T Available online at www.sciencedirect.com
opeter ScienceDirect nucLearl =)
E— PHYSICS

ELSEVIER Nuclear Physics B 939 (2019) 145-173
www.elsevier.com/locate/nuclphysb

The I = 1 pion—pion scattering amplitude and timelike
pion form factor from Ny =2 + 1 lattice QCD

Christian Andersen “, John Bulava **, Ben Horz ", Colin Morningstar ©

& CP3-Origins, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
b PRISMA Cluster of Excellence and Institut fiir Kernphysik, University of Mainz, Johann-Joachim-Becher-Weg 45,
55099 Mainz, Germany
¢ Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Received 16 August 2018; received in revised form 31 October 2018; accepted 16 December 2018

Available online 19 December 2018
Editor: Hong-Jian He

Abstract

The elastic I =1 p-wave mw scattering amplitude is calculated together with the isovector timelike pion
form factor using lattice QCD with Ny =2 + 1 dynamical quark flavors. Wilson clover ensembles gener-
ated by the Coordinated Lattice Simulations (CLS) initiative are employed at four lattice spacings down to
a = 0.05fm, several pion masses down to m; = 200MeV, and spatial volumes of extent L = 3.1-5.5 fm.
The set of measurements on these ensembles, which is publicly available, enables an investigation of sys-
tematic errors due to the finite lattice spacing and spatial volume. The w7 scattering amplitude is fit on
each ensemble by a Breit—Wigner resonance lineshape, while the form factor is described better by a thrice-
subtracted dispersion relation than the Gounaris—Sakurai parametrization.
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1. Introduction

Lattice QCD calculations of resonant two-hadron scattering amplitudes have improved
markedly in recent years thanks to algorithmic advances [1,2] and increased computing re-
sources.! Many calculations of the elastic 777 amplitude in the vicinity of the p(770) exhibit suf-
ficient statistical precision and energy resolution to determine the resonance parameters [5—15],
while a few K7 calculations similarly map out the K*(892) [16-19]. First coupled channel re-
sults have also appeared in Refs. [18,20-23] for the a¢(980), fo(980), and D;‘O(23 17) resonances.
Resonant meson—meson amplitudes involving an external current have also been calculated in
Refs. [10,24,25]. Compared to the meson—meson sector, calculations of resonant meson—baryon
amplitudes are currently less advanced [26-28]. A recent review of lattice calculations of scat-
tering amplitudes can be found in Ref. [29].

The improvement in these calculations suggests that the quark-mass dependence of such
amplitudes may be investigated quantitatively, providing valuable input to effective theories of
low-lying hadron resonances as well as numbers at the physical point relevant for experiment.
In order to obtain reliable results however, various systematic errors must be controlled. These
include effects due to the finite lattice spacing and spatial volume inherent in lattice QCD simu-
lations, as well as systematics in the calculation of finite-volume two-hadron energies and matrix
elements from which the amplitudes are determined.

While lattice spacing effects are assessed in the usual way, the treatment of finite volume
effects is more subtle. Since real-time scattering amplitudes cannot be naively calculated from
Euclidean-time lattice QCD simulations [30], the method proposed by Liischer [31] is employed
to infer two-to-two hadron scattering amplitudes from shifts of finite-volume two-hadron en-
ergies from their non-interacting values. This approach has been generalized to non-zero total
momenta [32,33], non-zero spin [34-39], multiple coupled scattering channels [37,40,41], and
amplitudes with an external current [42—47]. Extending this approach above three-hadron thresh-
olds has proven difficult and been applied to Monte Carlo lattice data only in a toy scalar field
theory [48]. It is, however, under active development [49—60]. Recently-proposed alternatives to
this finite-volume formalism for total decay rates can be found in Refs. [61,62].

The relation discussed above between finite-volume energy shifts and real-time two-to-two
scattering amplitudes can be written as [35]

det[K 1 (Eem) — BYD (Ecm)1 =0 (1.1)

where E.p, is the finite-volume two-hadron energy in the center-of-mass frame, K is proportional
to the infinite-volume K -matrix, and B is a known matrix encoding the effect of the finite vol-
ume. This determinant is block diagonalized so that Eq. (1.1) describes finite-volume energies
in a single irreducible representation (irrep) A of the little group for a particular class of total
momenta d = (L/27) P, where d is a vector of integers. The determinant is taken over total
angular momentum (J), total spin (), all coupled two-hadron scattering channels, and an index
enumerating the possibly multiple occurrences of a partial wave in irrep A.

The determinant condition in Eq. (1.1) holds up to corrections which are exponentially sup-
pressed in the spatial extent L. However, unlike finite volume corrections to single-hadron
observables, the fall-off of these residual exponential finite volume effects may in principle be

1 For recent reviews of the interplay between lattice QCD calculations and current computer architectures, see Refs. [3,
4].
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different than m . The ‘rule of thumb’ m, L 2 4 which is usually applied in single-hadron cal-
culations to ensure that finite-volume effects are at the percent level must be re-investigated in
the context of scattering amplitudes. There exists therefore a hierarchy of finite volume effects:
those described by Eq. (1.1) are polynomial in L~! (and constitute the ‘signal’) while Eq. (1.1)
holds only up to (unwanted) terms exponential in L.

As a benchmark amplitude suitable for an investigation of these systematic effects, we con-
sider here the elastic / = 1 p-wave pion—pion scattering amplitude relevant for the p(770).
In order to extrapolate to the physical point and continuum, a range of pion masses m,; =
200-280MeV and lattice spacings a = 0.050-0.086 fm are employed. Such extrapolations have
been performed recently using chiral perturbation theory and its extensions [63—74] and treat all
scattering data simultaneously. As these extrapolations are somewhat involved and have not yet
treated cutoff effects, we present the determination of the amplitudes only in this work and leave
extrapolation to the physical quark masses and continuum for the future. Nonetheless, in our re-
sults the residual finite volume and cutoff effects are evidently small compared to the statistical
errors.

We calculate scattering amplitudes over an energy range Ecny € [2my, Emax]. Since Eq. (1.1)
applies below n > 2 hadron thresholds, Ep,x is reduced as m is lowered. Because of the chi-
ral trajectory employed in this work (which is discussed in Sec. 2.1), for the heaviest quark
masses the lowest inelastic threshold is K K, while the lowest n > 2 hadron threshold is 47.
Although levels in the range 2mg < Ec¢y < 4my, could be treated using Eq. (1.1) with a
coupled-channel K-matrix, we nonetheless impose a restriction to elastic scattering, namely
Erax = min(dmy, 2myg).

In addition to this w scattering amplitude, we also calculate the / = 1 timelike pion form
factor, which encodes the coupling of an external (timelike) photon to two pions in an isovec-
tor configuration. Phenomenologically, it can be extracted from eTe~ — hadrons and hadronic
t-decays [75] and is of particular relevance for the hadronic vacuum polarization (HVP),
a leading source of theoretical uncertainty in the anomalous magnetic moment of the muon
(g —2),. [76,77]. Using the optical theorem, the imaginary part of the HVP can be related to

4 2
Rhad(s) =o(ee™ — hadrons)/nagim(s), (1.2)
S

where o (ete™ — hadrons) is the total cross section, cey the electromagnetic coupling, and
s = ECZm the usual Mandelstam variable. In the elastic region Rp,q is given by the two-pion
contribution

1 4m721 : 5
Rhaa(s) = (1 - ) | Fr ($)1°, (1.3)
4 s
which contains the timelike pion form factor F (s). The phase of this form factor is fixed by
Watson’s theorem, so we are interested in the amplitude only here. Furthermore, we work in the
isospin limit, where electromagnetic interactions are ignored and m, = mq. Because of this, the
elastic region persists up to either s = 41712K ors = 16m%.

Although a precise determination of this form factor is phenomenologically desirable, there
exists only the pioneering determination of Ref. [10] which employs a single lattice spacing,
heavier quark masses, and a (single) smaller physical volume than this work. It is therefore
imperative to also investigate lattice spacing and finite volume effects for this quantity, the former
of which may be affected by renormalization and O(a)-improvement of the electromagnetic
current.
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In addition to its phenomenological impact, the timelike pion form factor is an important step-
ping stone toward more complicated resonance photoproduction amplitudes. Such amplitudes are
relevant for ongoing and future experiments which photoproduce resonances. An additional step
in this direction is the my — 7w amplitude studied using lattice QCD in Refs. [24,25]. However,
the timelike pion form factor calculated here does not require disconnected flavor-singlet Wick
contractions, which are ignored in Refs. [24,25].

Preliminary work toward the results reported here is found in Ref. [78]. The remainder of
this paper is organized as follows. For completeness we review the gauge field ensembles, meth-
ods for calculating finite-volume two-pion energies and matrix elements, and their relation to
infinite-volume scattering amplitudes in Sec. 2. Results are given in Sec. 3 and conclusions in
Sec. 4.

2. Lattice QCD methods

The subset of CLS ensembles used in this work is discussed in Sec. 2.1 and application of
the stochastic LapH method for all-to-all quark propagation in Sec. 2.2. The analysis strategy
used to extract the required finite volume energies and matrix elements from temporal correla-
tion functions is contained in Sec. 2.3, while the relation between finite-volume quantities and
infinite-volume scattering amplitudes is given in Sec. 2.4.

2.1. Gauge field ensembles

The ensembles of gauge field configurations employed here are from the Coordinated Lat-
tice Simulations (CLS) initiative and are presented in Refs. [79,80]. They employ the tree-
level improved Liischer—Weisz gauge action [81] and non-perturbatively O(a)-improved Wilson
fermions [82]. Open boundary conditions [83] are implemented in the temporal direction. Al-
though these boundary conditions were adopted to reduce autocorrelation times of the global
topological charge, they also influence finite-temporal-extent effects in temporal correlation
functions.

Contributions to two-hadron correlation functions where the hadrons propagate in opposite
temporal directions, which for identical particles and zero total momentum yield a constant in
time [84-87], are present with periodic boundary conditions but absent in this setup. Therefore,
for large temporal extent 7 and if both interpolators are far from the boundaries, all two-point
correlation functions with open temporal boundary conditions have the form

lim  Crio, 1) = Cli—10) x {1+ 0@ 0t |, Q.1
T— 00

to, (T —tf)— 00

where Cr (19, tr) = (O(t1)O(to)) 1 is the correlator with open boundaries of extent 7, C(t) =
(O()O(0)) the correlator in the T — oo limit, Eg the lightest state with vacuum quantum
numbers and fppg = min(tp, T — #r) the minimal distance from an interpolator to the tempo-
ral boundaries. Since presumably Eg & 2my, if mytypg 2 2 then the exponential corrections in
Eq. (2.1) are parametrically similar to exponentially suppressed finite-volume effects in single-
hadron energies.

While correlation functions are affected by temporal boundary conditions, the transfer matrix
(and therefore also the spectrum) is unaffected. Although having an interpolating operator near a
temporal boundary does not change its quantum numbers, we are after excited states and employ
generalized eigenvalue methods requiring hermitian correlation matrices. The source and sink
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Fig. 1. Left: R(5a) from Eq. (2.2) for all (%0, %0) pairs on ensembles where multiple source times are employed. Right:
tmin-plot from single-exponential fits (which ignore boundary effects) to the zero-momentum single-pion correlator over
the range [fmin, fmax] for each ¢ individually on the D200 ensemble. The pion mass extracted from the #y-averaged
correlator is shown by the error band.

interpolators therefore must not be significantly affected by the temporal boundaries in order
to maintain hermiticity. To this end, we always choose a minimum distance to the boundary
(tona) Of at least mytyng = 2. As in Ref. [6], our resulting insensitivity to finite-7 effects can
be demonstrated using the single-pion correlation function. Fitting this correlation function to
a single exponential ignores contributions from the temporal boundaries. Fits of this type on a
single ensemble are shown in Fig. 1, where the fitted energy is shown to be insensitive to the
source interpolator position #y. Insensitivity to ¢y in our most precisely determined correlation
function suggests that temporal boundary effects may be neglected in subsequent fits.
Another measure of finite-7 effects is the ratio

Ry (1) = Crlto. 1 4 10) 22)
Crit t+1)

which under the asymptotic assumptions of Eq. (2.1) receives corrections to unity of O(e~Eoonay,
R(5a) is also shown in Fig. | for various (7, t(’)) pairs on all ensembles with multiple source
times. This ratio shows significant deviations from unity for m fyng < 3, despite no observable
difference in the fitted energies. While the deviation of R, “ (t) from unity in the single-pion
correlator suggests that averaging over source times may affect the hermiticity of correlation
matrices, such deviations are not visible in two-pion correlation functions. For the D200 ensem-
ble the ratio with (t/a, 1j/a) = (32, 52), shown for the pion in Fig. 1 left panel as the left-most
point, is consistent with unity for the single-p meson correlator at rest and the two-pion correlator
(each with a single unit of momentum) in the same channel.

While we omit a complete discussion of algorithmic details used in configuration generation,
some aspects are relevant for the analysis of correlation functions measured on these ensembles.
The CLS ensembles employ twisted-mass reweighting [88] for the degenerate light quark doublet
and use the RHMC algorithm [89] for the strange quark determinant. One reweighting factor
(Wp) is used to change the light quark action to clover Wilson, while another (W) corrects for the
RHMC approximation. Efficient evaluation of these reweighting factors is discussed in Ref. [79].
Measurements of primary observables must be multiplied by the corresponding re-weighting
factors on each configuration according to

(AW)w

Ay = —— 2.3
(4) Whw (2.3)
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Table 1

Parameters of the CLS ensembles used in this work. The timelike pion form factor is not determined on the coarsest
lattice spacing. After the ensemble ID in the first column, we list the gauge coupling, lattice spacing and dimensions,
pseudoscalar meson masses, the separation between correlation function measurements in molecular dynamics units
(MDU), the number of such measurements, and the minimum distance from an interpolator to a temporal boundary.

ID B a[fm] L3 xT my, mg [MeV] Tmeas [MDU] Neonf My thnd
C101 3.4 0.086 483 x 96 220, 470 8 300 25
D101 643 x 128 8 303 23
N401 3.46 0.076 483 x 128 280, 460 16 274 35
N200 3.55 0.064 483 x 128 280, 460 8 854 3.0
D200 643 x 128 200, 480 8 558 2.1
1303 3.7 0.050 643 x 192 260, 470 16 328 3.1

where W = Wy W and (...)w denotes an ensemble average with respect to the simulated action.
The denominator of Eq. (2.3) must also be taken into account in any resampling procedure used
to estimate statistical errors or covariances. If both the twisted mass parameter and the range
and degree of the rational approximation are chosen appropriately, these reweighting factors are
typically close to unity. However, we observe anomalously large fluctuations in the reweighted
zero-momentum single-pion correlator for a single source time on each of the C101 and D101
ensembles. These ensembles have the lightest quark mass at the coarsest lattice spacing and large
fluctuations may indicate an inefficient choice of the simulated action. Data on these two source
times are removed from the final analysis and are not included in Table 1.

There are several possibilities for the trajectory of mg as mj = m, = mq is lowered toward its
physical value. Quark masses on the CLS ensembles employed here are tuned to lie on a chiral
trajectory with tr My = const., where M is the bare quark mass matrix My = diag(my, mq, ms),
in order to reduce the quark mass dependence of certain renormalized quantities. An additional
chiral trajectory in which ms = const. is presented in Ref. [80]. While it is interesting to investi-
gate the quark-mass dependence of scattering amplitudes on both chiral trajectories, we present
results on the tr My = const. trajectory only.

As discussed in Ref. [90], fixing the trace of the bare mass matrix is not equivalent to fixing
the sum of renormalized quark masses. There a Taylor expansion is employed to slightly shift
the quark masses in order to satisfy ¢4 = 819 (m2K + %m%) = const., which is not performed here.
At the coarsest lattice spacing, imposing tr My = const. results in deviations of less than 5% of
tr MR /(tr MR)Y™™ (where the trace in the denominator is evaluated at the symmetric point m, =
mq = mg) from unity at the lightest pion masses considered in Ref. [90]. This small deviation
from our desired chiral trajectory presumably has little effect on the observables considered here.

Properties of the CLS ensembles used in this work are given in Table 1, which also con-
tains Tmeas, the separation in molecular dynamics units (MDU) between our measurements of
hadronic correlation functions, and #,,4, the minimum distance from an interpolator to a tem-
poral boundary. The timelike pion form factor is not determined on the coarsest lattice spacing.
A more precise scale determination can be found in Tab. 3 of Ref. [90], while pseudoscalar meson
masses and decay constants can be found in Tab. 2 of that work.

As discussed above, open temporal boundary conditions are employed to decrease the inte-
grated autocorrelation time of the global topological charge. However, there is still a significant
amount of autocorrelation present in some observables on the CLS ensembles. A method to esti-
mate statistical errors in the presence of large autocorrelations is outlined in Refs. [91,92]. This
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involves propagating the errors linearly, a method which may not be suitable for our purposes
given the non-linear nature of the B-matrix elements given in Eq. (1.1) and discussed further in
Sec. 2.3. Therefore, we simply ‘bin’ our correlator measurements and employ the bootstrap pro-
cedure with Np = 800 bootstrap samples. Although no statistically significant autocorrelations
are observed in any of our correlation functions, the largest integrated autocorrelation times (Tin¢)
measured on these ensembles span the range tjp = 30—150 for 8 = 3.4-3.7, respectively [79].

2.2. Correlation function construction

Since we employ two-pion interpolators in which each pion is projected to definite momen-
tum, quark propagators between all space—time points are required. We employ the stochastic
LapH method to estimate such all-to-all propagators and efficiently construct correlation func-
tions [2]. Based on Ref. [1], this method endeavors to make all-to-all propagators tractable by
considering quark propagation between a low-dimensional subspace defined by the lowest Ny,
modes of the three-dimensional gauge-covariant Laplace operator, hereafter referred to as the
‘LapH subspace’. This projection is a form of quark smearing, with an approximately Gaussian
spatial profile and width controlled by the Ngy-th eigenvalue. In order to maintain a constant
width, Ney must be scaled proportionally to the spatial volume.

This smearing procedure enables more efficient stochastic estimation schemes by employing
noisy combinations of Laplacian eigenvectors. It was determined in Ref. [2] that (at least for
the range of spatial volumes considered there) with a moderate level of dilution the quality of
the stochastic estimator remains constant as the volume is increased while maintaining a fixed
number of dilution projectors. This work further demonstrates that the quality of the stochastic
LapH estimator does not degrade for even larger volumes. Without significantly increasing the
number of dilution projectors, we obtain precise results for scattering amplitudes with stochastic
LapH on spatial volumes up to V = (5.5 fm)?.

In the stochastic LapH framework, NR stochastic sources {p,} are introduced in time, spin, and
Laplacian eigenvector indices. These sources are diluted by specifying Ng;j complete orthogonal
dilution projectors {Pp} so that an unbiased estimator of the smeared-smeared all-to-all quark
propagator is furnished by

NRr Nil

1
Q) ~ 5= 3> e o)), 2.4)

r=1 b=1

where g, = Vi Pp p; is the smeared stochastic source, ¢, =S Q 0,5 the smeared sink, Q the
quark propagator, and S = Vg VST the smearing operator which projects onto the LapH subspace.
To date, only schemes where dilution in each of these indices is done independently have been
employed. A common strategy is to interlace n dilution projectors uniformly (denoted In) in the
index in question. The ‘full’ dilution limit (denoted ‘F’) is recovered if n is equal to the total
dimension of the index. Full specification of a dilution scheme therefore specifies a prescription
in each of time, spin, and Laplacian eigenvector space. For example (TF, SF, LI8) refers to full
dilution in time and spin, and eight dilution projectors interlaced uniformly among the Laplacian
eigenvectors.

As discussed in Ref. [2], it is typically beneficial to employ different dilution schemes for
‘fixed’ quark propagators (denoted by the subscript ‘F’), where xo # yo and ‘relative’ quark
propagators (denoted ‘R’) where xo = yo. We therefore employ either full or interlace dilution in
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Table 2

Parameters of the stochastic LapH implementation used in this work. (o, n,) are the stout link smearing parameters, Ney
the number of Laplacian eigenvectors, NR the number of independent noise sources, Ny, the number of source times for
fixed quark lines, and Np the total number of light quark Dirac matrix inversions per gauge configuration. Notation for
the dilution scheme is explained in the text.

D (P 1p) Nev dilution Niix NE! Ny Np
C101 (0.1, 20) 392 (TF, SF, LI16)g (TI8, SF, LI16) 6 2 1 1408
D101 928 (TF, SF, LI16)F (TI8, SF, LI16)g 6 2 2 1792
N401 (0.1,25) 320 (TF, SF, LI16)F (TI8, SF, LI16)g 5 2 2 1664
N200 (0.1, 36) 192 (TF, SF, LI8)g (TI8, SF, LI8)g 5 2 2 832
D200 448 (TF, SF, LI8)p (TI8, SF, LIS)g 5 2 2 832
1303 (0.1, 60) 208 (TF, SF, LI8)E (TI16, SF, LIS)g 5 2 3 1504

time, full dilution in spin, and interlace dilution in eigenvector space. The dilution scheme and
other parameters of the stochastic LapH algorithm employed here are given in Table 2.

Table 2 also contains information on the LapH subspace and thus the smearing operator S
applied to quark fields in our interpolating operators. Before calculating eigenvectors, the gauge
link field entering the covariant 3-D Laplace operator is stout smeared [93]. The stout smear-
ing parameters (o, n,) together with the number of retained eigenvectors Ney therefore define
our smearing scheme. We maintain an approximately constant physical link-smearing radius
(link/a)* = pn p by tuning n, appropriately. The quark smearing procedure is defined by re-
taining all eigenvectors with eigenvalue A < (aos)?, where o5 = 1 GeV. As the physical volume
(V) is increased the number of eigenvectors must be scaled as Ney &< V. The stout smearing
parameters and N, are given in Table 2.

We employ interpolating operators with light quarks only, since we calculate elastic pion—pion
scattering amplitudes. The number of required light quark Dirac matrix inversions per configu-
ration, denoted Np, is also given in Table 2. Our treatment of all-to-all propagators enables us
to efficiently evaluate all required Wick contractions involving two-pion and single- p interpola-
tors, which are enumerated in Ref. [2]. An unbiased estimator results only if each quark line in a
diagram employs independent stochastic sources. As discussed in Ref. [94], in each diagram we
typically average over some number of multiple noise ‘orderings’, i.e. different permutations of
the NRr available quark lines.

The correlation functions used in pion—pion scattering require smeared quark fields only.
However, correlation functions for the timelike pion form factor contain the unsmeared vector
current operator. These current correlation functions are easily constructed in the stochastic LapH
framework although they employ quark fields which are not projected onto the LapH subspace.

As done in Ref. [95], by exploiting ys-hermiticity it can be ensured that quark fields in the
vector current bilinear are always unsmeared sinks ¢,, = Q 0,5. This motivates the construction
of ‘current sinks’ defined as

J&D 0 =3¢l TN &, y) g (7). 2.5)
X,y

where 1 = xo = yo and @) denotes projection onto an irreducible representation (irrep) A of
the little group of total momentum d. J @™ (r) has two noise/dilution indices and can therefore
be employed in the correlation function construction procedure of Ref. [2] exactly as a smeared
p-meson interpolator.
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As suggested by Eq. (2.4), in order to save disk space the quark sinks are typically pro-
jected onto the LapH subspace before they are written to disk. However, the current functions
of Eq. (2.5) must be constructed from unprojected sinks. For fixed quark lines the {¢,;,} must
be kept in memory until calculation of J @) (r) is complete. After construction of the current
functions, the quark sinks are smeared and written to disk in the usual way.

The calculation of the Laplacian eigenvectors is performed using a variant of the thick
restarted Lanczos method [96], which entails global re-orthogonalizations of the Krylov sub-
space. These re-orthogonalizations scale poorly with N.y, so that as L is increased calculation
of the Laplacian eigenvectors will eventually dominate the computational cost. However, for the
L < 5.5fm volumes considered here the Dirac matrix inversions are still most computationally
intensive.

We perform these Dirac matrix inversions using the efficient DFL_SAP_GCR solver in the
openQCD software suite.” In summation, our workflow consists of three main tasks: (1) Dirac
matrix inversion, (2) hadron source/sink construction, and (3) formation of correlation functions.
Due to their large storage footprint, the Laplacian eigenvectors are computed first in task 1 and
not saved to disk. They are then recomputed during task 2, which is implemented entirely in
3-D. Task 3 then no longer requires any lattice-wide objects and is simply tensor contraction of
noise-dilution indices.

These different tasks are typically performed on different computer architectures, but a rough
breakdown of the relative cost is 70-80% for the Dirac matrix inversions, 20—26% for task 2, and
1-5% for task 3. In total, 1-3% of the total for these three tasks is spent on calculating Laplacian
eigenvectors.

2.3. Finite-volume energies and matrix elements

We consider all elastic energy levels in isovector irreps where the J”¢ = 1=+ partial wave
is the leading contribution up to total momentum d? < 4, which are tabulated in Table 3. To
calculate the energies, we follow the procedure of Refs. [6,16], which is outlined below.

Outside the resonance region, interacting finite-volume two-pion energies are close to their
non-interacting values, while for levels with Ecy, near m, these gaps are larger. To exploit the
small differences outside the resonance region and to treat all energies in a unified manner, we
employ the ratio fits described in Ref. [6]. Using this method, we construct ratios

Ca(r)
Cr(p3,1) Cx(p3, 1)’
Co = (va (10, 1), C(1)va (10, 1))

where (p, p,) are momenta of the constituent pions in the nearest non-interacting level and
Cx(p2. 1) isa single-pion correlation function with momentum p?. The vector v, (fy, tq) is a
generalized eigenvector of the correlator matrix C (¢) solving the generalized eigenvalue problem
(GEVP) C(tg)vy = Ay C(to) vy, [97,98]. The {v,} are used to define the diagonal correlators C (1)
between operators with optimal overlap onto the nth level, and are determined for a single (7, t4)
only. The fitted energies vary little as these diagonalization times, as well as the operator basis,
are varied.

Ry (1) =

(2.6)

2 http://luscher.web.cern.ch/luscher/openQCD/.
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Table 3

Finite-volume irreps A (second column) of the little group for var-
ious classes of total momenta Pot = (27r/L)d (first column) em-
ployed here. The superscripts on the partial waves (£) contributing
to that irrep denote the number of multiple occurrences, while the
‘+’ indicates positive G-parity.

d A ¢

(0,0,0) T 1,3,52, ...

(0,0,n) AT 1,3,52,...
ET 1,32,5%, .

0.n.n) Af 1,32,5%, .
Bf 1,32,5% .
B 1,32,5%, ...

(n,n,n) AT 1,32,52, ...
E* 1,32,5% .

The difference AE, between an energy and its closest non-interacting w7z counterpart is
extracted directly using single-exponential fits to the ratio in Eq. (2.6). Alternatively, the inter-
acting energy may be obtained from single- or two-exponential fits to Cn directly. All of these
correlated- X2 fits are performed over some time range [#min, fmax], the variation of which should
not affect the fitted energies for asymptotically large ¢. Energies obtained from ratio, single-,
and two-exponential fits all typically depend little on #,,x, While ratio fits typically exhibit a re-
duced dependence on fy,;, as well. However, the excited state contamination in ratio fits may be
non-monotonic leading to ‘bumps’ in #nip plots. As an important consistency check, we check
agreement of the energies obtained from these three types of fits, different (o, #3) combinations,
and GEVP operator sets.

Our fit ranges are chosen conservatively so that the systematic errors discussed above due
to the GEVP and fit ranges are smaller than the statistical ones. This is demonstrated using
extensive comparisons of #yin-plots for different fit types, (7o, #q) choices, and GEVP operator
bases, similar to Refs. [6,16]. Bootstrap resamples of all reweighted correlation functions are
publicly available in HDF5 format,” as is a python Juypter notebook* which performs the entire
analysis chain. This tool not only provides an interface to view systematics related to our choices
of fitting procedure, fitting ranges, and GEVP, but also enables direct access to all results at
each step. Generally, in physical units we take (¢, #q) ~ (0.5, 0.9)fm, tnin = 0.7-1.3fm, and
tmax = 2-2.6fm.

In addition to determining the energies, on the three finest lattice spacings we calculate matrix
elements of the electromagnetic current

om _ 25 L dyd 2
Ju _§”VH“_§ Yud + ... 2.7

where the ellipsis denotes contributions from heavier quarks. For the vacuum-to-7 7 matrix ele-
ments considered in this work, we require insertions of the isovector component and a dimension-
five counterterm required to implement O(a)-improvement

3 https://doi.org/10.5281/zenodo.1341045.
4 https://github.com/ebatz/jupan.
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_ .L.a - o a
Vi= wy,L?w, Ty, =idvproyy TW’ (2.8)
where ¥ = (u, d)T, ¢ the usual Pauli matrices in isospin space, Ouy = %[yﬂ, ], and 5u the
symmetrized lattice derivative. The isovector index a is taken to be maximal and henceforth
omitted.
The determination of the timelike pion form-factor then employs linear combinations

V(A,d) — Zbl(f\,d) VR,/L, Zbl(j\,d)* b'l('LA,d) — 1 (29)
n n

where the coefficients b,(LA’d) project the current onto (a row of) irrep A and spatial momentum d.
The vector current bilinear appearing in Eq. (2.9) has been renormalized and O(a)-improved
non-perturbatively according to

(VR = Zv (1 + aby mi + aby tr M) (V) ., (VD) = Vi +acydy Ty, (2.10)

where the renormalization and improvement coefficients Zv, by, by, and cv are functions of the
gauge coupling only in this mass-independent scheme.

We take ZV =7y (1 +aby my + aby tr Mq) and cy from the non-perturbative determination
of Ref. [99]. An alternative determination of the non-singlet current renormalization constants
for this lattice discretization is found in Ref. [100]. Another preliminary non-perturbative deter-
mination of Zy can be found in Ref. [101], while non-perturbative determinations of by and by
are performed in Refs. [102,103].

Operationally, we calculate current correlation functions using Eq. (2.5) for both the dimen-
sion four and five operators in Eq. (2.8) projected onto definite momentum d and irrep A. These
current correlation functions, which are vectors in the GEVP index, are given as

D(A’d)(f — 1) = <J(A,d) (Z‘)é(A’d)(to)), (2.11)

where J denotes either of the operators in Eq. (2.8) projected according to Eq. (2.9) and o
is an interpolator for irrep (A, d).

To extract the finite volume matrix elements (O] yAd) |Adn), we calculate the current corre-
lation functions (defined in Eq. (2.11)) containing each the two operators in Eq. (2.8). These are
used to form optimized current correlation functions using the GEVP eigenvectors

Dy(t) = (D(1), vn) 2.12)

where the inner product is taken over the GEVP index. Using these optimized current correlators,
we then construct three ratios which plateau to the desired matrix elements asymptotically for
large t (up to GEVP systematics)

R’(Zl)([) — % , R,(Zz)(l) — M , R(S)(l) — M
A A e—E,,t n ¢ (t)
C,(t)e Ent n "\

(2.13)

where A, and E,, are determined previously from the ratio fits to é’n (1). The final matrix elements
are then obtained from a plateau average of these ratios over a range [fmin, fmax |-
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Each of these ratios possesses different excited state contamination. In analogy with the de-
termination of the energies discussed above, consistency of the matrix elements using different
ratios, (o, t7), and GEVP bases provides a stringent check in their determination. GEVP correc-
tions to A, have a different form than those of the energies [104], and our choices of fit ranges
are optimized with the energies in mind. For this reason we take R,gl)(t) in Eq. (2.13) as the
best estimate of the matrix elements. Nonetheless, all three ratios are typically consistent. Data
illustrating the #in-dependence of these ratios and the comparisons mentioned above may also
be found in the HDFS files and Jupyter notebook. After determining the matrix elements for each
current operator, we combine them to form the renormalized combination in Eq. (2.10).

2.4. Amplitudes from finite volume energies and matrix elements

First we determine the elastic / = 1 p-wave pion—pion scattering amplitude using the finite-
volume energies discussed in Sec. 2.3. This amplitude is obtained from the determinant condition
introduced for general two-to-two scattering in Eq. (1.1). However, considerable simplification
occurs for elastic scattering between spinless identical particles. Here the K-matrix is diagonal
in orbital angular momentum ¢ with trivial structure in the irrep occurrence index nycc. The box
matrix B, which encodes the effect of the finite periodic spatial volume, mixes different orbital
angular momenta and is dense in ncc.

All the irreps used in this work are given in Table 3 together with the pattern of partial wave
mixing induced by the infinite-dimensional B-matrix. Explicit expressions for all B-matrix el-
ements up to £ < 6 are given in Ref. [35]. Several off-diagonal B-matrix elements vanish for
identical particles, preventing partial wave mixing between even and odd £. If contributions from
£ > 3 partial waves are neglected, this simplification provides a one-to-one correspondence be-
tween energies in the irreps of Table 3 and

3
K (Eem) = (qC—m> cot 81 (Eem), (2.14)
My
where gcn, is the center of mass momentum and §; the I = 1 wx phase shift. This approximation
is justified by the near-threshold suppression of higher partial waves and to test it we perform
global fits including f-wave contributions. Refs. [9,35] perform similar fits and find such contri-
butions negligible.

We turn now to the determination of the timelike pion form factor |F;(E.m)| using the
finite-volume matrix elements calculated according to Sec. 2.4. The relations employed here
for zero-to-two matrix elements are given in Refs. [10,43,46] which are based on the seminal
work of Ref. [47].

We first define the angle ¢§d’A) using Bf'f‘A) = (gem/ M=)’ cot¢§d’A) where B is from
Eq. (1.1). This pseudophase is used together with the physical phase shift to relate the finite-
and infinite-volume matrix elements

381 a¢{“’“) 3TE2,

|Fr(Eem)*> =8a() | ¢ +u
b/ cm cm aqcm au zqgmL3

2
)(O|V(d’A)|dAn) , (2.15)
where g.n is the magnitude of the center-of-mass (three) momentum, u?= quczm /(27)?, and

—1’ A= A+
gay) = {y : (2.16)
Y, otherwise
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Table 4

Results of correlated- X2 fits of the / =1 elastic p-wave wr amplitude to Eq. (3.1). After the ensemble ID and the
number of levels, the three subsequent columns show results from fits ignoring ¢ = 3 contributions. The remaining
columns contain results from fits including the f-wave contribution as described in the text.

ID Ny £=1fits £=1,3 fits
mp/mx Spr %2 mp/mx gprn mlaz x 10> 32

D101 43 3.366(15) 6.19(10) 2.51 3.370(15) 6.23(10) —0.56(30) 2.49
C101 21 3.395(26) 5.67(17) 1.07 3.399(30) 5.72(19) —0.18(26) 1.11
N401 19 2.717(16) 5.84(12) 1.64 2.721(16) 5.88(13) —2.7(3.0) 1.71
N200 15 2.733(16) 5.94(10) 1.34 2.733(16) 5.94(10) 0.0(2.9) 1.45
D200 17 3.877(34) 6.16(19) 0.81 3.883(36) 6.15(20) —0.61(94) 0.84
J303 18 3.089(25) 6.30(17) 0.75 3.096(25) 6.32(17) —4.2(3.6) 0.73

where y = E/E.m. The infinite volume matrix elements are therefore obtained from their finite
volume counterparts using the multiplicative Lellouch-Liischer—-Meyer (LLM) factor shown on
the r.h.s. of Eq. (2.15).

As is evident from Eq. (2.15), determination of | F;; (Ecp,)| requires not only the finite-volume
matrix element |(0|V(‘l Md An)‘ but also the derivative of §;. This derivative is obtained from
a parametrization of the phase shift points described above and covariances between all data are
treated explicitly using the bootstrap procedure. Parametrization of §1(Ecy) and |Fy (Ecm)| is
discussed in Sec. 3.

3. Results

We first present results for the elastic 7w scattering amplitude. As discussed in Sec. 2.4,
if £ > 3 contributions to Eq. (1.1) are neglected there is a one-to-one correspondence be-
tween finite-volume energies and K1(Ecn) defined in Eq. (2.14). This energy dependence is
parametrized by a Breit—Wigner shape

2 2

. m E 67 E

R (Eem) = ) 3.1)
T T g,onﬂmﬂ

involving two free parameters g%m and m% / m,zr A correlated- x 2 fit of all points is performed
according to the ‘determinant residual’ method of Ref. [35] with u = 10, although without £ > 3
contributions the K ~!'- and B-matrices are one-dimensional so that the determinant is trivial.
Results for these fit parameters, which are both constrained to be positive, as well as the x 2 per
degree of freedom, 32 = x2/Ng.of, are given in Table 4 for each of the ensembles employed
here.

The influence of £ > 3 partial waves is assessed by enlarging the determinant condition
of Eq. (1.1) to include the £ = 3 contributions noted in Table 3. For this fit the f-wave is
parametrized by an unconstrained constant K 3_31 (Ecm) = —(m] a3)~! yielding results which are
also shown in Table 4. We see therefore that there is little dependence on including ¢ > 3.
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Fig. 2. Top row: Comparison of 131_11 (Ecm) (left) and 81 (Ecm) (right) between the C101 and D101 ensembles, which
have the same parameters but different physical volumes. Botfom row: The same comparison for the N200 and N401
ensembles (white and gray markers respectively), which have (approximately) the same quark masses but different lattice
spacings.

Interested readers may perform further fits using App. A, where energies and phase shift
points for all ensembles (neglecting £ > 3) are tabulated and plotted, or the Jupyter notebook
described in Sec. 2.3 where bootstrap samples of all energy levels are available. However, it is
worth comparing some of the ensembles in this data set here. An explicit check of finite vol-
ume effects using the C101 and D101 ensembles, which have the same parameters but different
volumes, is shown in Fig. 2. That figure also shows a comparison between the N401 and N200
ensembles, which have (approximately) the same quark masses but different lattice spacing. It
is thus evident on these ensembles that both effects are not visible within our statistical errors.
Finally, all results for m,, and g, in shown in Fig. 6, where they are converted to physical units
using the scale determined in Ref. [90].

We turn now to results for the / = 1 timelike pion form factor, which are determined accord-
ing to Sec. 2.3. Results for the form factor from Eq. (2.15) are also tabulated in App. A. As
discussed in Sec. 2.3, we employ a non-perturbative determination [99] of cy multiplying the
dimension-five counter term in Eq. (2.10). Apart from the one from Ref. [99], there is the pre-
liminary determination of Ref. [101] which obtains values larger in magnitude using a different
improvement condition. If cy is non-negligible, the relative magnitude of the leading order ma-
trix elements to this counterterm is of interest. Their ratio is shown in Fig. 3. Given its 5-15%
size, a larger cy could indicate larger cutoff effects in the form factor than we observe using
cv(go) from Ref. [99], which is at the few-percent level.
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Fig. 3. Left: ratio of matrix elements for the O(a) counterterm over the leading matrix element for the D200 ensemble.
Right: Thrice-subtracted dispersive fit to In Q3(s) on the D200 ensemble. The central 68% of bootstrap samples (thinned
out for clarity) are shown for each individual point, together with the best-fit line.

We now turn to parametrization of the form factor. Ref. [10] employs the Gounaris—Sakurai
parametrization [105]

FOS(/5) = fo , (3.2)
4enh (V) = aZh(mp) +b(qd, — a3) — %"‘
247 2q3 m2 m>
b=—h(mp) = —— = —LH(mp),  fo=—"T—qph(mp) —b=F %o
P P
2 2
MR = T (L;n qc“‘),
T

where the notation is from Ref. [106] and g, is the center-of-mass momentum at the resonance
energy. This parametrization depends only on m, and g,, and therefore describes the form
factor with no additional free parameters.

Additional parametrizations are suggested by unitarity constraints. In the elastic approxima-
tion, the form factor satisfies the n-subtracted dispersion relation

nol gk g T dztand;(z)Re Fy
Fr(s) = Zi,dk n(0)+— Zzw (33)

Z—85 —1€
4mﬂ

This dispersion relation has the Omnes—Muskhelishvili solution [107,108] of

Fa(s) = 0u() exp | & [ L2 (34)
T 77— 8 — 1€
4’”%
n—1
= Q4 (s) Qul811(5), In Qu(s) = pis",
k=1

where due to charge conservation the k = 0 term vanishes, and we have defined the Omnes func-
tion 2,[81](s). The constants py are fit parameters and proportional to logarithmic derivatives
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Fig. 4. Form factor results shown with both the Gounaris—Sakurai (GS) parametrization and the thrice-subtracted disper-
sive fit on the J303 ensemble (left) and D200 ensemble (right).

10} 20F
/ thrice-subtr. disp. Sa = .076 fm
/ twice-subtr. disp. Sa = .064fm
& & 15
= =
5 10
5
2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0
Ecm/mw Ecm/m-rr

Fig. 5. Left: The twice- and thrice-subtracted dispersive fits on the D200 ensemble. Right: Comparison of form factor with
thrice-subtracted dispersive fits on both the N401 and N200 ensembles, which have similar quark masses and different
lattice spacings.

of F. Given the Breit—-Wigner parametrization for the phase shift, the twice-subtracted disper-
sion relation (n = 2) has a single additional parameter (p;) and the thrice-subtracted (n = 3)
two additional parameters, p; and p». These parameters appear in In Q,(s), while €2,[81](s)
depends only on the Breit—Wigner parametrization of 4.

For these fits, we isolate In O, (s) by constructing In(| F;|/€2,[81]) and fit it to the appropriate
polynomial. An example of a thrice-subtracted fit is shown in Fig. 3, while the twice- and thrice
subtracted fits are compared in Fig. 5 for the D200 ensemble. Finally, the Gounaris—Sakurai
parametrization is compared to the thrice-subtracted fit on the J303 and D200 ensembles in Fig. 4.

The results from these fits are compared in Table 5. The large %2 is due to the significant
correlation between the horizontal and vertical errors, which is visible in Fig. 3. Fits with four
subtractions (n = 4) do not significantly reduce %2. Results from the N401 and N200 ensembles,
which have similar quark masses but different lattice spacings, are shown in Fig. 5 together with
thrice-subtracted fits. Agreement between these two ensembles indicates that cutoff effects are
also under control in the form factor.
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Table 5
Results from twice- and thrice-subtracted dispersive fits (see Eq. (3.4)) to the form factor on each ensemble with the three
finest lattice spacings. The large %2 is due to the significant correlations between Ecyy and In Q.

ID Nt n=2 n=3

m2 py 2? m p1 m3 pa %2
N401 18 0.1372(13) 8.9 0.099(4) 0.0144(7) 5.5
N200 15 0.1405(18) 6.0 0.104(7) 0.0143(12) 3.6
D200 17 0.0738(17) 5.7 0.0674(16) 0.0034(2) 4.1
J303 18 0.1129(15) 2.7 0.101(4) 0.0075(6) 2.1

4. Conclusions

This work presents an Ny =2+ 1 calculation of the / = 1 elastic p-wave w7 scattering phase
shift and timelike pion form factor which addresses systematic errors due to the finite lattice
spacing, mixing of higher partial waves, and residual (exponential) finite volume effects.

While we do not perform continuum and chiral extrapolations here, our data can be used
for future such extrapolations. Chiral extrapolations of lattice scattering data using unitarized
extensions of chiral effective theory [65,67—74] have been performed, although to date cutoff
effects have not been considered. Nonetheless, it is evident in our data that cutoff effects in both
the scattering amplitude (shown in Fig. 2) and the timelike pion form factor (Fig. 5) are small with
respect to our statistical errors. The coarser lattice spacing in this comparison is a = 0.075 fm.
Furthermore, for the scattering amplitude we also check explicitly (in Fig. 2) that finite volume
effects are also insignificant at our coarsest lattice spacing. The two volumes used here have
myL =4.6and 6.1.

As discussed in Sec. 1, complete extrapolations of the energy dependence of amplitudes are
left for future work. However as a necessary ingredient to determine the form factor, we use
Breit—Wigner fits to model the energy dependence of §;(E¢n). A summary of the fit results for
the resonance mass and coupling are shown in Fig. 6. The CLS ensembles employed here adjust
mg as m is lowered to its physical value such that tr My = const. is fixed. This is to be contrasted
with the more common strategy of fixing mj to its physical value for all m such as the recent
Nrf =241 results in Ref. [7] which employs rooted staggered fermions. Compared with the more
standard trajectory, it appears that the slope of m , is somewhat flatter here. Although not shown
in this work, recent summaries of existing results for the p-resonance parameters are found in
Refs. [5,6].

In addition to future fits and extrapolations, our results for the timelike pion form factor
can be used to extend the vector—vector correlator as described in Ref. [76] and implemented
in Ref. [109] without reliance on experiment. This may significantly improve lattice determi-
nations of hadronic vacuum polarization contribution to anomalous magnetic moment of the
muon, aEVP.

Finally, the computational effort expended on the CLS lattices for this work can be largely
re-used for other two-to-two amplitude calculations. First work in this direction for N7 scattering
has already appeared in Ref. [26]. The set of ensembles used here will also be augmented by
several others at lighter quark masses, include one with L = 6.5 fm at the physical point, which
is presented in Ref. [110].
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Fig. 6. The resonance mass m, (left) in physical units and the coupling gprr (right) from Breit—Wigner fits to the
scattering amplitude on all ensembles.
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Appendix A. Finite volume energies and scattering amplitudes

In this appendix, we tabulate and plot the finite-volume energies, scattering amplitude, and
timelike pion form factor for all ensembles in Table 1. The scattering amplitude and form fac-
tor tabulated here employ the truncation to ¢ < 1. The C101, D101, N401, N200, D200, J303
ensembles are tabulated in Tables 6, 7, 8, 9, 10, 11 and plotted in Figs. 7, 8, 9, 10, 11, 12, respec-
tively.
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Table 6
Results from the C101 ensemble.
d? irrep. level Ecm/mzg (Pcm/mﬂ)z (pcm/mzr)3 cotdg 3
0 Tf; 0 3.148(23) 1.477(37) 2.99(40) 31.0(2.5)
1 3.564(33) 2.176(58) —3.34(42) 136.1(4.6)
1 AT 0 2.2864(61) 0.3069(70) 7.5(1.7) 1.29(24)
1 3.318(32) 1.752(53) 1.18(31) 63.0(5.0)
Et 0 3.211(34) 1.578(54) 2.13(31) 43.02.7)
2 AT 0 2.4630(75) 0.5165(93) 6.4(1.0) 3.32(45)
1 3.426(37) 1.934(64) 0.40(24) 81.6(4.7)
2 3.821(26) 2.650(50) —5.6(1.3) 142.4(6.7)
Bi" 0 3.310(34) 1.739(57) 2.34(30) 44.4(2.5)
1 3.783(22) 2.579(42) —8.3(6.7) 153(28)
B2+ 0 2.692(12) 0.812(16) 5.59(80) 7.45(85)
1 3.409(40) 1.905(68) —0.39(20) 98.4(4.6)
3 A?L 0 2.5980(100) 0.687(13) 6.08(99) 5.36(73)
1 2.999(14) 1.249(21) 2.5(1.3) 29(11)
2 3.476(46) 2.021(81) —1.12(16) 111.4(3.9)
ET 0 2.922(18) 1.135(26) 5.51(76) 12.4(1.3)
1 3.570(56) 2.186(100) —1.81(25) 119.2(4.8)
4 ATL 0 2.710(15) 0.836(21) 5.9(1.5) 7.4(1.5)
1 3.422(71) 1.93(12) —0.44(43) 99.3(9.7)
Et 0 3.189(23) 1.542(37) 3.44(44) 29.1(2.5)
1 3.593(48) 2.228(87) —0.98(89) 106(15)
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Fig. 7. K ]_]1 (left) and phase shift (right) on the C101 ensemble, together with the Breit—Wigner fit.
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Table 7
Results from the D101 ensemble.
d? irrep. level Ecm/mz (pem/mx )2 (Pcm/mn)3 cotdy 3
0 T]': 0 2.7894(88) 0.945(12) 4.23(43) 12.3(1.0)
1 3.236(22) 1.617(35) 1.16(27) 60.6(5.0)
2 3.646(30) 2.324(55) —4.41(80) 141.2(5.8)
1 Ai" 0 2.1880(38) 0.1968(42) 4.6(1.6) 1.09(30)
1 2.9555(99) 1.184(15) 4.42(47) 16.2(1.5)
2 3.324(20) 1.761(34) 1.13(24) 64.1(4.1)
3 3.564(24) 2.175(42) —6.3(7.3) 153(31)
4 3.674(20) 2.374(36) —4.04(83) 137.8(6.3)
Et 0 2.912(12) 1.121(17) 4.32(47) 15.4(1.3)
1 3.358(18) 1.820(31) 0.22(18) 84.9(4.2)
2 3.740(26) 2.496(49) —5.76(94) 145.6(5.0)
2 AT 0 2.3229(49) 0.3490(57) 4.7(1.2) 2.49(55)
1 3.068(11) 1.353(17) 2.89(32) 28.5(2.4)
2 3.297(19) 1.717(32) 0.15(19) 86.2(4.8)
3 3.693(16) 2.409(29) —2.6(1.2) 125(13)
4 3.750(22) 2.515(41) —-9.0(4.2) 156.0(8.7)
Bl+ 0 2.988(13) 1.233(19) 3.55(30) 21.1(1.2)
1 3.149(11) 1.479(18) 1.2(3.6) 56(60)
2 3.535(30) 2.124(54) —2.19(21) 125.2(3.5)
B;’ 0 2.4392(51) 0.4875(62) 6.82(97) 2.86(37)
1 3.114(11) 1.424(18) 2.73(24) 31.9(2.0)
2 3.346(20) 1.798(33) —0.03(20) 90.8(4.8)
3 3.620(15) 2.276(27) —13(12) 165(14)
4 3.779(24) 2.569(45) —12.2(4.3) 161.4(6.1)
3 AT 0 2.4411(78) 0.4897(95) 9.3(5.9) 2.1(1.1)
1 2.6267(67) 0.7250(88) 4.2(2.5) 8.4(4.2)
2 3.281(24) 1.692(40) 1.00(16) 65.6(2.7)
3 3.742(19) 2.501(35) -9.7(4.5) 157.9(9.6)
4 3.878(22) 2.760(44) —9.0(5.8) 152.9(5.6)
5 3.938(28) 2.876(55) —9.4(1.5) 152.6(4.3)
Et 0 2.6031(68) 0.6940(89) 6.04(69) 5.47(55)
1 3.369(21) 1.838(36) 1.16(15) 65.1(2.3)
2 3.697(16) 2.417(30) —-9(12) 157(42)
3 3.862(16) 2.728(31) 2(10) 69(65)
4 Al+ 0 2.494(15) 0.555(18) 2.14(70) 11.0(2.9)
1 3.171(13) 1.514(21) 2.34(18) 38.5(1.7)
2 3.566(20) 2.178(35) —1.62(23) 116.7(3.6)
3 3.959(19) 2.919(38) —8.0(1.9) 148.2(6.5)
Et 0 2.7979(94) 0.957(13) 4.39(68) 12.0(1.6)
1 3.222(13) 1.595(21) 3.27(30) 31.6(2.0)
2 3.406(16) 1.900(28) —0.6(1.1) 102(22)
3 3.638(19) 2.309(34) —2.47(28) 125.2(3.4)
4 3.980(21) 2.959(43) —9.9(2.0) 152.9(5.0)
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Fig. 8. Same as Fig. 7 for the D101 ensemble. One state in each of the A;’(3) and B; (2) irreps which have very large
errors have been removed from the plot.

Table 8
Results from the N401 ensemble. The form factor is omitted for a single level in the A(d 2) = AT(4) irrep for which a

plateau could not be identified.

d? irrep. level Ecm/mg (pcm/m,,)2 (pcm/mn)3cot31 81 | Fr|
0 TIJ; 0 2.714(22) 0.841(30) 0.281(64) 70.0(3.3) 17.05(69)
1 3.205(13) 1.568(21) —5.18(57) 159.2(2.4) 3.518(53)
1 Ai" 0 2.2248(24) 0.2375(27) 2.89(19) 2.29(12) 3.019(29)
1 2.798(22) 0.957(31) —0.481(39) 117.2(2.9) 12.42(77)
ET 0 2.775(20) 0.925(28) 0.269(48) 73.2(2.2) 13.92(99)
2 AT 0 2.3597(55) 0.3920(65) 1.98(18) 7.05(47) 4.257(53)
1 2.836(23) 1.010(33) —0.958(48) 133.3(2.9) 10.38(60)
Bfr 0 2.748(21) 0.888(28) 0.094(38) 83.6(2.3) 15.8(1.1)
B;r 0 2.509(11) 0.574(14) 1.55(22) 15.7(1.6) 6.49(15)
1 2.907(22) 1.113(33) —1.316(79) 138.2(2.8) 8.26(30)
3 AT 0 2.4699(91) 0.525(11) 1.87(23) 11.5(1.0) 6.07(12)
1 2.806(15) 0.969(20) —0.01(72) 90(36) 19.8(3.3)
2 2.950(34) 1.176(51) —2.03(29) 147.8(5.2) 6.32(60)
ET 0 2.627(31) 0.725(41) 0.96(26) 32.7(4.6) 11.26(98)
1 3.041(33) 1.313(50) —2.99(38) 153.3(4.1) 5.78(21)
4 AT 0 2.582(26) 0.666(34) 2.25(91) 13.6(3.8) 12.3(1.0)
1 2.834(23) 1.008(32) —2.40(27) 157.1(3.2) -
Et 0 2.722(39) 0.853(53) 0.23(11) 73.5(6.0) 16.5(1.4)
1 3.194(16) 1.550(26) —4.24(81) 155.5(4.5) 4.360(92)
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Fig. 9. Top row: Same as Fig. 7 for the N401 ensemble. Bottom row: the timelike pion form factor (left) and the ratio
employed in the thrice-subtracted subtracted dispersive fit (right), which is also shown.

Table 9
Results from the N200 ensemble.
d2 irrep. level Ecm/my (Pcm/mn)2 (Pcm/mn)3 cotdj 81 |Fr|
0 T]'Z 0 2.749(27) 0.889(37) —0.077(41) 95.3(3.1) 15.3(1.1)
1 AT 0 2.2654(24) 0.2830(27) 2.78(10) 3.104(68) 3.308(36)
1 2.874(22) 1.065(32) —1.176(36) 136.9(2.1) 8.88(42)
ET 0 2.756(35) 0.898(48) —0.179(40) 101.8(3.5) 16.1(1.5)
2 Al+ 0 2.4215(66) 0.4659(80) 2.22(16) 8.14(36) 4.94(12)
1 2.913(29) 1.121(43) —2.059(96) 150.0(2.6) 7.04(48)
Bi" 0 2.676(51) 0.791(68) —0.311(32) 113.9(4.8) 16.7(1.5)
B;’ 0 2.613(10) 0.707(14) 1.20(10) 26.4(1.3) 10.87(47)
1 3.089(24) 1.385(37) —2.99(22) 151.4(2.6) 4.67(16)
3 AT 0 2.482(18) 0.540(22) 1.26(17) 17.5(1.2) 7.29(21)
1 2.959(39) 1.189(58) —2.51(52) 152.7(6.8) 5.85(45)
2 3.176(20) 1.522(32) —-5.2(1.4) 160.3(5.0) 3.60(51)
ET 0 2.56(11) 0.63(13) 0.14(21) 74(16) 12.4(1.7)
4 AT 0 2.582(69) 0.667(89) 1.22(66) 24.0(6.4) 10.0(1.9)
ET 0 2.778(96) 0.93(13) —0.10(15) 96(11) 14.8(3.6)
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Fig. 10. Same as Fig. 9 for the N200 ensemble.
Table 10
Results from the D200 ensemble.
d? irrep. level Ecm/mx (Pem/mx)? (Pem/mz)3 cotdy 3 [ Fr|
0 TI'Z 0 3.444(22) 1.965(38) 6.39(86) 23.3(2.3) 4.655(98)
1 3.980(75) 2.96(15) —2.5(1.3) 116(13) 7.55(37)
1 AT 0 2.3385(45) 0.3672(53) 10.1(1.3) 1.26(14) 1.656(16)
1 3.633(30) 2.300(55) 2.53(60) 54.1(5.4) 6.81(22)
ET 0 3.548(32) 2.147(57) 4.64(68) 34.1(2.8) 5.81(18)
2 Ai" 0 2.5386(65) 0.6111(83) 9.0(1.2) 3.02(33) 1.908(18)
1 3.748(40) 2.512(75) 1.05(47) 75.3(5.6) 7.77(27)
Bfr 0 3.637(26) 2.308(48) 4.32(41) 39.1(1.9) 6.81(21)
B; 0 2.851(11) 1.033(16) 8.5(1.3) 7.06(94) 2.369(31)
1 3.794(43) 2.598(81) 0.36(43) 85.1(5.6) 8.50(19)
3 AT 0 2.701(11) 0.824(14) 11.2(2.5) 3.83(74) 2.056(21)
1 3.213(15) 1.580(24) 4.6(4.0) 23(16) 4.12(67)
2 3.886(91) 2.78(18) —0.83(52) 100.2(7.1) 8.79(38)
ET 0 3.128(19) 1.446(29) 8.7(1.6) 11.4(1.7) 3.137(40)
1 3.983(84) 2.97(17) —1.79(62) 109.3(7.6) 8.13(64)
4 AT 0 2.839(19) 1.015(27) 14.1(6.5) 4.2(1.5) 2.354(27)
ET 0 3.499(37) 2.061(64) 8.4(3.2) 19.3(5.4) 4.94(16)
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Fig. 11. Same as Fig. 9 for the D200 ensemble.
Table 11
Results from the J303 ensemble.
d? irrep. level Ecm/mx (Pem/mx)? (Pem/mz)3 cotdy | |Fr
0 Tt 0 3.044(28) 1.317(42) 0.50(11) 71.6(3.0) 11.36(30)
1 Al+ 0 2.3048(48) 0.3280(55) 4.32(36) 2.49(15) 2.460(25)
1 3.211(29) 1.578(47) —0.802(87) 112.0(3.0) 9.12(41)
Et 0 3.082(43) 1.374(66) 0.32(14) 78.6(4.0) 11.51(46)
2 AT 0 2.4890(79) 0.5488(98) 3.95(40) 5.87(43) 3.291(40)
1 3.236(48) 1.617(77) —1.70(13) 129.6(4.2) 8.10(67)
Bfr 0 3.001(64) 1.251(96) —0.05(13) 91.9(5.4) 11.63(64)
32+ 0 2.755(27) 0.898(38) 2.66(65) 17.7(3.0) 5.55(12)
1 3.199(83) 1.56(13) —3.48(83) 150.8(8.5) 7.9(1.2)
3 AT 0 2.599(19) 0.688(25) 2.90(51) 11.1(1.3) 4.197(67)
1 3.165(36) 1.505(57) —0.7(1.6) 109(40) 10.0(2.8)
2 3.30(11) 1.71(18) —5.6(3.1) 158(30) 7.5(4.1)
Et 0 2.936(28) 1.155(42) 1.92(34) 32.9(3.3) 9.12(41)
1 3.550(61) 2.15(11) —5.22(85) 148.9(5.8) 3.89(18)
4 AT 0 2.694(30) 0.814(41) 2.48(59) 16.5(2.5) 5.02(12)
1 3.281(73) 1.69(12) —2.95(46) 143.3(7.1) 7.03(78)
Et 0 3.049(64) 1.324(98) 0.37(24) 76.3(6.9) 11.94(54)
1 3.645(46) 2.321(83) —27(38) 173(84) 2.598(91)
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Fig. 12. Same as Fig. 9 for the J303 ensemble.
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