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Calculations of the elastic I = 3
2

nucleon-pion scattering phase shifts on two lattice QCD ensem-

bles with mπ = 200MeV and 280MeV are presented. The ensembles both employ Nf = 2+ 1

Wilson clover fermions. We determine the ∆(1232) resonance parameters from a finite volume

scattering analysis. In one study the single partial wave simplification is employed to compute

the p-wave amplitude while in the other we treat the partial wave mixing between s- and p-wave

contributions. Fitting our data to a Breit-Wigner resonance model we find m∆/mπ = 7.13(9) and

4.75(5) on the two ensembles respectively, showing that for a lighter quark mass the resonance

mass moves from near the Nπ threshold to near the Nππ threshold, in agreement with experiment.
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ID β a(fm)
(

L
a

)3
× T

a
mπ ,mK(MeV) Nconf Nt0 Nev

N401 3.46 0.0763 483 ×128 280,460 275 2 320

D200 3.55 0.0643 643 ×128 200,480 559 2 448

Table 1: The ensembles used in this calculation [14]. The table specifies the gauge coupling β , the lattice

constant a [11], the extent of the lattices in lattice units, masses of the pseudoscalar particles, the number

of configurations used in the analysis Nconf, the number of source times Nt0 and the number of eigenvectors

used in the smearing Nev.

1. Introduction

In this work we present a determination of elastic Nπ scattering amplitudes. Since the calcu-

lations are performed using simulations of QCD on a Euclidean lattice a direct determination of

the scattering observables is not possible [1]. A common way to circumvent this problem makes

use of the fact that the discrete, interacting energy levels in a finite spatial volume are shifted from

their non-interacting values by an amount that can be related to the scattering matrix. This relation

was first described for scattering between two identical, spinless particles with total zero momen-

tum by Lüscher [2]. This result has since been extended and generalized with advances relevant

for this work found in Refs. [3–10], allowing scattering studies of increasingly impressive preci-

sion, in particular in the meson-meson sector. When introducing baryons into the calculations one

has to deal with a more severe signal-to-noise problem, increased computational cost and a more

involved analysis dealing with particles with differing spin, so comprehensive studies of resonant

meson-baryon and baryon-baryon scattering are still lacking.

2. Methods

The two gauge field ensembles used in this work were generated by the CLS consortium

[11, 12]. Both simulations employ Nf = 2+ 1 dynamical Wilson clover fermions and both have

open boundary conditions in the time direction. All interpolating operators are kept at a minimum

distance of tbnd from the boundary, where tbndmπ = 2. The ensemble details are listed in Tab. 1.

Results on the N401 ensemble have been published in Ref. [13].

The required finite volume energy levels are extracted from correlation functions of operators

with ∆(1232) quantum numbers including Nπ-operators. In order to compute correlation functions

of multihadron operators with definite momentum we employ all-to-all quark propagators, which

are efficiently handled with the stochastic LapH method [15]. In this framework, the quark prop-

agator is projected into a lower dimensional subspace constructed from Nev eigenvectors of the

stout smeared [16] gauge-covariant 3-D lattice Laplace operator. In this way the color and space

indices of the quark propagator are converted to eigenvector indices. Converting back to color and

space indices results in a spatially smeared quark field that retains all symmetries of the original

unsmeared field.

The quark propagator is stochastically estimated in the LapH subspace spanned by time, spin

and eigenvectors. The number of eigenvectors Nev used in the smearing can be seen in Tab. 1. We

use dilution [17, 18] in time, spin and eigenvector indices to reduce the variance of the stochastic
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estimation. The dilution scheme is explained in Ref. [13] for the N401 lattice. Using that notation

the dilution scheme for the D200 data is (TF,SF,LI8)F , (TI8,SF,LI8)R, re-using the solutions to

the Dirac equation from Ref. [19]. To further increase statistics we average over two source times,

all equivalent total momenta P and all irrep rows λ .

Two of the practical problems encountered in resonant meson-baryon scattering lattice calcu-

lations are the proliferation of Wick contractions that need to be evaluated and the extra annihilation

type diagrams in correlation functions between single baryon and meson-baryon interpolating oper-

ators. Although not employed in the present work, one way of dealing with the increasing number

of Wick contractions is explained in Ref. [20].

In order to determine as many energy levels as possible the fact that our interpolating oper-

ators have different overlaps on the lowest lying states in the spectrum is exploited [21, 22]. In

practice, we calculate the energy spectrum for various total momenta P and in various irreducible

representations Λ of the little group of P. For each pair of (Λ,P) of interest a matrix of correla-

tion functions Ci j(t) =
〈

Ôi(t)Ô
†
j(0)

〉

is computed for a number of operators projected to the given

irrep and total momentum. The operator basis consists of 1-2 single-site ∆ operators and 2-7 Nπ

operators depending on the irrep and total momentum. We then solve the generalized eigenvalue

problem (GEVP)

C(td)vn(td , t0) = λnC(t0)vn(td , t0), (2.1)

and the correlators between “optimal” interpolators for the n’th state can then be found by rotating

the correlator matrix by the eigenvectors:

Ĉn(t) = (vn(t0, td),C(t)vn(t0, td)). (2.2)

We make sure that the extracted energies are stable under variation of t0, td and the operator basis.

This optimal correlator is expected to decay exponentially with the energy of the n’th state

with overlap on the operator basis. We now form the quantity

Rn(t) =
Ĉn(t)

Cπ(p2
π,n, t)CN(p2

N,n, t)
, (2.3)

where Cπ(p
2
π,n, t) and CN(p

2
N,n, t) are the correlators of the interpolating pion and nucleon re-

spectively. For each finite volume level we chose pπ,n and pN,n corresponding to a nearby non-

interacting level. R(t) is then expected to decay exponentially with the energy shift from the non-

interacting energies, and thus we fit R(t) to the ansatz

Rn(t) = Ae−∆Ent , (2.4)

and reconstruct the total energy En from ∆En and the measured values of the pion and nucleon

energies.

Given the finite volume energies, elastic 2-to-2 scattering amplitudes can be computed using

the determinant equation

det
(

K̂−1 −B(P)
)

= 0. (2.5)

For a given total momentum P and irreducible representation Λ of the little group of P, K̂ and

B(P) are matrices in total angular momentum J, total orbital angular momentum L, total spin S and
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occurrence number n. K̂ is related to the usual K-matrix by

K̂−1
L′S′;LS = qL+L′+1

cm K−1
L′S′;LS, (2.6)

and is diagonal in J. The box matrix B encodes the reduced symmetries of the finite volume for a

given irrep. It is a known matrix of functions of Ecm and is diagonal in S and n but dense in the

other quantum numbers. All B-matrix elements required here are given in Ref. [10].

In this study we are interested in Nπ-scattering with isospin I = 3
2
. The most prominent feature

of this system is the p-wave ∆(1232) resonance (Jη = 3
2

+
where η is the parity), which is the focus

of the rest of this work. The first published lattice calculation of the resonant phase shifts of this

system appeared in Ref. [13], but other preliminary work can be found in Refs. [23–25]. The ∆-

baryons decay almost exclusively to Nπ states [26], so we need only worry about a single open

channel.

In order to numerically evaluate Eq. (2.5) the matrices must be truncated at some Lmax. Since

the ∆ resonance occurs in Nπ scattering with L = 1 setting Lmax ≥ 1 is required. We check the

impact of the d-wave explicitly by varying Lmax from 1 to 2.

In the irreps (Λ,P2) = {(Hg,0),(G2,1),(F1,3),(F2,3),(G2,4)} the B-matrix elements corre-

sponding to J = 1
2

and/or L = 0 are identical to 0. This means that if Lmax = 1 there is a 1-to-1 cor-

respondence between a measured energy level and a p-wave scattering phase shift. We also measure

the energy spectrum in the irreps (Λ,P2)= {(G1g,0),(G1u,0),(Hu,0),(G1,1),(G,2),(G,3),(G1,4)}.

In these irreps we have to take partial wave mixing into account. However for Nπ scattering the

K̂-matrix is fully diagonal in J and L, so we can write

K̂−1 = diag
(

(K̂−1) 1
2
,0, (K̂

−1) 1
2
,1, (K̂

−1) 3
2
,1

)

, (2.7)

with subscripts denoting (J,L), and so only three elements of the K̂ matrix need to be parameter-

ized.

An important limitation of this formalism is that Eq. (2.5) only holds below any relevant

three-particle thresholds. For this system the first such three-particle state is Nππ , meaning that

any energy above mN +2mπ is excluded from the scattering analysis.

3. Results

The energies are determined by fitting the optimized correlators to the ansatz in Eq. (2.4)

from some minimum time separation tmin to a fixed maximum time separation of tmax = 25a. The

value of tmin is chosen large enough that the statistical error on the fitted energy is larger than the

systematic error from the excited state contamination. We determine 6 and 26 energy levels in the

elastic region on the N401 and D200 ensembles respectively.

The measured energies can now be inserted into Eq. (2.5) to constrain the K̂-matrix elements.

We do this by parameterizing the elements of the K̂-matrix and then fitting those parameters using

a correlated χ2 fit. The residuals of the fitting procedure are taken to be [10]

Ω(µ,A) =
det(A)

det
(

[µ2 +AA†]
1/2

) (3.1)
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ID L’s NE
m∆

mπ
g χ2/d.o.f.

N401 1 6 4.75(5) 19(5) 1.1

N401 1,2 7 4.73(6) 19(7) 4.2

D200 1 9 7.2(2) 18(11) 1.7

0,1 26 7.13(9) 11(6) 0.8

0,1,2 26 6.88(19) 25(17) 0.4

Table 2: Result of the scattering analyses. L’s indicates the partial waves parameterized in the K̂-matrix, NE

is the number of energy levels included and the fitting parameters are explained in the text.

4. Conclusion

We have presented a preliminary calculation of Nπ scattering phase shifts complementing

already published results [13]. The two ensembles have different mπ , lattice spacing and physical

volume. Assuming a Breit-Wigner fit-form, we get a good estimate of the J = 3
2

p-wave resonance

mass although the width is still not determined precisely. Including energy levels in irreps which

mix partial waves helps to constrain the p-wave scattering parameters despite the mixing. While

we expect the systematic errors from the finite volume and lattice spacing to be small we postpone

a quantitative assessment of these effects. In the future we plan to further increase statistics on both

ensembles using improved estimators with more dilution projectors and more gauge configurations

to obtain more precise constraints on the scattering amplitude parameters.
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