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In this review, we highlight recent developments in the
application of machine learning for molecular modeling and
simulation. After giving a brief overview of the foundations,
components, and workflow of a typical supervised learning
approach for chemical problems, we showcase areas and
state-of-the-art examples of their deployment. In this context,
we discuss how machine learning relates to, supports, and
augments more traditional physics-based approaches in
computational research. We conclude by outlining challenges
and future research directions that need to be addressed in
order to make machine learning a mainstream chemical
engineering tool.
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Machine learning from a chemical perspective
Over the past few years, data science has started to offer a
fresh perspective on tackling complex chemical ques-
tions, such as discovering and designing chemical systems
with tailored property profiles, revealing intricate struc-
ture-property relationships (SPRs), and exploring the
vastness of chemical space [1°]. Data-derived prediction
models serve as surrogates for physics-based models that
are at the heart of traditional modeling and simulation
work. They are attractive, because they are usually

dramatically less demanding than physics-based models
and can thus be deployed in studies of correspondingly
larger scope and scale. If trained on experimental data,
they are also not subject to the approximations made in
physics-based models and may thus not exhibit the
resulting discrepancies with respect to non-idealized
experimental findings. Of course, data-derived models
have their own intrinsic errors and limitations, which we
will address in the course of this review.

Machine learning (ML) is a data mining technique and
used to create data-derived models. It enables us to
extract complex and often hidden correlations (and thus
ideally insights, patterns, rules, and guidance) from given
data sets and to encapsulate them in mathematical form.
ML is commonly categorized into four types, i.e., super-
vised, semi-supervised, unsupervised, and reinforcement
learning. 'T'he main difference between these types is in
essence the amount of information (i.e., labeling, context)
that is available for the target variable that serves as the
ground truth for the training of an ML algorithm. While
all ML types have found application in chemical research
[2], supervised learning has so far been most commonly
used, and this review will thus focus on it. The popularity
of supervised learning may be due to its heuristic and
intuitive approach to learning, which is similar to a
scientist’s way of gaining insights into SPR. A supervised
prediction model can be thought of as a functionf: X — Y
that maps an input x € X to an output y € Y, where x in
this context is the feature representation of a chemical
system and y its target property. If the variables x and y are
continuous (numerical), then the mapping is a regression;
if they are discrete (categorical), then it is a classification.

We can utilize a host of supervised ML algorithms to train
and optimize model fto approximate the output value for
a given input. Two popular algorithms that have been
widely used are artificial neural networks (ANNs) and
kernel methods. Both can be thought of as transforming
the input x into a new feature (latent variable) space, in
which it becomes linearly correlated with the output y [3].
The transformation itself is typically highly non-linear. A
major advantage of the ANNSs is their capacity to trans-
form features sequentially through several layers, which is
referred to as deep learning. Kernel methods, on the other
hand, usually transform features in a one-step process
using kernel functions. Unlike in ANNSs, this process is
predefined prior to the tuning of the model’s parameters,
and is thus less flexible to learn the best latent variable
space. The advantage of kernel methods is their superior
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performance in finding global solutions, even for small-
size data sets where ANNs have deficits. The support
vector machines and kernel ridge regression are two
common examples of kernel-based algorithms.

The relationship between a molecular structure and its
properties is deterministic, i.e., there exists an exact
mapping from fundamental physics (i.e., the Schrodinger
equation). This mapping is ultimately the foundation for
traditional modeling and simulation techniques. The
topology of ML models is generally very flexible (as,
e.g., expressed in the universal approximation theorem
for ANNSs), so that they can learn and recover the under-
lying SPRs of a problem, even from simple chemical
representations (assuming no significant loss of informa-
tion within this representation).

We can consider a feature representation method as a
function g: M — X that maps a basic chemical represen-
tation m € M to a feature input x € X (typically called a
descriptor). The representation 7 may contain spatial or
at least topological information that defines a molecule
and is expressed, e.g., in atomic coordinates, simplified
molecular-input line-entry system (SMILES) [4], inter-
national chemical identifier (InChl), or other formats.

A common feature space X is spanned by structural
descriptors. Some ML approaches also utilize physical
or (physico-)chemical properties as descriptors, such that
g corresponds to a simulation or some other type of
calculation (including those from first principles). As this
approach builds physics into the feature space, it has a
certain appeal and has gained corresponding popularity.
However, it is important to point out that the computa-
tional cost of obtaining such descriptors (which include
optimized geometries) may easily make this the bottle-
neck of an ML approach, in which case it will limit its
utility as an efficient surrogate for the prediction of y. This
issue has to be considered as part of a cost-benefit
analysis.

Another class of descriptors is designed to capture the
local environment of each atom in a molecule [5]. This
approach considers a molecule as a graph with atom and
bond (i.e., node and edge) features. Each atom can
interact with all other atoms in its immediate vicinity,
which results in an update of the corresponding local
atomic features. Incidentally, this approach has its roots in
both chemical and data sciences: In the context of molec-
ular simulations, cutoff radii have long been used to
exploit the short-ranged nature of intermolecular inter-
actions. In data science, the idea of dynamic irregular
graphs provides the underpinning of graph convolutional
neural networks. The overlap of the two disciplines in this
area has led to many methodological advances for the
generation of descriptors. Results from a number of
recent studies suggest that an ensemble of local features

(rather than a global representation), is able to provide a
more robust solution to the challenges involved with
variant graph size and the order of atoms in molecules
[6,7].

The descriptors discussed so far are essentially hand-
crafted to explicitly expose certain structural, physical,
or (physico-)chemical information x from 7 and provide a
structured (i.e., tabular) feature representation. Alterna-
tively, the feature generation g can also be merged into
the prediction model f and both will be jointly opti-
mized, e.g., through hidden layers (latent space) in deep
learning. This class of descriptors is called learned
features [8].

The overall MLL workflow for chemical problems encom-
passes a number of steps as shown in Figure 1, including
parsing, cleaning, and preprocessing a chemical data set
{M, Y}, compiling an array of descriptors via g, as well as
training, evaluation, and validation of the prediction
model f.

Applications of machine learning in chemical
research

In the following section, we summarize three application
areas of ML in chemical research, with particular consid-
eration of the inherent structure of the associated data
sets, types of representation, and connections to tradi-
tional modeling. We limit the scope of our discussion to
molecular systems, which still cover a broad range of use
cases.
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The major tasks and mathematical setup of a supervised machine
learning workflow: For a given data set {M, Y}, in which for a number
of molecules in basic chemical representation m € M the target
property y € Y is given, we apply a feature representation method as a
function g : M — X that maps M to a feature input space X. After
cleaning and other preprocessing, we use {X, Y} to formulate an ML
model f: X — Y that maps the feature input space X to the output
label space Y. The ML model is trained on the training subset of

{X, Y}, and subsequently validated and optimized on its testing subset,
so that it minimizes the prediction error for Y.
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Discovery and design of new compounds

The application of ML for the exploration of chemical
space and the creation of new compounds (ranging from
small molecules to polymers and materials) can
be divided into two distinct approaches: (i) discovery,
r.e., ML is used to generate fast prediction models for
properties of interest, with which large-scale surveys of
chemical space can be conducted in order to identify
compounds that exhibit desired property profiles; (ii)
design, i.e., ML is used to develop a quantitative under-
standing of the SPRs of interest, which can be inverted to
pursue the targeted, rational design (or inverse engineer-
ing) of compounds with particular properties. While the
core activity, i.e., the ML of SPRs, is the same in both
cases, its use follows different perspectives.

Discovery. The idea of employing data-derived prediction
models instead of physics-based models (or experimen-
tation) as a means to characterize candidates in the search
for new molecules may be one of the earliest applications
in chemistry, for which the use of ML was proposed.
Traditional molecular modeling and simulations have
been used for this purpose for many years. More recently,
they have also been employed in the context of virtual
high-throughput screening studies, in which they are
tasked with assessing entire libraries of candidate com-
pounds (see Figure 2 and, e.g., Refs. [9,10]). However, the
computational footprint, in particular of firsz-principles
approaches, is limiting both individual as well as large-
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Flowchart showing a computational funnel typical for high-throughput
virtual screening (HTVS) studies. The neural network schemes on the
left and right represent deep generative model architectures that can
conceptually replace different elements of the screening funnel. Both
generative adversarial networks (GANs) and variational autoencoders
(VAESs) include two networks that revolutionize the conventional
generation and analysis steps by probabilistic means. A deep
reinforcement learning (RL) network can also be trained to bias the
generation towards promising candidates.

scale studies that seek to identify compounds with spe-
cifically targeted properties.

The application of data-derived prediction models
enables us to dramatically accelerate the survey of chem-
ical space, often by several orders of magnitude. A speed-
up of that magnitude allows a corresponding increase in
the scale and scope that is viable for screening efforts. (It
is thus sometimes referred to as Ayperscreening.) The
candidate libraries are typically generated from a collec-
tion of moieties and patterns that are of interest in a given
context [11]. The combination of such a set of building
blocks leads to a molecular library for a particular domain
in chemical space, i.e., the candidates belong to the same
distribution [12]. A number of experimental or high-level
computational training sets have been developed for
specific classes of molecules [13,14]. Since these data
sets focus on relatively similar compounds from the same
distribution, the choice of representation and the ML
model training are arguably less challenging compared to
more universally applicable models. The extrapolative
use of data-derived prediction models outside the domain
for which they were trained has to be conducted with
great care and caution, as they are least reliable here. This
is a conceptual challenge, as screening studies are often
interested in compounds with extreme properties that are
likely at the margins of the distribution, where the pre-
dictions are least reliable. Iterative retraining of ML
models allows us to shift the training data distribution
into particular areas of interest, thus making them more
robust for use in discovery.

A reasonably diverse collection of molecules can be found
in the open-source QM9 data set originally extracted from
the GDB-17 chemical universe of 166 billion organic
molecules [15]. The QM9 data comprises computed
geometries and properties for 134 000 molecules at den-
sity functional theory (DF'T’) level. Due to the diversity of
molecular structures and broad range of calculated prop-
erties, QMO plays an important role as a benchmark data
set for new models and methods [16,17]. Its contribution
to method developments can be compared to the MNIST
data set in the hand-written character recognition com-
munity [18]. In contrast to, e.g., data sets from firsz-
principles modeling, those from data-derived models have
so far rarely been used for the generation of new reference
data. Yet, they have played an important role in a number
of methodological advances in the field. As a result, the
reported accuracies for many of the recent ML prediction
models surpass those of traditional molecular modeling
and simulations [19].

Design. While discovery is still based on a traditional trial-
and-error process — albeit one drastically accelerated by
ML — the notion of a deliberate, @¢ novo design of new
compounds represents a different research paradigm. It
addresses the problem that even rapid and efficient
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hyperscreening studies can only scratch the surface of the
practically infinite molecular space. Instead, the design
paradigm seeks to utilize insights into the SPRs obtained
from ML for the targeted creation of systems with specific
properties. The understanding of how changes in the
molecular structure (or a compound’s features) lead to
changes in the desired properties can be inverted to gain a
property to structure mapping. The mathematical struc-
ture of a data-derived SPR prediction model (e.g., the
dominant features, principal components, latent vari-
ables, or learned features) yields a foundation for inverse
design. Models that are less easy to interpret can be
projected onto surrogate models for which the extraction
of guidelines is easier. A key challenge is to realize the
simultaneous enhancement of different properties. The
emerging design rules can be used to formulate individual
compounds [20°], but also to identify high-value domains
in chemical space, which can be enumerated in screening
libraries (e.g., by sampling compounds similar to a lead
compound). The latter approach is effectively interfacing
the discovery and design perspectives and allows both
physics-based and data-derived modeling studies to be
more targeted.

Another approach that is very promising and has caused
much excitement is the application of generative models
(see Figure 2). For instance, Sanchez-Lengeling er al.
have shown that a generative adversarial network (GAN)
in tandem with reinforcement learning can outperform
evolutionary algorithms in order to bias the generative
process toward the extreme regions of a property distri-
bution [21,22]. The use of GANSs for molecular design and
library generation is very recent and a number of concerns
and challenges still need to be overcome in their devel-
opment. T'wo of the principal challenges of GANs (and
other generative approaches) are the rate at which invalid
(i.e., chemically irrelevant or non-sensical) structures are
generated, and their ability to produce topologically dif-
ferent molecules compared to the underlying training
data [23,24]. Another example of generative models are
variational autoencoders (VAEs) that learn the distribu-
tion of embedded space and thus enables tuning in that
space [25]. Recurrent neural networks (RNNSs) operate in
a sequential manner similar to creating new molecules
one atom at a time. One benefit of RNNs is their memory
mechanism that allows them to remember the effects of
previous sequences [20].

Creation of new modeling techniques

Instead of replacing physics-based with data-derived
modeling entirely as outlined in the section ‘Discovery
and design of new compounds’, ML can also be used to (i)
calibrate and correct the results of physics-based models to
account for some of their systematic errors; (i1) complement
traditional modeling and simulation approaches (i.c.,
employ combinations of physics-based and data-derived

models); and (ii1) facilitate the development of new physics-
based modeling techniques.

The calibration approach allows us to improve the predic-
tive performance of physics-based models and obtain
high-quality results at the cost of lower-quality methods.
It can also help bridge the gap between experiment and
theory that results from the inherent approximations in
the latter (see, e.g., Ref. [10]). Transfer learning is an ML
design methodology that has been a particularly success-
ful technique in this context [27,28]. In the combination
approach, we only utilize ML for aspects for which no
good physics-based models are available or where their
use 1s impractical (e.g., because of insufficient accuracy,
prohibitive cost, or other numerical issues). We thus
retain as much of the physical foundations and robustness
of traditional modeling as possible, while being pragmatic
about the parts of a problem, where that is not possible
(see, e.g., Refs. [29-31]).

"T'he development of entirely new modeling technigues by means
of ML has seen encouraging pioneering efforts, in partic-
ular for force fields (FFs) and DFT. The major driving
force behind ML-generated FFs is the lack of generaliz-
ability in the classical FFs and the interatomic potentials
that underpin them. This is an area where ML is appar-
ently able to bridge the accuracy and versatility typically
seen from quantum chemistry and the efficiency of
molecular mechanics simulations. A recent line of
research has focused on learning interatomic potentials
from quantum chemical data sets [32]. There are two
specific challenges involved in this application that make
it distinct from prediction models for molecular proper-
ties. One is the need for a diverse sampling of non-
equilibrium chemical conformations, as both ML and
classical FFs perform poorly outside of their applicability
domain. Access to a diverse collection of high-quality
training samples is thus essential in creating MLL FFs. For
instance, Botu ez @/. have improved on previous work by
diversifying their training data, e.g., by adding more
atomic environments and applying clustering methods
[33]. Smith ez /. have pushed the normal mode sampling
method to obtain single point energies for more than
20 million conformations generated for 58 000 small
molecules [34°]. The results of these efforts were shown
to be efficiently generalizable, even for the simulation of
more complex phenomena. The second important chal-
lenge is to conserve the consistency between potential
energies and forces as discussed by Chmiela ez a/. [35].
They provide a robust solution to this challenge by
developing gradient-domain ML models (which repro-
duce global FFs by training in the force domain and
incorporating both energies and forces) in an automated
fashion, thus learning accurate ML FFs.

In the DFT context, ML is used to create new functionals
for different terms in the electronic Hamiltonian. The
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exact form of several functionals (e.g., the kinetic energy
functional for interacting electrons or the exchange-cor-
relation functional in the Kohn-Sham formalism) are
unknown and otherwise approximated by physical rea-
soning. The ML-generated functionals allow DFT to
avoid common failures, such as in accurately describing
bond-breaking processes. Different ML functionals for
specific classes of molecules, target properties, and elec-
tronic structure situations are being developed, as are fast
methods that, e.g., learn energy functionals directly with-
out having to solve the Kohn-Sham equations, thus
making them a viable approach for @b initio molecular
dynamics simulations [36].

Predictions of chemical reactions and catalyst systems
Research on chemical reactions is another field that has
been benefiting from the advances in ML methodology.
ML has been paving the way for a better understanding of
chemical transformations with numerous real-world
implications. SMILES are often the representation of
choice for both the inputs (reactants and reagents) and
outputs (products) of data-derived models for chemical
reactions. These models are trained on known reactions
to recognize structural patterns that may undergo bond-
breaking or -formation in the course of a reaction or
catalytic process [37°]. One particularly important data
set for this application domain is the result of the US
patent reaction extraction by Lowe [38].

The progress in predicting organic reactions and their
products has been particularly noteworthy in recent years.
Nam ¢ a/. have introduced sequence-to-sequence models
to address the reaction prediction task similar to linguistic
translation problems [39]. More recently, Schwaller ¢z a/.
outperformed a similar approach in an end-to-end tem-
plate-free model with a focus on the attention mechanism
and a new tokenization strategy [40]. Coley ¢ a/. intro-
duced a graph convolutional neural network approach
with competitive performance. It was used for the pre-
diction of reaction products as well as reactive sites of the
reagents that are most likely to initiate a reaction [41].
One major contribution of the last two studies is the
development of web applications to facilitate easy access

to their models. These tools are available via the
IBMRXN and ASKCOS websites, respectively [42,43].

A promising direction of ongoing work is the prediction of
reaction pathways and mechanisms. All these efforts
ultimately aim for a practical and more generalizable
implementation of retrosynthetic analysis, which has
been a grand challenge in organic chemistry for many
years [44]. Insights regarding the synthetic feasibility of
virtual compounds are also a key concern for the screen-
ing library generation and molecular design efforts dis-
cussed in the section ‘Discovery and design of new
compounds’.

Outlook on future directions

Feature representations

As discussed in the section ‘Machine learning from a
chemical perspective’, the descriptors of a given molecu-
lar system are an abstraction of its detailed nature (as well
as a numerical representation). The choice of a suitable
feature space is still our first and most effective means to
infuse physics into ML models. There have been efforts
to define criteria for the development of efficient descrip-
tors [5], e.g., that they are (1) invariant to the symmetries
of the underlying physics; (2) easy to interpret; (3)
expressed in a direct and concise form to avoid redun-
dancy and the curse of dimensionality; and (4) computa-
tionally efficient. However, developing molecular repre-
sentations that adhere to all these criteria has been an
exceedingly difficult task. More importantly, there is now
agreement that ML approaches may require different
types of descriptors to recover the entirety of SPRs of
molecular systems. Further research into the creation of
new descriptors (including fingerprint schemes) as well as
the formulation of additional criteria will be necessary for
the foreseeable future. The accessibility and flexibility of
deep learning models can accelerate future developments
via learned features and theory-informed models.

Machine learning for small data

While ML ideas became popular during the recent ‘big
data’ wave (i.c., in chemistry with the emergence of large-
scale screening result from high-level firse-principles
modeling), large data sets are in practice more often than
not unavailable. In fact, problems for which data is (still)
sparse tend to be of particular interest. As the data
generation (both from experiment and modeling) is often
a limiting factor, we will have to strive to reduce its cost or
the number of data points needed to obtain MLL models of
a desired accuracy. It is thus essential to put an emphasis
on developing ML, methods that achieve better perfor-
mance on small data sets. As mentioned in the section
‘Creation of new modeling techniques’, transfer learning
is a promising approach in this context. We will also need
to employ smart sampling methods and identify data
points that are most important for the training of ML
models. Active learning strategies offer a path towards
this goal [45-47]. Many of these techniques are of gen-
eral-purpose utility, but some will have to be tailored
towards the specific problem settings of data-derived
models for chemistry.

Software and tool development

The idea to utilize ML and other data mining techniques
in the chemical domain is so recent that much of the basic
infrastructure has not yet been developed, or is still in its
early stages [1°]. The majority of tools and expertise tend
to be technically involved, labor intensive, or otherwise
unavailable to the community at large. Many researchers
are now starting to pursue open-source software develop-
ment projects to tackle this situation [48°]. However, the
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lack of rigorous development guidelines remains a chal-
lenge that researchers from domain science need to
overcome to make their efforts lasting and sustainable.
The Molecular Sciences Software Institute (MolSSI) is
one of the pioneers in establishing best practices and
guidance for early-stage software developments in this
field [49,50].

Conclusions

In this review, we discussed how ML can advance tradi-
tional modeling and simulation by (partially) replacing
them (i.e., choosing data-derived over physics-based
models or combining the two); calibrating, augmenting,
or otherwise correcting their results; targeting studies and
their objectives; and providing the means to effectively
mine their results for a deeper understanding of hidden
SPRs. Many ML models are still built on data provided by
modeling and simulation — often as part of virtual high-
throughput screening studies — and combining ML and
traditional modeling infuses physics and robustness into
the resulting data-derived prediction models. These and
other emerging ML techniques have been enabling
accelerated discovery and rational design in numerous
areas of chemistry. Its early successes indicate that ML is
bound to become a mainstream tool in chemical research.
Yet, there is still much to (machine) learn on how to
develop the full potential of ML in chemistry.
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