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ABSTRACT: We present a high-throughput computational
study to identify novel polyimides (PIs) with exceptional
refractive index (RI) values for use as optic or optoelectronic
materials. Our study utilizes an RI prediction protocol based
on a combination of f irst-principles and data modeling
developed in previous work, which we employ on a large-
scale PI candidate library generated with the ChemLG code.
We deploy the virtual screening software ChemHTPS to
automate the assessment of this extensive pool of PI structures
in order to determine the performance potential of each
candidate. This rapid and efficient approach yields a number
of highly promising lead compounds. Using the data mining
and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and
feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies
that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a
foundation for rational and targeted design that goes beyond traditional trial-and-error searches.

1. INTRODUCTION
Polyimides (PIs), shown in Figure 1, are synthesized by
polycondensation of R1-containing dianhydride with R2-based

diamine or diisocyanate.1 They are an appealing class of organic
materials due to their exceptional thermal stability and easy
processability.2−4 These properties are complemented by
mechanical stability, flexibility, light weight, low cost, as well
as flame and radiation resistance, and they thus hold much
promise for a range of applications.5,6

However, their generally low index of refraction (RI)
undermines their utility for use inmany optic and optoelectronic
devices,7−11 such as (image) sensors,12,13 displays,14 and light

sources (including organic light-emitting diodes),15 in which
organic materials can be deployed in situ as microlenses,16

waveguides,17 microresonators,18 interferometers,19 antireflec-
tive coatings,20 optical adhesives,21 and substrates.22 Most of
these applications demand large RI values, often upward of 1.7
or 1.8. Typical carbon-based polymersPIs includedonly
exhibit values in the range of 1.3−1.5.11 This situation provides a
strong incentive to pursue novel high-RI PIs that are suitable for
the aforementioned applications.
As the properties of organic materials can be tailored and

tuned by controlling their molecular structure, they are a prime
target for combinatorial search or rational design attempts.23−25

The addition of highly polarizable moieties that do not have
extensive π-electron conjugation can increase the RI of polymers
without negatively affecting other optical properties. (Significant
π-conjugation can lead to large optical dispersion and
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Figure 1. Polyimide (PI) core structure with residues R1 and R2.
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birefringence,26 as well as poor transparency and coloration.)
For example, the incorporation of small aromatic rings,
halogens, metals, and in particular sulfur has shown promise
for this purpose.3,27−31 In 2007, Ueda et al. developed PI films
with relatively high RI values of up to 1.75, but they,
unfortunately, exhibited large birefringence.32 In recent years,
these findings have been improved upon by increasing the sulfur
content of the PIs, yielding RI values of up to 1.76 and smaller
birefringence.33

In this paper, we present a computational and data-driven
approach to study the RI values of PIs and rapidly identify
promising lead compounds. We investigate different ways that
introduce highly polarizable moieties into the PI framework in
order to overcome the technical limits of existing compounds.
Given the encouraging results from the earlier work discussed
above, we put a focus on incorporating sulfur into the PIs and, in
doing so, create a new class of high-RI polymers. In section 2, we
detail the methods employed in this work; i.e., we provide
background on our data-driven in silico approach (section 2.1),
introduce our RI modeling protocol (section 2.2), discuss the
molecular design space we consider (section 2.3), and outline
our data mining and analysis techniques (section 2.4). Section 3
presents and discusses the results of our study, and our findings
are summarized in section 4.

2. BACKGROUND,METHODS, ANDCOMPUTATIONAL
DETAILS

2.1. Data-Driven In Silico Approach. The development of
new materials such as PIs has traditionally been an
experimentally driven, trial-and-error process, guided by
experience, intuition, and conceptual insights. This approach
is, however, often costly, slow, biased toward certain domains of
chemical space, and limited to relatively small-scale studies,
which may easily miss promising leads (both on individual
compounds as well as compound classes).
The study at hand instead embraces a data-driven in silico

research paradigm that has gained considerable interest in the
past few years34,35 for its promise to address the inherent
complexities of structure−property relationships and the
vastness of chemical space more efficiently (see, e.g., refs
36−43). Our work brings together molecular modeling, high-
throughput computational screening, and machine learning as
well as a corresponding software ecosystem to support data-
driven discovery and rational design.44,45 It has its greatest utility
as part of integrated research pipelines with experimentalist
partners, where it provides guidance for experimental efforts and
mitigates some of their before-mentioned shortcomings.
Our research approach and its rationale can be summarized as

following: We first establish a computational modeling protocol
that can make sufficiently accurate and fast predictions for the
target property in the compound class(es) of interestin the
study at hand for the RI values of PIs (cf. section 2.2). We then
create a large-scale virtual library of candidates within that
compound class (cf. section 2.3), on which we apply this
modeling protocol to evaluate the performance potential of each
candidate compound. In addition to obtaining information
about each individual compound, we can mine the screening
results in their entirety to reveal underlying structure−property
relationships (cf. section 2.4). Our approach can thus identify
both specific lead compounds as well as high-value molecular
patterns and features for the de novo design of tailored PIs or the
creation of additional screening libraries.

2.2. Refractive Index Modeling Protocol. According to
the Lorentz−Lorenz equation, the RI (nr) is a function of the
polarizability (α) and the number density (N), i.e.,

α ϵ
α ϵ
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+
−
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N
N

1 2 /3
1 /3r

0

0

In previous work,46,47 we developed a modeling protocol that
allows us to accurately and efficiently predict the RI values of
polymers within the Lorentz−Lorenz equation. This protocol is
based on a combination of f irst-principles quantum chemistry
calculations and data modeling. We compute (static) polar-
izability values α using the coupled-perturbed self-consistent
field equations within the Kohn−Sham density functional
theory (DFT) framework with the PBE0 hybrid functional48 and
the double-ζ-quality def2-SVP basis set by the Karlsruhe
group.49 We employ an all-electron, closed-shell approach and
include Grimme’s D3 correction50 to account for dispersion
interactions. The polarizability calculations are performed on
geometries optimized using the universal force field (UFF)51

following a 3D conformational screening as implemented in the
OpenBabel software.52 All DFT calculations are carried out
using the ORCA 3.0.2 quantum chemistry package.53 We
compute the number density N via the van der Waals volume
VvdW and packing factor Kp of the amorphous bulk polymer as

=N
K

V
p

vdW

We obtain VvdW using Slonimskii’s method detailed in ref 54 and
Kp using the support vector regression (SVR) machine learning
model introduced in ref 46 (except during the prescreening of
individual residues R1 and R2 discussed in the following section,
for which we simply employ a constantKp of 0.75 that is typically
found in PIs55). We obtain the asymptotic limit for the polymers
via a linear extrapolation scheme as outlined in ref 46. [In
exploratory calculations, we already observe near-perfect
extensivity based on the monomer units, which we explain
with the large size of the PI monomers (∼150 atoms) and the
finite correlation length exhibited in them. There is thus no need
to perform expensive oligomer-sequence calculations.] We
previously demonstrated on a set of 112 nonconjugated
polymers with experimentally known RI values that this protocol
can make rapid and accurate predictions,46,47 and thus enable
the high-throughput screening study at hand. We execute the
latter using our automated virtual screening code ChemHTPS56

which creates inputs, executes and monitors the calculations,
parses and assesses the results, and extracts and postprocesses
the information of interest. Where applicable, we report the
mean absolute error (MAE) and the root mean squared error
(RMSE) as well as their percentage errors (MAPE and RMSPE,
respectively) compared to available experimental data.

2.3. Molecular Design Space. In Figure 2, we show the RI
heat map in the α/N parameter space and mark the positions of
the 112 polymers we previously studied.46,47 The figure
emphasizes the relative importance of the counteracting
parameters and their feasibility in real-world compounds. In
order to design high-RI systems, we in principle have to pursue
compounds that simultaneously feature both large polarizability
and number density values. The positioning of the known
compounds with high RI leans more toward high polarizability
and relatively small number density rather than vice versa. One
path to narrowing down compound space is to maximize the
polarizability for systems from the same compound family, for
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which the number density is similar. Given that this is known to
be the case for PIs, we pursue this path and focus our search on
highly polarizable PI candidates.55

For this, we create a PI library based on 29 building blocks and
bonding rules shown in Figure 3, which we select following

empirical expertise with regard to promise and synthetic
feasibility. The building blocks can be divided into linkers
(B1−B6) and (hetero)aromatic moieties (B7−B29). Using our
ChemLG molecular library generator code57 with a systematic
combinatorial linking scheme, we initially generate 38,619 R1
structures and 171,172 for R2. Combining all R1 and R2 to form
PIs would lead to a total of 6.6 billion compounds. To restrict the
search space to a more manageable number of candidates, we
select only the most promising R1 and R2 groups (which
ultimately distinguish the PI candidates) on the basis of the
computed RI values of the individual R1 and R2. After
prescreening the residues, we develop PI candidates by
introducing the top 100 R1 and 100 R2 structures into the PI
core motif, as shown in Figure 1. We subsequently screen the

10,000 resulting PI candidates. ChemLG keeps a record of the
list of building blocks and connections that are used to create a
particular compound, and we use this information for the
analysis of structure−property relationships.

2.4. Data Mining and Pattern Analysis. In addition to
identifying the best candidates from our high-throughput
screening, i.e., those with the highest predicted RI values, we
further analyze the collected data to develop a better
understanding of the structural patterns that lead to high-RI
PIs. For instance, we conduct a hypergeometric distribution
analysis, in which we compute the Z-scores (Zi) of each building
block i used in the creation of the screening library as

σ
=

−
Z
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whereM is the total number of compounds in the entire library,
m is the subset of compounds that is considered (e.g., the top
compounds), Ki is the number of occurrences of building block i
in M molecules, and ki its occurrences in the subset of m
molecules. A large Z-score thus indicates a statistical over-
expression of the associated building block in the high-RI
candidates relative to the overall screening library. By applying
the Z-score analysis, we can thus identify the most important
building blocks and the degree to which they correlate with large
RI values. We perform a similar analysis of building block
combinations to reveal synergistic effects similar to those known
from push−pull or donor−acceptor copolymers. In addition, we
present an analysis of Z-score trends for each building block in
ranked candidate subsets as well as of the average RI values of
the candidates derived from each building block. All data mining
work was conducted using our ChemML code.58

3. RESULTS AND DISCUSSION
We previously tested the RI modeling protocol described in
section 2.2 for the before-mentioned set of 112 nonconjugated
polymers and established its predictive performance. However,
this benchmark set did not contain any PIs. To prove our
protocol’s validity for this particular compound class, we
perform additional calculations on 10 PIs with experimentally
known RI values. We compare the experimental and computa-
tional results in Table 1. The MAE (MAPE) and RMSE
(RMSPE) values for this comparison are 0.021 (1.2%) and 0.025
(1.4%), respectively, which suggests that our protocol can
accurately predict the RI values of PIs as well.
The results of the R1 and R2 residue prescreening are

summarized in parts a and b of Figure 4, respectively, and the
results of the subsequent PI screening are given in Figure 4c. The
plots show histograms of the computed RI results. Most of the
candidates for R1 and R2 have RI values between 1.5 and 1.7 with
an average of (a) 1.600 and (b) 1.627, respectively. However,
the PI candidates derived from the top R1 and R2 residues have
significantly larger RI values with an average of 1.843. We note
that either of these averages is well above the range of typical
organic polymers (i.e., 1.3−1.5), which indicates a good choice
of building blocks. As per the objectives of this work, we are able
to identify a sizable number of compounds with RI values greater
than 1.7, i.e., (a) 2851 (7.4%), (b) 22388 (13.1%), and (c) 9985

Figure 2. Refractive index (RI) heat map showing the dependence on
polarizability and number density expressed in the Lorentz−Lorenz
equation. The dots mark 112 experimentally known polymers that were
used to benchmark the employed RI model.

Figure 3.Molecular building blocks used to create the residues R1 and
R2 of the PI screening library studied in this work. The “R” on the
building blocks denote allowed sites for linking. The building blocks
marked in green (B1−B6) are linkers, and the blue ones (B7−B29) are
(hetero)aromatic moieties.
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(99.8%). At or above the critical threshold of 1.8, we still find (a)
131 (0.3%), (b) 1252 (0.7%), and (c) 6961 (69.6%)
compounds. The shift to considerably larger RI values also
demonstrates the success of our strategy to prescreen the R1 and
R2 individually and build PI candidates on the basis of the top
residues. (Details of the prescreening and screening results are
provided in the Supporting Information.)
Figure 5 shows the RI distribution of (a) R1, (b) R2, and (c) PI

candidates containing each constituent building block (cf. the PI
candidate library construction illustrated in Figure 3). We find

that R1 and R2 candidates containing building blocks B28
(anthracene), B25 (dibenzothiophene), and B24 (thianthrene)
have the highest RI values, while those containing building
blocks B17 (cyclopentadiene) and B16 (1,3,5-triazinane) show
the lowest RI. The ranking of the building blocks is very similar
for both R1 and R2 structures, which is unsurprising considering
their general similarity. The PI candidates do not contain
building blocks B10 (1,4-dithiane) and B14 (toluene with
linking in the 2,4-position), as these were missing in the top 100
structures of R1 and R2 that were used in their construction. The
average RI values for all of the other building blockswith the
exception of B26 (tetraphenylmethane)are greater than 1.8.
However, it should be noted that the number of PI candidates
containing a specific building block is very variable. The red plot
in Figure 5c shows the count of each building block in the 10,000
PI structures. The most common building blocks in the PI
library are B1 (CH2-linker), B25, B2 (S-linker), B28, and B3
(O-linker), with B28 and B2 occurring in almost all PI
candidates. Building blocks B1, B2, and B3 do not exhibit
particularly large average RI values; however, given the
construction template for the residues introduced in Figure 3,
they are statistically more likely to occur. The average RI value
alone is thus not a sufficient metric to gauge the potential impact
of each building block on the performance of PI candidates.
In the following, we analyze the contribution of the building

blocks in the high-RI candidates of R1 and R2, using the
hypergeometric distribution analysis detailed in section 2.4. We
focus on the top 10% of the R1 and R2 candidates (with RI values
greater than 1.687 and 1.711, respectively). We do not include
PI candidates in this analysis, as the selective construction
scheme with its biased building block counts makes it less
meaningful. Figure 6 shows the resulting Z-scores, which
identify the over- or underrepresentation of each building block
in the high-RI R1 and R2 candidates compared to a random
sample. The results point to B28 and B25 as the most prevalent
building blocks in the top residues, and thus the most promising
ones to consider for the design of high-RI polymers. This finding
is in good agreement with the prior analysis of the RI averages
and distribution. The rankings of the building blocks in both R1
and R2 are again largely the same, suggesting that the effect of the
building blocks is similar for the somewhat different sequences
in R1 and R2.
The above Z-score analysis only yields insights into the

pervasiveness of building blocks in the top 10% candidates. In
order to gain a more comprehensive picture, we now evaluate
the Z-score of each building block in each 10% segment of the R1
and R2 libraries. For this, we sort the R1 and R2 libraries by
increasing RI value, divide them into 10 subsets, and perform a

Table 1. Comparison of RI Results from the Employed
Prediction Model with the Experimental Values of 10 Known
High-RI PIsa

aWe report errors and percentage errors in each case. For the entire
set, we obtain a mean absolute error (MAE) and root mean squared
error (RMSE) of 0.021 (1.2%) and 0.025 (1.4%), respectively. (The
values in parentheses are the corresponding percentage errors, i.e.,
MAPE and RMSPE.)

Figure 4. RI distribution histograms of (a) the 38,619 individual R1 residues; (b) the 171,172 individual R2 residues; and (c) the 10,000 PI structures
resulting from the top R1 and R2 residues. We observe a distinct shift toward higher RI values in part c.
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hypergeometric distribution analysis for each building block in
each subset. The results are shown in Figure 7. We observe
certain general trends for the building blocks making up R1 and/
or R2:

1. The Z-score of some building blocks increases with
increasing RI values, indicating a direct correlation (e.g.,
for B28, B25, B24, and B23).

2. The Z-score of some building blocks decreases with
increasing RI values, indicating a negative correlation
(e.g., for B17, B22, B10, and B16).

3. The Z-score of some building blocks goes through a
maximum for intermediate RI values, indicating a
corresponding correlation with average candidates (e.g.,
for B11, B26, B19, B18, B20, and B7).

4. TheZ-score of some building blocks does not show a clear
trend, indicating a lesser impact on and correlation with
the RI values (e.g., for B1 and B6.)

In the bottom right corner of Figure 7, we plot the average RI
values of the R1 and R2 candidates in each of the 10 subsets. We
observe that the R2 structures have somewhat higher RI values in
comparison to R1 structures. The principal difference in R1 and

R2 candidates is the number of aromatic building blocks, i.e., two
vs three, and the higher content of these moieties correlates with
higher RI values.
In addition to analyzing the influence of individual building

blocks on the RI values, we also study the potential impact of
building block pairs. For this, we calculate the joint Z-scores of
all possible building block combinations in the top 10%
candidates. The results for R1 and R2 are shown in Figure 8.
This analysis reveals some dependence on particular building
block combinations. For instance, B23, B24, and B25 perform
significantly worse when paired with B4 and B5 but exhibit large
Z-scores in combination with B2 and B3. However, overall, we
find the impact of individual building blocks to be the dominant
factor. For instance, B28 has the largest positive Z-score,
regardless of its counterpart.
Overall, we find anthracene (B28) to be the most promising

moiety, a surprising finding and somewhat contradictory to our
initial hypothesis considering that it does not contain sulfur.
However, it is in line with (and independently confirms) other
efforts in the community that aim to integrate anthracene into
high-RI optical polymers (see e.g., ref 59). The other
outstanding moieties are the S-heterocycles dibenzothiophene
(B25) and thianthrene (B24). Naphthalene (B23) shows some
promise as well. The O- and S-linkers (B2 and B3, respectively)
and to a lesser degree SO2 (B6) outperform the carbon-based
linkers.

4. CONCLUSIONS

In this study, we demonstrated that the data-driven in silico
approach that is being advanced by us and others can rapidly and
efficiently assess the properties and performance potential of
high-RI candidate compounds, identify numerous leads for next-
generation PIs, and elucidate structure−property relationships
that form the foundation for rational design rules. By combining
our RI prediction model with virtual high-throughput screening
techniques, we characterized candidates on a large scale at a
fraction of the time and cost of traditional studies. We identified
high-value building blocks (e.g., anthracene, dibenzothiophene,
thianthrene) and structural patterns (e.g., S- and O-linkers) that
correlate with large RI values. Correspondingly, we identified
regions in chemical space in which we can hope to maximize the
RI values of PIs. These guidelines allow us to target specific
molecular motifs and create polymers with exceptional optical
properties. In future experimental work, we will utilize these
guidelines and pursue the promising candidates that have
emerged.

Figure 5. RI value distribution around the respective average RI values (blue points) of the (a) R1 residues, (b) R2 residues, and (c) PI candidates
containing each building block. The blue bands refer to one standard deviation. The red points in part c show the counts of PI candidates containing a
specific building block.

Figure 6. Z-score of each building block in the top 10% R1 and R2
candidates compared to the entire R1 and R2 candidate pool,
respectively. Green color represents a positive Z-score, and negative
ones are shown in red.
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