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Abstract. Lattice calculations allow us to probe the low-lying, non-perturbative spectrum of QCD using first principles numerical

methods. Here we present the low-lying spectrum in the scalar sector with vacuum quantum numbers including, in fully dynamical

QCD for the first time, the mixing between glueball, q-qbar, and meson-meson operators.

INTRODUCTION

The three-gluon and four-gluon coupling terms in the QCD Lagrangian suggest the existence of composite states

consisting solely of gluons, called glueballs. Such states are of great interest especially as they are distinct from the

prototypical qq and qqq hadronic states predicted by constituent quark models. However, incontrovertible experimen-

tal evidence for their existence remains elusive. There are several leading candidates for the lightest scalar glueball,

including the f0(1370), f0(1500), and f0(1710) states, yet none have been unambiguously identified as a glueball

state [1]. To identify which of the three is most likely a glueball or gluon-dominated state, model independent, first

principles lattice calculations are required.

The glueball spectrum in pure Yang-Mills gauge theory has been extensively mapped out [2, 3, 4]. The lowest-lying

scalar and tensor glueballs have previously been studied in quenched QCD, but the quenched approximation makes

such studies unreliable. For the scalar glueball, quenched calculations yield a glueball mass in the range 1.5−1.7 GeV.

More recent studies which have included the effects of sea quarks on glueballs [5, 6, 7, 8, 9, 10], largely agree with

one another and with the quenched calculations in the scalar, and tensor sectors, but such studies have not included

meson-meson operators.

As the candidate glueball states lie well above many hadron thresholds, the inclusion of glueball, qq, and meson-

meson operators is crucial for making any definitive conclusions about the nature, or even existence of such glue-

ball states. Furthermore, as these states in infinite-volume manifest as unstable resonances, forming any infinite-

volume conclusions will require the determination of coupled channel infinite-volume scattering amplitudes from

finite-volume energies. Here we present the low-lying finite-volume spectrum from Ref. [11] in the scalar sector with

vacuum quantum numbers, where glueball, qq, and meson-meson operators have been included for the first time in

lattice QCD.

ANALYSIS DETAILS

Temporal correlation functions involving glueball operators are notoriously difficult to measure in lattice QCD, requir-

ing prohibitively large computational resources to achieve even modest statistical precision. In the scalar sector the

signal-to-noise ratio for such observables falls extremely rapidly with increasing separation between source and sink,

as the relevant interpolating operators have large vacuum expectation values. This prohibits the lattice from being too

large, as the magnitude of these vacuum fluctuations will scale with the lattice volume. On the other hand, due to

the large masses of these states, lattice studies of glueballs require very fine temporal lattice spacings so that a reli-

able signal can be measured. As both of these considerations have a significant effect on the required computational

resources, we employ an anisotropic lattice that is spatially coarse and temporally fine [12].

We use a single anisotropic ensemble of N f = 2+ 1 clover-improved Wilson fermions with mπ ≈ 390 MeV, gen-

erated by the Hadron Spectrum collaboration [13, 14]. Various ensemble parameters are listed in table I. Throughout
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TABLE I. Details of the anisotropic ensemble used in the scalar glueball study. The anisotropy ξ = as/at has been determined by

enforcing the relativistic dispersion relation for the pion, though the value is insensitive to the hadron used.

(L/as)
3 × (T/at) Ncfgs as ξπ atmπ atmK mπ L

243 ×128 551 0.12 fm 3.4464(71) 0.06901(17) 0.09689(15) 5.7

we will quote energies as dimensionless ratios using a reference mass: mref = 2mK where mK is the kaon mass.

Correlation Matrix Analysis

Finite-volume stationary state energies are extracted from the matrix of temporal correlation functions, Ci j(t) =

〈0|Oi(t)O j(0)|0〉, for which all-to-all quark propagation is evaluated using the stochastic LapH method [15]. To

extract the finite-volume energies En, and operator overlap factors Zn
j ≡ 〈0|O j|n〉, we solve the generalized eigenvalue

problem [16]

C(t)vn(t,τ0) = λn(t,τ0)C(τ0)vn(t,τ0), (1)

where CAB(t) ≡ CAA(τN)
−1/2CAB(t)CBB(τN)

−1/2 is the normalized correlation matrix, with normalization time τN ,

and τ0 is referred to as the metric time. To do this, we define the “rotated” correlation matrix by

D̃(t)≡U†C(τ0)
−1/2C(t)C(τ0)

−1/2U, (2)

where the matrix U is formed using the eigenvectors of C(τ0)
−1/2C(τD)C(τ0)

−1/2, for a single choice of the metric

and diagonalization times (τ0,τD). By diagonalizing only for a single time separation τD, we avoid diagonalizing

the correlation matrix for late times where significantly increased statistical noise can lead to a significant bias in

the final results. The diagonal elements of D̃(t) can then be shown to tend to, in the limit of large time separations,

λn(t) ∝ e−Ent [17]. Then we can use single- and multi-exponential (to account for excited state contamination) fits to

the diagonal elements of D̃(t) to determine the energies En and overlaps |Zn
j |

2.

The basis of single- and two-hadron interpolating operators used is constructed to overlap maximally with the states

of interest as described in Ref. [18], including the so-called TrLapH scalar glueball operator constructed using the

eigenvalues of the covariant Laplacian:

OG ≡−Tr[Θ(σ2
s + ∆̃)∆̃]. (3)

The operator basis is chosen so as to saturate the spectrum of single- and two-particle stationary states below ≈ 2mref.

Along with conventional isoscalar qq single-hadron operators and a scalar glueball operator, we include ππ , ηη , and

KK̄ two-hadron operators with various definite back-to-back momenta for each of the allowed two-body decays in the

sector.

As we are concerned with states that share quantum numbers with the vacuum, interpolating operators designed to

transform irreducibly in the at-rest A+
1g irrep (where g and + denote positive spatial parity and G-parity, respectively)

are expected to have non-zero vacuum expectation values (VEVs). These VEVs must be subtracted in order to extract

the signal of interest:

Ci j(t)→ 〈0|Oi(t)O j(0)|0〉−〈0|Oi|0〉〈0|O j|0〉. (4)

For correlation functions featuring the scalar glueball operator, this subtraction presents some additional difficulty.

Even in the moderately sized volume employed here, the magnitude of 〈0|OG|0〉 is very large, and statistically very

noisy. The large uncertainties that manifest on the inclusion of the scalar glueball operator in the operator basis

requires us to use quite aggressive noise reduction techniques in order to reliably extract a signal.

Symmetry arguments based on the behaviour of our operators under time reversal, etc. tell us that the correlation

matrices here must be both real and symmetric. In practice however, stochastic estimates of ImCi j(t) will only be

statistically consistent with zero rather than exactly zero. This poses a problem when we include the scalar glueball

operator in our correlation matrix. See for example the matrix element Im〈0|OGOπ(2)π(2)|0〉 shown in fig. 1. The

mean value is systematically shifted away from zero, hinting at the difficulty in accurately estimating the large VEVs
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FIGURE 1. ImCAB(t) for three normalized matrix elements including the scalar glueball operator. Each element has been nor-

malized using CAB(t)≡ CAA(τN)
−1/2CAB(t)CBB(τN)

−1/2 where Ci j(t) = 〈0|Oi(t)O j(0)|0〉, and τN = 3.
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FIGURE 2. ReCAB(t) for three normalized matrix elements including the scalar glueball operator and a vector-vector two-hadron

operator. Each element has been normalized using CAB(t) ≡ CAA(τN)
−1/2CAB(t)CBB(τN)

−1/2 where Ci j(t) = 〈0|Oi(t)O j(0)|0〉,
and τN = 3.

for the scalar glueball operator. We find that in order to maintain a strictly positive definite correlation matrix when the

basis includes the scalar glueball operator, we must explicitly set the imaginary components of the correlation matrix

to be zero. We find that when the glueball operator is omitted, the finite-volume spectrum extracted is unaffected by

setting ImCi j = 0.

The significant statistical noise present in the VEV-subtracted correlators presents additional difficulty when we

consider the “single-pivot” method in eq. (2). As we perform the diagonalization on only the full sample estimate

of the correlation matrix (i.e. the matrix U), significant statistical noise in the matrix elements can introduce a bias.

Usually this is easily avoided by choosing early diagonalization times for which statistical noise is minimized, however

the significant increase in noise, even at very early time separations, in the presence of the glueball operator can have

a drastic effect on the pivot. This is shown in the 〈0|OGOVV |0〉 elements in fig. 2, where OVV is a vector-vector

two-hadron operator. We found that a significant bias in the pivot could be mitigated by setting these elements that

are statistically consistent with zero to be exactly zero in our analysis.

SPECTRUM RESULTS

Our main goal is to discover if any finite-volume states below 2mref in the vacuum sector are missed when no glueball

operators are included. We assume that our operators couple minimally to states involving three or more hadrons. First

we will consider the finite-volume spectrum determined using a basis of interpolating operators excluding the scalar
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FIGURE 3. Finite-volume energies in the I = 0, S = 0, A+
1g channel for levels with significant overlap onto states produced only by

quark-antiquark operators. A 4×4 correlation matrix including only qq operators is used to extract these levels. 1σ uncertainties

are denoted by the box heights. Levels are coloured indicating the operator flavour type with maximal overlap onto that state. The

horizontal dashed black line indicates the 4π threshold, and mref = 2mK . These energies do not change appreciably when other qq

operators are included in a larger correlation matrix with meson-meson operators and the glueball operator.

glueball operator. We begin by including a two-hadron (meson-meson) operator for each expected non-interacting

level, adding additional operators with various flavor, spin, etc. structure until no new finite-volume levels are found

below ∼ 2mref. Single-hadron qq operators are chosen in a similar way, including one of each isoscalar flavor structure:

(uu+dd, ss) with various spatial displacements until no new states are seen in the energy region of interest. We find

only two such finite-volume states below 2mref using qq operators, shown in fig. 3. Hence, we need only include two

of these operators in the final operator set, one of each flavor structure. This has also been confirmed by including

additional qq interpolating operators in the final operator set and observing no deviation of the finite-volume spectrum

below 2mref.

The finite-volume spectrum extracted using an operator basis excluding the glueball operator is shown on the

left in fig. 4. The significant statistical noise present in many of the operators used here necessitates rather early

GEVP metric and diagonalization times of (τ0,τD) = (3,6), though we have used various combinations of τ0 = 3,4,

τD = 4,5,6,7,8 in order to ensure the spectrum does not change. With these choices the correlation matrices remain

well conditioned, having condition numbers < 10 at τ0 and τD. We also ensure that the off-diagonal elements of

D̃(t) remain statistically consistent with zero for t > τD. We then include the scalar glueball operator in the basis and

extract the finite-volume spectrum as above using (τ0,τD) = (3,6), shown on the right in fig. 4.

Looking first at the states below 4π in fig. 4, indicated by the horizontal dashed line, with the exception of some

increased statistical noise, the spectrum below 4π is insensitive to the addition of the glueball operator. The overlap

factors in fig. 5 show minimal mixing in this region and so level identification is relatively straightforward and is

indicated by the colouring of the energy levels. As level 0 is predominantly created by the (uu+dd) quark-antiquark

operator, along with the glueball operator, we can interpret this state as the finite-volume counterpart of the σ reso-

nance. This is consistent with the ππ scattering study of Ref. [19] where a bound state σ meson is found below the

ππ threshold. Similarly, from figs. 4(b) and 4(f), levels 1 and 2 are created by the π(0)π(0) and ss quark-antiquark

operators, respectively, where the integers indicate the square of the hadron momentum, in units of 2π/L. As level

2 is predominantly created by a qq interpolating operator, we identify level 2 as the finite-volume counterpart of the

f0(980) resonance, just above the KK̄ threshold.

Above the 4π threshold, we can assess the effect that including the glueball operator has on the finite-volume

spectrum. Note that these levels in fig. 4 have been reordered slightly. From fig. 5(k-m) we can identify the rightmost

three levels as being predominantly created by the vector-vector ω(0)ω(0), ρ(0)ρ(0), and ρ(1)ρ(1) operators. With

the exception of an increase in statistical noise, these levels are largely unaffected by the inclusion of the glueball
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FIGURE 4. Finite-volume stationary state energies in the I = 0, S = 0, A+
1g channel extracted using a 12×12 correlation matrix,

excluding the scalar glueball operator on the left, and using a 13×13 correlation matrix including the scalar glueball operator on the

right. 1σ uncertainties are denoted by the box heights. If a level is created predominantly by a single operator, the level is colored

to indicate the flavor content of that operator. If a level is created predominantly by more than one operator, a hatched box is used

to denote the presence of operator overlaps within 75% of the maximum, indicating significant mixing. Level numbers indicate

order in terms of increasing mean energy, but the levels have been rearranged horizontally to highlight the area of interest involving

the glueball operator. Note that these finite-volume energies should not be directly compared to the spectrum of experimental

resonance states, in particular the two-hadron dominated levels. See text for further discussion. Short black lines indicate the

non-interacting two-hadron levels, and the dashed horizontal black line indicates the 4π threshold, and mref = 2mK .

operator. The same can be said for levels 6 and 8 (as numbered on the right-hand side of fig. 4), identifiable as being

created dominantly by the η(0)η(0) and η(1)η(1) type operators, respectively. Note however the significant shift of

these levels from the corresponding non-interacting values, especially when compared to the shifts seen in the lower

lying levels.

The remaining states, where the effect of the glueball operator is seen the most, are highlighted by the vertical

dashed lines. Figure 5(a) shows that the glueball operator mainly creates levels 0, 7, and 12. Remarkably, a new state

is not created near 1.5-1.7mref. When the glueball operator is included, there are two effects: the uncertainty in level

7 is greatly increased and an additional state appears at a very high energy. Based on both fig. 5(d) and the overlap

factors when the glueball operator is excluded, we can identify level 7 as being dominantly created by π(2)π(2).
When the glueball operator is included, it has significant overlap with this state. More notable is that the additional

state we extract with the enlarged operator basis lies above all other extracted states in fig. 4. This indicates that we

have saturated the spectrum of single and two-particle states in this region without a glueball operator. Hence, we

identify no finite-volume energy eigenstate predominantly created by a scalar glueball operator below ∼ 1.9mref. As

this new energy occurs above the region where our operator set is designed to create states, this level appears most

likely just as a consequence of the enlarged operator basis. We cannot conclude that a pure glueball state has been

created.

While these finite-volume results are insufficient to make any definitive statements regarding the infinite-volume

resonances in this channel, we can make some qualitative comparisons to experiment. In finding only two qq domi-

nated states below 2mref, we have observed no clearly identifiable counterpart finite-volume qq states to the f0(1370),
f0(1500), or f0(1710) resonances in this region. This suggests that these resonances are molecular in nature rather

than conventional qq or pure glueball states.

CONCLUSIONS

We have presented here the first study of the low-lying spectrum in the scalar sector of QCD with vacuum quantum

numbers to include the mixing between qq, two-hadron, and glueball operators in fully dynamical lattice QCD. When

a scalar glueball operator is included in the operator basis, we observe an additional state lying near 2mref, the upper
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FIGURE 5. Overlaps |Z(n)|2 for the operators used in the A+
1g correlation matrix including the scalar glueball operator.

limit we can study here. As the extracted spectrum, up to an increase in statistical noise, is insensitive to the inclusion

of the glueball operator, we have concluded that the energies presented saturate the spectrum of single and two-particle

states in this region. Considering the leading experimental glueball candidates in this region, the f0(1370), f0(1500),
and f0(1710), we found no quark-antiquark dominated levels identifiable as finite-volume counterpart to these states,

suggesting that these states are likely to be molecular in nature.

Our results reinforce, via the significant coupling of the glueball operator to the π(2)π(2) and σ finite-volume

states, the need for extensive operator bases in a proper determination of the excited state spectrum in this sector of

QCD. To date, previous studies of glueballs in lattice QCD have included only glueball interpolating operators. Form-
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ing definite infinite-volume conclusions about these states will also require the determination of coupled-channel

scattering amplitudes above the 4π threshold. Hence, 3- and 4-hadron interpolating operators, along with a formal-

ism for extracting infinite-volume scattering information from finite-volume energies will be required. Work in this

direction is underway, with the spectrum of three-pion states with maximal isospin reported recently in Ref. [20], and

a review of the current state of amplitude extraction above the three particle threshold in Ref. [21].
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