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ScienceDirect
In this review, we highlight recent developments in the

application of machine learning for molecular modeling and

simulation. After giving a brief overview of the foundations,

components, and workflow of a typical supervised learning

approach for chemical problems, we showcase areas and

state-of-the-art examples of their deployment. In this context,

we discuss how machine learning relates to, supports, and

augments more traditional physics-based approaches in

computational research. We conclude by outlining challenges

and future research directions that need to be addressed in

order to make machine learning a mainstream chemical

engineering tool.
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Machine learning from a chemical perspective
Over the past few years, data science has started to offer a

fresh perspective on tackling complex chemical ques-

tions, such as discovering and designing chemical systems

with tailored property profiles, revealing intricate struc-

ture-property relationships (SPRs), and exploring the

vastness of chemical space [1�]. Data-derived prediction

models serve as surrogates for physics-based models that

are at the heart of traditional modeling and simulation

work. They are attractive, because they are usually
www.sciencedirect.com 
dramatically less demanding than physics-based models

and can thus be deployed in studies of correspondingly

larger scope and scale. If trained on experimental data,

they are also not subject to the approximations made in

physics-based models and may thus not exhibit the

resulting discrepancies with respect to non-idealized

experimental findings. Of course, data-derived models

have their own intrinsic errors and limitations, which we

will address in the course of this review.

Machine learning (ML) is a data mining technique and

used to create data-derived models. It enables us to

extract complex and often hidden correlations (and thus

ideally insights, patterns, rules, and guidance) from given

data sets and to encapsulate them in mathematical form.

ML is commonly categorized into four types, i.e., super-

vised, semi-supervised, unsupervised, and reinforcement

learning. The main difference between these types is in

essence the amount of information (i.e., labeling, context)

that is available for the target variable that serves as the

ground truth for the training of an ML algorithm. While

all ML types have found application in chemical research

[2], supervised learning has so far been most commonly

used, and this review will thus focus on it. The popularity

of supervised learning may be due to its heuristic and

intuitive approach to learning, which is similar to a

scientist’s way of gaining insights into SPR. A supervised

prediction model can be thought of as a function f : X ! Y
that maps an input x 2 X to an output y 2 Y, where x in

this context is the feature representation of a chemical

system and y its target property. If the variables x and y are

continuous (numerical), then the mapping is a regression;

if they are discrete (categorical), then it is a classification.

We can utilize a host of supervised ML algorithms to train

and optimize model f to approximate the output value for

a given input. Two popular algorithms that have been

widely used are artificial neural networks (ANNs) and

kernel methods. Both can be thought of as transforming

the input x into a new feature (latent variable) space, in

which it becomes linearly correlated with the output y [3].

The transformation itself is typically highly non-linear. A

major advantage of the ANNs is their capacity to trans-

form features sequentially through several layers, which is

referred to as deep learning. Kernel methods, on the other

hand, usually transform features in a one-step process

using kernel functions. Unlike in ANNs, this process is

predefined prior to the tuning of the model’s parameters,

and is thus less flexible to learn the best latent variable

space. The advantage of kernel methods is their superior
Current Opinion in Chemical Engineering 2019, 23:51–57
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The major tasks and mathematical setup of a supervised machine

learning workflow: For a given data set {M, Y}, in which for a number

of molecules in basic chemical representation m 2 M the target

property y 2 Y is given, we apply a feature representation method as a

function g : M ! X that maps M to a feature input space X. After

cleaning and other preprocessing, we use {X, Y} to formulate an ML

model f : X ! Y that maps the feature input space X to the output

label space Y. The ML model is trained on the training subset of

{X, Y}, and subsequently validated and optimized on its testing subset,

so that it minimizes the prediction error for Y.
performance in finding global solutions, even for small-

size data sets where ANNs have deficits. The support

vector machines and kernel ridge regression are two

common examples of kernel-based algorithms.

The relationship between a molecular structure and its

properties is deterministic, i.e., there exists an exact

mapping from fundamental physics (i.e., the Schrödinger

equation). This mapping is ultimately the foundation for

traditional modeling and simulation techniques. The

topology of ML models is generally very flexible (as,

e.g., expressed in the universal approximation theorem

for ANNs), so that they can learn and recover the under-

lying SPRs of a problem, even from simple chemical

representations (assuming no significant loss of informa-

tion within this representation).

We can consider a feature representation method as a

function g : M ! X that maps a basic chemical represen-

tation m 2 M to a feature input x 2 X (typically called a

descriptor). The representation m may contain spatial or

at least topological information that defines a molecule

and is expressed, e.g., in atomic coordinates, simplified

molecular-input line-entry system (SMILES) [4], inter-

national chemical identifier (InChI), or other formats.

A common feature space X is spanned by structural

descriptors. Some ML approaches also utilize physical

or (physico-)chemical properties as descriptors, such that

g corresponds to a simulation or some other type of

calculation (including those from first principles). As this

approach builds physics into the feature space, it has a

certain appeal and has gained corresponding popularity.

However, it is important to point out that the computa-

tional cost of obtaining such descriptors (which include

optimized geometries) may easily make this the bottle-

neck of an ML approach, in which case it will limit its

utility as an efficient surrogate for the prediction of y. This

issue has to be considered as part of a cost-benefit

analysis.

Another class of descriptors is designed to capture the

local environment of each atom in a molecule [5]. This

approach considers a molecule as a graph with atom and

bond (i.e., node and edge) features. Each atom can

interact with all other atoms in its immediate vicinity,

which results in an update of the corresponding local

atomic features. Incidentally, this approach has its roots in

both chemical and data sciences: In the context of molec-

ular simulations, cutoff radii have long been used to

exploit the short-ranged nature of intermolecular inter-

actions. In data science, the idea of dynamic irregular

graphs provides the underpinning of graph convolutional

neural networks. The overlap of the two disciplines in this

area has led to many methodological advances for the

generation of descriptors. Results from a number of

recent studies suggest that an ensemble of local features
Current Opinion in Chemical Engineering 2019, 23:51–57 
(rather than a global representation), is able to provide a

more robust solution to the challenges involved with

variant graph size and the order of atoms in molecules

[6,7].

The descriptors discussed so far are essentially hand-

crafted to explicitly expose certain structural, physical,

or (physico-)chemical information x from m and provide a

structured (i.e., tabular) feature representation. Alterna-

tively, the feature generation g can also be merged into

the prediction model f and both will be jointly opti-

mized, e.g., through hidden layers (latent space) in deep

learning. This class of descriptors is called learned

features [8].

The overall ML workflow for chemical problems encom-

passes a number of steps as shown in Figure 1, including

parsing, cleaning, and preprocessing a chemical data set

{M, Y}, compiling an array of descriptors via g, as well as

training, evaluation, and validation of the prediction

model f.

Applications of machine learning in chemical
research
In the following section, we summarize three application

areas of ML in chemical research, with particular consid-

eration of the inherent structure of the associated data

sets, types of representation, and connections to tradi-

tional modeling. We limit the scope of our discussion to

molecular systems, which still cover a broad range of use

cases.
www.sciencedirect.com
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Discovery and design of new compounds

The application of ML for the exploration of chemical

space and the creation of new compounds (ranging from

small molecules to polymers and materials) can

be divided into two distinct approaches: (i) discovery,

i.e., ML is used to generate fast prediction models for

properties of interest, with which large-scale surveys of

chemical space can be conducted in order to identify

compounds that exhibit desired property profiles; (ii)

design, i.e., ML is used to develop a quantitative under-

standing of the SPRs of interest, which can be inverted to

pursue the targeted, rational design (or inverse engineer-

ing) of compounds with particular properties. While the

core activity, i.e., the ML of SPRs, is the same in both

cases, its use follows different perspectives.

Discovery. The idea of employing data-derived prediction

models instead of physics-based models (or experimen-

tation) as a means to characterize candidates in the search

for new molecules may be one of the earliest applications

in chemistry, for which the use of ML was proposed.

Traditional molecular modeling and simulations have

been used for this purpose for many years. More recently,

they have also been employed in the context of virtual

high-throughput screening studies, in which they are

tasked with assessing entire libraries of candidate com-

pounds (see Figure 2 and, e.g., Refs. [9,10]). However, the

computational footprint, in particular of first-principles
approaches, is limiting both individual as well as large-
Figure 2
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Flowchart showing a computational funnel typical for high-throughput

virtual screening (HTVS) studies. The neural network schemes on the

left and right represent deep generative model architectures that can

conceptually replace different elements of the screening funnel. Both

generative adversarial networks (GANs) and variational autoencoders

(VAEs) include two networks that revolutionize the conventional

generation and analysis steps by probabilistic means. A deep

reinforcement learning (RL) network can also be trained to bias the

generation towards promising candidates.
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scale studies that seek to identify compounds with spe-

cifically targeted properties.

The application of data-derived prediction models

enables us to dramatically accelerate the survey of chem-

ical space, often by several orders of magnitude. A speed-

up of that magnitude allows a corresponding increase in

the scale and scope that is viable for screening efforts. (It

is thus sometimes referred to as hyperscreening.) The

candidate libraries are typically generated from a collec-

tion of moieties and patterns that are of interest in a given

context [11]. The combination of such a set of building

blocks leads to a molecular library for a particular domain

in chemical space, i.e., the candidates belong to the same

distribution [12]. A number of experimental or high-level

computational training sets have been developed for

specific classes of molecules [13,14]. Since these data

sets focus on relatively similar compounds from the same

distribution, the choice of representation and the ML

model training are arguably less challenging compared to

more universally applicable models. The extrapolative

use of data-derived prediction models outside the domain

for which they were trained has to be conducted with

great care and caution, as they are least reliable here. This

is a conceptual challenge, as screening studies are often

interested in compounds with extreme properties that are

likely at the margins of the distribution, where the pre-

dictions are least reliable. Iterative retraining of ML

models allows us to shift the training data distribution

into particular areas of interest, thus making them more

robust for use in discovery.

A reasonably diverse collection of molecules can be found

in the open-source QM9 data set originally extracted from

the GDB-17 chemical universe of 166 billion organic

molecules [15]. The QM9 data comprises computed

geometries and properties for 134 000 molecules at den-

sity functional theory (DFT) level. Due to the diversity of

molecular structures and broad range of calculated prop-

erties, QM9 plays an important role as a benchmark data

set for new models and methods [16,17]. Its contribution

to method developments can be compared to the MNIST

data set in the hand-written character recognition com-

munity [18]. In contrast to, e.g., data sets from first-
principles modeling, those from data-derived models have

so far rarely been used for the generation of new reference

data. Yet, they have played an important role in a number

of methodological advances in the field. As a result, the

reported accuracies for many of the recent ML prediction

models surpass those of traditional molecular modeling

and simulations [19].

Design. While discovery is still based on a traditional trial-

and-error process — albeit one drastically accelerated by

ML — the notion of a deliberate, de novo design of new

compounds represents a different research paradigm. It

addresses the problem that even rapid and efficient
Current Opinion in Chemical Engineering 2019, 23:51–57
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hyperscreening studies can only scratch the surface of the

practically infinite molecular space. Instead, the design

paradigm seeks to utilize insights into the SPRs obtained

from ML for the targeted creation of systems with specific

properties. The understanding of how changes in the

molecular structure (or a compound’s features) lead to

changes in the desired properties can be inverted to gain a

property to structure mapping. The mathematical struc-

ture of a data-derived SPR prediction model (e.g., the

dominant features, principal components, latent vari-

ables, or learned features) yields a foundation for inverse

design. Models that are less easy to interpret can be

projected onto surrogate models for which the extraction

of guidelines is easier. A key challenge is to realize the

simultaneous enhancement of different properties. The

emerging design rules can be used to formulate individual

compounds [20�], but also to identify high-value domains

in chemical space, which can be enumerated in screening

libraries (e.g., by sampling compounds similar to a lead

compound). The latter approach is effectively interfacing

the discovery and design perspectives and allows both

physics-based and data-derived modeling studies to be

more targeted.

Another approach that is very promising and has caused

much excitement is the application of generative models

(see Figure 2). For instance, Sanchez-Lengeling et al.
have shown that a generative adversarial network (GAN)

in tandem with reinforcement learning can outperform

evolutionary algorithms in order to bias the generative

process toward the extreme regions of a property distri-

bution [21,22]. The use of GANs for molecular design and

library generation is very recent and a number of concerns

and challenges still need to be overcome in their devel-

opment. Two of the principal challenges of GANs (and

other generative approaches) are the rate at which invalid

(i.e., chemically irrelevant or non-sensical) structures are

generated, and their ability to produce topologically dif-

ferent molecules compared to the underlying training

data [23,24]. Another example of generative models are

variational autoencoders (VAEs) that learn the distribu-

tion of embedded space and thus enables tuning in that

space [25]. Recurrent neural networks (RNNs) operate in

a sequential manner similar to creating new molecules

one atom at a time. One benefit of RNNs is their memory

mechanism that allows them to remember the effects of

previous sequences [26].

Creation of new modeling techniques

Instead of replacing physics-based with data-derived

modeling entirely as outlined in the section ‘Discovery

and design of new compounds’, ML can also be used to (i)

calibrate and correct the results of physics-based models to

account for some of their systematic errors; (ii) complement
traditional modeling and simulation approaches (i.e.,

employ combinations of physics-based and data-derived
Current Opinion in Chemical Engineering 2019, 23:51–57 
models); and (iii) facilitate the development of new physics-

based modeling techniques.

The calibration approach allows us to improve the predic-

tive performance of physics-based models and obtain

high-quality results at the cost of lower-quality methods.

It can also help bridge the gap between experiment and

theory that results from the inherent approximations in

the latter (see, e.g., Ref. [10]). Transfer learning is an ML

design methodology that has been a particularly success-

ful technique in this context [27,28]. In the combination
approach, we only utilize ML for aspects for which no

good physics-based models are available or where their

use is impractical (e.g., because of insufficient accuracy,

prohibitive cost, or other numerical issues). We thus

retain as much of the physical foundations and robustness

of traditional modeling as possible, while being pragmatic

about the parts of a problem, where that is not possible

(see, e.g., Refs. [29–31]).

The development of entirely new modeling techniques by means

of ML has seen encouraging pioneering efforts, in partic-

ular for force fields (FFs) and DFT. The major driving

force behind ML-generated FFs is the lack of generaliz-

ability in the classical FFs and the interatomic potentials

that underpin them. This is an area where ML is appar-

ently able to bridge the accuracy and versatility typically

seen from quantum chemistry and the efficiency of

molecular mechanics simulations. A recent line of

research has focused on learning interatomic potentials

from quantum chemical data sets [32]. There are two

specific challenges involved in this application that make

it distinct from prediction models for molecular proper-

ties. One is the need for a diverse sampling of non-

equilibrium chemical conformations, as both ML and

classical FFs perform poorly outside of their applicability

domain. Access to a diverse collection of high-quality

training samples is thus essential in creating ML FFs. For

instance, Botu et al. have improved on previous work by

diversifying their training data, e.g., by adding more

atomic environments and applying clustering methods

[33]. Smith et al. have pushed the normal mode sampling

method to obtain single point energies for more than

20 million conformations generated for 58 000 small

molecules [34�]. The results of these efforts were shown

to be efficiently generalizable, even for the simulation of

more complex phenomena. The second important chal-

lenge is to conserve the consistency between potential

energies and forces as discussed by Chmiela et al. [35].

They provide a robust solution to this challenge by

developing gradient-domain ML models (which repro-

duce global FFs by training in the force domain and

incorporating both energies and forces) in an automated

fashion, thus learning accurate ML FFs.

In the DFT context, ML is used to create new functionals

for different terms in the electronic Hamiltonian. The
www.sciencedirect.com
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exact form of several functionals (e.g., the kinetic energy

functional for interacting electrons or the exchange-cor-

relation functional in the Kohn–Sham formalism) are

unknown and otherwise approximated by physical rea-

soning. The ML-generated functionals allow DFT to

avoid common failures, such as in accurately describing

bond-breaking processes. Different ML functionals for

specific classes of molecules, target properties, and elec-

tronic structure situations are being developed, as are fast

methods that, e.g., learn energy functionals directly with-

out having to solve the Kohn–Sham equations, thus

making them a viable approach for ab initio molecular

dynamics simulations [36].

Predictions of chemical reactions and catalyst systems

Research on chemical reactions is another field that has

been benefiting from the advances in ML methodology.

ML has been paving the way for a better understanding of

chemical transformations with numerous real-world

implications. SMILES are often the representation of

choice for both the inputs (reactants and reagents) and

outputs (products) of data-derived models for chemical

reactions. These models are trained on known reactions

to recognize structural patterns that may undergo bond-

breaking or -formation in the course of a reaction or

catalytic process [37�]. One particularly important data

set for this application domain is the result of the US

patent reaction extraction by Lowe [38].

The progress in predicting organic reactions and their

products has been particularly noteworthy in recent years.

Nam et al. have introduced sequence-to-sequence models

to address the reaction prediction task similar to linguistic

translation problems [39]. More recently, Schwaller et al.
outperformed a similar approach in an end-to-end tem-

plate-free model with a focus on the attention mechanism

and a new tokenization strategy [40]. Coley et al. intro-

duced a graph convolutional neural network approach

with competitive performance. It was used for the pre-

diction of reaction products as well as reactive sites of the

reagents that are most likely to initiate a reaction [41].

One major contribution of the last two studies is the

development of web applications to facilitate easy access

to their models. These tools are available via the

IBMRXN and ASKCOS websites, respectively [42,43].

A promising direction of ongoing work is the prediction of

reaction pathways and mechanisms. All these efforts

ultimately aim for a practical and more generalizable

implementation of retrosynthetic analysis, which has

been a grand challenge in organic chemistry for many

years [44]. Insights regarding the synthetic feasibility of

virtual compounds are also a key concern for the screen-

ing library generation and molecular design efforts dis-

cussed in the section ‘Discovery and design of new

compounds’.
www.sciencedirect.com 
Outlook on future directions
Feature representations

As discussed in the section ‘Machine learning from a

chemical perspective’, the descriptors of a given molecu-

lar system are an abstraction of its detailed nature (as well

as a numerical representation). The choice of a suitable

feature space is still our first and most effective means to

infuse physics into ML models. There have been efforts

to define criteria for the development of efficient descrip-

tors [5], e.g., that they are (1) invariant to the symmetries

of the underlying physics; (2) easy to interpret; (3)

expressed in a direct and concise form to avoid redun-

dancy and the curse of dimensionality; and (4) computa-

tionally efficient. However, developing molecular repre-

sentations that adhere to all these criteria has been an

exceedingly difficult task. More importantly, there is now

agreement that ML approaches may require different

types of descriptors to recover the entirety of SPRs of

molecular systems. Further research into the creation of

new descriptors (including fingerprint schemes) as well as

the formulation of additional criteria will be necessary for

the foreseeable future. The accessibility and flexibility of

deep learning models can accelerate future developments

via learned features and theory-informed models.

Machine learning for small data

While ML ideas became popular during the recent ‘big

data’ wave (i.e., in chemistry with the emergence of large-

scale screening result from high-level first-principles
modeling), large data sets are in practice more often than

not unavailable. In fact, problems for which data is (still)

sparse tend to be of particular interest. As the data

generation (both from experiment and modeling) is often

a limiting factor, we will have to strive to reduce its cost or

the number of data points needed to obtain ML models of

a desired accuracy. It is thus essential to put an emphasis

on developing ML methods that achieve better perfor-

mance on small data sets. As mentioned in the section

‘Creation of new modeling techniques’, transfer learning

is a promising approach in this context. We will also need

to employ smart sampling methods and identify data

points that are most important for the training of ML

models. Active learning strategies offer a path towards

this goal [45–47]. Many of these techniques are of gen-

eral-purpose utility, but some will have to be tailored

towards the specific problem settings of data-derived

models for chemistry.

Software and tool development

The idea to utilize ML and other data mining techniques

in the chemical domain is so recent that much of the basic

infrastructure has not yet been developed, or is still in its

early stages [1�]. The majority of tools and expertise tend

to be technically involved, labor intensive, or otherwise

unavailable to the community at large. Many researchers

are now starting to pursue open-source software develop-

ment projects to tackle this situation [48�]. However, the
Current Opinion in Chemical Engineering 2019, 23:51–57
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lack of rigorous development guidelines remains a chal-

lenge that researchers from domain science need to

overcome to make their efforts lasting and sustainable.

The Molecular Sciences Software Institute (MolSSI) is

one of the pioneers in establishing best practices and

guidance for early-stage software developments in this

field [49,50].

Conclusions
In this review, we discussed how ML can advance tradi-

tional modeling and simulation by (partially) replacing

them (i.e., choosing data-derived over physics-based

models or combining the two); calibrating, augmenting,

or otherwise correcting their results; targeting studies and

their objectives; and providing the means to effectively

mine their results for a deeper understanding of hidden

SPRs. Many ML models are still built on data provided by

modeling and simulation — often as part of virtual high-

throughput screening studies — and combining ML and

traditional modeling infuses physics and robustness into

the resulting data-derived prediction models. These and

other emerging ML techniques have been enabling

accelerated discovery and rational design in numerous

areas of chemistry. Its early successes indicate that ML is

bound to become a mainstream tool in chemical research.

Yet, there is still much to (machine) learn on how to

develop the full potential of ML in chemistry.
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45. Häse F, Roch LM, Kreisbeck C, Aspuru-Guzik A: PHOENICS: a
universal deep bayesian optimizer. ACS Cent Sci 2018,
4:1134-1145.

46. Tran K, Ulissi ZW: Active learning across intermetallics to guide
discovery of electrocatalysts for CO2 reduction and H2

evolution. Nat Catal 2018, 1:696-703.

47. Gubaev K, Podryabinkin EV, Hart GLW, Shapeev AV:
Accelerating high-throughput searches for new alloys with
active learning of interatomic potentials. Comput Mater Sci
2019, 156:148-156.

48.
�

Hachmann J, Afzal MAF, Haghighatlari M, Pal Y: Building and
deploying a cyberinfrastructure for the data-driven design of
chemical systems and the exploration of chemical space. Mol
Simul 2018, 44:921-929.

This paper presents a software ecosystem for the development and
broader dissemination of techniques at the different stages of a molecular
data mining workflow.

49. Krylov A, Windus TL, Barnes T, Marin-Rimoldi E, Nash JA,
Pritchard B, Smith DGA, Altarawy D, Saxe P, Clementi C,
Crawford TD, Harrison RJ, Jha S, Pande VS, Head-Gordon T:
Perspective: computational chemistry software and its
advancement as illustrated through three grand challenge
cases for molecular science. J Chem Phys 2018, 149:180901.

50. Wilkins-Diehr N, Crawford TD: NSF’s inaugural software
institutes: the science gateways community institute and the
molecular sciences software institute. Comput Sci Eng 2018,
20:26-38.
Current Opinion in Chemical Engineering 2019, 23:51–57

http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0120
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0120
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0130
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0130
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0130
http://dx.doi.org/10.1145/3219819.3219838
http://dx.doi.org/10.1145/3219819.3219838
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0140
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0140
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0140
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0145
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0145
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0145
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0160
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0160
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0160
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0185
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0185
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0185
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://arxiv.org/abs/1612.09529
https://arxiv.org/abs/1612.09529
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0205
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0205
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0205
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0205
https://rxn.res.ibm.com
http://askcos.mit.edu
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0225
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0225
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0225
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0230
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0230
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0230
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0235
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0235
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0235
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0235
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0240
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0240
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0240
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0240
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0245
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0250
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0250
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0250
http://refhub.elsevier.com/S2211-3398(18)30083-2/sbref0250

	Advances of machine learning in molecular modeling and simulation
	Machine learning from a chemical perspective
	Applications of machine learning in chemical research
	Discovery and design of new compounds
	Creation of new modeling techniques
	Predictions of chemical reactions and catalyst systems

	Outlook on future directions
	Feature representations
	Machine learning for small data
	Software and tool development

	Conclusions
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


