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Abstract

The elastic I = 1 p-wave ππ scattering amplitude is calculated together with the isovector timelike pion 

form factor using lattice QCD with Nf = 2 + 1 dynamical quark flavors. Wilson clover ensembles gener-

ated by the Coordinated Lattice Simulations (CLS) initiative are employed at four lattice spacings down to 

a = 0.05 fm, several pion masses down to mπ = 200 MeV, and spatial volumes of extent L = 3.1–5.5 fm. 

The set of measurements on these ensembles, which is publicly available, enables an investigation of sys-

tematic errors due to the finite lattice spacing and spatial volume. The ππ scattering amplitude is fit on 

each ensemble by a Breit–Wigner resonance lineshape, while the form factor is described better by a thrice-

subtracted dispersion relation than the Gounaris–Sakurai parametrization.
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1. Introduction

Lattice QCD calculations of resonant two-hadron scattering amplitudes have improved 

markedly in recent years thanks to algorithmic advances [1,2] and increased computing re-

sources.1 Many calculations of the elastic ππ amplitude in the vicinity of the ρ(770) exhibit suf-

ficient statistical precision and energy resolution to determine the resonance parameters [5–15], 

while a few Kπ calculations similarly map out the K∗(892) [16–19]. First coupled channel re-

sults have also appeared in Refs. [18,20–23] for the a0(980), f0(980), and D∗
s0(2317) resonances. 

Resonant meson–meson amplitudes involving an external current have also been calculated in 

Refs. [10,24,25]. Compared to the meson–meson sector, calculations of resonant meson–baryon 

amplitudes are currently less advanced [26–28]. A recent review of lattice calculations of scat-

tering amplitudes can be found in Ref. [29].

The improvement in these calculations suggests that the quark-mass dependence of such 

amplitudes may be investigated quantitatively, providing valuable input to effective theories of 

low-lying hadron resonances as well as numbers at the physical point relevant for experiment. 

In order to obtain reliable results however, various systematic errors must be controlled. These 

include effects due to the finite lattice spacing and spatial volume inherent in lattice QCD simu-

lations, as well as systematics in the calculation of finite-volume two-hadron energies and matrix 

elements from which the amplitudes are determined.

While lattice spacing effects are assessed in the usual way, the treatment of finite volume 

effects is more subtle. Since real-time scattering amplitudes cannot be naively calculated from 

Euclidean-time lattice QCD simulations [30], the method proposed by Lüscher [31] is employed 

to infer two-to-two hadron scattering amplitudes from shifts of finite-volume two-hadron en-

ergies from their non-interacting values. This approach has been generalized to non-zero total 

momenta [32,33], non-zero spin [34–39], multiple coupled scattering channels [37,40,41], and 

amplitudes with an external current [42–47]. Extending this approach above three-hadron thresh-

olds has proven difficult and been applied to Monte Carlo lattice data only in a toy scalar field 

theory [48]. It is, however, under active development [49–60]. Recently-proposed alternatives to 

this finite-volume formalism for total decay rates can be found in Refs. [61,62].

The relation discussed above between finite-volume energy shifts and real-time two-to-two 

scattering amplitudes can be written as [35]

det[K̃−1(Ecm) − B(�,d)(Ecm)] = 0 (1.1)

where Ecm is the finite-volume two-hadron energy in the center-of-mass frame, K̃ is proportional 

to the infinite-volume K-matrix, and B is a known matrix encoding the effect of the finite vol-

ume. This determinant is block diagonalized so that Eq. (1.1) describes finite-volume energies 

in a single irreducible representation (irrep) � of the little group for a particular class of total 

momenta d = (L/2π)P tot, where d is a vector of integers. The determinant is taken over total 

angular momentum (J ), total spin (S), all coupled two-hadron scattering channels, and an index 

enumerating the possibly multiple occurrences of a partial wave in irrep �.

The determinant condition in Eq. (1.1) holds up to corrections which are exponentially sup-

pressed in the spatial extent L. However, unlike finite volume corrections to single-hadron 

observables, the fall-off of these residual exponential finite volume effects may in principle be 

1 For recent reviews of the interplay between lattice QCD calculations and current computer architectures, see Refs. [3,

4].
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different than mπ . The ‘rule of thumb’ mπL � 4 which is usually applied in single-hadron cal-

culations to ensure that finite-volume effects are at the percent level must be re-investigated in 

the context of scattering amplitudes. There exists therefore a hierarchy of finite volume effects: 

those described by Eq. (1.1) are polynomial in L−1 (and constitute the ‘signal’) while Eq. (1.1)

holds only up to (unwanted) terms exponential in L.

As a benchmark amplitude suitable for an investigation of these systematic effects, we con-

sider here the elastic I = 1 p-wave pion–pion scattering amplitude relevant for the ρ(770). 

In order to extrapolate to the physical point and continuum, a range of pion masses mπ =
200–280 MeV and lattice spacings a = 0.050–0.086 fm are employed. Such extrapolations have 

been performed recently using chiral perturbation theory and its extensions [63–74] and treat all 

scattering data simultaneously. As these extrapolations are somewhat involved and have not yet 

treated cutoff effects, we present the determination of the amplitudes only in this work and leave 

extrapolation to the physical quark masses and continuum for the future. Nonetheless, in our re-

sults the residual finite volume and cutoff effects are evidently small compared to the statistical 

errors.

We calculate scattering amplitudes over an energy range Ecm ∈ [2mπ , Emax]. Since Eq. (1.1)

applies below n > 2 hadron thresholds, Emax is reduced as mπ is lowered. Because of the chi-

ral trajectory employed in this work (which is discussed in Sec. 2.1), for the heaviest quark 

masses the lowest inelastic threshold is K̄K , while the lowest n > 2 hadron threshold is 4π . 

Although levels in the range 2mK < Ecm < 4mπ could be treated using Eq. (1.1) with a 

coupled-channel K-matrix, we nonetheless impose a restriction to elastic scattering, namely 

Emax = min(4mπ , 2mK).

In addition to this ππ scattering amplitude, we also calculate the I = 1 timelike pion form 

factor, which encodes the coupling of an external (timelike) photon to two pions in an isovec-

tor configuration. Phenomenologically, it can be extracted from e+e− → hadrons and hadronic 

τ -decays [75] and is of particular relevance for the hadronic vacuum polarization (HVP), 

a leading source of theoretical uncertainty in the anomalous magnetic moment of the muon 

(g − 2)μ [76,77]. Using the optical theorem, the imaginary part of the HVP can be related to

Rhad(s) = σ(e+e− → hadrons)/
4παem(s)2

3s
, (1.2)

where σ(e+e− → hadrons) is the total cross section, αem the electromagnetic coupling, and 

s = E2
cm the usual Mandelstam variable. In the elastic region Rhad is given by the two-pion 

contribution

Rhad(s) = 1

4

(

1 − 4m2
π

s

)

3
2

|Fπ (s)|2, (1.3)

which contains the timelike pion form factor Fπ (s). The phase of this form factor is fixed by 

Watson’s theorem, so we are interested in the amplitude only here. Furthermore, we work in the 

isospin limit, where electromagnetic interactions are ignored and mu = md. Because of this, the 

elastic region persists up to either s = 4m2
K or s = 16m2

π .

Although a precise determination of this form factor is phenomenologically desirable, there 

exists only the pioneering determination of Ref. [10] which employs a single lattice spacing, 

heavier quark masses, and a (single) smaller physical volume than this work. It is therefore 

imperative to also investigate lattice spacing and finite volume effects for this quantity, the former 

of which may be affected by renormalization and O(a)-improvement of the electromagnetic 

current.
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In addition to its phenomenological impact, the timelike pion form factor is an important step-

ping stone toward more complicated resonance photoproduction amplitudes. Such amplitudes are 

relevant for ongoing and future experiments which photoproduce resonances. An additional step 

in this direction is the πγ → ππ amplitude studied using lattice QCD in Refs. [24,25]. However, 

the timelike pion form factor calculated here does not require disconnected flavor-singlet Wick 

contractions, which are ignored in Refs. [24,25].

Preliminary work toward the results reported here is found in Ref. [78]. The remainder of 

this paper is organized as follows. For completeness we review the gauge field ensembles, meth-

ods for calculating finite-volume two-pion energies and matrix elements, and their relation to 

infinite-volume scattering amplitudes in Sec. 2. Results are given in Sec. 3 and conclusions in 

Sec. 4.

2. Lattice QCD methods

The subset of CLS ensembles used in this work is discussed in Sec. 2.1 and application of 

the stochastic LapH method for all-to-all quark propagation in Sec. 2.2. The analysis strategy 

used to extract the required finite volume energies and matrix elements from temporal correla-

tion functions is contained in Sec. 2.3, while the relation between finite-volume quantities and 

infinite-volume scattering amplitudes is given in Sec. 2.4.

2.1. Gauge field ensembles

The ensembles of gauge field configurations employed here are from the Coordinated Lat-

tice Simulations (CLS) initiative and are presented in Refs. [79,80]. They employ the tree-

level improved Lüscher–Weisz gauge action [81] and non-perturbatively O(a)-improved Wilson 

fermions [82]. Open boundary conditions [83] are implemented in the temporal direction. Al-

though these boundary conditions were adopted to reduce autocorrelation times of the global 

topological charge, they also influence finite-temporal-extent effects in temporal correlation 

functions.

Contributions to two-hadron correlation functions where the hadrons propagate in opposite 

temporal directions, which for identical particles and zero total momentum yield a constant in 

time [84–87], are present with periodic boundary conditions but absent in this setup. Therefore, 

for large temporal extent T and if both interpolators are far from the boundaries, all two-point 

correlation functions with open temporal boundary conditions have the form

lim
T →∞

t0,(T −tf)→∞
CT (t0, tf) = C(tf − t0) ×

{

1 + O(e−E0tbnd)
}

, (2.1)

where CT (t0, tf) = 〈O(tf)Ō(t0)〉T is the correlator with open boundaries of extent T , C(t) =
〈O(t)Ō(0)〉 the correlator in the T → ∞ limit, E0 the lightest state with vacuum quantum 

numbers and tbnd = min(t0, T − tf) the minimal distance from an interpolator to the tempo-

ral boundaries. Since presumably E0 ≈ 2mπ , if mπ tbnd � 2 then the exponential corrections in 

Eq. (2.1) are parametrically similar to exponentially suppressed finite-volume effects in single-

hadron energies.

While correlation functions are affected by temporal boundary conditions, the transfer matrix 

(and therefore also the spectrum) is unaffected. Although having an interpolating operator near a 

temporal boundary does not change its quantum numbers, we are after excited states and employ 

generalized eigenvalue methods requiring hermitian correlation matrices. The source and sink 
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Fig. 1. Left: R(5a) from Eq. (2.2) for all (
t0
a , 

t ′
0
a ) pairs on ensembles where multiple source times are employed. Right: 

tmin-plot from single-exponential fits (which ignore boundary effects) to the zero-momentum single-pion correlator over 

the range [tmin, tmax] for each t0 individually on the D200 ensemble. The pion mass extracted from the t0-averaged 

correlator is shown by the error band.

interpolators therefore must not be significantly affected by the temporal boundaries in order 

to maintain hermiticity. To this end, we always choose a minimum distance to the boundary 

(tbnd) of at least mπ tbnd � 2. As in Ref. [6], our resulting insensitivity to finite-T effects can 

be demonstrated using the single-pion correlation function. Fitting this correlation function to 

a single exponential ignores contributions from the temporal boundaries. Fits of this type on a 

single ensemble are shown in Fig. 1, where the fitted energy is shown to be insensitive to the 

source interpolator position t0. Insensitivity to t0 in our most precisely determined correlation 

function suggests that temporal boundary effects may be neglected in subsequent fits.

Another measure of finite-T effects is the ratio

Rt0,t
′
0
(t) = CT (t0, t + t0)

CT (t ′0, t + t ′0)
(2.2)

which under the asymptotic assumptions of Eq. (2.1) receives corrections to unity of O(e−E0tbnd). 

R(5a) is also shown in Fig. 1 for various (t0, t
′
0) pairs on all ensembles with multiple source 

times. This ratio shows significant deviations from unity for mπ tbnd � 3, despite no observable 

difference in the fitted energies. While the deviation of Rt0,t
′
0
(t) from unity in the single-pion 

correlator suggests that averaging over source times may affect the hermiticity of correlation 

matrices, such deviations are not visible in two-pion correlation functions. For the D200 ensem-

ble the ratio with (t0/a, t ′0/a) = (32, 52), shown for the pion in Fig. 1 left panel as the left-most 

point, is consistent with unity for the single-ρ meson correlator at rest and the two-pion correlator 

(each with a single unit of momentum) in the same channel.

While we omit a complete discussion of algorithmic details used in configuration generation, 

some aspects are relevant for the analysis of correlation functions measured on these ensembles. 

The CLS ensembles employ twisted-mass reweighting [88] for the degenerate light quark doublet 

and use the RHMC algorithm [89] for the strange quark determinant. One reweighting factor 

(W0) is used to change the light quark action to clover Wilson, while another (W1) corrects for the 

RHMC approximation. Efficient evaluation of these reweighting factors is discussed in Ref. [79]. 

Measurements of primary observables must be multiplied by the corresponding re-weighting 

factors on each configuration according to

〈A〉 = 〈AW 〉W
〈W 〉W

(2.3)
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Table 1

Parameters of the CLS ensembles used in this work. The timelike pion form factor is not determined on the coarsest 

lattice spacing. After the ensemble ID in the first column, we list the gauge coupling, lattice spacing and dimensions, 

pseudoscalar meson masses, the separation between correlation function measurements in molecular dynamics units 

(MDU), the number of such measurements, and the minimum distance from an interpolator to a temporal boundary.

ID β a [fm] L3 × T mπ , mK [MeV] τmeas [MDU] Nconf mπ tbnd

C101 3.4 0.086 483 × 96 220, 470 8 300 2.5

D101 643 × 128 8 303 2.3

N401 3.46 0.076 483 × 128 280, 460 16 274 3.5

N200 3.55 0.064 483 × 128 280, 460 8 854 3.0

D200 643 × 128 200, 480 8 558 2.1

J303 3.7 0.050 643 × 192 260, 470 16 328 3.1

where W = W0W1 and 〈. . . 〉W denotes an ensemble average with respect to the simulated action. 

The denominator of Eq. (2.3) must also be taken into account in any resampling procedure used 

to estimate statistical errors or covariances. If both the twisted mass parameter and the range 

and degree of the rational approximation are chosen appropriately, these reweighting factors are 

typically close to unity. However, we observe anomalously large fluctuations in the reweighted 

zero-momentum single-pion correlator for a single source time on each of the C101 and D101 

ensembles. These ensembles have the lightest quark mass at the coarsest lattice spacing and large 

fluctuations may indicate an inefficient choice of the simulated action. Data on these two source 

times are removed from the final analysis and are not included in Table 1.

There are several possibilities for the trajectory of ms as ml = mu = md is lowered toward its 

physical value. Quark masses on the CLS ensembles employed here are tuned to lie on a chiral 

trajectory with trMq = const., where Mq is the bare quark mass matrix Mq = diag(mu, md, ms), 

in order to reduce the quark mass dependence of certain renormalized quantities. An additional 

chiral trajectory in which ms = const. is presented in Ref. [80]. While it is interesting to investi-

gate the quark-mass dependence of scattering amplitudes on both chiral trajectories, we present 

results on the trMq = const. trajectory only.

As discussed in Ref. [90], fixing the trace of the bare mass matrix is not equivalent to fixing 

the sum of renormalized quark masses. There a Taylor expansion is employed to slightly shift 

the quark masses in order to satisfy φ4 = 8t0(m
2
K + 1

2
m2

π ) = const., which is not performed here. 

At the coarsest lattice spacing, imposing trMq = const. results in deviations of less than 5% of 

trMR/(trMR)symm (where the trace in the denominator is evaluated at the symmetric point mu =
md = ms) from unity at the lightest pion masses considered in Ref. [90]. This small deviation 

from our desired chiral trajectory presumably has little effect on the observables considered here.

Properties of the CLS ensembles used in this work are given in Table 1, which also con-

tains τmeas, the separation in molecular dynamics units (MDU) between our measurements of 

hadronic correlation functions, and tbnd, the minimum distance from an interpolator to a tem-

poral boundary. The timelike pion form factor is not determined on the coarsest lattice spacing. 

A more precise scale determination can be found in Tab. 3 of Ref. [90], while pseudoscalar meson 

masses and decay constants can be found in Tab. 2 of that work.

As discussed above, open temporal boundary conditions are employed to decrease the inte-

grated autocorrelation time of the global topological charge. However, there is still a significant 

amount of autocorrelation present in some observables on the CLS ensembles. A method to esti-

mate statistical errors in the presence of large autocorrelations is outlined in Refs. [91,92]. This 
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involves propagating the errors linearly, a method which may not be suitable for our purposes 

given the non-linear nature of the B-matrix elements given in Eq. (1.1) and discussed further in 

Sec. 2.3. Therefore, we simply ‘bin’ our correlator measurements and employ the bootstrap pro-

cedure with NB = 800 bootstrap samples. Although no statistically significant autocorrelations 

are observed in any of our correlation functions, the largest integrated autocorrelation times (τint) 

measured on these ensembles span the range τint ≈ 30–150 for β = 3.4–3.7, respectively [79].

2.2. Correlation function construction

Since we employ two-pion interpolators in which each pion is projected to definite momen-

tum, quark propagators between all space–time points are required. We employ the stochastic 

LapH method to estimate such all-to-all propagators and efficiently construct correlation func-

tions [2]. Based on Ref. [1], this method endeavors to make all-to-all propagators tractable by 

considering quark propagation between a low-dimensional subspace defined by the lowest Nev

modes of the three-dimensional gauge-covariant Laplace operator, hereafter referred to as the 

‘LapH subspace’. This projection is a form of quark smearing, with an approximately Gaussian 

spatial profile and width controlled by the Nev-th eigenvalue. In order to maintain a constant 

width, Nev must be scaled proportionally to the spatial volume.

This smearing procedure enables more efficient stochastic estimation schemes by employing 

noisy combinations of Laplacian eigenvectors. It was determined in Ref. [2] that (at least for 

the range of spatial volumes considered there) with a moderate level of dilution the quality of 

the stochastic estimator remains constant as the volume is increased while maintaining a fixed 

number of dilution projectors. This work further demonstrates that the quality of the stochastic 

LapH estimator does not degrade for even larger volumes. Without significantly increasing the 

number of dilution projectors, we obtain precise results for scattering amplitudes with stochastic 

LapH on spatial volumes up to V = (5.5 fm)3.

In the stochastic LapH framework, NR stochastic sources {ρr} are introduced in time, spin, and 

Laplacian eigenvector indices. These sources are diluted by specifying Ndil complete orthogonal 

dilution projectors {Pb} so that an unbiased estimator of the smeared-smeared all-to-all quark 

propagator is furnished by

Q(y, x) ≈ 1

NR

NR
∑

r=1

Ndil
∑

b=1

ϕrb(y)̺
†
rb(x), (2.4)

where ̺rb = VsPb ρr is the smeared stochastic source, ϕrb = S Q ̺ rb the smeared sink, Q the 

quark propagator, and S = VsV
†
s the smearing operator which projects onto the LapH subspace. 

To date, only schemes where dilution in each of these indices is done independently have been 

employed. A common strategy is to interlace n dilution projectors uniformly (denoted In) in the 

index in question. The ‘full’ dilution limit (denoted ‘F’) is recovered if n is equal to the total 

dimension of the index. Full specification of a dilution scheme therefore specifies a prescription 

in each of time, spin, and Laplacian eigenvector space. For example (TF, SF, LI8) refers to full 

dilution in time and spin, and eight dilution projectors interlaced uniformly among the Laplacian 

eigenvectors.

As discussed in Ref. [2], it is typically beneficial to employ different dilution schemes for 

‘fixed’ quark propagators (denoted by the subscript ‘F’), where x0 
= y0 and ‘relative’ quark 

propagators (denoted ‘R’) where x0 = y0. We therefore employ either full or interlace dilution in 
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Table 2

Parameters of the stochastic LapH implementation used in this work. (ρ, nρ ) are the stout link smearing parameters, Nev

the number of Laplacian eigenvectors, NR the number of independent noise sources, Nt0 the number of source times for 

fixed quark lines, and ND the total number of light quark Dirac matrix inversions per gauge configuration. Notation for 

the dilution scheme is explained in the text.

ID (ρ,nρ ) Nev dilution Nfix
R N rel

R Nt0 ND

C101 (0.1,20) 392 (TF,SF,LI16)F (TI8,SF,LI16)R 6 2 1 1408

D101 928 (TF,SF,LI16)F (TI8,SF,LI16)R 6 2 2 1792

N401 (0.1,25) 320 (TF,SF,LI16)F (TI8,SF,LI16)R 5 2 2 1664

N200 (0.1,36) 192 (TF,SF,LI8)F (TI8,SF,LI8)R 5 2 2 832

D200 448 (TF,SF,LI8)F (TI8,SF,LI8)R 5 2 2 832

J303 (0.1,60) 208 (TF,SF,LI8)F (TI16,SF,LI8)R 5 2 3 1504

time, full dilution in spin, and interlace dilution in eigenvector space. The dilution scheme and 

other parameters of the stochastic LapH algorithm employed here are given in Table 2.

Table 2 also contains information on the LapH subspace and thus the smearing operator S

applied to quark fields in our interpolating operators. Before calculating eigenvectors, the gauge 

link field entering the covariant 3-D Laplace operator is stout smeared [93]. The stout smear-

ing parameters (ρ, nρ) together with the number of retained eigenvectors Nev therefore define 

our smearing scheme. We maintain an approximately constant physical link-smearing radius 

(rlink/a)2 = ρnρ by tuning nρ appropriately. The quark smearing procedure is defined by re-

taining all eigenvectors with eigenvalue λ � (aσs)
2, where σs = 1 GeV. As the physical volume 

(V ) is increased the number of eigenvectors must be scaled as Nev ∝ V . The stout smearing 

parameters and Nev are given in Table 2.

We employ interpolating operators with light quarks only, since we calculate elastic pion–pion 

scattering amplitudes. The number of required light quark Dirac matrix inversions per configu-

ration, denoted ND, is also given in Table 2. Our treatment of all-to-all propagators enables us 

to efficiently evaluate all required Wick contractions involving two-pion and single-ρ interpola-

tors, which are enumerated in Ref. [2]. An unbiased estimator results only if each quark line in a 

diagram employs independent stochastic sources. As discussed in Ref. [94], in each diagram we 

typically average over some number of multiple noise ‘orderings’, i.e. different permutations of 

the NR available quark lines.

The correlation functions used in pion–pion scattering require smeared quark fields only. 

However, correlation functions for the timelike pion form factor contain the unsmeared vector 

current operator. These current correlation functions are easily constructed in the stochastic LapH 

framework although they employ quark fields which are not projected onto the LapH subspace.

As done in Ref. [95], by exploiting γ5-hermiticity it can be ensured that quark fields in the 

vector current bilinear are always unsmeared sinks φrb = Q ̺ rb. This motivates the construction 

of ‘current sinks’ defined as

J
(d,�)

rb;r ′b′(t) =
∑

x,y

φ
†
rb(x)Ŵ(d,�)(x,y)φr ′b′(y), (2.5)

where t = x0 = y0 and Ŵ(d,�) denotes projection onto an irreducible representation (irrep) � of 

the little group of total momentum d. J (d,�)(t) has two noise/dilution indices and can therefore 

be employed in the correlation function construction procedure of Ref. [2] exactly as a smeared 

ρ-meson interpolator.
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As suggested by Eq. (2.4), in order to save disk space the quark sinks are typically pro-

jected onto the LapH subspace before they are written to disk. However, the current functions 

of Eq. (2.5) must be constructed from unprojected sinks. For fixed quark lines the {φrb} must 

be kept in memory until calculation of J (d,�)(t) is complete. After construction of the current 

functions, the quark sinks are smeared and written to disk in the usual way.

The calculation of the Laplacian eigenvectors is performed using a variant of the thick 

restarted Lanczos method [96], which entails global re-orthogonalizations of the Krylov sub-

space. These re-orthogonalizations scale poorly with Nev, so that as L is increased calculation 

of the Laplacian eigenvectors will eventually dominate the computational cost. However, for the 

L � 5.5 fm volumes considered here the Dirac matrix inversions are still most computationally 

intensive.

We perform these Dirac matrix inversions using the efficient DFL_SAP_GCR solver in the

openQCD software suite.2 In summation, our workflow consists of three main tasks: (1) Dirac 

matrix inversion, (2) hadron source/sink construction, and (3) formation of correlation functions. 

Due to their large storage footprint, the Laplacian eigenvectors are computed first in task 1 and 

not saved to disk. They are then recomputed during task 2, which is implemented entirely in 

3-D. Task 3 then no longer requires any lattice-wide objects and is simply tensor contraction of 

noise-dilution indices.

These different tasks are typically performed on different computer architectures, but a rough 

breakdown of the relative cost is 70–80% for the Dirac matrix inversions, 20–26% for task 2, and 

1–5% for task 3. In total, 1–3% of the total for these three tasks is spent on calculating Laplacian 

eigenvectors.

2.3. Finite-volume energies and matrix elements

We consider all elastic energy levels in isovector irreps where the JPG = 1−+ partial wave 

is the leading contribution up to total momentum d2 ≤ 4, which are tabulated in Table 3. To 

calculate the energies, we follow the procedure of Refs. [6,16], which is outlined below.

Outside the resonance region, interacting finite-volume two-pion energies are close to their 

non-interacting values, while for levels with Ecm near mρ these gaps are larger. To exploit the 

small differences outside the resonance region and to treat all energies in a unified manner, we 

employ the ratio fits described in Ref. [6]. Using this method, we construct ratios

Rn(t) = Ĉn(t)

Cπ (p2
1, t)Cπ (p2

2, t)
, (2.6)

Ĉn = (vn(t0, td),C(t)vn(t0, td))

where (p1, p2) are momenta of the constituent pions in the nearest non-interacting level and 

Cπ (p2, t) is a single-pion correlation function with momentum p2. The vector vn(t0, td) is a 

generalized eigenvector of the correlator matrix C(t) solving the generalized eigenvalue problem 

(GEVP) C(td)vn = λnC(t0)vn [97,98]. The {vn} are used to define the diagonal correlators Ĉn(t)

between operators with optimal overlap onto the nth level, and are determined for a single (t0, td)

only. The fitted energies vary little as these diagonalization times, as well as the operator basis, 

are varied.

2 http://luscher.web.cern .ch /luscher /openQCD/.
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Table 3

Finite-volume irreps � (second column) of the little group for var-

ious classes of total momenta P tot = (2π/L)d (first column) em-

ployed here. The superscripts on the partial waves (ℓ) contributing 

to that irrep denote the number of multiple occurrences, while the 

‘+’ indicates positive G-parity.

d � ℓ

(0,0,0) T +
1u

1, 3, 52, . . .

(0,0, n) A+
1

1, 3, 52,. . .

E+ 1, 32, 53, . . .

(0, n,n) A+
1

1, 32, 53, . . .

B+
1

1, 32, 53 . . .

B+
2

1, 32, 53, . . .

(n,n,n) A+
1

1, 32, 52, . . .

E+ 1, 32, 54, . . .

The difference �En between an energy and its closest non-interacting ππ counterpart is 

extracted directly using single-exponential fits to the ratio in Eq. (2.6). Alternatively, the inter-

acting energy may be obtained from single- or two-exponential fits to Ĉn directly. All of these 

correlated-χ2 fits are performed over some time range [tmin, tmax], the variation of which should 

not affect the fitted energies for asymptotically large t . Energies obtained from ratio, single-, 

and two-exponential fits all typically depend little on tmax, while ratio fits typically exhibit a re-

duced dependence on tmin as well. However, the excited state contamination in ratio fits may be 

non-monotonic leading to ‘bumps’ in tmin plots. As an important consistency check, we check 

agreement of the energies obtained from these three types of fits, different (t0, td) combinations, 

and GEVP operator sets.

Our fit ranges are chosen conservatively so that the systematic errors discussed above due 

to the GEVP and fit ranges are smaller than the statistical ones. This is demonstrated using 

extensive comparisons of tmin-plots for different fit types, (t0, td) choices, and GEVP operator 

bases, similar to Refs. [6,16]. Bootstrap resamples of all reweighted correlation functions are 

publicly available in HDF5 format,3 as is a python Juypter notebook4 which performs the entire 

analysis chain. This tool not only provides an interface to view systematics related to our choices 

of fitting procedure, fitting ranges, and GEVP, but also enables direct access to all results at 

each step. Generally, in physical units we take (t0, td) ≈ (0.5, 0.9)fm, tmin = 0.7–1.3 fm, and 

tmax = 2–2.6 fm.

In addition to determining the energies, on the three finest lattice spacings we calculate matrix 

elements of the electromagnetic current

j em
μ = 2

3
ūγμu − 1

3
d̄γμd + . . . (2.7)

where the ellipsis denotes contributions from heavier quarks. For the vacuum-to-ππ matrix ele-

ments considered in this work, we require insertions of the isovector component and a dimension-

five counterterm required to implement O(a)-improvement

3 https://doi .org /10 .5281 /zenodo .1341045.
4 https://github.com /ebatz /jupan.
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V a
μ = ψ̄γμ

τ a

2
ψ, ∂̃νT

a
μν = i∂̃νψ̄σμν

τ a

2
ψ, (2.8)

where ψ = (u, d)T , τ a the usual Pauli matrices in isospin space, σμν = i
2
[γμ, γν], and ∂̃μ the 

symmetrized lattice derivative. The isovector index a is taken to be maximal and henceforth 

omitted.

The determination of the timelike pion form-factor then employs linear combinations

V (�,d) =
∑

μ

b(�,d)
μ VR,μ,

∑

μ

b(�,d)∗
μ b(�,d)

μ = 1 (2.9)

where the coefficients b
(�,d)
μ project the current onto (a row of) irrep � and spatial momentum d . 

The vector current bilinear appearing in Eq. (2.9) has been renormalized and O(a)-improved 

non-perturbatively according to

(VR)μ = ZV

(

1 + abV ml + abV trMq

)

(VI)μ, (VI)μ = Vμ + acV∂̃νTμν, (2.10)

where the renormalization and improvement coefficients ZV, bV, bV, and cV are functions of the 

gauge coupling only in this mass-independent scheme.

We take Z̃V = ZV

(

1 + abV ml + abV trMq

)

and cV from the non-perturbative determination 

of Ref. [99]. An alternative determination of the non-singlet current renormalization constants 

for this lattice discretization is found in Ref. [100]. Another preliminary non-perturbative deter-

mination of ZV can be found in Ref. [101], while non-perturbative determinations of bV and bV

are performed in Refs. [102,103].

Operationally, we calculate current correlation functions using Eq. (2.5) for both the dimen-

sion four and five operators in Eq. (2.8) projected onto definite momentum d and irrep �. These 

current correlation functions, which are vectors in the GEVP index, are given as

D(�,d)(t − t0) = 〈J (�,d)(t)Ō(�,d)(t0)〉, (2.11)

where J denotes either of the operators in Eq. (2.8) projected according to Eq. (2.9) and Ô(�,d)

is an interpolator for irrep (�, d).

To extract the finite volume matrix elements 〈0|V̂ (�,d)|�dn〉, we calculate the current corre-

lation functions (defined in Eq. (2.11)) containing each the two operators in Eq. (2.8). These are 

used to form optimized current correlation functions using the GEVP eigenvectors

D̂n(t) = (D(t), vn) , (2.12)

where the inner product is taken over the GEVP index. Using these optimized current correlators, 

we then construct three ratios which plateau to the desired matrix elements asymptotically for 

large t (up to GEVP systematics)

R(1)
n (t) =

∣

∣

∣

∣

∣

∣

∣

D̂n(t)
√

Ĉn(t)e−Ent

∣

∣

∣

∣

∣

∣

∣

, R(2)
n (t) =

∣

∣

∣

∣

∣

D̂n(t)

Ane−Ent

∣

∣

∣

∣

∣

, R(3)
n (t) =

∣

∣

∣

∣

∣

D̂n(t)An

Ĉn(t)

∣

∣

∣

∣

∣

,

(2.13)

where An and En are determined previously from the ratio fits to Ĉn(t). The final matrix elements 

are then obtained from a plateau average of these ratios over a range [tmin, tmax].
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Each of these ratios possesses different excited state contamination. In analogy with the de-

termination of the energies discussed above, consistency of the matrix elements using different 

ratios, (t0, td), and GEVP bases provides a stringent check in their determination. GEVP correc-

tions to An have a different form than those of the energies [104], and our choices of fit ranges 

are optimized with the energies in mind. For this reason we take R
(1)
n (t) in Eq. (2.13) as the 

best estimate of the matrix elements. Nonetheless, all three ratios are typically consistent. Data 

illustrating the tmin-dependence of these ratios and the comparisons mentioned above may also 

be found in the HDF5 files and Jupyter notebook. After determining the matrix elements for each 

current operator, we combine them to form the renormalized combination in Eq. (2.10).

2.4. Amplitudes from finite volume energies and matrix elements

First we determine the elastic I = 1 p-wave pion–pion scattering amplitude using the finite-

volume energies discussed in Sec. 2.3. This amplitude is obtained from the determinant condition 

introduced for general two-to-two scattering in Eq. (1.1). However, considerable simplification 

occurs for elastic scattering between spinless identical particles. Here the K-matrix is diagonal 

in orbital angular momentum ℓ with trivial structure in the irrep occurrence index nocc. The box 

matrix B , which encodes the effect of the finite periodic spatial volume, mixes different orbital 

angular momenta and is dense in nocc.

All the irreps used in this work are given in Table 3 together with the pattern of partial wave 

mixing induced by the infinite-dimensional B-matrix. Explicit expressions for all B-matrix el-

ements up to ℓ ≤ 6 are given in Ref. [35]. Several off-diagonal B-matrix elements vanish for 

identical particles, preventing partial wave mixing between even and odd ℓ. If contributions from 

ℓ ≥ 3 partial waves are neglected, this simplification provides a one-to-one correspondence be-

tween energies in the irreps of Table 3 and

K̃−1
11 (Ecm) =

(

qcm

mπ

)3

cot δ1(Ecm), (2.14)

where qcm is the center of mass momentum and δ1 the I = 1 ππ phase shift. This approximation 

is justified by the near-threshold suppression of higher partial waves and to test it we perform 

global fits including f -wave contributions. Refs. [9,35] perform similar fits and find such contri-

butions negligible.

We turn now to the determination of the timelike pion form factor |Fπ (Ecm)| using the 

finite-volume matrix elements calculated according to Sec. 2.4. The relations employed here 

for zero-to-two matrix elements are given in Refs. [10,43,46] which are based on the seminal 

work of Ref. [47].

We first define the angle φ
(d,�)
1 using B

(d,�)
11 = (qcm/mπ )3 cotφ

(d,�)
1 where B is from 

Eq. (1.1). This pseudophase is used together with the physical phase shift to relate the finite-

and infinite-volume matrix elements

|Fπ (Ecm)|2 = g�(γ )

(

qcm
∂δ1

∂qcm
+ u

∂φ
(d,�)
1

∂u

)

3πE2
cm

2q5
cmL3

∣

∣

∣
〈0|V (d,�)|d�n〉

∣

∣

∣

2
, (2.15)

where qcm is the magnitude of the center-of-mass (three) momentum, u2 = L2q2
cm/(2π)2, and

g�(γ ) =
{

γ −1, � = A+
1

γ, otherwise
(2.16)
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Table 4

Results of correlated-χ2 fits of the I = 1 elastic p-wave ππ amplitude to Eq. (3.1). After the ensemble ID and the 

number of levels, the three subsequent columns show results from fits ignoring ℓ = 3 contributions. The remaining 

columns contain results from fits including the f -wave contribution as described in the text.

ID Nlvl ℓ = 1 fits ℓ = 1,3 fits

mρ/mπ gρππ χ̂2 mρ/mπ gρππ m7
πa3 × 103 χ̂2

D101 43 3.366(15) 6.19(10) 2.51 3.370(15) 6.23(10) −0.56(30) 2.49

C101 21 3.395(26) 5.67(17) 1.07 3.399(30) 5.72(19) −0.18(26) 1.11

N401 19 2.717(16) 5.84(12) 1.64 2.721(16) 5.88(13) −2.7(3.0) 1.71

N200 15 2.733(16) 5.94(10) 1.34 2.733(16) 5.94(10) 0.0(2.9) 1.45

D200 17 3.877(34) 6.16(19) 0.81 3.883(36) 6.15(20) −0.61(94) 0.84

J303 18 3.089(25) 6.30(17) 0.75 3.096(25) 6.32(17) −4.2(3.6) 0.73

where γ = E/Ecm. The infinite volume matrix elements are therefore obtained from their finite 

volume counterparts using the multiplicative Lellouch–Lüscher–Meyer (LLM) factor shown on 

the r.h.s. of Eq. (2.15).

As is evident from Eq. (2.15), determination of |Fπ (Ecm)| requires not only the finite-volume 

matrix element 
∣

∣〈0|V (d,�)|d�n〉
∣

∣ but also the derivative of δ1. This derivative is obtained from 

a parametrization of the phase shift points described above and covariances between all data are 

treated explicitly using the bootstrap procedure. Parametrization of δ1(Ecm) and |Fπ (Ecm)| is 

discussed in Sec. 3.

3. Results

We first present results for the elastic ππ scattering amplitude. As discussed in Sec. 2.4, 

if ℓ ≥ 3 contributions to Eq. (1.1) are neglected there is a one-to-one correspondence be-

tween finite-volume energies and K̃11(Ecm) defined in Eq. (2.14). This energy dependence is 

parametrized by a Breit–Wigner shape

K̃−1
11 (Ecm) =

(

m2
ρ

m2
π

− E2
cm

m2
π

)

6πEcm

g2
ρππmπ

(3.1)

involving two free parameters g2
ρππ and m2

ρ/m2
π . A correlated-χ2 fit of all points is performed 

according to the ‘determinant residual’ method of Ref. [35] with μ = 10, although without ℓ ≥ 3

contributions the K̃−1- and B-matrices are one-dimensional so that the determinant is trivial. 

Results for these fit parameters, which are both constrained to be positive, as well as the χ2 per 

degree of freedom, χ̂2 = χ2/Nd.o.f, are given in Table 4 for each of the ensembles employed 

here.

The influence of ℓ ≥ 3 partial waves is assessed by enlarging the determinant condition 

of Eq. (1.1) to include the ℓ = 3 contributions noted in Table 3. For this fit the f -wave is 

parametrized by an unconstrained constant K̃−1
33 (Ecm) = −(m7

πa3)
−1 yielding results which are 

also shown in Table 4. We see therefore that there is little dependence on including ℓ ≥ 3.
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Fig. 2. Top row: Comparison of K̃−1
11

(Ecm) (left) and δ1(Ecm) (right) between the C101 and D101 ensembles, which 

have the same parameters but different physical volumes. Bottom row: The same comparison for the N200 and N401

ensembles (white and gray markers respectively), which have (approximately) the same quark masses but different lattice 

spacings.

Interested readers may perform further fits using App. A, where energies and phase shift 

points for all ensembles (neglecting ℓ ≥ 3) are tabulated and plotted, or the Jupyter notebook 

described in Sec. 2.3 where bootstrap samples of all energy levels are available. However, it is 

worth comparing some of the ensembles in this data set here. An explicit check of finite vol-

ume effects using the C101 and D101 ensembles, which have the same parameters but different 

volumes, is shown in Fig. 2. That figure also shows a comparison between the N401 and N200 

ensembles, which have (approximately) the same quark masses but different lattice spacing. It 

is thus evident on these ensembles that both effects are not visible within our statistical errors. 

Finally, all results for mρ and gρππ in shown in Fig. 6, where they are converted to physical units 

using the scale determined in Ref. [90].

We turn now to results for the I = 1 timelike pion form factor, which are determined accord-

ing to Sec. 2.3. Results for the form factor from Eq. (2.15) are also tabulated in App. A. As 

discussed in Sec. 2.3, we employ a non-perturbative determination [99] of cV multiplying the 

dimension-five counter term in Eq. (2.10). Apart from the one from Ref. [99], there is the pre-

liminary determination of Ref. [101] which obtains values larger in magnitude using a different 

improvement condition. If cV is non-negligible, the relative magnitude of the leading order ma-

trix elements to this counterterm is of interest. Their ratio is shown in Fig. 3. Given its 5–15% 

size, a larger cV could indicate larger cutoff effects in the form factor than we observe using 

cV(g0) from Ref. [99], which is at the few-percent level.
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Fig. 3. Left: ratio of matrix elements for the O(a) counterterm over the leading matrix element for the D200 ensemble. 

Right: Thrice-subtracted dispersive fit to ln Q3(s) on the D200 ensemble. The central 68% of bootstrap samples (thinned 

out for clarity) are shown for each individual point, together with the best-fit line.

We now turn to parametrization of the form factor. Ref. [10] employs the Gounaris–Sakurai 

parametrization [105]

FGS
π (

√
s) = f0

q2
cmh(

√
s) − q2

ρh(mρ) + b(q2
cm − q2

ρ) − q3
cm√
s
i
, (3.2)

b = −h(mρ) − 24π

g2
ρππ

−
2q2

ρ

mρ

h′(mρ), f0 = −m2
π

π
− q2

ρh(mρ) − b
m2

ρ

4
,

h(
√

s) = 2

π

qcm√
s

ln

(√
s + 2qcm

2mπ

)

,

where the notation is from Ref. [106] and qρ is the center-of-mass momentum at the resonance 

energy. This parametrization depends only on mρ and gρππ , and therefore describes the form 

factor with no additional free parameters.

Additional parametrizations are suggested by unitarity constraints. In the elastic approxima-

tion, the form factor satisfies the n-subtracted dispersion relation

Fπ (s) =
n−1
∑

k=0

sk

k!
dk

dsk
Fπ (0) + sn

π

∞
∫

4m2
π

dz

zn

tan δ1(z)ReFπ (z)

z − s − iǫ
. (3.3)

This dispersion relation has the Omnès–Muskhelishvili solution [107,108] of

Fπ (s) = Qn(s) exp

⎧

⎪

⎨

⎪

⎩

sn

π

∞
∫

4m2
π

dz

zn

δ1(z)

z − s − iǫ

⎫

⎪

⎬

⎪

⎭

(3.4)

= Qn(s)�n[δ1](s), ln Qn(s) =
n−1
∑

k=1

pk sk,

where due to charge conservation the k = 0 term vanishes, and we have defined the Omnès func-

tion �n[δ1](s). The constants pk are fit parameters and proportional to logarithmic derivatives 
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Fig. 4. Form factor results shown with both the Gounaris–Sakurai (GS) parametrization and the thrice-subtracted disper-

sive fit on the J303 ensemble (left) and D200 ensemble (right).

Fig. 5. Left: The twice- and thrice-subtracted dispersive fits on the D200 ensemble. Right: Comparison of form factor with 

thrice-subtracted dispersive fits on both the N401 and N200 ensembles, which have similar quark masses and different 

lattice spacings.

of Fπ . Given the Breit–Wigner parametrization for the phase shift, the twice-subtracted disper-

sion relation (n = 2) has a single additional parameter (p1) and the thrice-subtracted (n = 3) 

two additional parameters, p1 and p2. These parameters appear in ln Qn(s), while �n[δ1](s)
depends only on the Breit–Wigner parametrization of δ1.

For these fits, we isolate ln Qn(s) by constructing ln(|Fπ |/�n[δ1]) and fit it to the appropriate 

polynomial. An example of a thrice-subtracted fit is shown in Fig. 3, while the twice- and thrice 

subtracted fits are compared in Fig. 5 for the D200 ensemble. Finally, the Gounaris–Sakurai 

parametrization is compared to the thrice-subtracted fit on the J303 and D200 ensembles in Fig. 4.

The results from these fits are compared in Table 5. The large χ̂2 is due to the significant 

correlation between the horizontal and vertical errors, which is visible in Fig. 3. Fits with four 

subtractions (n = 4) do not significantly reduce χ̂2. Results from the N401 and N200 ensembles, 

which have similar quark masses but different lattice spacings, are shown in Fig. 5 together with 

thrice-subtracted fits. Agreement between these two ensembles indicates that cutoff effects are 

also under control in the form factor.
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Table 5

Results from twice- and thrice-subtracted dispersive fits (see Eq. (3.4)) to the form factor on each ensemble with the three 

finest lattice spacings. The large χ̂2 is due to the significant correlations between Ecm and ln Qn .

ID Nlvl n = 2 n = 3

m2
πp1 χ̂2 m2

πp1 m4
πp2 χ̂2

N401 18 0.1372(13) 8.9 0.099(4) 0.0144(7) 5.5

N200 15 0.1405(18) 6.0 0.104(7) 0.0143(12) 3.6

D200 17 0.0738(17) 5.7 0.0674(16) 0.0034(2) 4.1

J303 18 0.1129(15) 2.7 0.101(4) 0.0075(6) 2.1

4. Conclusions

This work presents an Nf = 2 + 1 calculation of the I = 1 elastic p-wave ππ scattering phase 

shift and timelike pion form factor which addresses systematic errors due to the finite lattice 

spacing, mixing of higher partial waves, and residual (exponential) finite volume effects.

While we do not perform continuum and chiral extrapolations here, our data can be used 

for future such extrapolations. Chiral extrapolations of lattice scattering data using unitarized 

extensions of chiral effective theory [65,67–74] have been performed, although to date cutoff 

effects have not been considered. Nonetheless, it is evident in our data that cutoff effects in both 

the scattering amplitude (shown in Fig. 2) and the timelike pion form factor (Fig. 5) are small with 

respect to our statistical errors. The coarser lattice spacing in this comparison is a = 0.075 fm. 

Furthermore, for the scattering amplitude we also check explicitly (in Fig. 2) that finite volume 

effects are also insignificant at our coarsest lattice spacing. The two volumes used here have 

mπL = 4.6 and 6.1.

As discussed in Sec. 1, complete extrapolations of the energy dependence of amplitudes are 

left for future work. However as a necessary ingredient to determine the form factor, we use 

Breit–Wigner fits to model the energy dependence of δ1(Ecm). A summary of the fit results for 

the resonance mass and coupling are shown in Fig. 6. The CLS ensembles employed here adjust 

ms as ml is lowered to its physical value such that trMq = const. is fixed. This is to be contrasted 

with the more common strategy of fixing ms to its physical value for all ml such as the recent 

Nf = 2 +1 results in Ref. [7] which employs rooted staggered fermions. Compared with the more 

standard trajectory, it appears that the slope of mρ is somewhat flatter here. Although not shown 

in this work, recent summaries of existing results for the ρ-resonance parameters are found in 

Refs. [5,6].

In addition to future fits and extrapolations, our results for the timelike pion form factor 

can be used to extend the vector–vector correlator as described in Ref. [76] and implemented 

in Ref. [109] without reliance on experiment. This may significantly improve lattice determi-

nations of hadronic vacuum polarization contribution to anomalous magnetic moment of the 

muon, aHVP
μ .

Finally, the computational effort expended on the CLS lattices for this work can be largely 

re-used for other two-to-two amplitude calculations. First work in this direction for Nπ scattering 

has already appeared in Ref. [26]. The set of ensembles used here will also be augmented by 

several others at lighter quark masses, include one with L = 6.5 fm at the physical point, which 

is presented in Ref. [110].
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Fig. 6. The resonance mass mρ (left) in physical units and the coupling gρππ (right) from Breit–Wigner fits to the 

scattering amplitude on all ensembles.
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Appendix A. Finite volume energies and scattering amplitudes

In this appendix, we tabulate and plot the finite-volume energies, scattering amplitude, and 

timelike pion form factor for all ensembles in Table 1. The scattering amplitude and form fac-

tor tabulated here employ the truncation to ℓ ≤ 1. The C101, D101, N401, N200, D200, J303 

ensembles are tabulated in Tables 6, 7, 8, 9, 10, 11 and plotted in Figs. 7, 8, 9, 10, 11, 12, respec-

tively.
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Table 6

Results from the C101 ensemble.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1

0 T +
1u

0 3.148(23) 1.477(37) 2.99(40) 31.0(2.5)

1 3.564(33) 2.176(58) −3.34(42) 136.1(4.6)

1 A+
1

0 2.2864(61) 0.3069(70) 7.5(1.7) 1.29(24)

1 3.318(32) 1.752(53) 1.18(31) 63.0(5.0)

E+ 0 3.211(34) 1.578(54) 2.13(31) 43.0(2.7)

2 A+
1

0 2.4630(75) 0.5165(93) 6.4(1.0) 3.32(45)

1 3.426(37) 1.934(64) 0.40(24) 81.6(4.7)

2 3.821(26) 2.650(50) −5.6(1.3) 142.4(6.7)

B+
1

0 3.310(34) 1.739(57) 2.34(30) 44.4(2.5)

1 3.783(22) 2.579(42) −8.3(6.7) 153(28)

B+
2

0 2.692(12) 0.812(16) 5.59(80) 7.45(85)

1 3.409(40) 1.905(68) −0.39(20) 98.4(4.6)

3 A+
1

0 2.5980(100) 0.687(13) 6.08(99) 5.36(73)

1 2.999(14) 1.249(21) 2.5(1.3) 29(11)

2 3.476(46) 2.021(81) −1.12(16) 111.4(3.9)

E+ 0 2.922(18) 1.135(26) 5.51(76) 12.4(1.3)

1 3.570(56) 2.186(100) −1.81(25) 119.2(4.8)

4 A+
1

0 2.710(15) 0.836(21) 5.9(1.5) 7.4(1.5)

1 3.422(71) 1.93(12) −0.44(43) 99.3(9.7)

E+ 0 3.189(23) 1.542(37) 3.44(44) 29.1(2.5)

1 3.593(48) 2.228(87) −0.98(89) 106(15)

Fig. 7. K̃−1
11

(left) and phase shift (right) on the C101 ensemble, together with the Breit–Wigner fit.
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Table 7

Results from the D101 ensemble.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1

0 T +
1u

0 2.7894(88) 0.945(12) 4.23(43) 12.3(1.0)

1 3.236(22) 1.617(35) 1.16(27) 60.6(5.0)

2 3.646(30) 2.324(55) −4.41(80) 141.2(5.8)

1 A+
1

0 2.1880(38) 0.1968(42) 4.6(1.6) 1.09(30)

1 2.9555(99) 1.184(15) 4.42(47) 16.2(1.5)

2 3.324(20) 1.761(34) 1.13(24) 64.1(4.1)

3 3.564(24) 2.175(42) −6.3(7.3) 153(31)

4 3.674(20) 2.374(36) −4.04(83) 137.8(6.3)

E+ 0 2.912(12) 1.121(17) 4.32(47) 15.4(1.3)

1 3.358(18) 1.820(31) 0.22(18) 84.9(4.2)

2 3.740(26) 2.496(49) −5.76(94) 145.6(5.0)

2 A+
1

0 2.3229(49) 0.3490(57) 4.7(1.2) 2.49(55)

1 3.068(11) 1.353(17) 2.89(32) 28.5(2.4)

2 3.297(19) 1.717(32) 0.15(19) 86.2(4.8)

3 3.693(16) 2.409(29) −2.6(1.2) 125(13)

4 3.750(22) 2.515(41) −9.0(4.2) 156.0(8.7)

B+
1

0 2.988(13) 1.233(19) 3.55(30) 21.1(1.2)

1 3.149(11) 1.479(18) 1.2(3.6) 56(60)

2 3.535(30) 2.124(54) −2.19(21) 125.2(3.5)

B+
2

0 2.4392(51) 0.4875(62) 6.82(97) 2.86(37)

1 3.114(11) 1.424(18) 2.73(24) 31.9(2.0)

2 3.346(20) 1.798(33) −0.03(20) 90.8(4.8)

3 3.620(15) 2.276(27) −13(12) 165(14)

4 3.779(24) 2.569(45) −12.2(4.3) 161.4(6.1)

3 A+
1

0 2.4411(78) 0.4897(95) 9.3(5.9) 2.1(1.1)

1 2.6267(67) 0.7250(88) 4.2(2.5) 8.4(4.2)

2 3.281(24) 1.692(40) 1.00(16) 65.6(2.7)

3 3.742(19) 2.501(35) −9.7(4.5) 157.9(9.6)

4 3.878(22) 2.760(44) −9.0(5.8) 152.9(5.6)

5 3.938(28) 2.876(55) −9.4(1.5) 152.6(4.3)

E+ 0 2.6031(68) 0.6940(89) 6.04(69) 5.47(55)

1 3.369(21) 1.838(36) 1.16(15) 65.1(2.3)

2 3.697(16) 2.417(30) −9(12) 157(42)

3 3.862(16) 2.728(31) 2(10) 69(65)

4 A+
1

0 2.494(15) 0.555(18) 2.14(70) 11.0(2.9)

1 3.171(13) 1.514(21) 2.34(18) 38.5(1.7)

2 3.566(20) 2.178(35) −1.62(23) 116.7(3.6)

3 3.959(19) 2.919(38) −8.0(1.9) 148.2(6.5)

E+ 0 2.7979(94) 0.957(13) 4.39(68) 12.0(1.6)

1 3.222(13) 1.595(21) 3.27(30) 31.6(2.0)

2 3.406(16) 1.900(28) −0.6(1.1) 102(22)

3 3.638(19) 2.309(34) −2.47(28) 125.2(3.4)

4 3.980(21) 2.959(43) −9.9(2.0) 152.9(5.0)
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Fig. 8. Same as Fig. 7 for the D101 ensemble. One state in each of the A+
1

(3) and B+
2

(2) irreps which have very large 

errors have been removed from the plot.

Table 8

Results from the N401 ensemble. The form factor is omitted for a single level in the �(d2) = A+
1

(4) irrep for which a 

plateau could not be identified.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1 |Fπ |

0 T +
1u

0 2.714(22) 0.841(30) 0.281(64) 70.0(3.3) 17.05(69)

1 3.205(13) 1.568(21) −5.18(57) 159.2(2.4) 3.518(53)

1 A+
1

0 2.2248(24) 0.2375(27) 2.89(19) 2.29(12) 3.019(29)

1 2.798(22) 0.957(31) −0.481(39) 117.2(2.9) 12.42(77)

E+ 0 2.775(20) 0.925(28) 0.269(48) 73.2(2.2) 13.92(99)

2 A+
1

0 2.3597(55) 0.3920(65) 1.98(18) 7.05(47) 4.257(53)

1 2.836(23) 1.010(33) −0.958(48) 133.3(2.9) 10.38(60)

B+
1

0 2.748(21) 0.888(28) 0.094(38) 83.6(2.3) 15.8(1.1)

B+
2

0 2.509(11) 0.574(14) 1.55(22) 15.7(1.6) 6.49(15)

1 2.907(22) 1.113(33) −1.316(79) 138.2(2.8) 8.26(30)

3 A+
1

0 2.4699(91) 0.525(11) 1.87(23) 11.5(1.0) 6.07(12)

1 2.806(15) 0.969(20) −0.01(72) 90(36) 19.8(3.3)

2 2.950(34) 1.176(51) −2.03(29) 147.8(5.2) 6.32(60)

E+ 0 2.627(31) 0.725(41) 0.96(26) 32.7(4.6) 11.26(98)

1 3.041(33) 1.313(50) −2.99(38) 153.3(4.1) 5.78(21)

4 A+
1

0 2.582(26) 0.666(34) 2.25(91) 13.6(3.8) 12.3(1.0)

1 2.834(23) 1.008(32) −2.40(27) 157.1(3.2) –

E+ 0 2.722(39) 0.853(53) 0.23(11) 73.5(6.0) 16.5(1.4)

1 3.194(16) 1.550(26) −4.24(81) 155.5(4.5) 4.360(92)
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Fig. 9. Top row: Same as Fig. 7 for the N401 ensemble. Bottom row: the timelike pion form factor (left) and the ratio 

employed in the thrice-subtracted subtracted dispersive fit (right), which is also shown.

Table 9

Results from the N200 ensemble.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1 |Fπ |

0 T +
1u

0 2.749(27) 0.889(37) −0.077(41) 95.3(3.1) 15.3(1.1)

1 A+
1

0 2.2654(24) 0.2830(27) 2.78(10) 3.104(68) 3.308(36)

1 2.874(22) 1.065(32) −1.176(36) 136.9(2.1) 8.88(42)

E+ 0 2.756(35) 0.898(48) −0.179(40) 101.8(3.5) 16.1(1.5)

2 A+
1

0 2.4215(66) 0.4659(80) 2.22(16) 8.14(36) 4.94(12)

1 2.913(29) 1.121(43) −2.059(96) 150.0(2.6) 7.04(48)

B+
1

0 2.676(51) 0.791(68) −0.311(32) 113.9(4.8) 16.7(1.5)

B+
2

0 2.613(10) 0.707(14) 1.20(10) 26.4(1.3) 10.87(47)

1 3.089(24) 1.385(37) −2.99(22) 151.4(2.6) 4.67(16)

3 A+
1

0 2.482(18) 0.540(22) 1.26(17) 17.5(1.2) 7.29(21)

1 2.959(39) 1.189(58) −2.51(52) 152.7(6.8) 5.85(45)

2 3.176(20) 1.522(32) −5.2(1.4) 160.3(5.0) 3.60(51)

E+ 0 2.56(11) 0.63(13) 0.14(21) 74(16) 12.4(1.7)

4 A+
1

0 2.582(69) 0.667(89) 1.22(66) 24.0(6.4) 10.0(1.9)

E+ 0 2.778(96) 0.93(13) −0.10(15) 96(11) 14.8(3.6)
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Fig. 10. Same as Fig. 9 for the N200 ensemble.

Table 10

Results from the D200 ensemble.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1 |Fπ |

0 T +
1u

0 3.444(22) 1.965(38) 6.39(86) 23.3(2.3) 4.655(98)

1 3.980(75) 2.96(15) −2.5(1.3) 116(13) 7.55(37)

1 A+
1

0 2.3385(45) 0.3672(53) 10.1(1.3) 1.26(14) 1.656(16)

1 3.633(30) 2.300(55) 2.53(60) 54.1(5.4) 6.81(22)

E+ 0 3.548(32) 2.147(57) 4.64(68) 34.1(2.8) 5.81(18)

2 A+
1

0 2.5386(65) 0.6111(83) 9.0(1.2) 3.02(33) 1.908(18)

1 3.748(40) 2.512(75) 1.05(47) 75.3(5.6) 7.77(27)

B+
1

0 3.637(26) 2.308(48) 4.32(41) 39.1(1.9) 6.81(21)

B+
2

0 2.851(11) 1.033(16) 8.5(1.3) 7.06(94) 2.369(31)

1 3.794(43) 2.598(81) 0.36(43) 85.1(5.6) 8.50(19)

3 A+
1

0 2.701(11) 0.824(14) 11.2(2.5) 3.83(74) 2.056(21)

1 3.213(15) 1.580(24) 4.6(4.0) 23(16) 4.12(67)

2 3.886(91) 2.78(18) −0.83(52) 100.2(7.1) 8.79(38)

E+ 0 3.128(19) 1.446(29) 8.7(1.6) 11.4(1.7) 3.137(40)

1 3.983(84) 2.97(17) −1.79(62) 109.3(7.6) 8.13(64)

4 A+
1

0 2.839(19) 1.015(27) 14.1(6.5) 4.2(1.5) 2.354(27)

E+ 0 3.499(37) 2.061(64) 8.4(3.2) 19.3(5.4) 4.94(16)
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Fig. 11. Same as Fig. 9 for the D200 ensemble.

Table 11

Results from the J303 ensemble.

d2 irrep. level Ecm/mπ (pcm/mπ )2 (pcm/mπ )3 cot δ1 δ1 |Fπ |
0 T +

1u
0 3.044(28) 1.317(42) 0.50(11) 71.6(3.0) 11.36(30)

1 A+
1

0 2.3048(48) 0.3280(55) 4.32(36) 2.49(15) 2.460(25)

1 3.211(29) 1.578(47) −0.802(87) 112.0(3.0) 9.12(41)

E+ 0 3.082(43) 1.374(66) 0.32(14) 78.6(4.0) 11.51(46)

2 A+
1

0 2.4890(79) 0.5488(98) 3.95(40) 5.87(43) 3.291(40)

1 3.236(48) 1.617(77) −1.70(13) 129.6(4.2) 8.10(67)

B+
1

0 3.001(64) 1.251(96) −0.05(13) 91.9(5.4) 11.63(64)

B+
2

0 2.755(27) 0.898(38) 2.66(65) 17.7(3.0) 5.55(12)

1 3.199(83) 1.56(13) −3.48(83) 150.8(8.5) 7.9(1.2)

3 A+
1

0 2.599(19) 0.688(25) 2.90(51) 11.1(1.3) 4.197(67)

1 3.165(36) 1.505(57) −0.7(1.6) 109(40) 10.0(2.8)

2 3.30(11) 1.71(18) −5.6(3.1) 158(30) 7.5(4.1)

E+ 0 2.936(28) 1.155(42) 1.92(34) 32.9(3.3) 9.12(41)

1 3.550(61) 2.15(11) −5.22(85) 148.9(5.8) 3.89(18)

4 A+
1

0 2.694(30) 0.814(41) 2.48(59) 16.5(2.5) 5.02(12)

1 3.281(73) 1.69(12) −2.95(46) 143.3(7.1) 7.03(78)

E+ 0 3.049(64) 1.324(98) 0.37(24) 76.3(6.9) 11.94(54)

1 3.645(46) 2.321(83) −27(38) 173(84) 2.598(91)
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Fig. 12. Same as Fig. 9 for the J303 ensemble.
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