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3
ID B a(fm) (5" %L mz,mg(MeV) Neont Njy  Ney

a

N401 3.46 0.0763 483 x 128 280,460 2715 2 320
D200 3.55 0.0643 64 x 128 200,480 559 2 448

Table 1: The ensembles used in this calculation [14]. The table specifies the gauge coupling 3, the lattice
constant a [11], the extent of the lattices in lattice units, masses of the pseudoscalar particles, the number
of configurations used in the analysis Nconf, the number of source times NV, and the number of eigenvectors
used in the smearing Ney .

1. Introduction

In this work we present a determination of elastic N7 scattering amplitudes. Since the calcu-
lations are performed using simulations of QCD on a Euclidean lattice a direct determination of
the scattering observables is not possible [1]. A common way to circumvent this problem makes
use of the fact that the discrete, interacting energy levels in a finite spatial volume are shifted from
their non-interacting values by an amount that can be related to the scattering matrix. This relation
was first described for scattering between two identical, spinless particles with total zero momen-
tum by Liischer [2]. This result has since been extended and generalized with advances relevant
for this work found in Refs. [3—-10], allowing scattering studies of increasingly impressive preci-
sion, in particular in the meson-meson sector. When introducing baryons into the calculations one
has to deal with a more severe signal-to-noise problem, increased computational cost and a more
involved analysis dealing with particles with differing spin, so comprehensive studies of resonant
meson-baryon and baryon-baryon scattering are still lacking.

2. Methods

The two gauge field ensembles used in this work were generated by the CLS consortium
[11,12]. Both simulations employ Ny = 2+ 1 dynamical Wilson clover fermions and both have
open boundary conditions in the time direction. All interpolating operators are kept at a minimum
distance of fypg from the boundary, where #,,gm; = 2. The ensemble details are listed in Tab. 1.
Results on the N401 ensemble have been published in Ref. [13].

The required finite volume energy levels are extracted from correlation functions of operators
with A(1232) quantum numbers including Nz-operators. In order to compute correlation functions
of multihadron operators with definite momentum we employ all-to-all quark propagators, which
are efficiently handled with the stochastic LapH method [15]. In this framework, the quark prop-
agator is projected into a lower dimensional subspace constructed from N, eigenvectors of the
stout smeared [16] gauge-covariant 3-D lattice Laplace operator. In this way the color and space
indices of the quark propagator are converted to eigenvector indices. Converting back to color and
space indices results in a spatially smeared quark field that retains all symmetries of the original
unsmeared field.

The quark propagator is stochastically estimated in the LapH subspace spanned by time, spin
and eigenvectors. The number of eigenvectors N, used in the smearing can be seen in Tab. 1. We
use dilution [17, 18] in time, spin and eigenvector indices to reduce the variance of the stochastic
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estimation. The dilution scheme is explained in Ref. [13] for the N401 lattice. Using that notation
the dilution scheme for the D200 data is (TF,SF,LI8)r, (TI8, SF,LI8)g, re-using the solutions to
the Dirac equation from Ref. [19]. To further increase statistics we average over two source times,
all equivalent total momenta P and all irrep rows A.

Two of the practical problems encountered in resonant meson-baryon scattering lattice calcu-
lations are the proliferation of Wick contractions that need to be evaluated and the extra annihilation
type diagrams in correlation functions between single baryon and meson-baryon interpolating oper-
ators. Although not employed in the present work, one way of dealing with the increasing number
of Wick contractions is explained in Ref. [20].

In order to determine as many energy levels as possible the fact that our interpolating oper-
ators have different overlaps on the lowest lying states in the spectrum is exploited [21,22]. In
practice, we calculate the energy spectrum for various total momenta P and in various irreducible
representations A of the little group of P. For each pair of (A,P) of interest a matrix of correla-
tion functions C;;(r) = <(5,-(t)(5'; (0)> is computed for a number of operators projected to the given
irrep and total momentum. The operator basis consists of 1-2 single-site A operators and 2-7 N7
operators depending on the irrep and total momentum. We then solve the generalized eigenvalue
problem (GEVP)

C(td)vn(tdato) = A'n(:(l‘())vl’l(l‘datO)a (21)

and the correlators between “optimal” interpolators for the n’th state can then be found by rotating
the correlator matrix by the eigenvectors:

Cou(t) = (vulto, 1), C(t)va(to, 1a))- (2.2)

We make sure that the extracted energies are stable under variation of f,; and the operator basis.
This optimal correlator is expected to decay exponentially with the energy of the n’th state
with overlap on the operator basis. We now form the quantity

Calt)
Cﬂ'(p%’,n? I)CN(plzv,rﬂt) 7

R,(t) = (2.3)
where Cﬂ(p,zm,t) and CN(pjzvﬂ,t) are the correlators of the interpolating pion and nucleon re-
spectively. For each finite volume level we chose pz, and py, corresponding to a nearby non-
interacting level. R(r) is then expected to decay exponentially with the energy shift from the non-
interacting energies, and thus we fit R(¢) to the ansatz

Ro() = A5 2.4)

and reconstruct the total energy E, from AE, and the measured values of the pion and nucleon
energies.
Given the finite volume energies, elastic 2-to-2 scattering amplitudes can be computed using
the determinant equation
det (1&*1 - B<P>) —0. 2.5)

For a given total momentum P and irreducible representation A of the little group of P, K and
B®) are matrices in total angular momentum J, total orbital angular momentum L, total spin S and
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occurrence number 7. K is related to the usual K-matrix by
p—1 LA+ g1
KL’S’;LS = 4cm KL/S/;L37 (2.6)

and is diagonal in J. The box matrix B encodes the reduced symmetries of the finite volume for a
given irrep. It is a known matrix of functions of E., and is diagonal in S and n but dense in the
other quantum numbers. All B-matrix elements required here are given in Ref. [10].

In this study we are interested in N7-scattering with isospin / = % The most prominent feature
of this system is the p-wave A(1232) resonance (JT = %+ where 1] is the parity), which is the focus
of the rest of this work. The first published lattice calculation of the resonant phase shifts of this
system appeared in Ref. [13], but other preliminary work can be found in Refs. [23-25]. The A-
baryons decay almost exclusively to N7 states [26], so we need only worry about a single open
channel.

In order to numerically evaluate Eq. (2.5) the matrices must be truncated at some Ly,x. Since
the A resonance occurs in N7 scattering with L = 1 setting Ly.x > 1 is required. We check the
impact of the d-wave explicitly by varying Lp,.x from 1 to 2.

In the irreps (A,P?) = {(H,,0),(G2,1),(F1,3),(F,3),(G2,4)} the B-matrix elements corre-
sponding to J = % and/or L = 0 are identical to 0. This means that if L,,x = 1 there is a 1-to-1 cor-
respondence between a measured energy level and a p-wave scattering phase shift. We also measure
the energy spectrum in the irreps (A, P?) = {(Gi,,0), (G14,0), (H,,0), (G1,1),(G,2),(G,3),(G1,4)}.
In these irreps we have to take partial wave mixing into account. However for N7 scattering the
K-matrix is fully diagonal in J and L, so we can write

A

R =diag (R™)y, (K711 (R7)3,), @.7)

2

with subscripts denoting (J/,L), and so only three elements of the K matrix need to be parameter-
ized.

An important limitation of this formalism is that Eq. (2.5) only holds below any relevant
three-particle thresholds. For this system the first such three-particle state is N7, meaning that
any energy above my + 2my is excluded from the scattering analysis.

3. Results

The energies are determined by fitting the optimized correlators to the ansatz in Eq. (2.4)
from some minimum time separation #yj, to a fixed maximum time separation of #,x = 25a. The
value of #,i, is chosen large enough that the statistical error on the fitted energy is larger than the
systematic error from the excited state contamination. We determine 6 and 26 energy levels in the
elastic region on the N401 and D200 ensembles respectively.

The measured energies can now be inserted into Eq. (2.5) to constrain the K-matrix elements.
We do this by parameterizing the elements of the K-matrix and then fitting those parameters using
a correlated x? fit. The residuals of the fitting procedure are taken to be [10]

det(A)

det([u2+AAT]l/2) oy

Qu,A) =
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withA =K' —B® and yu = 5. Since a Breit-Wigner resonance in the J = %Jr p-wave is expected

2 2

o (M E2)\ 6TEe

(K )%11 o (mz B n;n) g my’ (3.2)
T T T

we fit

with the fit parameters ma/my being the resonance mass in units of the pion mass and g which
is related to the resonance width. For assessing s- and d-wave contributions we use a truncated
effective range expansion with just one fit parameter per K-matrix element:

1

JLT 2L+, ’
mzg= djL

(R (J.L) # (3,1).

(3.3)

The results of the fits are shown in Tab. 2. For the N401 ensemble we only measure energies
in the irreps where the p-wave is the lowest contributing partial wave and so make no attempt to
include an s-wave parameterization of the K-matrix. We additionally perform a fit including a d-
wave parameterization and an extra energy level in the (A,P?) = (H,,0), where the d-wave is the
lowest contributing partial wave. Doing this had no significant impact on the p-wave scattering
parameters. On the D200 we also study the impact of including irreps where the s-wave is present.
Tab. 2 shows that this reduces the statistical error on the resonance mass by a factor of 2 compared
to the fit using only p-wave levels and improves the quality of the fit significantly. We also see
that including a d-wave parameterization actually shifts the resonance mass slightly outside of its
statistical error. However, no extra d-wave energy levels were included here since they were all
above the inelastic threshold, and it should also be noted that the x?/d.o.f. is rather low, suggesting
some over fitting.
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Fig. 1 shows the result of the calculation on the D200 lattice. All energies determined and
included in the analysis are shown in the bottom panel while the upper panels show the value of
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lines show the fit to s- and p-wave including all 26 energy levels.
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ID L’s Np o2 g x%/d.of.
N401 1 6 475(5) 19(5) 1.1
N401 1,2 7 473(6) 19(7) 42
D200 1 9  7.2(2) 18(11) 1.7
0,1 26 7.13(9) 11(6) 038
0,1,2 26 6.88(19) 25(17) 0.4

Table 2: Result of the scattering analyses. L’s indicates the partial waves parameterized in the K-matrix, Ng
is the number of energy levels included and the fitting parameters are explained in the text.

4. Conclusion

We have presented a preliminary calculation of N7 scattering phase shifts complementing
already published results [13]. The two ensembles have different my, lattice spacing and physical
volume. Assuming a Breit-Wigner fit-form, we get a good estimate of the J = % p-wave resonance
mass although the width is still not determined precisely. Including energy levels in irreps which
mix partial waves helps to constrain the p-wave scattering parameters despite the mixing. While
we expect the systematic errors from the finite volume and lattice spacing to be small we postpone
a quantitative assessment of these effects. In the future we plan to further increase statistics on both
ensembles using improved estimators with more dilution projectors and more gauge configurations
to obtain more precise constraints on the scattering amplitude parameters.
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