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Abstract. Lattice QCD allows us to probe the low-lying hadron spectrum in finite-volume using a basis of single- and multi-

hadron interpolating operators. Here we examine the effect of including tetraquark operators on the spectrum in the scalar meson

sectors containing the K∗
0 (700) (κ) and the a0(980) in N f = 2+ 1 QCD, with mπ ≈ 230 MeV. Preliminary results of additional

finite-volume states found using tetraquark operators are shown, and possible implications of these states are discussed.

INTRODUCTION

It has been suggested that the light scalar mesons K∗
0 (700) (here referred to as the κ) and a0(980) could have tetraquark

content [1, 2, 3, 4]. To date, there have been a small number of studies investigating tetraquarks on the lattice using

light quarks. In 2010, Prelovsek et al. investigated the σ and κ as possible tetraquark candidates, but neglected discon-

nected diagrams in their calculations [5]. Using tetraquark interpolators, they found an additional light state in both

the σ and κ channels. In 2013, the ETM collaboration examined the a0(980) and κ using four-quark operators [6],

though they also neglected disconnected diagrams in their calculations. They found no evidence of an additional state

that can be interpreted as a tetraquark. In 2018, Alexandrou et al. conducted a study of the a0(980) with four-quark

operators [7], including disconnected contributions. In their study, they found an additional finite-volume state in the

sector containing the a0(980) meson, which couples to a diquark-antidiquark interpolating field. Additionally, they

conclude that disconnected diagrams have drastic effects on their results, and thus cannot be neglected.

Here we investigate the possible role of tetraquark operators in lattice QCD in the symmetry channels of the κ
(I = 1

2
, S = 1, P = +1, J = 0) and a0(980) (I = 1, S = 0, P = +1, G = −1, J = 0). We perform Monte Carlo

calculations using 412 gauge field configurations on an anisotropic ( as
at

≈ 3.451) lattice of size 323 × 256, with a

length of 3.74 fm and a pion mass of approximately 230 MeV. We extract two spectra in each symmetry channel: one

using a basis of only single- and two-meson operators, and one using a basis that also includes a tetraquark operator

selected from hundreds of tetraquark operators which were tested. We find that including a tetraquark operator yields

an additional finite-volume state in each symmetry channel. In this work, we use the stochastic LapH method [8] to

evaluate all diagrams in our calculations, including all disconnected contributions.

SPECTROSCOPY IN LATTICE QCD

We obtain our finite-volume QCD spectra by calculating discretized path integrals in Euclidean spacetime. Consider

an operator O(t) that acts on the vacuum state |0〉, creating a state at time t, and a corresponding operator O(t) that

annihilates such a state at time t. In imaginary time, we can in principle extract the energy spectrum from the following

time-ordered correlation function,

〈0|T O(t + t0)O(t0) |0〉= ∑
n

〈0|O(0) |n〉〈n|O(0) |0〉e−Ent , (1)

where |n〉 is the nth ordered energy eigenstate of the theory corresponding to energy En, and we have shifted the

vacuum energy E0 to be zero. (Henceforth, E0 will refer to the ground state energy in each symmetry sector.)
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Expectation values in Euclidean spacetime can be calculated using a path integral over all quark fields ψ , ψ , and

all link variables representing the gauge fields, U :

〈O〉=
1

Z

∫

D [ψ,ψ ,U ] O e−S[ψ,ψ,U ],

Z =
∫

D [ψ ,ψ,U ] e−S[ψ ,ψ,U ].
(2)

In order to evaluate these integrals on the lattice, we discretize spacetime in the above integral and carefully design

operators that create states having nonzero overlap with the states of interest. We analytically integrate out the quark

fields, and use Monte Carlo methods to integrate over the link variables, using gauge field configurations generated

by the Hadron Spectrum Collaboration [9, 10, 11].

By calculating Eq. (1) on the lattice, we can, in practice, only fit the lowest one or two energies. At small t, there is

a high signal-to-noise ratio in the Monte Carlo determination of the correlator, but there are many excited states that

contribute. It would be better if we could devise a way to extract more than just the lowest one or two states. In order

to do this, we construct an N ×N matrix of correlators,

Ci j(t)≡ 〈0|TOi (t + t0)O j(t) |0〉 , (3)

using a large basis of single- and multi-hadron interpolating operators. As a preliminary step, we rescale Eq. (3) in

order to compensate for varying normalizations between the different operators:

Ci j(t)≡
Ci j(t)

√

Cii (τN)C j j (τN)
, (4)

where the normalization time τN is taken at some early time, e.g. τN < 4. We will also assume that for sufficiently

large t, and for sufficiently small Z
(n)
i ≡ 〈0|Oi |n〉, we can well approximate the correlation matrix by,

Ci j(t)≈
N−1

∑
n=0

Z
(n)
i Z

(n)∗
j e−Ent . (5)

With our truncated C(t), we then solve the following generalized eigenvalue problem:

C(t)vn (t,τ0) = λn (t,τ0)C (τ0)vn (t,τ0) , t > τ0. (6)

It is shown in Ref. [12] that for τ0 ≥ t/2,

λn (t,τ0) = e−En(t−τ0)
(

1+O

(

e−(EN−En)t
))

. (7)

(In practice, we find that the condition τ0 ≥ t/2 is not strictly necessary.) We can therefore fit the lowest N energies

of the spectrum by fitting λn(t) to single- or two-exponentials. In practice, the excited state contamination in λ (t,τ0)
scales such that it is prudent to discard the highest few levels, or rather, to use more operators in the basis than levels

we wish to determine.

OPERATOR CONSTRUCTION

In our operator bases, we include single- and two- meson operators, as well as tetraquark operators. We make use of

smeared, gauge-covariantly displaced quark fields, and stout-smeared link variables (introduced in Ref. [13]) in our

operator construction. For example, an elemental meson operator of definite-momentum p at time t can be written as

follows,

ΦAB
αβ ;i jk(p, t) = ∑

x

e−ip·(x+ 1
2 (dα+dβ ))δabqA

aαi(x, t)q
B
bβ jk(x, t), (8)

where capital Latin indices denote flavor, lowercase Latin a and b denote color, Greek indices are Dirac spin, and

lowercase Latin i, j, k, denote quark displacement. The vectors dα and dβ are quark displacement vectors, and are
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present to ensure proper transformation under G-parity. To form the final operators out of our elemental operators,

we project the elemental operators onto various symmetry channels according to isospin, parity, G-parity, octahedral

little group, etc. That is, to form a meson operator Ml(t) that transforms irreducibly under all symmetries of interest

(labeled by the compound index l) at time t, we must take a linear combination of our elemental meson operators,

Ml(t) = c
(l)
αβ

ΦAB
αβ (p, t). To form a two-meson operator Ol(t), we would follow a similar procedure and project the

product of two final meson operators Ma
la
(t)Mb

la
(t) onto a final symmetry channel l: Ol(t) = c

(l)
lalb

Ma
la
(t)Mb

la
(t).

In order to construct a tetraquark operator, we must consider the various ways to construct a color-singlet four-quark

object out of four quark fields. As seen in Ref. [14], the Clebsch-Gordon decompositions show that the only way to

construct a color-singlet is by using two quarks and two antiquarks, and that doing so yields two linearly independent

color singlet objects:

3⊗3⊗3⊗3 = 3⊕3⊕3⊕6⊕6⊕15⊕15⊕15⊕15,
3⊗3⊗3⊗3 = 3⊕3⊕3⊕6⊕6⊕6⊕15⊕15⊕24,
3⊗3⊗3⊗3 = 1⊕1⊕8⊕8⊕8⊕8⊕10⊕10⊕27.

(9)

There are 81 basis vectors formed by the quark fields, p∗α(x)q
∗
β (x)rγ(x)sµ(x), where each r, s transforms as a color

vector in the fundamental 3 irrep, and so, p∗, q∗ transform in the 3 irrep. We need two linearly independent and

gauge-invariant combinations of these to exhaust all possible tetraquark operators. It is easy to see that the following

combinations are both linearly independent and gauge-invariant (and thus form our elemental tetraquark operators):

TS =
(

δαγ δβ µ +δαµ δβγ

)

p∗α(x)q
∗
β (x)rγ(x)sµ(x)

TA =
(

δαγ δβ µ −δαµ δβγ

)

p∗α(x)q
∗
β (x)rγ(x)sµ(x).

(10)

These elemental tetraquark operators are combinations of two gauge-invariant quark-antiquark constituents. The indi-

vidual constituents are not mesons since they separately do not have well-defined quantum numbers. In other words,

we project the entire elemental tetraquark operator onto relevant symmetry channels, rather than each individual

quark-antiquark operator.

While we chose only a handful of tetraquark operators for our final analysis, we designed hundreds of operators

with differing flavor structures and displacements. We tested these operators by individually adding them to a basis

of single- and multi-meson operators to see if an additional level was found. Most of the operators did not yield an

additional level, but we found particular operators that did. In the κ channel, we tested the following flavor structures:

suss, suuu, sudu. We found that only operators with the suss flavor structure yielded an additional finite-volume state.

We tested both single-site and quadruple displacements, and found operators of both types that yielded additional

finite-volume states. The quadruply-displaced operators came at a higher computational cost and offered no improve-

ments, and so were excluded from the final operator sets. In the a0(980) channel, we tested the following flavor

structures: uudu, ssdu, dudu. We found that only operators with the uudu flavor structure yielded an additional finite-

volume state. We only tested single-site operators in the a0(980) channel, after finding no improvement with other

displacement types in the κ channel. We also constructed operator bases that included several tetraquark operators,

and found that the number of additional levels in the energy range we examined was unchanged.

LATTICE SPECTRA RESULTS (PRELIMINARY)

κ Channel

We summarize results obtained by fitting a spectrum in the κ at-rest symmetry channel for two operator bases: one

including only single-meson and two-meson operators, and one including single-meson, two-meson, and tetraquark

operators. Figure 1 shows the spectrum with and without the inclusion of a tetraquark operator in the basis. The

tetraquark operator is of the flavor structure suss, is of the antisymmetric form in Eq. (10), and has no quark displace-

ment. We found that single-site (dα = dβ = 0) tetraquark operators resulted in better (less noisy) correlator signals

than displaced operators. We see that including a tetraquark operator yields an additional finite-volume state in the

range of (2.178−2.256)mK , which is not present when only single- and two-meson operators are used. Additionally,

a plot of the overlap factors for the tetraquark operator (Figure 2) shows significant overlap onto this extra state (level

3 in the plot). This suggests that there is a finite-volume state in our lattice spectrum that shares quantum numbers
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FIGURE 1. The first five and six levels of the spectrum in the κ at-rest symmetry channel. On the left: the spectrum obtained

using a basis with no tetraquark operators. In the middle: the spectrum obtained using one tetraquark operator. On the right:

non-interacting levels shown for reference, where (d2) denotes particles with squared momentum (2πd/L)2.

0 2 4 6 8

Level number n

0

0.1

0.2

0.3

0.4

0.5

Z
(n

)
2

FIGURE 2. The overlap factors for the tetraquark operator used to produce the extra level in the κ symmetry channel.

with the κ resonance, and that has tetraquark content. Whether or not this is evidence of the κ resonance having

tetraquark content, however, will have to wait for future scattering studies using Lüscher’s method.

a0(980) Channel

We summarize results obtained by fitting a spectrum in the a0(980) at-rest symmetry channel for again for two operator

bases as in the κ channel. Figure 3 shows the spectrum with and without the inclusion of a tetraquark operator in the
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FIGURE 3. The first six and seven levels of the spectrum in the a0(980) at-rest symmetry channel. On the left: the spectrum

obtained using a basis with no tetraquark operators. In the middle: the spectrum obtained using one tetraquark operator. On the

right: non-interacting levels shown for reference, where (d2) denotes particles with squared momentum (2πd/L)2.
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FIGURE 4. The overlap factors for the tetraquark operator used to produce the extra level in the a0(980) symmetry channel.

basis. The tetraquark operator is of the flavor structure uudu, is also of the antisymmetric form in (10), and again

has no quark displacement. We again found that using single-site tetraquark operators resulted in better correlator

signals than displaced operators. We see an extra level appear in the range of (2.258− 2.426)mK when we include

a tetraquark operator. Again, overlap factors are shown for the tetraquark operator, and significant overlaps with the

additional level (level 3) can be seen in Figure 4. This suggests there is a finite-volume state in our lattice spectrum

that shares quantum numbers with the a0(980) resonance, and that has tetraquark content. As in the κ-channel case,

evidence for or against the a0(980) having tetraquark content will have to wait for future scattering studies done by

applying Lüscher’s method.
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CONCLUSIONS

We have presented results detailing the effect of including tetraquark operators on determining the lattice spectrum in

each of the κ and a0(980) symmetry channels of N f = 2+ 1 QCD with mπ ≈ 230 MeV. We find that the inclusion

of a tetraquark operator in the κ channel yields an additional finite-volume state in the range of (2.178− 2.256)mK ,

and the inclusion of a tetraquark operator in the a0(980) channel yields an additional finite-volume state in the range

of (2.258− 2.426)mK . To address the issue of tetraquark content of the κ and a0(980) resonances, future studies

employing Lüscher’s method will be required.
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