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The energy spectrum of a system containing a static quark anti-quark pair is computed for a wide range
of source separations using lattice QCD with Nf=2 + 1 dynamical flavours. By employing a variational
method with a basis including operators resembling both the gluon string and systems of two separated
static mesons, the first three energy levels are determined up to and beyond the distance where it is
energetically favourable for the vacuum to screen the static sources through light- or strange-quark pair

creation, enabling both these screening phenomena to be observed. The separation dependence of the
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energy spectrum is reliably parameterised over this saturation region with a simple model which can
be used as input for subsequent investigations of quarkonia above threshold and heavy-light and heavy-
strange coupled-channel meson scattering.
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1. Introduction

QCD is believed to be responsible for confinement, the ex-
perimental observation that quarks are never seen as asymptotic
states [1]. A full understanding of why QCD confines remains elu-
sive. The simplest theoretical probe of the phenomenon is provided
by the potential energy V(r) of a system made of a static quark
and anti-quark pair immersed in the QCD vacuum in a colour-
less combination. This energy depends on the distance between
the sources, and in the Yang-Mills theory of gluons alone it grows
linearly at asymptotically large separations. The rate of increase
is the well-known string tension, o. If the static sources interact
with the full QCD vacuum including light-quark dynamics, pair-
creation of light quarks means the system can also resemble two
separately-colourless static-light mesons allowing the potential en-
ergy to saturate at large separations. This phenomenon, induced by
light-quark pair creation, is termed ‘string breaking’.

Arising from purely non-perturbative effects, the static potential
requires a robust method for direct determination from the QCD
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Lagrangian. Lattice QCD provides such a framework, but studying
string breaking on the lattice is a technical and numerical chal-
lenge. The simplest approach would be to evaluate the expectation
value of large Wilson loops in the QCD vacuum and observe de-
viation from an area law. However, Monte Carlo determinations
of large loops suffer from poor signal-to-noise properties. Also,
viewed in terms of eigenstates of the Lattice QCD Hamiltonian, the
creation operator comprising the Wilson line forming one edge of
the rectangular Wilson loop has very small overlap onto the two-
meson system dominating the ground state at large separations. As
a consequence, the saturation effect proves impossible to resolve
from Monte Carlo studies of Wilson loops alone. Instead, a mix-
ing analysis including two-meson ‘broken’ string states is needed
[2-6].

In this work, by building a suitably diverse basis of creation
operators, mixing between the state made by a gluonic flux tube
and the broken string state resembling two static-light or static-
strange mesons is investigated fully in the Ny =2 + 1 theory on
the lattice for the first time. This enables us to compute reliably
the energies of the lowest three Hamiltonian eigenstates up to
separations where string breaking saturation occurs. A simple pa-
rameterisation of the resulting spectrum in the breaking region is
given, which should provide invaluable first-principles input into
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models of coupled-channel scattering of heavy-light mesons and
the decays of quarkonia near threshold.

2. Methodology

We compute the potential energy of a system containing a
heavy quark Q at spatial position x and a heavy anti-quark Q aty
in the static approximation. In this limit, the quarks remain sepa-
rated by r = y—Xx, where x and y are conserved quantum numbers.
To determine the energies of the ground state as well as the first-
and second-excited state arising from mixing in QCD, a variational
technique is employed. The input for this mixing calculation is a
matrix of temporal correlation functions between the interpolator
for a Wilson line Ow, the two-static-light O3 and the two-static-
strange meson states Op 5 . It is essential that the interpolators
transform irreducibly under the appropriate symmetry group.

2.1. Interpolators

A suitable interpolator Oy creating a gluon string connecting
sites X and y at time t is given by

owwxn = Qw0 twyxnQxo, (1)

where p is the three-vector of spatial Dirac matrices and the Wil-
son line W(y, x,t) is a product of spatial lattice links with time
argument t connecting x and y. Wilson lines are constructed using
a variant of the Bresenham algorithm [7] to approximate the short-
est connection between x and y, cf. [8]. The heavy-quark spins are
coupled symmetrically via p -r/r, which has a zero component of
angular momentum projected along r. In the static limit, both the
symmetric and antisymmetric combinations give an energy level
in the E‘g* irreducible representation of the rotation group around
r after the heavy spins are decoupled. Decoupling the heavy spins
in the two-static-meson system similarly yields a composite oper-
ator in the Eg irrep. Details of this construction can be found in
Ref. [6]. With light-quark flavours ¢, i = {u, d, s}, suitable interpo-
lators for a two-static-light- or two-static-strange-meson state are
given by

1 - . B

OppXy,0=— > Q. 0y5¢' ¥, 6) §' X, OyaysQ (X, 1),
ﬁ i=u,d

Op,5, %Y, 0) = Q. Y5q° (¥, 1) T° (X, ) yays Q (X, ). 2)

For the two-static-light-meson state, the sum projects onto the
isospin-zero channel. Notice that our interpolators Eq. (2) contain
a ya because for the inversion of the Dirac operator we use the
convention of Ref. [9].

2.2. Correlation matrix

For the Nf =2 + 1 theory, a 3 x 3 matrix can be constructed
from the pair-wise correlations of the two isospin-zero meson-pair
creation and annihilation operators in combination with the string
interpolation operator

C(r,t)=

(Ow®OW(0)  (OgsOOW©)  (Op 5 (HOw(0)
(Ow ()043(0))  (Opp()Dp5(0) (O, ()Dp5(0))
(Ow (005,(0)) (Ogp()Dp 5. (0)) (Op 5 (DD 5. (0)

3)

When mixing occurs, the above basis states are not energy eigen-
states anymore and off-diagonal elements of the correlation matrix

Table 1

The parameters of the quark-line estimation method employed in this work. N, =
192 eigenvectors were used to form the distillation operator. Quark lines starting
and terminating at the same time slice t; =t; are referred to as ‘relative’, while
quark lines with ts # ty are called ‘fixed’. For definition of the LapH subspace and
specification of dilution schemes, see [9]. For these schemes, a total of 32-5-2 +
32-2-8=2832 (light) and 32 -2 -2+ 32 -8 =384 (strange) solutions of the Dirac
equation are required per gauge configuration, which however can be reused for
other spectroscopy projects, see e.g. [18].

light strange
Type Dilution scheme Source times, ts/a Ny Ninv N, Ninv
fixed (TESF,LI8) {32, 52} 5 320 2 128
relative (TI8,SF,LI8) {32,33,...,95} 2 512 1 256

are non-vanishing. Following the method presented in [10], all
gauge-links are smeared using HYP2 parameters [11,12] o = 1.0,
oy = 1.0, 3 = 0.5, where the smearing of the temporal links
amounts to a modification of the Eichten-Hill static action and
propagator [13] which reduces the divergent mass renormalisa-
tion and improves the signal-to-noise ratio at large Euclidean times
[12]. As a second step, we construct a variational basis for the
string state using 15 and 20 levels of HYP-smeared spatial links
with parameters: oy = 0.6, a3 = 0.3, extending Eq. (3) to a 4 x 4
matrix.

Some correlation functions in C(r,t) include multiple light-
quark field insertions. The light-quark fields must be integrated
analytically prior to Monte Carlo evaluation of C(r,t) and the
resulting Wick contractions involve numerically challenging dis-
connected contributions. In order to calculate these contributions,
and to reduce statistical variance by exploiting translational invari-
ance of the lattice, propagators between all space-time points are
needed. For this, we employ the stochastic LapH method [9]. Based
on distillation [14], the method facilitates all-to-all quark prop-
agation in a low-dimensional subspace spanned by N, low-lying
eigenmodes of the three-dimensional gauge-covariant Laplace op-
erator, which is constructed using stout-smeared gauge links [15]
with parameters p = 0.1, n, = 36. This projection onto the so-
called LapH subspace amounts to a form of quark smearing, where
N, increases in proportion to the spatial volume for a fixed physi-
cal smearing radius. Introducing a stochastic estimator in the LapH
subspace in combination with dilution [16,17] helps to reduce the
rise in computational costs as the volume increases. It was shown
[9] that for certain dilution schemes, the quality of the stochastic
estimator remains approximately constant for increasing volume,
while maintaining a fixed number of dilution projectors. The triplet
b= (T, S, L) specifies a dilution scheme with time T, spin S and
LapH eigenvector projector index L, where F indicates full dilution
and In the interlacing of dilution projectors in index n. The dilu-
tion scheme and other stochastic-LapH parameters used are given
in Table 1.

2.3. Variational analysis

A correlation matrix is evaluated for a set of static-source sep-
arations r and time separations t. The energy spectrum of the
system for each spatial separation can be extracted by solving a
generalised eigenvalue problem (GEVP) for each r [19,20],

C(t) va(t, to) = An(t, to) C(to) vn(t, to),

n=1,...,N, t>tp,

(4)

where A, and v, are the eigenvalues and eigenvectors respec-
tively. After solving the GEVP, energies are extracted using a
correlated- y > minimisation to a two-parameter, single-exponential
fit ansatz.
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To simplify the analysis, the GEVP is first solved for a fixed pair
of time separations, (tg, tg) where tg is a reference separation and
ty is the diagonalisation time [21]. The correlation matrix of the
resulting interpolators from this optimisation is then defined as

Cij(0) = (vilto, ta), C(OV j(to. ta)), (5)

where the parentheses denote an inner product over the original
operator basis. A potential source of systematic error is introduced,
as off-diagonal elements of 61‘j are not exactly zero. We control
this by assessing the stability of the GEVP against varying the op-
erator basis and using different pairs (tg, tg). Comparing the results
for some sample distances to the GEVP as given in Eq. (4) shows
agreement between both methods.

We are interested in the difference between the energies V,(r)
of the ground (n = 0), first (n = 1) and second excited state (n =2)
and twice the energy of the static-light meson 2Eg, which can be
directly extracted from fits to the ratio

Con ()
2y’

Rn(t) = (6)
of the diagonal elements of the rotated correlation matrix of Eq. (5)
and the correlation function of a single static-light meson squared
Cg (t). The energy difference is extracted using a single-exponential
fit. The fitted energies typically vary little as diagonalisation times
(to, tg) or operator basis are varied.

3. Numerical results

Monte Carlo samples are evaluated on a subset of evenly-
spaced configurations of the N200 CLS (Coordinated Lattice Sim-
ulations) ensemble with N =2 + 1 flavours of non-perturbatively
O(a)-improved Wilson fermions. The lattice size is N; x Ns3 =
128 x 483 with an estimated lattice spacing of 0.064 fm and pion
and kaon masses of m;, = 280 MeV and mg = 460 MeV respec-
tively [22]. Open temporal boundary conditions are imposed on
the fields. The imprint on observables is expected to fall exponen-
tially with distance from the boundary [23] so measurements are
made on the central half of the lattice only.

Previous studies found the signal quality to be limited by the
Wilson-loop correlation functions [6], which a preliminary analy-
sis on a subset of our data corroborated. We mitigate this issue by
measuring Wilson loops on 1664 configurations, while diagrams
containing light or strange propagators are evaluated on a sub-
set of 104 samples. The Wilson loops are then averaged into 104
bins containing 16 configurations each, with the centre of the bin
aligned with one entry in the 104-configuration subset. For each
separation r = (r1,r2,13), we exploit cubic symmetry and average
over spatial rotations to increase our statistics. As expected, no de-
pendence on the direction is observed in our data. The analysis
uses a Jupyter notebook! adapted from Ref. [18]. Statistical uncer-
tainties are estimated using 800 bootstrap resamplings [24,25] and
the uncertainty quoted is given by 1o bootstrap errors. The co-
variance matrix entering the single exponential fits to Eq. (6) is
estimated once and kept constant on every bootstrap sample.

In Fig. 1, the potential energy relative to 2Ep is shown; this
subtraction removes the divergent mass renormalisation of a
static quark. The grey line corresponds to twice the static-strange
mass, with an energy difference 2Ep, — 2Ep = 0.028(5)a~! =
85(16) MeV. As expected due to the choice of light and strange
quark masses, the difference is smaller than the physical energy
difference between B and Bs mesons.

1 https://github.com/ebatz/jupan.

r/fm
0.3 0.6 0.9 1.2 15
T

o (V(r) - 2Bp)
I
ASD/ (8877 — (4)4)

—1.2

Fig. 1. Static potential determined using the full mixing matrix; the three lowest
lying energy levels V,(r), n=0, 1,2 are shown. The grey line corresponds to twice
the static-strange meson mass, its error is too small to be visible. The black line
corresponds to twice the static-light meson mass; the error is automatically taken
into account by using the ratio given in Eq. (6). For all distances, the fixed GEVP
with tg/a =5, ty/a =10 is used.

The avoided level crossing between the ground- and first-
excited states is clearly visible and the expected second avoided
crossing due to the formation of two static-strange mesons is also
evident for the first time. As the distance over which this phe-
nomenon occurs is small, this effect cannot be resolved using only
on-axis separations [26]. For distances beyond the string breaking
scale, the ground state tends rapidly towards the mass of two non-
interacting static-light mesons.

The matrix of correlation functions Eq. (3) we use contains
three very different operators, which should have strong over-
lap onto the three lowest physical energy eigenstates. Following
Ref. [19], we expect problems with determining energies from the
GEVP using a finite basis will arise when higher states for which
no good operator appears in the basis are close in energy. We can
estimate where the next energy levels should be around the break-
ing region and they are all higher by a scale of about 500 MeV,
substantially larger than the gaps observed.

The string breaking region is reproduced in more detail in
Fig. 2. Both avoided crossings are visible and the energy gap be-
tween the ground state and first level is larger than the gap be-
tween first and second levels. Qualitatively, the first mixing region
appears to be broader, but it is not possible to determine the dif-
ference between the first string breaking distance r. and the sec-
ond string breaking distance r¢; by eye. The quantification of string
breaking involving three levels is more complex in comparison to
the two-level situation. For the Ny =2 vacuum, the string breaking
distance r. can be defined by the minimum of the energy gap AE
[6]. When the strange quark is included, an alternative definition
of the two string breaking distances r¢ and r¢, is needed as there
is not necessarily a minimum energy gap.

4. A model of the string breaking spectrum

We describe the potential-energy spectrum in the breaking re-
gion using a simple Hamiltonian that extends the model for Ny =2
given in [27]. Consider a three-state system with Hamiltonian:

Vi g1 g
Hn=| & E 0 |. (7)
g 0 E

The diagonal elements are a function V(r) describing the un-
broken string and Eq, E, the energies of a noninteracting pair
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Fig. 2. Six-parameter fit to the string breaking data of Fig. 1 over the fit range r/a =
[11, 25]. The error band indicates 1o bootstrap errors.

of static-light and static-strange mesons, respectively. As with v,
these energies are measured relative to 2Eg. g1 and gy are two
coupling constants describing the strength of the mixing between
the gluon flux and the separated colour-screened static sources.
The off-diagonal term that would mix the two-static-light-meson
state with the two-static-strange-meson state is set to zero. There
is no constraint on this mixing in the energy spectrum alone as a
basis rotation shows any non-zero value of this parameter yields
an equivalent spectrum to the Hamiltonian of Eq. (7). Moreover,
setting this value to zero ensures the diagonal elements of H cor-
respond to the asymptotic energy eigenvalues up to corrections at
O@") in the limit r — oo.

A suitable choice for the function representing the string state
is the Cornell potential [28]. Since we are modelling the string
breaking region and not the potential at small distances, only the
linear part of the Cornell potential

Virny=Vo+or, (8)

with string tension o, is constrained by our data. Notice that we
assume that the model parameters Ei, Ey, g1 and g in Eq. (7)
are independent of the distance. We will see that this simplest
possible choice models our data very well in the region of string
breaking.

The eigenstates of the Hamiltonian are mixtures of the unbro-
ken string and the two static-light- and two static-strange-meson
states while the eigenvalues of H correspond to the three extracted
energy levels. After diagonalising H, we perform an uncorrelated
six-parameter fit to the spectrum, whose result is shown in Fig. 2.
We find for our fit parameters:

aE1 =0.0019(2),
agy = 0.0154(4),
a’c =0.0229(3),

aE, = 0.0262(6), (9)
ag, = 0.0080(5),
aVo = —0.434(5).

The model in Eq. (7) assumes a three state system. While it
is possible that the physical eigenstates receive contributions from
higher lying states Fig. 2 shows that our data is well-described by
the fit parameters.

We now turn to a quantitative definition of the string break-
ing distance in the Ny =2+ 1 case. To investigate the dependence
of the string breaking distance on the sea quark masses, a ro-
bust definition is needed. By using the asymptotic states of our
model, which for large distances r are given by the diagonal entries

r/fm
1.1 1.2 1.3 1.4

aAE
A°D/ (dag — (4)A)

Fig. 3. Energy gap between ground and first-excited state (AEq(r)), as well as first-
excited and second-excited state (AE,(r)) from the model fit as well as from our
data. The error band and error bars indicate 1o bootstrap errors.

Table 2
Number of bound-state solutions E,; < 0 for bottomonium and charmonium of the
Schrodinger equation.

mq I1=0 I=1 =2 =3 1=4
mp 3 3 2 2 1
me 2 1 1 - _

of our Hamiltonian, we extract two distinct string breaking dis-
tances corresponding to the light and strange mixing phenomenon.
The string breaking distance, r. associated with the formation of
two static-light quarks is given by the crossing distance where
V(r.) = E1 and a corresponding definition can be employed to de-
fine r¢, using V(rcs) = E5. Our calculation yields

re = 19.053(82)a = 1.224(15) fm ,
re, = 20.114(87)a = 1.293(16) fm. (10)

The quoted errors for the physical units take into account the un-
certainty of a =0.06426(76) fm [29].

Fig. 3 shows that the energy gap AE{(r) = V1(r) — Vo(r) be-
tween the ground and first-excited state does not exhibit a mini-
mum, thus making it impossible to use the minimal gap distance
to define r.. It can also be observed that in the string breaking
region, AEq{(r) is twice as large as AE»(r) = Vy(r) — V1(r), the en-
ergy gap between the first-excited and second-excited state.

Only one previous study [6] of string breaking for Ny =2 QCD
on the lattice exists with m; = 640 MeV. However, the differing
definitions and quark content of the vacua mean it is not possible
to make a statement on quark mass dependence. Using the posi-
tion of the minimal energy gap, they find 7. ~ 1.248(13) fm. Even
though in this study the pion mass was relatively heavy, 7. is of
the same order of magnitude as our result and falls between our
values for r¢ and r,.

4.1. Phenomenology

To make a first, simple comparison between our data and
the experimentally observed quarkonium spectrum, we use the
ground-state energy computed from our model Eq. (7) as input
potential in the Schrédinger equation and extract the bound state
energies of quarkonia in the Born-Oppenheimer approximation.
We use input bottom- and charm-quark masses my = 4977 MeV,
me = 1628 MeV from quark models [30,31].
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The number of bottomonium bound states is listed in the first
row of Table 2. We observe three S-wave states in agreement
with the physical spectrum of Y mesons. We do not find bound
states beyond | > 4. For the states closest to the threshold for
each angular momentum, the size of the wave function as de-
termined from the root mean-square radius is between 0.637.
and 0.79r.. We also solved the Schrédinger equation when setting
V(r) = min{or + Vo, 0} and find changes in energies of less than
10 MeV, within the errors from the fit parameters, so the bound-
state spectrum is not sensitive to the width of the mixing region.
The second row of Table 2 shows the number of bound states we
find for charmonium for comparison.

This calculation is only a check that counting the bound states
leads to sensible results. Our model Eq. (7) provides input for
more refined calculations of the coupled-channel scattering of
heavy-light mesons and the decays of quarkonia around thresh-
old.

5. Conclusions

This work presents a first calculation of string breaking with
Nf =2+ 1 dynamical quarks from lattice QCD on a single ensem-
ble with light/strange quark masses that are heavier/lighter than
in nature, corresponding to m; = 280 MeV and mg = 460 MeV.
We compute the three lowest energy levels of a static quark and
anti-quark pair and observe the avoided level crossings due to
pair-creation of light and strange sea quarks. Our main result can
be summarised in the model of Eq. (7) which provides a very
good description of our spectrum, shown in Fig. 2. In particular,
we extract the values of the parameters g; = 47.2(1.4) MeV and
g2 = 24.5(1.6) MeV which describe the mixing between the glu-
onic flux tube and the broken string.

Further analysis to study the dependence of string breaking on
the quark masses is in progress.
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