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Abstract. Highlights from recent computations in lattice QCD involving baryons are presented. Calcula-

tions of the proton mass and spin decompositions are discussed, a percent level determination of the nucleon

axial coupling is described, and determinations of the proton and neutron electromagnetic form factors and

light-cone parton distribution functions are outlined. Recent results applying the so-called Lüscher method to

meson-baryon systems are presented. Key points emphasized are that much better precision with disconnected

diagrams is being achieved, incorporating multi-hadron operators is now feasible, and more and more studies

are being done with physical quark masses.

1 Introduction

Highlights from recent computations in lattice QCD in-

volving baryons are presented in this talk. First, some in-

troductory information about how baryons can be studied

in lattice QCD is presented. Calculations of the proton

mass and spin decompositions are then discussed, a per-

cent level determination of the nucleon axial coupling is

described, and determinations of the proton and neutron

electromagnetic form factors and light-cone parton distri-

bution functions are outlined. A current approach, involv-

ing the so-called Lüscher method, to confronting the chal-

lenge of studying baryon scattering and resonance proper-

ties in lattice QCD is then discussed. Some recent results

applying the Lüscher method to meson-baryon systems are

presented. A new calculation of the timelike pion form

factor is highlighted to motivate future baryon form factor

computations, especially the form factors for the ∆ baryon

which will be important to neutrino experiments such as

DUNE. A new development with baryon-baryon interac-

tions with the HAL QCD method is highlighted, and an

H-dibaryon warm up calculation is presented. Key points

emphasized are that much better precision with discon-

nected diagrams is being achieved, incorporating multi-

hadron operators is now feasible, and more and more stud-

ies are being done with physical quark masses.

2 Studying baryons in lattice QCD

Finite-volume stationary-state energies are obtained in lat-

tice QCD from Monte Carlo estimates of an N ×N Hermi-

tian correlation matrix

Ci j(t) = 〈0|Oi(t+t0) O j(t0) |0〉. (1)

Crucial to the success in extracting the energies is the use

of judiciously designed operators O j to create the states of
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interest

O j(t) = O j[ψ(t), ψ(t),U(t)]. (2)

Temporal correlator estimates are obtained from path inte-

grals over the quark ψ, ψ and gluon U fields

Ci j(t) =

∫
D(ψ, ψ,U) Oi(t + t0) O j(t0) exp

(
−S [ψ, ψ,U]

)

∫
D(ψ, ψ,U) exp

(
−S [ψ, ψ,U]

)

which involve the QCD action in imaginary time, formu-

lated on a space-time lattice

S QCD[ψ, ψ,U] = ψ K[U] ψ + S G[U], (3)

where K[U] is the quark Dirac matrix and S G[U] is the

gluon action. The integrals over the Grassmann-valued

quark fields are done exactly, bringing the correlators into

forms such as

Ci j(t) =

∫
DUdet K[U] f (K−1[U], · · · ,K−1[U])e−S G[U]

∫
DU det K[U]e−S G[U]

where K−1[U] are the quark propagators in the gluon field

U. The remaining integrals over the gluon fields must be

done with the Monte Carlo method, which uses a Markov

chain to generate a sequence of gauge-field configurations

U1,U2, . . . ,UN . Including det K in the Monte Carlo updat-

ing and evaluating the K−1 in the numerator are the most

computationally demanding parts of the calculation usu-

ally. The det K is handled by writing it as a multivariate

Gaussian integral involving K−1. A Metropolis method is

employed with a sophisticated global updating proposal:

Hybrid Monte Carlo (HMC) for the u, d quarks, and Ra-

tional Hybrid Monte Carlo (RHMC) for the s, c quarks.

Usually many different hadron operators are needed,

so it is efficient to assemble them using basic build-

ing blocks, which we choose to be covariantly-displaced

LapH-smeared[1] quark fields:

qA
aα j = D( j)ψ̃(A)

aα , q
A
aα j = ψ̃

(A)

aα γ4 D( j)† (4)
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Figure 1. Spatial configurations of the meson and baryon opera-

tors in terms of displaced quark fields that we use. SS stands for

single site, SD for singly displaced, DDL for doubly displaced in

an L configuration, TDO for triply displaced orthogonal, and so

on.

where the LapH-smeared quark field is

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2

s + ∆̃
)
, (5)

and each displacement D( j) is a product of smeared links:

D( j)(x, x′) = Ũ j1 (x) Ũ j2 (x+d1) . . . Ũ jp
(x+dp−1)δx′, x+dp

. (6)

Above, the a, b are color indices, α is a Dirac spin index,

σ2
s is the smearing cutoff, and ∆̃ is the three-dimensional

gauge-covariant Laplacian. The gauge-covariant displace-

ments utilize stout link[2] variables Ũk(x). To a good ap-

proximation, the LapH smearing operator is S = VsV
†
s

where the columns of matrix Vs are the eigenvectors of ∆̃

on each time slice.

The quark displacements build up the orbital and radial

structures of the mesons and baryons. The spatial config-

urations we use are shown in Fig. 1. So-called elemental

meson and baryon operators are then given by

Φ
AB

αβ (p, t) =
∑

x eip·(x+ 1
2

(dα+dβ))δab q
B
bβ(x, t) qA

aα(x, t), (7)

Φ
ABC

αβγ (p, t) =
∑

x eip·xεabc q
C
cγ(x, t) q

B
bβ(x, t) q

A
aα(x, t). (8)

Group-theory projections onto the irreps of the lattice sym-

metry group

Ml(t) = c
(l)∗
αβ Φ

AB

αβ (t), Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t), (9)

then produce meson Ml(t) and baryon Bl(t) operators

which create states of definite momentum p in the irreps

of the little group of p.

The low-lying QCD mass spectrum has been success-

fully determined (see, for example, Ref. [3]), with a level

of precision such that isospin breaking is now relevant.

The next challenge now is to evaluate scattering ampli-

tudes and extract resonance information.

For matrix element calculations, the standard method

requires evaluating 3-point functions, such as those shown

in Fig. 2. A major issue is ensuring the removal of excited-

state contamination by taking tsep, tins, and tsep − tins large.

In practice, this is difficult to achieve due to the signal-to-

noise ratio which decreases with time separation. Com-

puting so-called disconnected contributions, as shown on

Figure 2. Diagrammatic representations of contributions to 3-

point functions. (Left) The external current J occurs on one of

the three quark lines connecting the baryon source (pink) to the

baryon sink (blue). (Right) So-called disconnected contributions

in which the insertion of the current J does not connect to the

three quark lines between the baryon source and sink, but is in-

volved in a separate sea quark loop.

Figure 3. gu−d
A

extractions for a variety of tsep, the time separa-

tion between the source and sink nucleon, and τ = tins, the time

where the current operator is inserted. Removal of excited-state

contamination requires extrapolating to large tsep and looking for

insensitivity in τ around tsep/2. Results are from Ref. [8].

the right in Fig. 2, is much more difficult than the con-

nected contributions, especially as the quark mass is taken

to its physical value. Many previous studies simply ne-

glected such contributions. However, a variety of new

techniques are available now and such disconnected con-

tributions are being reliably estimated with unprecedented

precision. Our group uses the stochastic LapH method,

whereas the results shown in Secs. 3-7 obtained by other

groups use different methods, as mentioned in each case.

Another issue with matrix element calculations is that the

current operators require renormalization for comparison

to MS. Such renormalizations can be evaluated using non-

perturbative and/or perturbative methods.

Difficulties in removing excited-state contamination in

calculations related to gA are illustrated in Fig. 3. The

gray band shows the results of an extrapolation of the

tsep = 10, 12, 14 results. It is also necessary to ensure in-

sensitivity of the extrapolated results to the insertion time,

which must be far from the source and sink.
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3 Proton mass decomposition

A recent determination of the mass decomposition of the

proton has been presented in Ref. [4]. The rest mass M of

the proton is given by[5]

M = −〈T44〉 = 〈Hm〉 + 〈HE〉(µ) + 〈Hg〉(µ) + 1
4
〈Ha〉, (10)

where 〈Tµν〉 is the expectation value of the energy momen-

tum tensor in a hadron, and

Hm=
∑

u,d,s···

∫
d3x mψψ,

HE =
∑

u,d,s...

∫
d3x ψ(�D · �γ)ψ,

Hg=

∫
d3x

1

2
(B2 − E2),

Ha=
∑

u,d,s···

∫
d3x γmmψψ−

∫
d3x
β(g)

g
(E2+B2),

where Hm is the quark condensate, HE is the quark energy,

Hg is the gluon field energy, and Ha is the anomaly term.

Note that 〈Hm〉, 〈Ha〉, 〈HE + Hg〉 are scale and scheme

independent. This study obtained the quark and gluon en-

ergies from the renormalized quark and gluon momentum

fractions

〈Hg〉 =
3

4
M〈x〉g, 〈HE〉 =

3

4
M〈x〉q −

3

4
〈Hm〉,

and the anomaly term from 〈Ha〉 = M − 〈Hm〉. The mass

M was determined from the two-point correlator, as usual,

and a previous determination of 〈Hm〉 by these authors was

used. The momentum fractions were evaluated using

〈x〉q,g≡−
〈N | 4

3
T

q,g

44 |N〉
M〈N|N〉 ,

T
q

44=

∫
d3xψ(x)

1

2
(γ4

←→
D 4 −

1

4

∑

i=0,1,2,3

γi

←→
D i)ψ(x),

T
g

44=

∫
d3x

1

2
(E(x)2 − B(x)2),

taking renormalization into account:

〈x〉Ru,d,s=ZMS
QQ(µ)〈x〉u,d,s + δZMS

QQ(µ)
∑

q=u,d,s

〈x〉q + ZMS
QG (µ)〈x〉g,

〈x〉Rg =ZMS
GQ(µ)

∑

q=u,d,s

〈x〉q + ZMS
GG 〈x〉g.

Results were obtained on four ensembles using an N f =

2 + 1 domain-wall fermion action with overlap valence

propagators. The difficult disconnected insertions em-

ployed cluster-decomposition error reduction with all time

slices looped over. Extrapolations to remove systematic

errors were done with a global fit including finite-volume

and finite-spacing corrections, as well as known chiral be-

havior. The impressive results are shown in Fig. 4 and can

be summarized as quark energy 32(4)(4)%, glue energy

36(5)(4)%, quark condensate 9(2)(1)%, and trace anomaly

23(1)(1)%.

Figure 4. Proton mass decomposition from Ref. [4] against the

pion mass squared. Hg is the gluon field energy, HE is the quark

energy, Ha is the anomaly term, and Hm is the quark condensate.

4 Nucleon spin decomposition

A recent determination of the spin and momentum frac-

tion decomposition of the nucleon has been presented in

Ref. [6]. From the Ji sum rule[7], the nucleon spin is given

by

JN=
∑

q=u,d,s,c···

(
1
2
∆Σq + Lq

)
+ Jg=

∑
q Jq + Jg, (11)

where Jg is the gluon total angular momentum, Lq is the

quark orbital angular momentum, and 1
2
∆Σq is the contri-

bution from the intrinsic quark spin. These quantities were

obtained from the following nucleon matrix elements, with

Q=p′−p and P= 1
2
(p′+p):

〈N(p, s′)|q̄γµγ5q|N(p, s)〉=ūN(p, s′)
[
g

q

A
γµγ5

]
uN(p, s),

〈N(p′, s′)|q̄γ{µ←→D ν}q|N(p, s)〉=ūN(p′, s′)Λq
µν(Q

2)uN(p, s),

Λ
µν

q(g)
(Q2)=A

q(g)

20
(Q2)γ{µPν} + B

q(g)

20
(Q2)
σ{µαqαPν}

2m

+C
q(g)

20
(Q2)

1

m
Q{µQν}.

The quark(gluon) total angular momentum and quark mo-

mentum fraction and spin were extracted using

Jq(g) =
1
2
[A

q(g)

20
(0) + B

q(g)

20
(0)],

〈x〉q = A
q

20
(0), ∆Σq = g

q

A
,

and the gluon momentum fraction was obtained from

Ogµν=2Tr[GµσGνσ] with O
g
≡Og

44
− 1

3
Og

j j
, and

〈N(p, s′)|O
g
|N(p, s)〉=

(
− 4E2

N −
2

3
�p2
)
〈x〉g.

One ensemble at the physical point on a 483 × 96 lattice

using a twisted mass clover-improved action with lattice

spacing a = 0.0939(3) fm, set from the nucleon mass,

was used. The u, d disconnected diagrams were estimated
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Figure 5. Nucleon spin (left) and momentum fraction (right) de-

compositions from Ref. [6] in terms of the contributions from

each quark flavor and from gluons. Striped segments refer to va-

lence quark contributions, while solid segments show sea quark

and gluon contributions.

by exact deflation plus the one-end-trick, while the s dis-

connected diagrams were evaluated by a truncated solver

method. Renormalization factors were determined non-

perturbatively. Their final results are shown in Fig. 5.

5 Nucleon axial coupling

A remarkable percent level determination of the nucleon

axial coupling gA in lattice QCD recently appeared[8].

The use of a Feynman-Hellman method enabled a signifi-

cant reduction in statistical errors. Their value was

gA = 1.2711(103)s(39)χ(15)a(19)V (04)I(55)M , (12)

where the errors, in order, are from the statistical esti-

mation, chiral extrapolation, lattice spacing extrapolation,

volume extrapolations, isospin corrections, and model se-

lection. Extrapolations were done using several models

and the final estimate is a model average. Sixteen ensem-

bles from the MILC collaboration generated using a HISQ

action with lattice spacings a ∼ 0.15 fm, a ∼ 0.12 fm, and

a ∼ 0.09 fm and pion masses ranging from near physical

to 400 MeV were used. Domain-wall valence propaga-

tors were used, making this a mixed-action computation.

Their main result is illustrated in Fig. 6, and a comparison

of their estimate with other recent determinations is shown

in Fig. 7.

6 Proton/neutron electromagnetic form

factors

A recent study of the proton and neutron electromagnetic

form factors in lattice QCD was presented in Ref. [9]. One

ensemble using an N f = 2 + 1 + 1 twisted mass action

with mπ = 130 MeV, and two ensembles using an N f = 2

twisted mass action with mπ = 130 MeV and two vol-

umes Lmπ ∼ 3 and Lmπ ∼ 4 were utilized. An unprece-

dented precision of the disconnected diagram contribu-

tions was achieved using hierarchical probing, low mode

deflation, and large numbers of smeared point sources to

reduce gauge noise. The results demonstrated that the dis-

connected diagrams have nonnegligible effects. The study

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g
A

model average gLQCD
A (ǫπ , a = 0)

gPDG
A = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)

gA(ǫπ , a ≃ 0.12 fm)

gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fm

a ≃ 0.12 fm

a ≃ 0.09 fm

Figure 6. Extrapolation of a gA determination in Ref. [8] to the

physical point. Solid red, green, and blue curves are central val-

ues of gA as a function of ǫπ = mπ/(4πFπ) at fixed lattice spac-

ing and infinite volume, and the black circle is the experimental

value. Magenta band is the central 68% confidence band of the

continuum and infinite volume extrapolations.

1.10 1.15 1.20 1.25 1.30 1.35

gA

PDG17

this work

CLS17

ETMC17

PNDME16

ETMC15

†RQCD14

QCDSF13

†QCDSF13

CLS12

LHPC05

Figure 7. Comparison of the estimate of gA from Ref. [8] with

other recent determinations. See Ref. [8] for references to the

other estimates. Results with closed symbols have included an

extrapolation to the continuum limit, while results with open

symbols have only included extrapolation to the physical pion

mass. To guide the eye, the vertical magenta band is the full

uncertainty from Ref. [8], while the vertical gray band is the ex-

perimental uncertainty.

included a thorough investigation of excited-state contam-

ination, but further study of finite-volume effects at low Q2

is needed. Their N f = 2 + 1 + 1 results are compared to

experiment in Fig. 8.

7 Light-cone parton distribution function

A first determination of the unpolarized helicity parton dis-

tribution function (PDF) at the physical point with nonper-

turbative renormalization and large momenta treated was

presented in Ref. [10]. Extracting PDFs from their mo-

ments is impractical, so these authors used a clever method

proposed by Ji[11] with subsequent refinements. First,

they computed spatial correlations between boosted nu-

cleon states, then carried out Fourier transforms to pro-

duce quantities known as quasi-PDFs, then finally took the
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Figure 8. Electric (top) and magnetic (bottom) form factors of the proton (left) and neutron (right) from Ref. [9], compared to

experiment.

infinite-momentum limit via a refined matching procedure.

So-called target mass corrections were employed, as well

as a renormalization scheme for the Wilson line operators.

Results were obtained on one ensemble using a 483 ×
96 lattice with a twisted mass N f = 2 action with lattice

spacing a = 0.0938(3)(2) fm and mπL = 2.98(1) at the

physical point. Both unpolarized and polarized PDFs for

three momenta were compared to some phenomenological

curves, shown in Fig. 9. Improvement of these estimates

of the PDFs is ongoing.

8 Excited baryon states

In finite volume, the stationary-state energies are discrete

due to momentum quantization, so temporal correlation

matrices have the spectral representation

Ci j(t) =
∑

n

Z
(n)

i
Z

(n)∗
j

e−Ent, Z
(n)

j
= 〈0| O j |n〉, (13)

neglecting wrap-around corrections. It is not practical to

do fits using the above form, so diagonalization methods

with single- and two-exponential fits are employed to ex-

tract some number of low-lying states.

To access excited baryon (and meson) states reliably,

it is necessary to extract the energies of the multi-hadron

states that are lower-lying than the excited baryons of

interest. This requires evaluating correlators involving

multi-hadron operators. Good multi-hadron operators in-

volve combining good individual hadron operators which

separately have well-defined momenta. With such oper-

ators, the usual point-to-all trick, which exploits transla-

tional invariance, cannot be utilized to drastically reduce

the number of quark propagator sources that are needed,

so an overly large number of Dirac matrix inversions are

required. One solution to this is the stochastic LapH

method[1] which estimates the entire matrix inverse, or a

large portion of it, using an additional Monte Carlo calcu-

lation, exploiting the Laplacian-Heaviside quark smearing

and various noise dilution projectors for variance reduc-

tion.

Excited Λ baryons were studied somewhat recently in

Ref. [12]. A small sample of the results obtained is shown

in Fig. 10.

9 Scattering amplitudes from lattice QCD

Finite-volume energies E in lattice QCD are related to the

infinite-volume S matrix[13]. Utilizing such relations to

obtain scattering amplitudes is often termed the Lüscher

method. Introduce the K-matrix as usual,

S = (1 + iK)(1 − iK)−1 = (1 − iK)−1(1 + iK). (14)

In the JLS a basis, for total angular momentum J, orbital

angular momentum L, intrinsic spin S , and species chan-

nel a, introduce

K−1
L′S ′a′; LS a(E) = q

−L′− 1
2

cm,a′ K̃−1
L′S ′a′; LS a(Ecm) q

−L− 1
2

cm,a , (15)

then below 3-particle thresholds, there is a quantization

condition

det(1 − B(P)K̃) = det(1 − K̃B(P)) = 0 (16)

or

det(K̃−1 − B(P)) = 0 (17)

where the Hermitian “box matrix” B(P) encodes the effects

of the cubic finite-volume. Details about the box matrix

may be found in Ref. [14].
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Figure 9. Unpolarized (left) and polarized (right) parton distribution functions for three momenta compared to some phenomenological

curves. Results are from Ref. [10].

Figure 10. (Left) Stationary state energies in the I = 0, S = −1 baryonic flavor sector for a 323 × 256 anisotropic lattice with

mπ ∼ 240 MeV. The G1g channel (even parity containing the spin- 1
2

states) and the Hu channel (odd parity including the spin- 3
2

states)

are shown as ratios over the kaon mass mK . Different colors indicate the different properties of the states as deduced by the fitted overlap

factors Z
(n)

j
. (Right) The single-baryon dominated levels are compared to experiment as ratios over the nucleon mass mN . Results are

from Ref. [12].
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Figure 11. P-wave Nπ scattering phase shift against center-of-

mass energy showing the ∆ resonance where the cot δ1 crosses

zero. Results are from Ref. [15].

The quantization condition relates a single energy E

to the entire K-matrix, so one cannot solve for the K-

matrix, except in a single channel for a single partial wave.

Thus, we must approximate the K-matrix with functions

depending on a handful of fit parameters. We then ob-

tain estimates of the fit parameters using many different

energies. The quantization condition involves an infinite-

dimensional determinant. We make the condition practi-

cal by first transforming to a block-diagonal basis, then

truncating in orbital angular momentum. Meson-meson

scattering studies are becoming mature, whereas only a

few meson-baryon scattering investigations have been at-

tempted. Baryon-baryon scattering studies are currently

gestating.

The decay ∆(1232) → Nπ was recently studied in

Ref. [15]. Only the L = 1 partial wave was included. Re-

sults were obtained on a large 483 × 128 isotropic lattice

with mπ ≈ 280 MeV and a ∼ 0.076 fm. Their determi-

nation of the scattering phase shift is shown in Fig. 11.

A Breit-Wigner fit gave m∆/mπ = 4.738(47) and g∆Nπ =

19.0(4.7). Note that experiment yields g∆Nπ ∼ 16.9.

Preliminary results for the ∆ resonance in another re-

cent study using a lattice with length L = 2.8 fm, spacing

a = 0.116 fm and pion mass mπ = 260 MeV has appeared

in Ref. [16]. No slice-to-slice propagators were used, three

total momenta were studied, the ground and excited states

were extracted, and their analysis included only a single

partial wave. Their determination of the scattering phase

shift is shown in Fig. 12.

Preliminary results from our most recent study[17]

of the ∆ resonance are shown in Fig. 13. The lattice

length, lattice spacing, and pion mass are L = 4.2 fm,

a = 0.065 fm, mπ = 200 MeV. Five total momenta have

been used, and both ground and excited states were ex-

tracted. We expect to reduce statistical errors by a factor

of 6 in our final results. The finite volume spectrum which

produced these results is shown in Fig. 14. Fits included

irreps which mix the S and P waves and relied on the auto-

mated determination of B-matrix elements from Ref. [14].

Results for Λ(1405) → Σπ will be presented in the

near future in Ref. [18]. Very preliminary results on a lat-

Figure 12. P-wave Nπ scattering phase shift against the Mandel-

stam variable
√

s showing the ∆ resonance where the phase shift

rises dramatically. Results are from Ref. [16].

Figure 13. Nπ scattering phase shifts near the ∆ resonance from

Ref. [17] against the center-of-mass energy as a ratio over the

pion mass. The top plot shows the phase shift itself, and the

bottom plot shows the cotangent of the phase shift multiplied by

threshold factors.

tice with L = 3.2 fm, a = 0.065 fm, mπ = 280 MeV are

shown in Fig. 15.

10 Three last items

I finish this talk by reporting on three last items of interest.
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Figure 14. The energy spectrum of finite-volume states used in

our most recent study in Ref. [17] of the ∆ resonance. Differ-

ences of the center-of-mass energies from the nucleon mass as

a ratio over the pion mass are shown for the different irreps and

total momenta used. Horizontal lines show the non-interacting

energies.

Figure 15. Very preliminary results for the Σπ scattering phase

shift near the Λ(1405) resonance against the center-of-mass mo-

mentum as ratio with a reference energy µ. Result are from

Ref. [18].

A recent determination of the time-like pion form fac-

tor appeared in Ref. [19]. It was extracted using

|Fπ(Ecm)|2 = gΛ(γ)

⎛⎜⎜⎜⎜⎜⎝qcm

∂δ1

∂qcm

+ u
∂φ

(d,Λ)

1

∂u

⎞⎟⎟⎟⎟⎟⎠

× 3πE2
cm

2q5
cmL3

|〈0|V (d,Λ)|dΛn〉|2,

where

γ =
E

Ecm

, u =
Lqcm

2π
, gΛ(γ) =

{
γ−1, Λ = A+

1

γ, otherwise

δ1 is the physical phase shift, and the pseudophase φ
(d,Λ)

1

is obtained from B
(d,Λ)

11
= (qcm/mπ)

3 cot φ
(d,Λ)

1
. The matrix

element

V (d,Λ) =
∑

µ

b(d,Λ)
µ VR,µ,

∑

µ

b(d,Λ)∗
µ b(d,Λ)

µ = 1,

with

VR,µ = ZV (1 + abVm1 + abVTrMq) VI,µ,

VI,µ = Vµ + acV ∂̃νTµν,

2.0 2.5 3.0 3.5

5

10

Ecm/mπ

|F
π
|

Figure 16. Timelike pion form factor |Fπ| again center-of-mass

energy over pion mass Ecm/mπ using the CLS J303 ensemble

on a 643 × 192 lattice with spacing a = 0.050 fm and mπ =

260 MeV. The curve is a fit with a thrice-subtracted dispersion

relation. Results are from Ref. [19]. This shows the feasibility of

future calculations of baryon form factors.

and

Va
µ =

1
2
ψγµτ

aψ, ∂̃νT
a
µν =

1
2
ĩ∂νψσµντ

aψ

was computed and used to determine the form factor. Re-

sults for CLS J303 ensemble on a 643 × 192 lattice with

spacing a = 0.050 fm and mπ = 260 MeV are shown in

Fig. 16. The success of this calculation paves the way for

baryon form factor determinations. A similar method is

now being used for ∆ transition form factors needed by

the Deep Underground Neutrino Experiment (DUNE).

The HAL QCD collaboration has extensively studied

nucleon-nucleon interactions. Their method extracts ob-

servables from non-local kernels associated with tempo-

spatial correlation functions. However, a controversy

arose when disagreements of their results with so-called

direct methods were found. A recent study[20] suggests

that this discrepany arises from the misidentification of

energies in the direct method. The ΞΞ(1S 0) temporal cor-

relation function was studied in detail, with pertinent re-

sults shown in Fig. 17. In the right plot in this figure,

the key point is the disagreement between the dashed line

(the known result) and the apparent plateau of the effec-

tive mass points in blue. The shaded blue band is the

expected behavior of this function for larger time separa-

tions. Hopefully this resolution will accelerate progress in

baryon-baryon scattering.

A recent report on an ongoing study of the H-dibaryon

was presented in Ref. [21]. These results were obtained

at the S U(3) flavor symmetric point using well-designed

baryon-baryon operators since a previous study showed

that a hexaquark operator would not saturate the signal.

They found several finite-volume energies below the ΛΛ

threshold. Some of their results are shown in Fig. 18. A

scattering amplitude analysis is needed to determine if the

system is bound or a resonance. Due to the small lat-

tices used and the very heavy pion, this must be viewed

EPJ Web of Conferences 241, 02004 (2020)
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Figure 17. Effective masses associated with ΞΞ(1S 0) correla-

tors using (left) a wall source and (right) a local smeared source.

The dashed line indicates the asymptotic behavior using the wall

source, and this result also agrees with the HAL QCD method.

The key point, shown in the right plot, is the disagreement be-

tween the dashed line and the apparent plateau of the effective

mass points in blue obtained using the local smeared source. The

shaded blue band in the right plot is the expected large-time be-

havior. These results are from Ref. [20].

1.00

1.10

5 10 15

U103 (P 2
= 0, A+

1 )

a
E

e
ff

singlet
27-plet

octet

0.95
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1.15

5 10 15

U103 (P 2
= 0, T+

1 )
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octet
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H101 (P 2
= 0, A+

1 )

a
E

e
ff

t/a

singlet
27-plet

octet
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0.90

0.95

1.00
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B450 (P 2
= 0, A+

1 )

t/a

singlet
27-plet

octet

Figure 18. Effective masses for spin-0 and spin-1 dibaryon oper-

ators of different flavor irreps using 3 ensembles from Ref. [21].

Blue points show flavor singlet results, the red points show the

flavor 27-plet, and the flavor octet is shown in green. Results on

the CLS U103 ensemble in the A+
1

spin-zero irrep are shown in

the upper left. The upper right plot shows results on the U103

ensemble for the T+
1

spin-one irrep. Results in the A+
1

spin-zero

irrep on the H101 and B450 ensembles are shown in the lower

left and lower right plots, respectively. Horizontal black lines

show the two-octet baryon thresholds. The S U(3) flavor sym-

metric point is used, and the lattice volumes are small.

as a warm up exercise. Future work on larger lattices and

lighter pions will involve the stochastic LapH method.

11 Conclusion

Highlights from recent computations in lattice QCD in-

volving baryons were presented in this talk. How baryons

can be studied in lattice QCD was first discussed, followed

by results on the proton mass and spin decompositions,

nucleon axial coupling, the proton and neutron electro-

magnetic form factors, and light-cone parton distribution

functions. Recent works on meson-baryon scattering us-

ing the so-called Lüscher method were shown. Key points

emphasized were that much better precision with discon-

nected diagrams is being achieved, incorporating multi-

hadron operators is now feasible, and more and more stud-

ies are being done with physical quark masses.
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