. With this regularizer,
the IRL objective is given by

argmax — ¥/(c) + (min —H(x) + E; [¢(s, a)] | = Exg [c(s,a)]. (6)
ceC mell

On the other hand, they define an occupancy measure p; :
SXA — R ofastochastic policy 7 as p, (s, a) = z(als) X ; ye P(st =
s|7). pr describes the distribution of (s, a) pairs that an agent en-
counters when navigation with policy 7. (policy is stochastic in
training but deterministic in testing to trade off exploitation for
exploration).
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With this definition, they show that RL and IRL solve the primal
and the dual problems of occupancy measure matching, with op-
timal solutions forming a saddle point. That means any two-step
IRL-RL is equivalent to the following one-step formulation:

7" = argminy*(pr — prp) — AH(7) 7)

mell
where /* (the convex conjugate of function ¢) is the convex func-
tion measuring the deviation of p, from p,,. This suggests that
finding 7* to approach zg can be transformed to matching the
occupancy measure between p; and p,. Here A is an introduced
regularization parameter to control the entropy term.
They further show that there exists a specific ¢

Enp lgle(s.a)]  ifc <0
+00 otherwise

YGa(c) = { 8
where g(x) = —x —log(1 — ¢*) if x < 0, otherwise g(x) = +co, such
that Yga(pxr — pry) can be represented as:

YGalpx = prg) = maxEx [log(D(s, a))] + Exy [log(1 ~ D(s, a))]

where D : 8§ X A — (0, 1), which is employed to predict the
probability that a given state-action pair comes from s rather than
7g, with the relation c(s, a) = logD(s, a).

In that case, the one-step formulation in Eq. 7 is reduced to an
adversarial form:

mgn mle)lx Ey [log(D(s, a))] + Ex;; [log(1 — D(s, a))] — AH(r). (9)

Therefore, the final objective given by Eq. 9 can be optimized ad-
versarially with gradient descend and policy optimization (e.g., trust
region policy optimization [Schulman et al. 2015]). Eventually, both
cost function and policy function can be obtained simultaneously,
capable of representing a general two-step IRL-RL models.

6 DATA DOMAINS

We identify three scenario domains in this work: exocentric stan-
dard scenarios (X), egocentric representative scenarios (G), and ego-
centric random scenarios (R). In all domains, an agent is represented
as a circle with the radius of 0.5 meters.

6.1 Exocentric Standard Scenarios (X)

This domain provides a few but complex and crowded scenarios,
including six environment benchmarks used to evaluate compu-
tational models of crowd movement [Qiao et al. 2018; Singh et al.
2009; Yoon et al. 2016]. The six scenarios (with variation in agent
density and initial/destination positions) include:

(1) Evacuation 1. Many agents must evacuate a room, with
only one small doorway of width 2.4 m. Agents are heading
toward distinct target locations outside the room.

(2) Evacuation 2. Similar to Evacuation 1 but the doorway
width is narrowed to 1.4 m. Also agents are heading toward
the same target location outside of the room.

(3) Bottleneck squeeze. All agents begin on one side of the
area, and enter and traverse a hallway to reach the target.

(4) Concentric circles. Agents are symmetrically placed along
a circle and aim to reach antipodal positions.

(5) Hallway two-way. Many agents traveling in either direc-
tion through a hallway. Agents are expected to form lanes.
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Table 1: characteristics of three data domains

X A few challenging obstacle configurations;
with inter-agent interactions
G Diverse inter-agent and agent-obstacle interactions;
many test scenarios
R Numerous diverse snapshots on inter-agent interactions;
no complete trajectories; no obstacles

(6) Hallway four-way. Many agents arriving from and travel-
ing to any of the four cardinal directions.

Ilustrations of the six scenarios are shown in Fig. 2.

6.2 Egocentric Representative Scenarios (G)

Exocentric standard scenarios provide challenging crowd tasks,
but may not be able to sufficiently provide a representative space
of challenging local interactions individuals encounter in crowd.
Egocentric random scenarios provide random samples of state-
action pairs, but these samples can not form complete trajectories,
and there are no agent-obstacle interactions.

In an effort to produce a data domain with a large number of
sampling of small-scale, but general inter-agent and agent-obstacle
interactions that individuals encounter, we refer to [Kapadia et al.
2011], which characterizes the representative space of scenarios
observed in crowds, and a sampling strategy to generate a finite set
of scenarios with sufficient coverage. Specifically, a considerable
amount of simulation scenarios are uniformly sampled from this
scenario space for both training and testing (4000 for training, 100
for testing). Each scenario contains randomly distributed obstacles
and randomly assigned initial/destination positions of agents, with
expert driven by the social force model. Fig. 3 illustrates two samples
in this domain.

6.3 Egocentric Random Scenarios (R)

The randomly generated scenarios proposed in [Long et al. 2017]
constitute the second domain, where a sufficient number of samples
are collected by uniformly and independently sampling over the
state space. The positions of neighboring agents, previous velocities
of neighboring agents and the preferred velocity of a reference agent
are randomly set to construct a particular state for the reference
agent at a step, while the expert decision of the reference agent at
this step is queried from ORCA [Van Den Berg et al. 2011] given the
same state. This produces many discrete and independent snapshots
for immediate responses of an expert to inter-agent interactions.
Note that in any sample of this domain, there are no obstacles, thus
no agent-obstacle interactions involved.

6.4 Summary of Three Data Domains

In the following sections, abbreviations X, G, and R are used to
denote the domain of exocentric standard, egocentric random and
egocentric representative scenarios respectively. Tab. 1 summarizes
the characteristics of each domain.
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Figure 2: Exocentric standard scenarios (X). (1) Evacuation 1, (2) Evacuation 2, (3) Bottleneck squeeze, (4) Concentric circles, (5)

Hallway two-way, (6) Hallway four-way.

Figure 3: Example scenarios from egocentric representative
(G) domain, shown with expert trajectories. Each agent (de-
noted as a circle) aims to reach its destination (a triangle of
the same color) while avoiding other agents and obstacles.

7 EVALUATING SCENARIO
GENERALIZATION CAPABILITY

Bidirectional experiments are conducted: models trained on ego-
centric representative (G) and egocentric random (R) are tested on
exocentric standard scenarios (X); models trained on exocentric
standard (X) and egocentric random (R) are tested on egocentric
representative scenarios (G).

7.1 Trained Models

Given the two training paradigms and three data domains, five
training paradigm - training domain combinations are studied:

(1) BCA-X: BC agents trained on X
(2) BCA-G: BC agents trained on G
(3) BCA-R: BC agents trained on R
(4) RLA-X: RL agents trained on X
(5) RLA-G: RL agents trained on G

RL agents are not trained on egocentric random scenarios as RL
require complete trajectories, not independent state-action pairs.

7.2 State Representation

Similar to [Qiao et al. 2018], we simulate that each agent observes
the world around it using a collection of local measurements. The
first local measurement is a range map, a measure of radial distances
from the center of the agent to the surface of the environment (in-
cluding surfaces of neighboring agents and surfaces of obstacles),
typically at a resolution of one degree over 360 degrees. We also

simulate that an agent can detect the relative movements of neigh-
boring agents and obstacles, perceiving a radial velocity map. In
addition, an agent receives local and global guidance velocities. The
local guidance velocity is provided by an external source (either
GP or A-star), which is capable of sensing obstacles in the environ-
ment but lacks knowledge of the existence of other moving agents,
thus guiding the agent’s movement independent of other agents,
like a GPS. The global signal provides an overall heading direction
towards the final destination position, much like a compass.

Following [Long et al. 2017; Qiao et al. 2018], GP provides the
local guidance velocity in exocentric standard scenarios, while the
sampled preferred velocity acts as the local guidance in egocentric
random scenarios. However, in egocentric representative scenarios,
the movement of agents does not form a flow pattern. Therefore,
we use A-star to plan a route for each agent from its initial to its
destination position. Influenced by neighboring moving agents, an
agent does not follow strictly with its A-star way points. Instead,
at each step it aims at its furthest A-star way point it sees without
visual occlusion as the current local goal.

7.3 Main Training Configuration

For the size of the training data, the amount of state-action pairs
for training in three domains are nearly the same, about 1.6M.

All BCA-X, BCA-G, BCA-R adopt a six-layer fully connected net-
work, with each layer containing 100 neurons. They are trained by
RMSprop [Tieleman and Hinton 2012] with L2 loss and learning
rate 0.0001.

For training reinforcement learning (RL) agent, both policy and
reward functions adopt the same architecture as BCA-X, BCA-G,
BCA-R to ensure that all policies share the same model complexity.
The policy learning rate for RL agent is set to 0.01. During sampling
model trajectories in the training phase, a zero-mean Gaussian
random noise with standard deviation 0.5 is added to the output
trading off for exploration. The policy entropy regularizer A is set
to be 0. The network is trained at 10K iterations for exocentric
standard scenarios and 6K iterations for egocentric representative
scenarios.

7.4 Metrics

The five models are evaluated on three metrics, following [Qiao
et al. 2018]. All metrics are the lower, the better.

(1) DTW metric: Dynamic Time Warping distance [Salvador
and Chan 2007] measures the spatial deviation of a model
trajectory from an expert trajectory averaged over agents. To
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eliminate the influence of different number of steps in model
trajectories, a min-match version of DTW is adopted, by
registering each of the nodes (positions) of a model trajectory
to its closest node of the corresponding expert trajectory
using dynamic programming, and accumulating the minimal
distance of registered pairs of each node along the expert
trajectory.

(2) AA metric: AA stands for agent-agent collisions, the total
number of collisions for all pairs of agents accumulated over
all steps. During one-step movement, a collision between
one pair of agents occurs if their distance is less than the
sum of their radii at any real-valued time point within that
time duration, which could be verified by solving a distance-
related quadratic equation.

(3) AO metric: AO denotes agent-obstacle collisions, the total
number of collisions between all pairs of an agent and an
edge of an obstacle during a simulation, also accumulated
over timesteps. An agent-obstacle collision can be detected
based on (1) the intersection of two line segments (one for
an edge of an obstacle, the other for the trace of an agent’s
center during a one-step movement) and (2) the distance
between a point (the center of an agent) and a line segment
(an edge of an obstacle).

Note that within one step if an agent collides with more than
one edge of an obstacle, only one AO collision is counted. Two
agents keep overlapping or an agent moving within an obstacle is
only counted once for the first contacting of their edges until they
depart from each other. Also for simplicity, if an agent-agent or
agent-obstacle collision occurs, it does not change the velocity of
involved agents within that temporal duration.

7.5 Generalization to Test Scenarios

Based on the above experimental setup, bidirectional experiments
are conducted to test scenario generalization ability of the training
paradigm-training domain combinations on test domains.

7.5.1 Test on Exocentric Standard Scenarios. In this test domain,
models are evaluated on the six types of standard scenarios, varying
in agent density from 10 to 50 and initial/destination positions. Fig. 4
left shows the averaged rankings for the three metrics.

For DTW, BCA-G, BCA-R, RLA-G ranks first, second and third re-
spectively. This indicates that BCA paradigm is better at inferring
a route than RLA when the testing scenarios are widely divergent
from the training scenarios. For AA, BCA-G, BCA-R, RLA-G ranks
first, second and third respectively. For AO, surprisingly, RLA-G is
the best while BCA-G, BCA-R ranks second and third respectively.
Therefore. one can see that, under the same training paradigm (BCA),
training on egocentric representative scenarios (G) incurs less AA
and AO collisions than training on egocentric random scenarios (R),
when applied to exocentric standard scenarios (X). This evidence
that egocentric representative scenarios (G) provide a suite of chal-
lenging local agent-agent interactions and sufficient samples on
avoiding collisions in a myriad of obstacle configurations. It also
implies that when applying a model to a few challenging unseen
environments (e.g., X), it might be better to train a model with a
sufficient number of environment configurations (training on ego-
centric representative scenarios (G) enables the model to learn from
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4000 different environments), than applying a model without envi-
ronment knowledge (BCA-R learns from snapshots of surrounding
neighboring agents, not from any specific environment).

To understand why RLA-G incurs less AO collisions than BCA-G,
we further list Tab. 2 to show detailed comparisons along agent
densities. We notice that the DTW metric of RLA-G is much higher
than those of BCA-G. From simulation videos and trajectories illus-
trated in Fig. 1, we observe that only a few RLA-G agents can go
through the doorway with slow speed, while other RLA-G agents
have to wander near the doorway until the maximum number of
simulation steps. The cautious behaviors of RLA-G agents bring
benefits in terms of lower AO. This explains the outlier RLA-G in
AO metric.

7.5.2  Test on Egocentric Representative Scenarios. In this evalu-
ation, models are tested over 100 scenarios from the egocentric
representative scenarios (G) domain. Fig. 4 right shows averaged
ranking results over three metrics. For DTW, BCA-X, RLA-X, BCA-R
ranks first, second and third respectively. For AA, BCA-R, BCA-X,
RLA-X ranks first, second and third respectively. For AO, again,
BCA-R, BCA-X, RLA-X ranks first, second and third.

On the one hand, given the same training domain (exocentric
standard scenarios (X)), training with BCA paradigm is better than
training with RLA paradigm for all metrics of DTW, AA, and AO.
On the other hand, the training domain egocentric random sce-
narios (R) is better than exocentric standard scenarios (X), in term
of reducing AA and AO collisions when generalized to many new
scenarios. This implies an even more interesting insight: when a
model needs to be applied to many new environments (testset of
egocentric representative scenarios (G) comprises of 100 new envi-
ronments), having no knowledge about any environment (BCA-R)
is more advantageous than having a little knowledge about a few
environments (BCA-X and RLA-X are trained only on six different
environments).

7.5.3  Overall Summary on Bidirectional Experiments. According
to the above bidirectional results and analysis, it is clear that BCA
training paradigm is overall better than RLA training paradigm,
and the data domain egocentric representative scenarios (G) and
egocentric random scenarios (R) are better than exocentric standard
scenarios (X) in reducing AA and AO collisions. Considering the
coverage of these paradigms and domains, we conclude that (i)
a simpler training paradigm is better than a more sophisticated
training paradigm, (ii) training samples with diverse agent-agent
and agent-obstacle interactions are beneficial for reducing collisions
when the trained models are applied to new scenarios.

7.6 Discussion

Results (Fig. 4) suggest that while RLA-based training methods have
a potentially powerful paradigm of aggregate behavior imitation
through a combination of IRL and RL, it may not possess the desired
cross-domain generalization observed in a simpler BCA paradigm,
provided that all models have the same architecture and the same
number of parameters. One reason for this may stem from the
underlying modeling assumptions.

As evident from the expression of occupancy measure, RLA relies
on matching the occupancy measures between the estimated policy
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Table 2: Comparison of RLA-G (blue), BCA-G (red) and BCA-R (yellow), using the three metrics with different agent densities
increasing from left to right. Each axis in a plot denotes one type of the six scenarios: A, B, C, D, E and F denotes evacuation 1,
evacuation 2, bottleneck squeeze, concentric circles, hallway two-way, and hallway four-way, respectively. Line thickness in
plots indicates each metric’s standard deviation. Polygons closer to the origin imply a better (lower) metric value.
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* and the expert policy 7. [Puterman 2014] shows that a valid p, Thm.2 of [Syed et al. 2008]. Taking this into account, we obtain:
AN .
set of occupancy measures D = {p,|r € I1} satisfies a set of affine p(s, a) s
inta — = ,Vs e S.
constraints: 3, 9(5.0) = pos) + ¥ S(v.) P )p(s".0).¥s € 5, ) = Y S PO )

where po(s) denotes the distribution of initial states. Moreover,
there is a one-to-one correspondence between O and II: 7, (als) =)

p(s,a)
Za ps,a’)’

Thus, when modeling the movement of agents in an environ-
ment, the dynamics P(s|s’, a) encodes complex scenario informa-

with 7, the unique policy whose occupancy measure is tion, including positions of other moving agents and the obstacles
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in the environment, occlusions, etc. These dynamics are, as noted,
implicitly encoded in the policy. Therefore, an RLA model trained
on a particular training domain implicitly learns its environments.
Transferring this model directly to a new, test scenario with signifi-
cantly different dynamics is bound to result in a weaker match, thus
reduced generalization capacity. On the other hand, less biased BCA
models will have the ability to surmount those differences more
easily, and generalize better.

8 GENERALIZATION TO REAL DOMAIN

In this section, we apply the above five combinations of training
paradigms and training domains to a real test domain to visualize
their scenario generalization abilities and verify the conclusion in
a real world domain.

8.1 Real Domain Description

The real domain we considered is Stanford crowd trajectory dataset,
introduced in [Alahi et al. 2016]. It consists of a large set of real
pedestrian trajectories collected at a train station of size 25m X
100m for 12 X 2 hours by a set of distributed cameras. Identity
numbers, position histories with timestamps of the pedestrians are
extracted from the image sequences with detection and tracking
algorithms. The dataset is challenging since (1) The agent density
is quite high. In a time duration of 4 minutes, there are about 500
pedestrians moving in the train station. (2) Pedestrians are highly
asynchronous. They enter into and exit from the train station at
different timestamps, without a unified time controller. (3) the data
is noisy, due to the detection, tracking and localization error, and
the difficulty to measure the accurate positions of the obstacles
(infeasible areas).

8.2 Dataset Preprocessing

First, the positions of the obstacles in the environment layout are
determined by drawing the provided pedestrians’ trajectories on
the layout, and manually finding out the obstacle positions based
on the occupancy areas of the drawn trajectories. Second, the long-
lasting trajectories are aligned with timestamps and further split
with a temporal sliding window of 4-minute length and 2-minute
stride. Within each time window, all pedestrians are retrieved, in-
cluding those emerge after the starting time and/or exit before the
ending time of the window, and those whose destinations have to be
retrieved in the next time window. Third, to reduce the noise in the
data, pedestrians whose initial position or destination position are
within the obstacles are removed. Last but not the least, a Gaussian
convolution operation is applied to the binary representation of
the environment layout (obstacle pixels are represented as 1, other
feasible pixels are 0), to yield an obstacle-probability map. Based on
the map, the cost from a node to its child node in A-star is modified
according to the obstacle probability, so as to prevent the planned
A-star nodes from being too close to the obstacles, to reduce the
risk of agent-obstacle collisions.

8.3 Visualization of Model Trajectories

Fig. 5 illustrates trajectories of the above five combinations of train-
ing methods and training domains on the Stanford real dataset. The
obstacles (infeasible areas) are in blue color, and the trajectories
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are also colored. According to our experiment setting, we know
that for agents even slightly entering into an obstacle, they will
not perceive the obstacle wherein. However, in this specific test
domain, some agents slightly entering into the obstacle may see
their far-away planned nodes (e.g., the final destination node), and
thus would be guided to directly approach to their final destina-
tions, leading to visually obvious agent-obstacle collisions. We can
see that even under such challenging scenarios, with high agent
density and easy-to-cause obstacle crossing, BCA-R and BCA-G are
still visually generalized better than other combinations. Thus the
visualization strengthens our conclusion.

8.4 Quantitative Results

Fig. 6 presents the averaged rankings of all models when generalized
to the real domain on the three metrics. We can see that for DTW,
BCA-R and RLA-G ranks first and second respectively. For AA, RLA-X
and BCA-X ranks first and second respectively. For AO, BCA-R and
RLA-G ranks first and second respectively. Overall, RLA-G and BCA-R
models are better than others.

From the rankings we have three observations. (1) Training
domain egocentric random (R) and training domain egocentric rep-
resentative (G) are beneficial for reducing AO collisions, which
accords with the simulated bidirectional experiments. (2) Training
domain exocentric standard (X) is better at reducing AA collisions.
This suggests that even though the exocentric standard (X) domain
is not suggested by the simulated bidirectional experiments, it con-
tains a few challenging obstacle configurations and can still benefit
a model when applied to real challenging scenarios with high agent
density. (3) For the training paradigm, both RLA and BCA are in-
volved in the first and second ranked models in each of the three
metrics and in the overall ranking. The lack of a dominant training
paradigm implies the need to trade off when choosing a training
paradigm for generalizing to real challenging domains.

9 CONCLUSION

In this study, our main goal is to analyze the effect of different
training paradigms and training domain characteristics on scenario
generalization capacities of data-driven imitation models in crowd
modeling settings. Our empirical results and analysis indicate that
for training method, the simpler behavior cloning method is over-
all better than the more complex reinforcement learning method.
According to our experiment results, it is also noticeable that the
training domains have substantial impact on the generalization abil-
ity of models to new scenarios. In particular, training samples with
diverse agent-agent and agent-obstacle interactions are beneficial
for reducing collisions when models are applied to new scenarios.

Future work includes: (1) a comparison to scenario generalization
capacities of RL agents whose reward functions are pre-defined, for
example, as a combination of the three metrics (DTW, AA, AO); (2)
the improvement of scenario generalization capacity. For instance,
train a model in a training domain and then adopt it in a testing
domain using limited testing samples [Le et al. 2018; Zhao et al.
2018], where a domain is the dynamics belonging to a specific type
of scenarios.
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Figure 5: Visualization of different combinations of training
methods and training domains generalized to real dataset.
The obstacles (infeasible areas) are in blue color.
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