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Abstract

We consider 2- or 3-dimensional incompressible Navier—Stokes equations defined on a
bounded domain £2, with no-slip boundary conditions and subject to an external force,
assumed to cause instability. We then seek to uniformly stabilize such N-S system, in
the vicinity of an unstable equilibrium solution, in critical L?-based Sobolev and Besov
spaces, by finite dimensional feedback controls. These spaces are ‘close’ to L3(£2) for
d = 3. This functional setting is significant. In fact, in the case of the uncontrolled N-S
dynamics, extensive research efforts have recently lead to the space L>(R?) as being
a critical space for the issue of well-posedness in the full space. Thus, our present
work manages to solve the stated uniform stabilization problem for the controlled
N-S dynamics in a correspondingly related function space setting. In this paper, the
feedback controls are localized on an arbitrarily small open interior subdomain w of
£2. In addition to providing a solution of the uniform stabilization problem in such crit-
ical function space setting, this paper manages also to much improve and simplify, at
both the conceptual and computational level, the solution given in the more restrictive
Hilbert space setting in the literature. Moreover, such treatment sets the foundation for
the authors’ final goal in a subsequent paper. Based critically on said low functional
level where compatibility conditions are not recognized, the subsequent paper solves
in the affirmative a presently open problem: whether uniform stabilization by localized
tangential boundary feedback controls, which—in addition—are finite dimensional,
is also possible in dim £2 = 3.
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1 Introduction
1.1 Controlled Dynamic Navier-Stokes Equations

Let, at first, £2 be an open connected bounded domain in R4, d = 2,3 with sufficiently
smooth boundary I" = 9£2. More specific requirements will be given below. Let w be
an arbitrarily small open smooth subset of the interior £2, w C £2, of positive measure.
Let m denote the characteristic function of w: m(w) = 1, m(£2\w) = 0. Consider
the following controlled Navier—Stokes Equations with no-slip Dirichlet boundary
conditions, where Q = (0, 00) x £2, X = (0,00) x I':

yi(t,x) —vAy(Et,x) + (y-V)y+ Vr(,x) =mx)u(t,x) + f(x) in Q (1.1a)

divy =0 in Q (1.1b)
y=0 on XY (l.1¢)

¥(0, x) = yo(x) in £
(1.1d)

Notation As already done in the literature, for the sake of simplicity, we shall adopt
the same notation for function spaces of scalar functions and function spaces of vector
valued functions. Thus, for instance, for the vector valued (d-valued) velocity field y or
external force f, we shall simply writesay y, f € L7(£2)ratherthany, f € (L9(£2))?
ory, f € L9(£2). This choice is unlikely to generate confusion. By way of orientation,
we state at the outset two main points. For the linearized w-problem (1.13) below in the
feedback form (2.16), the corresponding well-posedness and global feedback uniform
stabilization result, Theorem 2.2, holds in general for 1 < g < oo. Instead, the final,
main well-posedness and feedback uniform, local stabilization result, Theorem 2.5,
for the nonlinear problem (2.27) or (2.28) corresponding to the original problem (1.1)

will require g > 3, see (8.16), in the d = 3-case, hence | < p < 5; and g > 2, inthe

d = 2-case,hence 1 < p < %; see (1.16). Letu € LP(0, T; L9(S2)) be the control
input and y = (y1, ..., yg) be the corresponding state (velocity) of the system. Let
v > 0 be the viscosity coefficient. The function v(t, x) = m(x)u(t, x) can be viewed
as an interior controller with supportin Q, = (0, 00) x w. The initial condition yg and
the body force f € L(2) are given. The scalar function 7 is the unknown pressure.

1.2 Stationary Navier-Stokes Equations

The following result represents our basic starting point.

Theorem 1.1 Consider the following steady-state Navier—Stokes equations in 2

—VAYe + (Ye.V)ye + Vi, = f in 2 (1.2a)
div ye =0 in 2 (1.2b)
Ye=0 onI’ (1.2¢)
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Let 1 < g < oo. For any f € L1(S2) there exits a solution (not necessarily unique)
(e, 7e) € (WH1(2) N Wy (2)) x (WH(2)/R).

For the Hilbert case ¢ = 2, see [12, Thm. 7.3, p. 59] . For the general case 1 < g <
o0, see [4, Thm. 5.iii, p. 58].

Remark 1.1 1t is well-known [32,37,56] that the stationary solution is unique when
“the data is small enough, or the viscosity is large enough” [56, p. 157; Chap. 2] that
is, if the ratio I/ll/ ,2 is smaller than some constant that depends only on £2 [18, p. 121].
When non-uniqueness occurs, the stationary solutions depend on a finite number of
parameters [18, Theorem 2.1, p. 121] asymptotically in the time dependent case.

Remark 1.2 The case where f(x) in (1.1a) is replaced by Vg(x) is noted in the liter-
ature as arising in certain physical situations, where f is a conservative vector field.
The analysis of this relevant case is postponed to Remark 1.4, at the end of Sect. 1.

1.3 Main Goal of the Present Paper

For a given external force f, if the Reynolds number % is sufficiently large, then the
steady state solution y, in (1.2) becomes unstable (in a quantitative sense to be made
more precise in Sect. 2.2 below) and turbulence occurs.

The main goal of the present paper is then—at first qualitatively—to feedback sta-
bilize the non-linear N-S model (1.1) subject to rough (noN-Smooth) initial condition
Y0, in the vicinity of an (unstable) equilibrium solution y, in (1.2). Thus this paper
pertains to the general context of “turbulence suppression or attenuation” in fluids. The
general topic of turbulence suppression (or attenuation) in fluids has been the object
of many studies over the years, mostly in the engineering literature—through exper-
imental studies and via numerical simulation—and under different geometrical and
dynamical settings. The references cited in the present paper by necessity refer mostly
to the mathematical literature, and most specifically on the localized interior control
setting of problem (1.1). A more precise description thereof is as follows: establish
interior localized exponential stabilization of problem (1.1) near an unstable equi-
librium solution by means of a finite dimensional localized, spectral-based feedback
control, in the important case of initial conditions yo of low regularity, as technically
expressed by yp being in suitable L?/Besov space with tight indices. In particular,
local exponential stability for the velocity field y near an equilibrium solution y, will
be achieved in the topology of the Besov space

(L"(.Q) W2’q([2)) = B2_2/p(.{2) l<p< 29, >d, d=2,3
, 1=Y,.p q.p > )4 2q_13 q s , 3.
(1.3)

See more precisely (1.16a). We note the tight indices: e.g. 1 < p < 95
for ¢ > d = 3. In such setting, the compatibility conditions on the bound-

ary of the initial conditions are not recognized. This feature is precisely our key
objective within the stabilization problem. The fundamental reason is that such
feature will play a critical role in the successor paper [35] in showing that:
local tangential boundary feedback stabilization near an unstable equilibrium solut
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ion with finite dimensional controls is possible also in dimension d = 3, thus solving
in the affirmative a recognized open problem in the stabilization area. This point will
be more appropriately expanded in Sect. 1.6 below. For d = 3, the space is (1.3) in
‘close’ to L3(£2).

Criticality of the space L*> We now expand on one message of the abstract regarding
the “criticality’ of the space L3(£2). In the case of the uncontrolled N-S equations
defined on the full space R3, extensive research efforts have recently lead to the
discovery that the space L>(R?) is a ‘critical’ space for the issue of well-posedness.
Assuming that some divergence free initial data in L>(R?>) would produce finite time
singularity, then there exists a so-called minimal blow-up initial datain L3 (R?) [22,27].
More precisely, let y now be a solution of the N-S equations (1.1a-b-d) with m =
0, f = 0, as defined on the whole space R3. For any divergence free I.C. yg € L3 (R3),
denote by T},,4x (yo) the maximal time of existence of the mild solution starting from
yo. Define

Pmax = Sup {p : Tmax(yo) = oo for every divergence free yg € L3(]R3),
with [lyoll 33y < p}-

The following result holds [27, Theorem 4.1, p. 14]: Suppose ppqax < 0. Then
there exists some yy € L3(R3), I yoll 23 (r3) = Pmax> Whose Tax(yo) < 00, i.e. the
corresponding solution blows up in finite time. Of the numerous works that followed
the pioneering work of [36] along this line of research, we quote in addition [16,41,
47,48].

Thus, our present work manages to solve the uniform stabilization problem for the
controlled N-S equations as (1.la-b-d) in a correspondingly related low-regularity
function space setting. A further justification of our low-regularity level of the Besov
space in (1.3) is provided by the final goal of our line of research in the subsequent Part
II [35]. Based critically on said low-regularity level of the Besov space (1.3), which
does not recognize compatibility conditions on the boundary of the initial conditions—
such Part IT solves in the affirmative a presently open problem by showing that uniform
stabilization by localized tangential boundary feedback controls which moreover are
finite dimensional is possible also in dim 2 = d = 3.

The successor [35] to the present work will extensively review the literature as it
pertains to the boundary stabilization case, particularly with tangential control action.
Accordingly, below we shall review the present study mostly in comparison with the
prior solution of the localized interior stabilization in the Hilbert-based treatment of
the original work [7] (via a Riccati-based finite dimensional control), followed by
[10] (via a spectral based finite dimensional control) and textbook versions thereof [6,
Chap. 4]. Additional relevant references include [13,14,19,20,44-46,49,51-54,58,61].
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1.4 Qualitative Orientation
1.4.1 On the Local, Interior, Feedback Stabilization Problem: Past Literature

We start with an unstable steady state solution y,, given an external force f, and a
sufficiently large Reynold number %, as described in Sect. 1.3. We deliberately aim at
rough (non-smooth) initial conditions yy. We then seek a finite-dimensional interior
localized feedback control u, such that the corresponding N—S problem is well-posed
in a suitable function space setting (depending on the I.C. yp) and its solution y
in (1.1) is locally exponentially stable near the equilibrium solution y,, in a suitably
corresponding norm. This problem was originally posed and solved in the Hilbert space
setting in [7, Theorem 2.2, p. 1449] by means of a finite dimensional Riccati-based
feedback control u, where exponential decay is obtained in the D(Al/ 4)-topology.
Here A is the positive self-adjoint Stokes operator in (1.17) with ¢ = 2 in the space
H with L?(£2)-topology. See (1.6) below. A similar exponential decay result, in the
same D(Al/“)-topology, is given in [10, Thm. 5.1, p. 42], this time by means of a
finite-dimensional, spectral-based feedback control u. These results are reproduced in
textbook form in [6, Chap. 4].

Regarding the solution given in these Hilbert-space based references, we point out
(at present) two defining, linked characteristics of their finite dimensional treatment:

(i) The number of stabilizing (localized) controls for the (complex-valued) nonlinear
dynamics (1.1) is N = sup{N;; i = 1, ..., M}, that is, the max of the algebraic
multiplicity N; of the M distinct unstable eigenvalues A;, see (2.2), of the projected
Oseen operator A%, in (2.5).

(i) in the fully general case, the algebraic (Kalman rank) conditions for controllabil-
ity under which the finite dimensional feedback control is explicitly constructed
involve the Grahm—-Schmidt orthogonalization of the generalized eigenfunctions
of the adjoint (AY,)*, making the test difficult to verify. Only in the case where
the restriction A%, in (2.5) of the Oseen operator A in (1.10) is semisimple (alge-
braic and geometric multiplicity of the unstable eigenvalues coincide), are the
controllability tests given in terms of eigenfunctions of (A%)*.

1.4.2 Additional Goals of the Present Paper as Definite Inprovements over the
Literature

We list these main additional goals of the present work aimed at markedly improving
both the results and the approach of the original reference [7], followed by [10] and
their textbook version [6, Chap. 4]. They are:

(i) With reference to part (i) in Sect. 1.4.1, our next goal is to obtain (in the
general case of Theorem 4.1) that the number of finite dimensional stabiliz-
ing controls needed for the (complex valued version of the) dynamics (1.1) is
K =sup{¢;; i = 1,..., M}, where ¢; is the geometric multiplicity of the M
distinct unstable eigenvalues A; in (2.2). This is a notable reduction in the number
of needed controls over the max algebraic multiplicity N in (i) of Sect. 1.4.1.
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(i1) Intimately linked to goal (i) is the next goal to obtain the controllability Kalman
rank condition of Sect. 3 be expressed in terms of only the eigenfunctions—not
the generalized eigenfunctions: as in the past literature [8—10], [6, Chap. 4]—of
the adjoint (A%)*.

(iii) An important additional goal is to simplify and make more transparent the
well-posedness and local stabilization arguments for the non-linear problem,
in particular through a direct analysis of the nonlinear operator N, in (1.11),
called B in [7], not its approximation sequence B, as in [7, Sect.4, p1480] or [6,
Proof of Therorem 3.4, pp. 107-110]. More precisely, unlike these references,
the present paper carries out an analysis of the critical issues based on the maxi-
mal regularity property of the linearized feedback operator A, (= A, ) in (6.1)
in the critical L4/Besov setting. This point also is further expanded in Sect. 1.6
below.

(iv) A final goal—in line with goal (iii) above—is to obtain corresponding results
for the pressure 7 in (1.1a), as part of the same maximal regularity property of
the linearized feedback operator A, (= A, ) in (6.1), unlike [7, Theorem 2.3,
p. 1450].

1.5 What is One Key Motivation for Seeking Interior Localized Feedback
Exponential Stabilization of Problem (1.1) in the Topology of the Besov Space
in (1.3)?

As already discussed in Sect. 1.3, obtaining the resulting stabilization in a non-
Hilbertian setting is of theoretical interest in itself, and is in line with recent
developments in 3-d N-S equations defined on the entire space R?, where recent
breakthroughs have identified the space L3 (R3) as a critical space for well-posedness,
possessing the minimal blow up initial data property [22,27]. However, our main
original motivation for the present study is another. The present paper intends to test
L4/Besov spaces techniques initially in the interior localized feedback stabilization
problem (1.1) in the critical low regularity setting of (1.3). The true aim is, however,
to export them with serious additional technical difficulties, to solve the presently
recognized open problem of the local feedback exponential stabilization of the N—
S equations with finite-dimensional feedback tangential boundary controllers in the
case of dimension d = 3 [35]. In fact, present state-of-the-art has succeeded [33,34]
in establishing local exponential stabilization (asymptotic turbulence suppression) by
means of finite-dimensional tangential feedback boundary control in the Hilbert set-
ting and with no assumptions whatsoever on the Oseen operator in two cases:

(i) when the dimension d = 2,
(i) when the dimension d = 3 but the initial condition yy in (1.1.d) is compactly
supported.

In the general d = 3 case, the non-linearity of the N—S problem forces a Hilbert space

setting with a high-topology H YVa+e (£2) for the initial conditions, whereby the com-
patibility conditions on the boundary kick in. These then cannot allow the stabilizing
feedback control to be finite-dimensional in general. More precisely, even at the level
of the linearized boundary problem for d = 3, open loop exponential stabilization [10,
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Proposition 3.7.1, Remark 3.7.1], [33, Proposition 2.5, Eq. (2.48)] provide a boundary
control consisting of a finite-dimensional term plus the term e 2" ((1.C.)| ), with
y1 > 0 preassigned, which spoils the finite-dimensionality, unless the initial condition
is compactly supported. These limitations are in subsequent literature. In contrast, the
Besov space in (1.3) above, which is “close” to the space L3(.Q) for d = 3, has the
key, fundamental advantage of not recognizing the boundary conditions. That is why
this paper is interested in a stabilization result in such a low regularity space ford = 3,
at first in the case of interior localized control.

1.6 Comparison with Prior Work, once the Present Treatment is Specialized to the
Hilbert Setting (¢ = 2)

A comparison with the original prior work [7,10], reproduced in [6, Chap.4] which
was carried out in the Hilbert setting, is in order.

Orientation Even when specialized to the Hilbert space setting (¢ = 2), the present
treatment offers distinct, notable advantages—both conceptual and computational over
prior literature quoted above. These include not only definitely simpler and more direct
arguments but also transparent simplifications in the actual construction of the finite
dimensional stabilizing controllers as well as their number. Qualitative details are
given below. The main conceptual approach and the final results of the present paper
are (when specialized to the Hilbert setting) qualitatively in line with those in [7]: local
uniform stabilization of the non-linear y-problem (1.1) near an unstable equilibrium
solution y, by means of finite dimensional, arbitrarily localized controllers is based on
the corresponding result on (global) uniform stabilization of the linearized w-system
(1.13). This in turn rests on the space decomposition technique introduced in [57] for
parabolic problems (and also for differentiable semigroups): its foundational starting
point is the controllability of the finite dimensional unstable projected system wy
in (2.8a). However, in the implementation of these two fundamental phases, linear
analysis—in particular, its finite dimensional wy component—and nonlinear anal-
ysis, the present paper provides a much more attractive, more powerful and mature
treatment. We mention the most relevant new features. They are:

1. finite dimensional analysis leading, through a much more simplified and more
direct approach, to a lower (optimal) number of feedback controls;

2. infinite dimensional analysis on the nonlinear effects (the operator ./\/q in (1.11))
handled by critical and clean use of maximal regularity of the linearized feedback
operator A, (= A, ) in (6.1), rather than by the approximation argument as in
[7]. This refers to both y and 7.

These two points are explained below.

1. Stabilization of the linearized w-problem (1.13). The key foundational alge-
braic test for controllability of the finite dimensional wy-system (2.8a) on the
finite dimensional unstable subspace Wy is much simplified, sharper and leads,
in principle, to checkable conditions and to an implementable procedure to obtain
constructively the finite dimensional stabilizing vectors uy € Wy, pr € (Wy)*.
In fact, the present treatment shows that (for the complexified version of the
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N-S) the required number of feedback stabilizing finite dimensional controllers
is K = sup{¢;, i = 1,..., M}, the max of the geometric multiplicity ¢; of
the M distinct unstable eigenvalues A; of the Oseen operator A; not the larger
sup{N;, i = 1,..., M}, the max of the algebraic multiplicity N; of its distinct
unstable eigenvalues, as in [7,8,10], [6, Chap.4]. Let alone N = ?il N; =
dim Wy (dimension of the generalized eigenspace of the unstable eigenvalues)
as in the treatment of [6, Assumption K.2, p. 123], where, in addition, the sim-
plifying assumption that algebraic and geometric multiplicities coincide for the
unstable eigenvalues. Moreover, the entire analysis of the present paper rests
only on the (true) eigenvectors corresponding to the unstable eigenvalues of the
adjoint operator in (3.1); not only under the Finite Dimensional Spectral Condition
(semisimplicity) as in [7] where W}, has a basis of such (true) eigenvectors, but
also in the most general case where the projected Oseen operator A)y is in Jordan
form, and hence the basis on W}, consists instead of all generalized eigenvectors
corresponding to the unstable eigenvalues. As first noted in [33] in the study of
tangential boundary stabilization of the N-S equations, even in the general case
possessing only a basis of generalized eigenfunctions arising from the Jordan form,
the final test for controllability involves only the true eigenfunctions of the adjoint

textitoperator: the algebraic test (4.13), (4.14) for controllability in the general case
is exactly the same as the algebraic test (3.18) in the semisimple (diagonalizable)-
case; and only the true eigenfunctions count. This justifies why the number K of
(complex valued) stabilizing controllers as in Theorem 2.1 is equal to the supre-
mum of the geometric multiplicity of the unstable eigenvalues, not the supremum
of their larger algebraic multiplicity as in past references [7,8,10], [6, Chap. 4] as
noted above. Moreover, in [7] repeated in [6, Chap.4] the procedure for testing
controllability in the general case was much more cumbersome and far less imple-
mentable: the original basis of generalized eigenfunctions of the adjoint operator
in the general case was transformed into an orthonormal basis of Wy via the
Schmidt orthogonalization process, and the test for the finite dimensional con-
trollability was then based on such transformed, and thus in principle difficult to
check, orthogonalized system: a much more complicated test than the one using
just the true eigenfunctions as in (4.13).

2. Local Stabilization of the nonlinear translated z-equation (1.7) near the ori-
gin, hence of the original y-equation (1.1) near an equilibrium solution y,.
Treatment of the nonlinearity in the present work is much more transparent and
direct than the one performed in [7]. Here the analysis is directly in terms of the
nonlinear operator NV, in (1.11) and makes use of maximal regularity properties of
the linearized feedback operator A . (= A ) in (6.1) (maximal regularity is equiv-
alent to analyticity of the semigroup in the Hilbert setting. Instead, in the Banach
setting, maximal regularity implies, but is not necessarily implied by, analyticity
of the semigroup). In contrast, in [7] with ¢ = 2, an approximation argument of
the nonlinear operator N\, denoted by B, was used, by introducing a sequence
of approximating operators B, thereof [7, Sect.4, p. 1480]. A critical step in [7]
is that the nonlinearity B (or its approximation) be controlled by the topology of
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the A4 -power; and this in turn is achieved by using an optimal control approach
with A”/ 4-penalization of the solution via Riccati equations. There is no need of
this in the present treatment (the analysis of the optimization problem and Riccati
equation in a non-Hilbert setting is not the right tool). We likewise note that our
present treatment of the passage from the w-linearized problem (2.16) to the fully
non-linear z-system (2.20) is also different from the one employed in [8,34] which
was also direct in terms of the nonlinear operator A It was however not maximal
regularity—based, as in the present paper.

3. Well-posedness of the pressure 7 for the original y-problem in the feedback
form as in (2.22) in the vicinity of the equilibrium pressure 7, in (1.2a). The
well-posedness result Theorem 10.2 on the pressure 7 of the original y-problem
on feedback form as given by (2.26), (2.27) is the L4/Besov space counterpart of
the Hilbert (L?)-version given by [7, Theorem 2.3, p. 1450]. The present proof is
much more direct as, again, is based on maximal regularity properties. In contrast,
the proof in [7, p. 1484] is based on the approximation of the original problem.

1.7 Helmholtz Decomposition

A first difficulty one faces in extending the local exponential stabilization result for the
interior localized problem (1.1) from the Hilbert-space setting in [7,8] to the L7 setting
is the question of the existence of a Helmholtz (Leray) projection for the domain §2
in R?. More precisely: Given an open set £2 C R?, the Helmholtz decomposition
answers the question as to whether L9 (§2) can be decomposed into a direct sum of
the solenoidal vector space LL(£2) and the space G9(£2) of gradient fields. Here,

- - Il
LI(R2)={yeC>®(2):divy=0in2}
={geLi(£):divg=0; g-v=00n0dsR},
for any locally Lipschitz domain £2 C R, d>2
GI(2)={yeLi(2):y=Vp, pe Wllo’cq(.Q)} where | < g < oo.

(1.4)

Both of these are closed subspaces of L.

Definition 1.1 Let 1 < ¢ < oo and £2 C R” be an open set. We say that the Helmholtz
decomposition for L7(£2) exists whenever L4 (§2) can be decomposed into the direct
sum (non-orthogonal)

L9(£2) = LE(2) ® G (). (1.5)

The unique linear, bounded and idempotent (i.e. qu = P,) projection operator P, :
L9(§2) — LL(02) having LI(2) asits range and G7(£2) as its null space is called
the Helmholtz projection. Additional information is given in Appendix A.

This is an important property in order to handle the incompressibility conditiondiv y =
0. Forinstance, if such decomposition exists, the Stokes equation (say the linear version
of (1.1) with control # = 0) can be formulated as an equation in the L7 setting. Here
below we collect a subset of known results about Helmholtz decomposition. We refer
to [26, Sect.2.2], in particular to the comprehensive Theorem 2.2.5 in this reference,
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which collects domains for which the Helmholtz decomposition is known to exist.
These include the following cases:

(i) any open set 2 C RY for ¢ = 2, i.e. with respect to the space L?(£2); more
precisely, for ¢ = 2, we obtain the well-known orthogonal decomposition (in
the standard notation, where v =unit outward normal vector on ") [12, Prop.

1.9, p. 8]
L*(2)=H®H"* (1.6a)
H={pecl*):diveg=0in2; ¢ -v=0o0nTI} (1.6b)
HY={y e L*(2):y =Vh, he H (2)}; (1.6¢)

(ii) a bounded C'-domain in R? [17], 1 < g < oo [21, Theorem 1.1, p. 107,
Theorem 1.2, p 114] for C 2-boundary;
(iii) a bounded Lipschitz domain £2 C R4 (d = 3) and for % —€ < g < 3+¢€sharp
range [17];
iv a bounded convex domain 2 C RY,d > 2,1 < q < oo [17].

On the other hand, on the negative side, it is known that there exist domains £2 C R4
such that the Helmholtz decomposition does not hold for some g # 2 [38].
Assumption (H-D) Henceforth in this paper, we assume that the bounded domain
22 c RY under consideration admits a Helmholtz decomposition for the values of
q, 1 < g < o0, here considered at first, for the linearized problem (1.13) below.
The final result Theorem 2.5 for the non-linear problem (1.1) will require g > d, see
(8.16), in the case of interest d = 2, 3.

1.8 Translated Nonlinear Navier-Stokes z-Problem: Reduction to Zero Equilibrium
We return to Theorem 1.1 which provides an equilibrium pair {y,, 7.}. Then, as in

[7,8,33] we translate by {y., p.} the original N-S problem (1.1). Thus we introduce
new variables

=Y =Y, X =T —Te (1.7a)

and obtain the translated problem

2t —VAZ+ Ve - V)Z4+ (@2 - V)ye +(z-V)24+Vyx =mu in Q
(1.7b)
divz=0 in Q
(1.7¢)
z=0 on X
(1.7d)
2(0, x) = yo(x) — y.(x) on£2
(1.7e)
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We shall accordingly study the local null feedback stabilization of the z-problem
(1.7), that is, feedback stabilization in a neighborhood of the origin. As usual, we next
apply the projection P, below (1.5) to the translated N-S problem (1.7) to eliminate
the pressure y. We thus proceed to obtain the corresponding abstract setting for the
problem (1.7) as in [7] except in the L9-setting rather than in the L2-setting as in this
reference. Note that Pz, = 7, since z € LZ(£2) in (1.4).

1.9 Abstract Nonlinear Translated Model

First, for 1 < g < oo fixed, the Stokes operator A, in L& (£2) with Dirichlet boundary
conditions is defined by [23, p. 1404, 26, p. 1]

Agz=—P;Az, D(Ay) = w24(2) N W(}’q(.Q) NLI($2). (1.8)
The operator A, has a compact inverse A;l on L{(£2), hence Ay has a compact

resolvent on LI (£2).
Next, we introduce the first order operator A, ,,

Ap gz = Pgl(ye - V)z+ (2. V)yel, D(Apyq) = D(A;/z) C LE($2), (1.9)

1 1
where the D(A,/?) is defined explicitly in (1.22) below. Thus, A, , A, /* is a bounded
1
operator on L{ (£2), and thus A, 4 is bounded on D(Aq/z)

_1 _1 1 1
[0 ] = A0ats 205401 | < oAl 1) reDaf.
This leads to the definition of the Oseen operator
Ay =—WA;+A,y), D(A)) =D(A,) C LL(2). (1.10)

Finally, we define the projection of the nonlinear portion of the static operator in (1.7b)
Ny (@) = Pyl(z-V)zl, DWN) = whi@)nL>®@2)n L1(£2). (1.11)

[As shown in (8.16) in the analysis of the non-linear problem, at the end we shall use
Wl’q(.Q) C L®(£2) for ¢ > dim £ = 3 [30, Theorem 2.4.4, p. 74, requiring C'
boundary.]]

Thus, the Navier—Stokes translated problem (1.7), after application of the Helmholtz
projector P in Definition 1.1 and use of (1.8)—(1.11), can be rewritten as the following
abstract equation in LL($2):

dz

dz
-+ VAGz+ Ap gz + Pyl(z- V)z] = Py(mu) or i Agz+Nyz

= Py(mu) in LL($2) (1.12a)
2(x, 0) = z0(x) = yo(x) — ye in LE(82).  (1.12b)
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1.10 The Linearized Problem of the Translated Model

Next, stillfor 1 < g < oo, we consider the following linearized system of the translated
model (1.7) or (1.12):

dw dw g
T +vAyw+ Ay qw = Py(mu) or i Ayw = Py(mu) in LL (£2)
(1.13a)
wo(x) = yo(x) — ye in LL(£2). (1.13b)

1.11 Some Auxiliary Results for Problem (1.13): Analytic Semigroup Generation,
Maximal Regularity, Domains of Fractional Powers
In this subsection we collect some known results to be used in the sequel.

(a) Definition of Besov spaces B;, pon domains of class C'! as real interpolation of
Sobolev spaces Let m be a positive integer,m € N,0 < s <m,1 <g <o00,1 <
p < oo, then we define [23, p. 1398]

B, ,(£2) = (L1(2), W™ (2))s (1.14a)
This definition does not depend on m € N [63, p. xx]. This clearly gives

W(R2) C BY (@) C LU2) and  [Yllzae) < Cllllgy - (1.14b)

We shall be particularly interested in the following special real interpolation space
of the L4 and W4 spaces (m = 2,5 =2 — %):

-2
B, ," (2) = (LY (%), WZ,Q(.Q))F%)P. (1.15)

Our interest in (1.15) is due to the following characterization [3, Thm. 3.4], [23,
p. 1399]: if A, denotes the Stokes operator introduced in (1.8), then

2_2 p .
(Le@.D4p), | =|seB, @ dive=0.glr =0}
])’)

ifl<2—z<2 (1.16a)
q p

2-2 . ~2-%/,
(LZ(Q),D(A,I))PL = {g e B,/ (2): divg=0, g vl = o} = B2
P’

(1.16b)

2 1
f0<2——<—;orl<p< .
P g 2q =1

Notice that, in (1.16b), the condition g - v| = 0 is an intrinsic condition of the
space L (£2) in (1.4), not an extra boundary condition as g|r = 0 in (1.16a).
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Remark 1.3 In the analysis of well-posedness and stabilization of the nonlinear N—S
problem (1.1), with control u in feedback form—such as the non linear translated
feedback problem (2.20) = (8.1)—we shall need to impose the constrain g > 3, see
Eq (8.16), to obtain the embedding whe < L*(£2) in our case of interest d = 3,
as already noted below (1.11). What is then the allowable range of the parameter p
in such case ¢ > 3? The intended goal of the present paper is to obtain the sought-

2
after stabilization result in a function space, such as a BZ, p/p (£2)-space, that does not
recognize boundary conditions of the I.C. Thus, we need to avoid the case in (1.16a), as
this implies a Dirichlet homogeneous B.C. Instead, we need to fit into the case (1.16b).

2 1 1
We shall then impose the condition 2 — — < — < 3 and then obtain that p must
P q

6
satisfy p < —. Moreover, analyticity and maximal regularity of the Stokes problem

will require p > 1. Thus, in conclusion, the allowed range of the parameters p, ¢ under
which we shall solve the well-posedness and stabilization problem of the nonlinear

~0_2
N-S feedback system (2.20) = (8.1) for d = 3, in the space B(ip/p (£2) which—as

6
intended—does not recognize boundary conditions is: ¢ > 3, 1 < p < 3 See
Theorems 2.3 through 2.5.

(b) The Stokes and Oseen operators generate a strongly continuous analytic semi-
group on L{(2),1 < g < .

Theorem 1.2 Letd > 2,1 < g < oo and let 2 be a bounded domain in R¢ of class
C3. Then

(i) the Stokes operator —A,; = Py A in (1.8), repeated here as
— Ay = PyAY, Y € D(Ay) = W24(2) N Wol’q(.Q) NLIE2) (1.17)

generates a s.c analytic semigroup e 44! on LL (£2). See [24] and the review
paper [26, Theorem 2.8.5, p. 17].
(ii) The Oseen operator Ag in (1.10)

Ay =—(WAs + Apy), D(A) =D(A,) C LLR) (1.18)

generates a s.c analytic semigroup e?at on LL(R2). This follows as A, 4 is

1
relatively bounded with respect to Aq/ 2, defined in (1.22), see below (1.9): thus
a standard theorem on perturbation of an analytic semigroup generator applies
[39, Corollary 2.4, p. 81].

(iii)

0 € p(Ay) = the resolvent set of the Stokes operator A, (1.19a)
—1. .
A L1(§2) — LI1(£2) is compact (1.19b)
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(iv) The s.c. analytic Stokes semigroup e~"4" is uniformly stable on LL($2): there

exist constants M > 1,8 > 0 (possibly depending on q) such that

He—Aq’ < Me™®, 1> 0. (1.20)

LLES2) —

(c) Domains of fractional powers, D(A;‘), 0 < a < 1 of the Stokes operator A,
on LL(2),1 <q < o0,

Theorem 1.3 For the domains of fractional powers D(AY), 0 < a < 1, of the Stokes
operator Ay in (1.8) = (1.17), the following complex interpolation relation holds true
[25] and [26, Theorem 2.8.5, p. 18]

[D(Ag), LE()]1—« = D(Ay), 0<a <1, 1<g <o0; (1.21)

in particular

[D(Ag). LE(2)]y = DAY = W (2) N L1(Q). (1.22)

1
Thus, on the space D(Aq/ %), the norms

IV - llLae) and | L2 (1.23)
are equivalent via Poincaré inequality.

(d) The Stokes operator —A, and the Oseen operator A,, 1 < g < oo generate
s.c. analytic semigroups on the Besov space

2-2 .
(LZ(Q),D(A,I))FL = {g € B,/7(2): divg =0, g|r = 0}
P’

il 2 o (1.24a)
q p
_2 ~0_2
(Lg(.(z),D(Aq))l_l = {g eB,,)7(2): divg=0, g-v|f = 0} =B, @
L
if0<2- 21 (1.24b)
P q

Theorem 1.2 states that the Stokes operator — A, generates a s.c analytic semigroup
on the space LI, 1< g < 00, hence on the space D(A,) in (1.17), with norm
I - ||D(Aq) = ||Aq o) 3 0 e. ,o(Aq.). Then, one obta.ins that t.he Stokes
operator —A, generates a s.c. analytic semigroup on the real interpolation spaces

in (1.24). Next, the Oseen operator 4 = —(vA, + A, 4) likewise generates a
t

s.c. analytic semigroup e’ on L1(82) since A, 4 is relatively bounded w.r.t.

1 1
Aq/ 2 as AD,qA; /2 is bounded on L%(£2). Moreover A, generates a s.c. analytic
semigroup on D(A,) = D(A,) (equivalent norms). Hence .4, generates a s.c.
analytic semigroup on the real interpolation space of (1.24). Here below, however,
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we shall formally state the result only in the case 2 — % p < ]/q. ie.l < p <

. ~2-%/, . . .
2’1/2(1,1, in the space B, ,""(£2), as this does not contain B.C. The objective of

the present paper is precisely to obtain stabilization results on spaces that do not
recognize B.C.

Theorem1.4 Letl <g <o00,1 < p < 2‘1/24_1.

(i) The Stokes operator —Ag in (1.17) generates a s.c. analytic semigroup e~ Adl

~N_2
on the space Bg,p/” (82) defined in (1.16) = (1.24) which moreover is uniformly
stable, as in (1.20),

<Me%, t>0. (1.25)

~2,2/p

H[Aqt c(By,"" @)

(ii) The Oseen operator A, in (1.18) generates a s.c. analytic semigrou eAal on the
P q 8 Y group

~0_2
space By /7 (82) in (1.16) = (1.24).

(e) Space of maximal L” regularity on LZ (£2) of the Stokes operator —Ay, 1<
p<oo, 1 <g<oouptoT = oco. We return to the dynamic Stokes problem in
{lp(t, x), 7 (1, x)}

or—Ap+ Vo =F in(0,T]x2=0 (1.26a)
divp=0 in Q (1.26b)

¢l =0 in0,7TI|xI'=Xx (1.26¢)

®li=0 = %o in £2, (1.26d)

rewritten in abstract form, after applying the Helmholtz projection P, to (1.26a)
and recalling A, in (1.17) as

¢ +Agp=F, = P,F. g€ (LL(2).D(A) (127)

1
I—F,p

Next, we introduce the space of maximal regularity for {¢, ¢’} as [26, p. 2; Theorem
2.8.5.iii, p. 17], [23, pp. 1404-1405], with T up to oo:

X;q’g =L"(0,T;D(Ay)) N wbhr, T; L1($2)) (1.28)
(recall (1.8) for D(A,)) and the corresponding space for the pressure as

YL, =LPO.T: W), W) =w"1(2)/R. (1.29)

The following embedding, also called trace theorem, holds true [3, Theorem 4.10.2,
p. 180, BUC for T = oc], [40].
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X] o CXI . =LPO, T: W>9(2)) N WP(0, T LI(82))

p.q,0
2
= c(10. 71 By, (@)). (1.30)
For a function g such that div g = 0, g|r = 0 we have g € Xg’q — g €
T
X7 400Dy (1.4). .
The solution of Eq. (1.27) is
t
@(t) = e Al g +/ e MU= F (1)dx. (1.31)
0

The following is the celebrated result on maximal regularity on L{ (£2) of the
Stokes problem due originally to Solonnikov [50] reported in [26, Theorem
2.8.5.(ii1) and Theorem 2.10.1, p. 24 for ¢9 = 0], [42], [23, Proposition 4.1 ,
p- 1405].

Theorem 1.5 Let 1 < p,q < 0o, T < oo. With reference to problem (1.26) = (1.27),
assume

Fy € LP(0, T; L4(82)), ¢ € (L@(Q),D(A,,)) (1.32)

L
1-1.p

Then there exists a unique solution ¢ € Xg’q’g, T e Y;q to the dynamic Stokes
problem (1.26) or (1.27), continuously on the data: there exist constants Cy, C1 inde-
pendent of T, Fy, o such that via (1.30)

Co ||§0||C( 2-2,

< =+ ||
[0.71:8;., (fz))_”(puxﬁw Iy,

= [¢’ ||Lp(o,T;L?,(.Q)) + HAq‘PHLp(o,T;LZ(Q)) +lmlyz,

= C]{ ”FO‘”LP(O’T;LZ(Q)) + ”(pOH(LZ(Q),D(Aq))I 1 }
Lo
(1.33)
In particular,

(i) With reference to the variation of parameters formula (1.31) of problem (1.27)
arising from the Stokes problem (1.26), we have recalling (1.28): the map

t
F, — / e A= F _(t)dt : continuous (1.34)
0
LP(0,T; LL(2)) — X}, ., = L0, T: D(A)) N W"P(0, T; LL(2))
(1.35)

(ii) The s.c. analytic semigroup e~“4' generated by the Stokes operator —Ay (see
(1.17)) on the space (Lg(.(z), D(Aq)>

fies

i (see statement below (1.24)) satis-
~Lp
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e~ A . continuous (LZ(.Q),D(Aq)>1 . — X;qa
7;’1? i ?

=LP(0,T;D(Ay)) N WP, T; L1(£2)) (1.36a)

In particular via (1.24b), for future use, for1 < g <oo,1 < p < 2;—31, the s.c.

~7_2
analytic semigroup e~ 44! on the space By, p/ P (82), satisfies
—Agt . ~2*2/17 T
e 4" . continuous By ,""(£2) — Xp’q’g. (1.36b)

(iii) Moreover,
for future use, for 1 <q <o00,1 < p < Z;—Z], then (1.33) specializes to

“(p”XZ.q,o + ||”||Ypﬁq = C{ ”FU“LP((),T;LZ(_Q)) + ||<P0||E§;)2/p(9) } (1.37)

(f) Maximal L? regularity on L (£2) of the Oseen operator Ay 1 < p <
00, 1 < g < oo,uptoT < oo We next transfer the maximal regularity of
the Stokes operator (—A,) on L% (£2)-asserted in Theorem 1.5 into the maximal
regularity of the Oseen operator A, = —vA,; — A, 4 in (1.18) exactly on the same
space X;’q’a defined in (1.28), however only up to 7' < oo.

Thus, consider the dynamic Oseen problem in {/ (¢, x), 7 (¢, x)} with equilibrium
solution y,, see (1.2):

Vi — Ay + Lo(Y) + Vo = F in(0,T]x2=0 (1.38a)
diviy =0 inQ (1.38b)

Vs =0 in(O0,T]xI=x (1.38¢)

Yli—0 = Yo in 2, (1.38d)

Le(¥) = (e V)Y + (. V)y, (1.39)

rewritten in abstract form, after applying the Helmholtz projector P, to (1.38a)
and recalling A, in (1.18), as

Vi = Ay + PgF = —vAgy — Aog¥ + Foo Yo € (LER).D(AY), 1,

(1.40)
whose solution is
Y (1) = ey + /Ot M OF (1)dT. (1.41)
Y (1) = e Ay + /Ot e VAT E (1)de
—/Ote—”‘q“—”Ao,qw(r)dr. (1.42)
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Theorem 1.6 Let1 < p,q <00, 0 < T < o0. Assume (as in (1.32))

F, € LP(0,T; L4(R2)), o € (LL(2), D(A,)) (1.43)

1
1-Lp

where D(A;) = D(A,), see (1.18). Then there exists a unique solution €
X ; g0 T E Y; q of the dynamic Oseen problem (1.38), continuously on the data:
that is, there exist constants Cy, C independent of Fy, o such that

C < T
OO0 52 2 ) = Wg + Il

[0.71:B;, " ()

= “(p/HLP(O,T;L‘I(.Q)) + ||Aq¢’||Lp(o,T;Lq(.o)) + ”””Y,,T,q
(1.44)

= CT{ ”FO'”LP(()’T;LZ(Q)) + ”(pO”(LZ(-Q),D(Aq)),_l , }
7P

(1.45)
where T < oo. Equivalently, for 1 < p,q < 00
(i) The map
t
A, (t—1) . .
F, — e’ Fy(T)dt : continuous
d /0 - ) (1.46)
LP(0,T; LL(2)) — L?(0, T; D(Ay) = D(Ay))
where then automatically, see (1.40)
LP0,T; L1(2)) — w0, T: L1(2)) (1.47)
and ultimately
LP(0,T; L1(2)) — x,{,q,a = LP(0,T; D(Ay)) N whP(, T; L4(2)).
(1.48)

(ii) The s.c. analytic semigroup eAd! generated by the Oseen operator A (see (1.18))
on the space (LZ (£2), D(Aq))l,i » satisfies for 1 < p,q < 00
>

et continuous  (LZ(£2), D(Ay)) — LP(0, T; D(Ay) = D(A,))

(1.49)

1
1—;,17

and hence automatically by (1.28)

— X7 (1.50)

Agt . :
e’ : continuous (Lg(.Q),D(Aq))l_%’p Do
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In particular, for future use, for1 < g < 00,1 < p < 23—‘11, we have that the s.c.

. ; ~2-2 ,
analytic semigroup e on the space By, p/" (£2), satisfies

~N_2
A’ continuous By " (2) —> LP(0, T; D(A,) = D(A,)), T < oo.
(1.51)
and hence automatically

~N_2
Agt . continuous B;p/” (2) — X7 T < o0. (1.52)

e pq.0°

A proof is given in Appendix B.

Remark 1.4 The literature reports physical situations where the volumetric force f is
actually replaced by Vg(x); thatis, f is a conservative vector field. Thus, returning to
Eq. (1.2a) with f(x) replaced now by Vg(x) we see that a solution of such stationary
problem is y, = 0, w, = g, hence L.(-) = 0 by (1.39). Returning to Eq. (1.1a) with
f replaced by Vg(x) and applying to the resulting equation the projection operator
P,, one obtains in this case the projected equation

yi — VP Ay + Py[(y - V)y] = Py(mu) in Q. (1.53)

This, along with the solenoidal and boundary conditions (1.1b), (1.1c), yields the
corresponding abstract form recalling also (1.11)

Vi +vAgy + Nyy = P,(mu) in LL(R2). (1.54)

Then y-problem (1.54) is the same as the z-problem (1.12a), except without the Oseen
term A, 4. The linearized version of problem (1.54) is then

N +vAgn = Py(mu) in LL($2), (1.55)

which is the same as the w-problem (1.13a), except without the Oseen term A, 4. The
s.c. analytic semigroup e~ "¢’ driving the linear equation (1.55) is uniformly stable in

LL(£2), see (1.20), as well as in Ejj/” (£2), see (1.25). Then, in the case of the present
Remark, the present paper may be used to enhance at will the uniform stability of the
corresponding problem with « given in feedback form as in the RHS of Eq. (2.20) as
to obtain a decay rate much bigger than the original § > 0 in (1.20) or (1.25). Thus
there is no need to perform the translation y — z of Sect. 1.8, when f in (1.2a) is
replaced by Vg(x); i.e. yo = 0 in this case. The important relevance of the present
Remark will be pointed out in the follow-out paper [35] where only finitely many
localized tangential boundary feedback controls will be employed to the so far open
case dim £2 = 3. The corresponding required “unique continuation property” holds
true for the Stokes problem (y, = 0), see [59,60].
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2 Main Results
2.1 Orientation

All the main results of this paper, Theorems 2.1 through 2.5, are stated (at first) in
the complex state space setting LZ (§2) + i L2 (§2). Thus, the finitely many stabilizing
feedback vectors pg, uy constructed in the subsequent proofs belong to the complex
finite dimensional unstable subspace (Wy)* and Wy respectively. The question then
arises as to transfer back these results into the original real setting. This issue was
resolved in [7]. Here, such translation, taken from [7], from the results in the complex
setting (Theorems 2.1 through 2.5) into corresponding results in the original real setting
is given in Sect. 2.7.

Step 1 First, we will show in Theorem 2.2 that the linearized Navier—Stokes prob-
lem w; = Agw + P, (mu) in (1.13) can be uniformly (exponentially) stabilized in
the basic space LL(£2),1 < g < oo in fact, in the space D(Ag), 0<6 <1,
or (L(q7 (£2), D(Aq))l_l’p, in particular E;;z/” (£2) by means of an explicitly con-
structed, finite dimensiimal spectral-based feedback controller mu, localized on w,
whose structure is given in (2.16).

Step 2 Next, we proceed to the non-linear translated Navier—Stokes z-problem (1.12)
with a control u having the same structure as the finite-dimensional, spectral based
stabilizing control used in the linearized problem (1.13). This strategy leads to the non-
linear feedback z-problem (2.20). We then establish two results for problem (2.20):
(1) The first, Theorem 2.3, is that problem (2.20) is locally well-posed, i.e. for small
initial data zg, in the desired space 55;,2/” (£2). It will require the constraint g > 3,
see (8.16), to obtain Wl’q(.Q) < L*™(£) for d = 3. In achieving this result, we
must factor in what is the deliberate, sought-after goal of the present paper: that is, to
obtain (well-posedness and) uniform stabilization of the original non-linear problem
(1.1) near an equilibrium solutiog, in a function space that does not recognize boundary
conditions. This is the space 5(5 » /v (£2) having only the boundary condition g-v|r = 0
inherited from the basic L (§2)-space, see (1.16b) and statement below it. In contrast,
we deliberately exclude then the space in (1.16a), p > zq/zq_ 1, having an explicit
additional 2B.C. In conclusion, for the nonlinear problem, we need to work with the
space Eg;,/” (£2) in (1.16b), and this requires for d = 3 therange g > 3,1 < p <
2‘1/ 2q—1-thatis1 < p < 6/ 5 where the boundary conditions are not recognized. In this

~0_2
case the space qu,p/” (£2) = (LL(82), D(Aq))],l/ »
P
is “close” to the space L7(§2), for ¢ > 3. Accordingly, with reference to the feedback

with index 1 — 1/ p close to zero

z-problem (2.20), we take zg € §§;,2/” (£2), g >3, 1 <p< 6/ 5 sufficiently small,
and show that (2.20) is well-posed in the function space X ;’,‘fq’ - 10 (1.28). To this end,
we use critically the maximal regularity result Theorem 7.1. This is Theorem 2.3.

(ii) Second, we address the stabilization problem and show that such Navier—Stokes
feedback problem (2.20) is, in fact, locally exponentially stabilizable in a neighborhood

~0_2
of the zero equilibrium solution in the state space B;’ p/ P (£2). This is Theorem 2.4.
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Such results, Theorem 2.3 and the Theorem 2.4 for the translated Navier—Stokes
z-problem (2.20) in feedback form then at once translate into counterpart results of
local well-posedness and local interior stabilization of the original y-problem (1.1)
in a neighborhood of the equilibrium solution y,, with an explicit finite dimensional
feedback control localized on @ whose structure is given in (2.28b). Thus Theorem 2.5
gives the main result of the present paper.

2.2 Introducing the Problem of Feedback Stabilization of the Linearized
w-Problem (1.13) on the Complexified LZ(.Q) Space

Preliminaries In this subsection we take ¢ fixed, | < ¢ < oo throughout. Accord-
ingly, to streamline the notation in the preceding setting of Sect. 1, we shall drop
the dependence on ¢ of all relevant quantities and thus write P, A, A,, A instead of
Py, Ay, Ay g, Ay. We return to the linearized system (1.13).

Moreover, as in [7,8], we shall henceforth let L (£2) denote the complexified space
LL(£2)+iL%(£2), whereby then we consider the extension of the linearized problem
(1.13) to such complexified space. Thus, henceforth, w will mean w +iw, u will mean
u +iu, wo will mean wqy + i wo:

C;—l;} +vAw + Agw = P(mu), or Cf{—lf — Aw = P(mu), w(0) = wo on LL(£2).
2.1
As noted in Theorem 1.2(iii), the Oseen operator A has compact resolvent on L{ (£2).
It follows that A has a discreet point spectrum o (A) = o, (A) consisting of isolated
eigenvalues {A ; }7‘; |» Which are repeated according to their (finite) algebraic multiplic-
ity £;. However, since A generates a Cy analytic semigroup on LL(£2),its eigenvalues
{A j};?‘; | lie in a triangular sector of a well-known type.
The case of interest in stabilization occurs where A has a finite number, say N, of
eigenvalues Ay, A2, A3, ..., Axy on a complex half plane {A, € C : Re A > 0} which
we then order according to their real parts, so that

-+ <ReAiny1 <0< Reiy <---<Relp, 2.2)

each A;, i = 1,..., N, being an unstable eigenvalue repeated according to its geo-
metric multiplicity £;. Let M denote the number of distinct unstable eigenvalues A ; of
A, so that ¢; is equal to the dimension of the eigenspace corresponding to A;. Instead,
N = Z,Ai] N; is the sum of the corresponding algebraic multiplicity N; of A;, where
N; is the dimension of the corresponding generalized eigenspace.

There are results in the literature [28] that quantify the number of unstable eigen-

values in terms of the system parameters. Denote by Py and Py; the projections given
explicitly by [29, p. 178], [7,8]

1
Py = __./ (W — A~ dn: LL($2) onto W (2.32)
2mi r
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Py = —% (M = AN (LE(2))* onto (WE)F € LY (2),  (2.3b)
vJr

by (A.2¢c), where I (respectively, its conjugate counterpart I") is a smooth closed curve
that separates the unstable spectrum from the stable spectrum of A (respectively, A*).
Asin [8, Sect. 3.4, p. 37], following [57],we decompose the space LL(£2) into the sum
of two complementary subspaces (not necessarily orthogonal):

L1(2) = Wy@Wy: Wy = PyLL(2); Wy =I—-Py)LL(2); dim Wy =N

24
where each of the spaces Wy, and Wy, (which depend on ¢, but we suppress such
dependence) is invariant under A (= A,), and let

AMN = PyA= AlWK/; §V = - PyA= AlW;v 2.5)

be the restrictions of A to Wy and W3, respectively. The original point spectrum
(eigenvalues) {A j};?ozl of A is then split into two sets

o(AY) = (Yl o (AY) = 12N (2.6)

and WK, is the generalized eigenspace of AL;\, in (2.1). The system (2.1) on LL(§2) can
accordingly be decomposed as

w=wy+{n, wy=Pyw, {(§y=U-Pyw. 2.7

After applying Py and (I — Py) (which commute with A) on (2.1), we obtain via
2.5)

on Wy : wy — Aywy = Py P(mu); wy(0) = Pywo (2.82)
on Wy : ¢y — Ayin = (I — Py)P(mu); ¢n(0) = (I — Py)wo  (2.8b)

respectively.

Main result We may now state the main feedback stabilization result of the linearized

problem (1.13) (=(2.1)) on the complexified space L{ (£2)). The proof is constructive.

How to construct the finitely many stabilizing vectors will be established in the proof.
We anticipate the fact (noted in (3.2) and (4.0)) below that, for 1 < p, g < oo:

Wy = space of generalized
eigenfunctions of A, (= A%) (LL(£2). D(Ay)), “1p
C

. o C LL(2).
corresponding to its distinct [D(A,,), Lg(Q)] =D(A7), 0<a <1

-«
unstable eigenvalues

(2.9)
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2.3 Uniform (Exponential) Stabilization of the Linear Finite-Dimensional
wy-Problem (2.8a) in the Space W}, by Means of a Finite-Dimensional, Explicit,
Spectral Based Feedback Control Localized on @

Theorem 2.1 Let )y, ., Ai, ., Apr be the unstable distinct eigenvalues of the Oseen oper-
ator A(= Ay) (see (1.10)) with geometric multiplicity £; and set K = sup {£;; j =
1,..., M}. Let w be an arbitrarily small open portion of the interior with sufficiently
smooth boundary dw. Then: Given y > 0 arbitrarily large, one can construct suitable
interior vectors [uy, ..., ug| in the smooth subspace Wy, ofLZ (w), 1 < g < o0, and
accordingly obtain a K-dimensional interior controller u = uy acting on w, of the

form
K

U= Zuk(t)uk, up € Wy C LL(82), ux(t) = scalar, (2.10)
k=1

such that, once inserted in the finite dimensional projected wy-system in (2.8), yields

the system
K
why — Awy = PyP (m (Z /Lk(t)uk)> , 2.11)
k=1

whose solution then satisfies the estimate
”wN(t)”Lg(Q) + ”uN(t)”L‘é(w) = Cyeiw ”PNU)OHLZ(_Q) , t>0. (2.12)

In (2.12) we may replace the LE(2)-norm, 1 < q < 0o, alternatively either with the
(LE(2). D(Ag),_1 , norm, | < q < 00; or else with the [D(Ag), LZ($2)]
7

D(AZ)-HOVM, 0<a <1, 1<gq < oco.Inparticular, we also have

l—a =

lwy (O -2 Fllun (@O o2 < Cype V|| Pnwoll 52 , >0, (2.13)
B (2 By~ Y By," @)

~0_2
in the B,; /”(.Q)—norm, l<g<oo, p< 2‘1/2,1_1.
[Estimate (2.13) will be invoked in the nonlinear stabilization proof of Sect. 9.]
K
Moreover, the above control u = uy = Zk—l Wi (Huy, the terms u, € Wi, in
(2.10) can be chosen in feedback form: that is, Bf the form pi(t) = (wn (@), Pi)w

for suitable vectors pr € (Wy)* C L% (2) depending on y. Here and henceforth
1, 12)e = /vl -y dw, vi € Wy C LL(2), va € (Wy)* C Lg/(.Q). In

conclusion, w;éu in (2.11) satisfying (2.12), (2.13) is the solution of the following
equation on Wy, (see (2.8)):

K
w;\/ — .A?VwN = PyP (m (Z(w/\/(l‘), Pk)ch)) , Uy € WK/ C LZ(Q),

k=1
pr € (Wi C LI (), (2.14a)
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rewritten as
why = A'wy, wy(t) = A Pywo, wy(0) = Pywy. (2.14b)
A proof of Theorem 2.1 is given in Sect. 5.

2.4 Global Well-Posedness and Uniform Exponential Stabilization on the
Linearized w-Problem (2.1) in Various Lz(Q)-Based Spaces, by Means of the

Same Feedback Control Obtained for the wy-Problem in Sect. 2.3

Again, 1 < g < oo throughout this section.

Theorem 2.2 With reference to the unstable, possibly repeated, eigenvalues {k}y: | in
(2.2), M of which are distinct, let ¢ > 0 and set yp = |Re An+1| — €. Then the same
K-dimensional feedback controller

K

w=uy =Y (wy@®). pottr. ux € Wi C LLR). pr € (Wi)* C LI (),
k=1
(2.15)
constructed in Theorem 2.1, (2.14a) and yielding estimate (2.12), (2.13) for the finite-
dimensional projected wy -system (2.8), once inserted, this time in the full linearized
w-problem (2.1), yields the linearized feedback dynamics (wy = Pyw):

J K
d—lf =Aw+ P (m (Z(PNW» Pk)wuk)) =Aw (2.16)

k=1

where A, is the generator of a s.c. analytic semigroup in the space L& (2). Here,
A=A, P=P;,, A, = A, Moreover, such dynamics w in (2.16) (equivalently,
such generator A, in (2.16)) is uniformly stable in the space LL(£2):

Je*e o, ) = 10 W05 @) = Crpe™ Iwollygigy. 120 @17)
or for 0 < 6 < 1 and § > O arbitrarily small HAQ e“rlwyg =
1 LE(2)
A% w(r:
H qw( wo) LL(2)
—Yot 0 0
_ Cyy,0e 7" | Ay wo e 1>0, wo € D(Ay) (2.18a)
Cyoy(.)yge_yot ”wO”LZ(Q) , t>6>0. (2.18b)

As in the case of Theorem 2.1, we may replace the LE (2)-normin (2.17), 1 < g < o0,
with the
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2
(Lg([?), D(Aq))l_%’p-norm, 1 < p,q < oo, in particular, with the quyp/p(.Q)-
norm

At

Hero t>0

T 2 = lw(t; wo)ll ., 2 < Cpe ' ||w0||~2 2
e B, ey = 2@’

l<g<oo, 1<p< .
2g — 1
(2.19)

A proof of Theorem 2.2 is given in Sect. 6.

2.5 Local Well-Posedness and Uniform (Exponential) Null Stabilization of the
Translated Nonlinear z-Problem (1.7) or (1.12) by Means of a Finite
Dimensional Explicit, Spectral Based Feedback Control Localized on ®

Starting with the present section, the nonlinearity of problem (1.1) will impose for
d = 3 the requirement ¢ > 3, see (8. 16) below. As our deliberate goal is to obtain

the stabilization result in the space Bq [,/ (£2) which does not recognize boundary
conditions, then the limitation p < 2q/zq 1 of this space applies. In conclusion, our
well-posedness and stabilization results will hold under the restriction g > 3,1 <
p<%sford=3,andg >2,1<p<?;3ford=2.

Theorem 2.3 Ford =3,let1 < p <%sandq > 3, while ford =2, let1 < p < /3
and q > 2. Consider the nonlinear z-problem (1.12) in the following feedback form

d
d—Z—qu+qu— ( (Z(PNZ pk>wuk)> (2.20)

k=1

i.e. subject to a feedback control of the same structure as in the linear w-dynamics
(2.16), Here py, uy are the same vectors as constructed in Theorem 2.1, and appearing
in (2.14) or (2.16). There exists a positive constant p > 0 such that, if the initial
condition z satisfies

lIzoll i <p, (2.21)

2
@)

then problem (2.20) defines a unique solution z in the space (see (1.28), (1.30))

7€ X%

e = LP(0,00: D(Ag)) N WP (0, 00; LY (82)) (2.22)

52— /[)

< C([0, 00); By, (2)), (2.23)

where D(Ay) is topologically W24(2) N LL(2), see (1.8).

A proof of Theorem 2.3 is given in Sect. 8.
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Theorem 2.4 [n the situation of Theorem 2.3, we have that such solution is uniformly

~2-2 . ~ .
stable on the space Bq,p/p (£2): there exist constants y > 0, My > 1, such that said
solution satisfies

lz(t; zo)ll .o 2 < Mye 7" ||zg]| .y 2 ,1>0.
B;»p r(2) Z B;p r(2) (2.24)

A proof of Theorem 2.4 is given in Sect. 9. It will be critically based on the maximal
regularity of the semigroup el giving the solution of the feedback w-problem (2.16),
Ay =A, .Remark 9.1, at the end of Sect. 9, will provide insight on the relationship
between ¥ in the nonlinear case in (2.24) and Yy in the corresponding linear case in
(2.17).

2.6 Local Well-Posedness and Uniform (Exponential) Stabilization of the Original
Nonlinear y-Problem (1.1) in a Neighborhood of an Equilibrium Solution y,, by
Means of a Finite Dimensional Explicit, Spectral Based Feedback Control
Localized on ®

The result of this subsection is an immediate corollary of Sect. 2.5.

Theorem2.5 Let 1 < p < %5, > 3,d =3;and 1 < p < *3,q > 2,d = 2.
Consider the original N-S problem (1.1). Let y, be a given equilibrium solution as
guaranteed by Theorem 1.1 for the steady state problem (1.2). For a constant p > 0,

~0_2
let the initial condition yq in (1.1d) be in Bjyp/” (82) and satisfy
"‘2—2/1;
Vo={we B, @ o=y, =e) p=00 @29)
By p' T (82)

If p > 0 is sufficiently small, then

(i) for each yy € V,, there exists an interior finite dimensional feedback controller

K

w=F(y—y) =Y (Py(y—Ye) Pl (2.26)
k=1

that is, of the same structure as in the translated N-S z-problem (2.20), with

the same vectors py, uy in (2.14) or (2.16), such that the closed loop problem
corresponding to (1.1)

Vi —VvAY +(y-V)y +Vr =m(F(y — v.)) + f(x) in Q (2.27a)

divy=0 inQ  (2.27b)
y=0 onY  (2.27¢)
Ylt=0 = yo in 2 (2.27d)
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rewritten abstractly after application of the Helmholtz projection P, as

Y vAGY + Nyy = Py[m(F(y = y0) + ()] (2.28a)
K

=F [m( Z (PN (y = Ye), Pk)wuk> + f(x)} (2.28b)
k=1

¥(0) = yo € Boy/7(2) (2.250)

~

. . 2-2
has a unique solution y € C([O, 00); Bq’p/p (.Q)).
(i) Moreover, such solution exponentially stabilizes the equilibrium solution y, in the
2
- /p

)

~2
space By
satisfies

(82): there exist constants y > 0 and My > 1 such that said solution

1) = Vel r < Mye 7 |lyo = vell o , >0, y0€V,. (229
lly(®) )’e”B;pZ/p(Q) = Mye lyo )’e”B;pZ/p(Q) =Y, o o ( )

Once the neighborhood V,, is obtained to ensure the well-posedness, then the
values of My and y do not depend on V, and y can be made arbitrarily large
through a suitable selection of the feedback operator F.

See Remark 9.1 comparing ¥ in (2.29) with yp in (2.17).

2.7 Results on the Real Space Setting

Here we shall complement the results of Theorems 2.1 through 2.5 by giving their
version in the real space setting. We shall quote from [7]. In the complexified setting
LL(£2) +iL%(§2) we have that the complex unstable subspace Wy is,

Wi =Wy +iWy (2.30)
= space of generalized eigenfunctions {¢;} j-v=1 of the operator
Ay (= Ay) corresponding to

its N unstable eigenvalues. (2.31)
Set¢; = ‘p]l + i¢]2' with ¢j1-, (]5]2- real. Then:
W]{/ = Re WK/ = span{fb}}?’:]; W]%, =1Im WK/ = span{¢12,}§/:1‘ (2.32)

The stabilizing vectors py, ugx, k = 1, ..., K are complex valued with u; € W]’(, C

LY($2), and py € (WH)* C LY (), as in (2.15).

The complex-valued uniformly stable linear w-system in (2.16) with K complex
valued stabilizing vectors admits the following real-valued uniformly stable counter-
part
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K K
o _ Agw+P, (m (Z Re (wy (1), pr)o Reug — Y Tm (wy (1), pr)e Im uk))

dt k=1 k=1

(2.33)
with 2K < N real stabilizing vectors, see [7, Eq. 3.52a, p. 1472]. If K = sup {¢;,i =
1,..., M} is achieved for a real eigenvalue A; (respectively, a complex eigenvalue

Ai), then the effective number of stabilizing controllers is K < N, as the generalized
functions are then real, since y, is real; respectively, 2K < N, for, in this case,
the complex conjugate eigenvalue A ;j contributes an equal number of components in
terms of generalized eigenfunctions ¢Xj = ¢_>)\j. In all cases, the actual (effective)
upper bound 2K is 2K < N. For instance, if all unstable eigenvalues were real and
simple then K = 1, and only one stabilizing controller is actually needed.

Similarly, the complex-valued locally (near y, ) uniformly stable nonlinear y-system
(2.28) with K complex-valued stabilizing vectors admits the following real-valued
locally uniformly stable counterpart

dy
E — VAqy +qu

K K
=Py (m (Z Re (y = Ye: Pi)w Re ug — Zlm (y = Yes Pl Im uk))

k=1 k=1
(2.34)

with 2K < N real stabilizing vectors, see [8, p. 43].

3 Algebraic Rank Condition for the wy-Dynamics in (2.8a) Under the
(Preliminary) Finite-Dimensional Spectral Assumption (FDSA)

*
ij
malized linearly independent eigenfunctions (on L1(£2) and (Le (2)) = Lg/(Q),
respectively l/q + 1/ ¢ = 1 invoking property (A.2b) of Appendix A) corresponding
to the unstable distinct eigenvalues A1, ..., Ay of Aand Ay, ..., Ay of A*, respec-
tively:

Preliminaries: For i = 1,..., M, we now denote by {¢>,-j}f.":1, ) }/f.izl the nor-

Adi; = hidhij € D(Ay) = WH(2) N Wy (2) N LL(R) € LI(2) (3.1a)
A gt = Jigl; € DAL = W27 (2) N Wl (@) N LY (2) e LY(2).  (3.1b)

FDSA: We henceforth assume in this section that for each of the distinct eigenvalues
Al ..., Ay of A, algebraic and geometric multiplicity coincide:

4 — 4
Wy, = PniLE(2) = span{di;};_ s (Wy )" = Py ;(LT(2))" = span{¢;;},_:
(3.2)
Here Py ;, P;'(,, ; are the projections corresponding to the eigenvalues A; and A;, respec-
tively. For instance, Py ; is given by an integral such as the one on the RHS of
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(2.3a), where now I is a closed smooth curve encircling the eigenvalue X; and no
other. Similarly Py .. The space Wy , = range of Py ; is the algebraic eigenspace
of the elgenvalues A,, and ¢; = d1m W}\’, ; is the algebraic multiplicity of A;, so that
L1+ 4o+ -+ £y = N. As a consequence of the FDSA, we obtain

M ¢; _ M ¢
Wi = PNLE($2) = span{ijhiz sy (Wi)* = PR(LE(@2)* = span{efy)Z ).

3.3)
Without the FDSA, WI'(, is the span of the generalized eigenfunctions of A, corre-
sponding to its unstable distinct eigenvalues {A ; }?’1: 15 and similarly for (Wy)* (see
the subsequent section). In other words, the FDSA says that the restriction .A’;V in (2.5)
is diagonalizable or that AY; is semisimple on Wy, in the terminology of [29, p. 43].
Under the FDSA, any vector w € Wy admits the following unique expansion [29,

p- 12, Eq. (2.16)], [7, p. 1453], in terms of the basis {qbu} b | in LL(£2) and its

i=1,j=
adjoint basis [29, p. 12] {qbl]}l 1} | in (LI (2))*:

e | ifi=hj=k
W¥ s w= w, o) o) = ol 34
s Zj( Obiz: (Bij. D) {0 stherwise (34
that is, the system consisting of {¢;;} and {d)l?"j},i =1,....M, j=1,...,¢;,can

be chosen to form bi-orthogonal sequences. Here (, ) denotes the scalar product
between Wy, and (Wy)* [29, p. 12]. i.e. ultimately, the duality pairing in §2 between
LL(£2) and (LY (£2))*. Next, we return to the wy-dynamics in (2.8a), rewritten here
for convenience

on Wy : wy — Aywy = PyP(mu); wy(0) = Pywy. (3.5)

The term Py P (mu) expressed in terms of adjoint bases Next, let u € L9 (w) where
q > 1. Here below we compute the RHS of the term Py P (mu) via the adjoint bases
expansion in (3.4), where we notice that P*P}i‘lcl);kj = qbl?“j because ¢;*j € D(A*), so

that ¢l.*/. is invariant under the projections P* and Py. With (f, g), = / fgdw, we
’ w

obtain
M. t; M., l; M., l;
Wi > PyP(mu) = Y (PyP(mu), ¢5)¢ij = Y (mu, ¢})dij = Y (1, $/)utij,
i,j=1 i,j=1 i,j=1

3.6)
so that the dynamics (3.5) on Wy, becomes
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M.¢;

on W s wy — Aywy = Y (. ¢ wij- (3.7
ij=1

Selection of the scalar interior control function « in finite dimensional separated
form (with respect to K coordinates) Next, we select the control « of the form given

in (2.10)
K

u= Z,uk(t)uk, up € Wi C LL(2), m(r) = scalar (3.8)
k=1

so that the term in (3.6) in W§; specializes to

M. ¢ K
Wi > PyP(mu) = ) {Z(uk,@’;)wuk(r)} $ij. (3.9)

i,j=1 Lk=1

Substituting (3.9) on the RHS of (3.5), we finally obtain

Mt (K
on Wy : wy — Aywy = Z lZ(uk, ¢,-*j)wltk(f)} Gij- (3.10)

i,j=1 Uk=1

The dynamics (3.10) in coordinate form on Wy, Our next goal is to express the finite
dimensional dynamics (3.10) on the N-dimensional space W, in a component-wise
form. To this end, we introduce the following ordered bases 8; and 8 of length ¢; and
N respectively:

Bi = [¢i1, ..., pig;]: basison Wy ;
B=B1UB U ---UBy (3.11)
=[¢11, - b1y, P21, P2ty -+ o DML, - Puey, ] Dasis on Wi

Thus, we can represent the N-dimensional vector wy € Wy as column vector wy =
[wn]g as,

M.¢;
wy = Z wl,{,@j; and set Wy
ij=1
_ 1,1 1,4 i1 i M,1 M. Ly
_col[wN s W W e Wy e Wy Wy ] (3012)

Remark 3.1 The eigenfunction ¢;; belongs to LL(2) as well as to DAy =

D(Ay). Thus, by real/complex interpolation, see (1.16)/(1.21) they also belong to

(L‘],(.Q), D(Aq))l_l ,as well as to [D(Aq), L (.Q)] = D(Ag), 0<a<l1;in
b

72/ P

l—a

particular, ¢;; € §,§, (£2). See (B.11) or (B.12) in Appendix B. Thus, exponential
decay in CV of the CV-vector wy translates at once into exponential decay with the
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same rate in any of the spaces LZ(£2), (Lg (£2), D(Aq))l_i’p, D(Af;), in particular,

32 o (£2) for the vector wy, views as a vector on any one of these spaces. This
remark applies to wy (f) and uy(¢) in Theorem 2.1, Egs. (2.12), (2.13) as well as
Theorem 2.2, Eqs. (2.17)—(2.19).

Lemma 3.1 In CV, with respect to the ordered basis B {qz’)lj}lM lej | of normalized

eigenfunctions of Ay, we may rewrite system (3.10) = (3.12) = (2.8a) as

(Wn) — Ady = Ujig (3.13)
where
_)L]]] 0
Al
A= . N xX N, [;:{; x{; identity (3.14)
L 0 Am Iy
_(”1a¢;k1)w (uK,¢;k1)w Ui
(ur, ¢;k2)w .. (uk, ¢;k2)a) U>
U, = . . . i x K, U= . N x K;
_(M1,¢;kgi)w (MK’(]S;Z)(» Um
[ 11
R “2
g = . K x 1; (3.15)
| MK
where (f,8)ew = / fg dw and we take K > €;, i = 1,..., M. Thus (3.13) gives

the dynamics on Wy, as a linear N-dimensional ordinary differential equation in
coordinate form in CN .

Proof Recalling the basis ; and the definitions of U; in (3.15), we can rewrite the
term in (3.9) with respect to this basis as

[PnP(mu)lpg, = Uifig : € x 1; (3.16)

Then with respect to the basis 8 in (3.11) and recalling the definition U in (3.15), we
can rewrite the term (3.9) with respect to this basis as

Ui Uijig
Ux | | Uik A

[Py P(mu)lpg = | . | [k = : =Ujig : N x 1. (3.17)
Um Umitk
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Finally, clearly A%, becomes the diagonal matrix A in (3.14) with respect to the basis
B, recalling its eigenvalues in (3.1). O

The following is the main result of the present section.

Theorem 3.1 Assume the FDSA. It is possible to select vectors uy,...,ug €
Lg(a)), qg>1,K=sup{¥;:i=1,..., M}, such that the matrix U; of size £; x K
in (3.15) satisfies

(Ml, ¢l*1)w (qu ¢l*1)w
(ulv ¢l*2)w (qu ¢,*2)w

rank[U;] = full = £; or rank . .

(ur, ¢;kgi)w o (ug, ¢;kg’.)w

=¥;; {i x K foreachi =1,..., M. (3.18)

Proof Step 1 By selection, see (3.1) and statement preceding it, the set of vectors
dfs s (]51.*& is linearly independent in L (£2), ¢’ is the Holder conjugate of ¢, l/q +
l/q/ = 1, foreachi = 1,..., M. Next, if the set of vectors {¢], ..., ‘Pi*i,»} were
linearly independent in LZ,(.Q), i =1,..., M, the desired conclusion (3.18) for the
matrix U; to be full rank, would follow for infinitely many choices of the vectors
ui, ... ug € LE(£2).
Claim: The set {¢7,..., i*ii} is linearly independent on LI (w), for each i =
1,...,M.

The proof will critically depend on a unique continuation result [60] see also [7,
Lemma 3.7, p. 1466]. By contradiction, let us assume that the vectors {qb;kl, R ¢i*£,-} IS

Lg/ (£2) are instead linearly dependent, so that

Li—1

By = Y il in LY (2) (3.19)

j=1

with constants «; not all zero. We shall then conclude by [7, Lemma 3.7] and [60]
below, that in fact qﬁl?“zi = 0 on all of £2 as well, thereby making the system {¢l.*j, j=
1, ..., ¢;} linearly dependent on £2, a contradiction. To this end, define the following

function (depending on i) in LZ/(Q)

-1
o* = Z ajdly, — ¢, | €LEE), i=1,..., M. (3.20)
j=1

Aseach ¢} is an eigenvalue of A* (or (A%)*) corresponding to the eigenvalue A;, see
(3.1), so is the linear combination ¢*. This property, along with (3.19) yields that ¢*
satisfies the following eigenvalue problem for the operator .A* (or (A%,)*):

A*p* = Xo*, divep* =0in 2; ¢* =0inw, by (3.19). (3.21)
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But the linear combination ¢* in (3.20) of the eigenfunctions qbfj € D(A*) satisfies

itself the Dirichlet B.C ¢* | s = 0. Thus the explicit PDE version of problem (3.21)
is

—vAP* — (Lo)*¢p* + Vp* = 1i¢* in 2; (3.22a)

div ¢* = 0in £2: (3.22b)

$*lse =0; ¢* =0inw; (3.22¢)

¢* € D(AY); (L)@ = (9. V)™ + (9" V), (3.23)

where (f.V)*y, is a d-vector whose ith component is Z?Zl(Di Ye;) fj [8,p. 55].
Step 2 The critical point is now that the over-determined problem (3.22) implies the
following unique continuation result:

¢* = 0in LT (2); or by (3.20) ¢}, = o1}y +agply+- -+, 14}, _y in LL (),

(3.24)
ie. the set {9, ..., i*z,-} in linearly dependent on LZ/(.Q). But this is false, by the
very selection of such eigenvectors, see (3.1) and statement preceding it. Thus, the
condition (3.24) cannot hold.

The required unique continuation result is established in [7, Lemma 3.7] or [60]. The
original proof is done in the Hilbert setting but we may invoke the same result because
¢™* has more regularity and integrability than required since ¢* is an eigenfunction of
A*. Thus the claim is established. In conclusion: it is possible to select, in infinitely
many ways, interior functions uy, ..., ug € LL(£2) such that the algebraic full rank
condition (3.18) holds true foreachi =1, ..., M. O

4 Algebraic Rank Conditions for the Dynamics wy in (2.8a) in the
General Case

In the present section we dispense with the FDSA (3.2). More precisely, we shall
obtain Theorem 2.1 without assuming the FDSA (3.2). Thus now

Wy = space of generalized eigenfunctions of A, (= AY) (4.0)

corresponding to its distinct unstable eigenvalues.

Warning: In this section we shall denote by ¢; the geometric multiplicity of the eigen-
value A; and by N; its algebraic multiplicity.

Step 1 To treat this computationally more complicated case we shall, essentially
invoke the classical result on controllability of a finite-dimensional, time-invariant
system {A, B}, A : N x N,B : N x p where A is given in Jordan form J. Let again
A, A2, ..., Ay be the distinct eigenvalues of A = J. Let A; denote all the Jordan
blocks associated with the eigenvalue A;; let £; be the number of Jordan blocks of A
(i.e the number of linearly independent eigenvectors associated with the eigenvalue
Ai). Let A;; be j™® Jordan block in A; corresponding to a Jordan cycle of length N ;
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That is:
A =diag{A1, Ay, ..., Ay} A =diag{Aj1, Ap, ..., Ay, ). “4.1)

Partition the matrix B accordingly:

Ay 0 B,
Ay B,
A = . . B = . (4.2)
(NxN) .. (Nxp) :
0 A Bu
Ay O B;;
Aiz ]Riz
A = . ;o B o= . (4.3)
(N;jxN;) . (Nixp) :
L O A,‘gi Biei
A1 O bl,'j
Ao 1 boij
A = . By o= - 4.4
(N; xN;) -1 (N_;'. XPp) .
0 .

If E;, and K, denote the eigenspace and the generalized eigenspace associated with

the eigenvalue A;, i = 1,..., M, thendim E;, = £; = # of Jordan blocks in A;, dim

K;, = N;, N;: = length ofjth—cycle associated with A;; j = 1,..., ¢;. We have dim
M M ¢

Wi =N = Z N; = Z Z N'.In (4.4), the last row of B;; is denoted by by;;. The
i=1 i=1 j=1

following result is classicalj [11, p. 165].

Theorem 4.1 [33, Theorem 3.1] The pair{J, B}, J : N x N, Jordan form, B : N x p is

controllable if and only if, for eachi = 1, ..., M (that is for each distinct eigenvalue)
the rows of the £; x p matrix constructed with all “last” rows by;1, ..., by,
BLi1
. Briz
Bf=| . |:lixp (4.5)
Brie,

are linearly independent (on the field of complex numbers). [A direct proof uses Hautus
criterion for controllability [11].]

We next apply the above Theorem 4.1 to the wy -problem (2.8a) and (3.5). To this end,
we select a Jordan basis §; for the operator (.A’;V)i on W}\’,’i given by
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Jordan Basis:

Bi = {e%(xn,e;(m,...,e}vfu,-)fe%(x,-),e%(xi),...,eivé(m

f....efi(ki),eﬁi(ki),...,ef\;[,:()»i)}. (4.62)

Here the first vectors of each cycle: e{(ki), e%()»,-), e, e/fi (A;) are eigenvectors of
(A})i corresponding to the eigenvalue A;, while the remaining vectors in f; are
corresponding generalized eigenvectors. Thus, in the notation (3.1), we have

di1 = el ); i = E); .5 iy = €5 (). (4.6b)

Next, we can choose a bi-orthogonal basis 8} of ((A%,)*); corresponding to its eigen-
value A; given by
Bi-orthogonal Basis:

g = [@1G0. 1. o) G0, @3 G, ... @2 ()
1 2

1

Lol (), cbfi(ii),...,cbf;;, (I\i)}. (4.72)
4
Thus, in the notation (3.1), we have
¢ = DL (): by = DT ... ¢y, = Py (M), (4.7b)

In the bi-orthogonality relationship between the vectors in (4.6) and those in (4.7),
the first eigenvector ell (A;) of the first cycle in §; is associated with the last generalized

eigenvector @ Ilvi (1) of the first cycle in B} etc, the last generalized eigenvector
1

311\,,- (A7) of the first cycle in B; is associated with the first eigenvector <D11 (%;) of the
1
first cycle in B; etc. (Fig. 1).

ef(M) es (M) ey (N)

P1(N) PL(N) @ ()

Fig. 1 Relation between the generalized eigenvectors of .A"N and (A';V)*
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Thus, if f € W}, i the following expression holds true:

f = @y GadelGi) + -+ (F, @1 Ridey, (A1)

+o o (F, @0 Gdel G) + - 4 (F, @Y Gade, (). (4.9)
¢ £

4 .
This expansion is the counterpart of E : l(w, ¢>l~*j)¢>i j € Wy, in (3.4) under the
Jj= X

FDSA. Next, we apply (4.9) to f = Py P(mu). More specifically, we shall write the
vector representation of Py P (mu) with respect to the basis §; in (4.6a), and moreover,
in line with Theorem 4.1, we shall explicitly note only the coordinates corresponding
to the vectors ellv{ A), 612\75' i), ..., ef\;é (1;), each being the last vector of each cycle

in (4.6a).

lst

(u’ q)ll()_‘i))w <« last row of the 1** cycle

[Py P(mu)lg = (4.10)

(u, 4512()_»i))w < last row of the 2"/ cycle

o -
_(u, i (A’))w_ < last row of the ¢/ cycle

The symbol x x x corresponds to terms which we do not care about. In fact, to
exemplify, since P* P} ® | (1;) = @] (1;) see above (3.6)

<PNP(mu), q)ll(i,»))s2 = (mu, ®10) o = (u, D), @.11)

M. ¢
This is the relevant counterpart of expansion Py P (mu) = Z . 1(u, (D;})w@ |
i,j=
in (3.6) under the FDSA. Notice that (4.10) involves only the eigenvectors
<D11(5»l~), d)%()_\i), ...,cbfi (A;) of (A})* corresponding to the eigenvalue Ai. Next,

K
recalling (2.10): u = Zk_l Wi (t)ur, we obtain that the corresponding counterpart
of (3.15) is a
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X X X
(u17 ¢1l)a) (u27 ¢]1)a) e (uK’ ¢]1)a)

<~ TOW bLil(“)

X X X
U: = 4.12
P . @D W2 DD - k. DD | < row by 1P
X X X

<~ IowW bLiZi (u)

li l; l;
_(ulv @1 )u) (u2» ¢>1 )a) cee (qu ¢>1 )a)_

Again, the relevant rows exhibited in (4.12) correspond to the last rows of each Jordan
sub-block {A;1, Aja, ..., Ajg, }in (4.3). In (4.12) we have displayed only such relevant
rows: byi1, briz, ..., brig; According to Theorem 4.1, the test for controllability as
applied to the system (3.5), i.e to the pair { A%, B}, B =col [By, B2, ..., By, is

row by of B (u1, @1 (%)), --- (uk, P{ (%)),
row by ;> of B; (M[, (1312()»,‘))(0 e (MK, @%()»,'))w
rank . = rank : : =¥;

row bpj¢; of B; (u1, q§f" (Xi))w o (uk, @f" (X,-))w

(4.13)

i =1,..., M. But this is exactly the test obtained in (3.18) via the identification in

(4.7b): )
$h = L0, ¢ = DI, ... b, = P (ki) 4.14)

involving only eigenvectors, not generalized eigenvectors. Thus the remainder of the
proof in Sect.3 past (3.18) applies and shows Theorem 3.1 without the FDSA. We
have

Theorem 4.2 With reference to U; in (4.12), it is possible to select interior vectors
Ui, ..., Ug € Wl’(, C LZ(Q), K =sup{¢;:i=1,..., M}, such that the algebraic
conditions (4.13) hold true, i = 1, ..., M.

We close this section by writing down the counterpart of the expansion (3.10) for
the wy-dynamics in terms of the basis 8 = g1 U Sy U --- U By, see (3.11), (4.6a),
(4.9) of the generalized eigenvectors in the present general case.

onWK, : w;v — Aywn
Z { Z [(”k’ q)]l\/{(ii))wﬂk(t)}e]l()\i) +o4
i=1 " k=
K

[uk, }(X,-)>wuk(r>}e}vf<xi)
k=l
+
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K
+ Z |:(”k’ Cbﬁ,iz (Xi))wuk(t):|ef" A4+

k=1

K
+y [(uk, o (ii»wuk(r)]ef;é (Al-)}. (4.15)

k=1

5 Proof of Theorem 2.1: Arbitrary Decay Rate of the wy-Dynamics
(3.5) or (4.15) (or (3.13) Under the FDSA) by a Suitable
Finite-Dimensional Interior Localized Feedback Control u

We are now in a position to obtain Theorem 2.1, which we restate for convenience.
Letl < g < o0.

Theorem 5.1 Let Ay, ..., Ay be the unstable distinct eigenvalues of A and let w be
an arbitrarily small open portion of the interior with smooth boundary dw. By virtue
of Theorem 4.2, pick interior vectors [uy,...,ug) in W/’(, C LL(2) such that the
rank conditions (4.13) hold true, with K = sup {{; : i = 1,..., M} (respectively,
Theorem 3.1 and the (same) rank conditions (3.18) under FDSA ).

Then: Given y > 0 arbitrarily large, there exists a K -dimensional interior con-
troller u = uy acting on w, of the form given by (3.8), with the vectors uy given by
Theorem 4.2 via the rank conditions (4.13), such that, once inserted in (4.15) yield the
estimate

”wN(t)”Lg(_Q) + ”MN(I)”Lg(w) = Cye_w ||PNwO||L(qT(_Q) , >0, (5.1a)

where the LY ($2)-normin (5.1a) may be replaced by the (L?, (£2), D(Aq))

72/ P

s

-norn

2
(82)-norm, 1 <g <oo, 1 < p < el :
2g — 1

1
I=5.p

. . ~2
, 1 < p,q < oo, in particular the B

WN O ey + llun O - < Cue " || Pywoll —s ,t>0.
Il N()IIB;pz/p(m [ N()IIB;pz/,,(m_ v | Py olle gy |2

" (5.1b)
Here, wy is the solution of (4.15) (respectively (3.10) under the FDSA) , i.e., (3.5)
corresponding to the control u = uy in (3.8). Moreover, such controller u = uy can
be chosen in feedback form: that is, with reference to the explicit expression (3.8) for
u, of the form ui(t) = (wn (1), pk)w for suitable vectors py € (Wy)* C Lg,(.Q)
depending on y. In conclusion, wy in (5.1) is the solution of the equation on Wy, (see
(3.5)) specialized as (4.15)

K
wy — Aywy = Py P (m (Z(wzv(t), Pk)wuk>> ,

k=1
xup € Wi C LA(R), pre WH*C LI (2)  (5.2)
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rewritten as
why = A'wy, wy() = e Pywo, wy(0) = Pywy. (5.3)

Proof Step 1 Following [33] the proof consists in testing controllability of the linear,
finite-dimensional system (3.5), in short, the pair

{(/,B}, B=U: NxK,K=sup{{;i=1,...,M} 5.4)

U=[U,...,Uyl" U; given by (4.12) (or by (3.15) under FDSA). J is the Jordan
form of A%, with respect to the Jordan basis § = 1 U --- U By, B; being given by
(4.6a). But the rank conditions (4.13) precisely asserts such controllability property
of the pair { 4%, = J, B}, in light of Theorem 4.1.

Step 2 Having established the controllability criterion for the pair { A}, = J, B} then
by the well-known Popov’s criterion in finite-dimensional theory, there exists a real
feedback matrix Q = K x N, such that the spectrum of the matrix (J + BQ) =
(J + U Q) may be arbitrarily preassigned; in particular, to lie in the left half-plane
{L:Re A < —y < —Re Ay41}, as desired. The resulting closed-loop system

() — Jiby = Uuy, (5.5)

is obtained with C"-vector uy = Quy, Q being the K x N matrix with row vec-
tors [p1, ..., Pk, ,ulj‘v = (Wy, pr) in the CN-inner product and hence decays with
exponential rate

|ﬁ)N(t)|CN = Cye_yt

N ()|, =0, (5.6)

But the N-dimensional vector wy € Wy C LZ(£2) is represented by the CN -vector
wy = [wy]g, where in the general case of Sect. 4, B is a Jordan basis of generalized
eigenfunctions of A, (= AY) corresponding to its M distinct unstable eigenvalues.
Such basis is given by g = 1 U o U - - - U By, where a representative f; is given in
(4.6a). The whole basis can be read off from (4.15). In the special case of Sect. 3 where
the FDSA holds, the basis 8 in Wy is given by the eigenfunctions of the A corre-
sponding to its M distinct eigenvalues, see (3.11). But such eigenfunctions/generalized
eigenfunctions are in D(A,), hence smooth. Thus, the exponential decay in (5.6) of
the coordinate vector Wy in CV translates in same exponential decay of the vector
wy (1) € Wy not only in the L (£2)-norm but also in the D(A,;) = D(Ay)-norm,

~N_2
hence in the (L?T (£2), D(Aq))l,i ,-horm, in particular in the B;p/” (£2)-norm. See
>
also Remark 3.1. Thus, returning from CN x CV back to Wy x (W,’(,)*, there exist

suitable pi. ... px € (W) C L (82), such that i, = (wy. pr), whereby the
closed-loop system (5.2) corresponds precisely to (4.15) via Py P (mu) written in
terms of the Jordan basis of eigenvectors f in (4.6a).

Thus not only we obtain in view of (5.2), (5.3) and (5.6)

M Pywo| |, = Cpe Pyl gy 120, (5T)

”wN(t)”Lg(_Q) = L)
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2
but also,say 1 < g < 00,1 < p < el
2qg — 1
At —yt
WN )| e = |le? "Pywoll -, <Cpe V|| Pywoll - , t>0.
o @l g = |7 Pvwo] oz, < e IBNON oy, 2

(5.8)
Hence with uy = Qwy, we obtain not only

||wN(t)||Lg(_Q) + ||MN(t)||Lg(w) = ”wN(t)”Lg(Q) + ||QwN(t)||Lg(Q) (5.9
<(l1g1+1)

A" Py < Cye " IPywoll g g (5.10)

LI —

but also, say

wy ()] - un(@® |l - < Cye V" || Pywol - , t>0.
lwn ( )”3272/”(:2)4_” N )”BZJ/”(.Q)_ 4 | Pn 0||3272/p(.Q =

q.p q.p q.p )
(5.11)
O

Remark 5.1 Under the FDSA, checking controllability of the system (3.13) is easier.
To this end, we can pursue, as usual, two strategies.

A first strategy invokes the well-known Kalman controllability criterion by con-
structing the N x KN Kalman controllability matrix

By LB ... JN7'B

N—1
K =[B.AB.AB,... AN-'g)= | B2 22B2 ... [y Byl (5.12)

B =col[B;,Bs,...,Byl, Bi=U;:¥ x¥; (5.13)
of size N x KN, N =dim Wy, Ji =)l 4 x¥t;, B =U :¥¢ x{;,and
requiring that it be full rank.

rank C = full = N. (5.14)

In view of generalized Vandermond determinants, we then have
rank £ = N ifandonly ifrank U; = ¢; (ful)i = 1,..., M, (5.15)

precisely as guaranteed by (3.18). A second strategy invokes the Hautus controllability
criterion:
rank[A — Xil, Bl = rank[A — X; 1, U] = N (full) (5.16)

for all unstable eigenvalues A;, 1, ..., M, yielding again the condition thatrank [U;] =
Li,1,..., M, as generated by (3.18).
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6 Proof of Theorem 2.2: Feedback Stabilization of the Original
Linearized w-Oseen System (1.13) by a Finite Dimensional
Feedback Controller

The main result on the feedback stabilization of the linearized w-system (1.13) =
(2.1) by a finite dimensional controller is Theorem 2.2, here reformulated in part for
convenience in the context of the development of the present proof. Throughout this
section 1 < g < oo.

Theorem 6.1 Let the Oseen operator A have N possibly repeated unstable eigenvalues
{Aj };V=1 of which M are distinct. Let ¢ > 0 and set yo = |Re Ay+1| — €. Consider the
setting of Theorem 5.1 so that, in particular, the feedback finite-dimensional control

K
u=uynisgivenbyu = uy = Zk_l(wN (t), px)ux and satisfies estimates (5.1)
with y > 0 arbitrarily large, for vectors p1, ..., pr € (Wy)* C L?,/(sz) and vectors

up,...,up € Wy C L%(82) given by Theorem 5.1. Thus, the linearized problem (2.1)
specializes to (2.16)

d K
d_‘;’ —Aw+ P (m (Z(wN(t), pk)wuk)> =A,w. 6.1)

k=1

Here A, = A, is the generator of a s.c. analytic semigroup on either the space

L1(2), 1 < g < oo, or on the space (Lg(.Q),D(Aq)) 1 < p,g < o0,

_1
I=5.p

~7_2
in particular on the space qu,p/p £2),1 <q,1 < p < 2q/2q_1_ Moreover, such
dynamics w (equivalently, generator A ) in (6.1) is uniformly stable in each of these
spaces, say

HeAFtwo

19¢2) = [lw(z, wo)”Lg(_Q) = Cyoe_yot ”w()”Lg(Q) , t>0. (6.2)

or say

HeAFtwo

qu;;Z/p(Q) = |lw(z, wo)||§§;2/p(9) < Cpe ot ||w()||§§;z/p(9) , t>0.
(6.3)
Proof Step I According to Theorem 5.1, the finite-dimensional system wy in (2.8a)
= (3.5) is uniformly stabilized by the finite dimensional feedback controller u = uy
given in the RHS of (5.2) = RHS of (6.1) with an arbitrary preassigned decay rate
y > 0, as given, either in the L& (£2)-norm, or in the (Lg (£2), D(Aq))l_i p,-norm in
i
(5.1a), or in particular, in the E;;,Z/ P (£2)-norm as in (5.1b).
Step 2 Next, we examine the impact of such constructive feedback control u on the
¢n-dynamics (2.8b), whose explicit solution can be given by a variation of parameter
formula,

) t )
N () = e N e (0) + / AN ([ — Py)YP(muy (r))dr. (6.4)
0
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in the notation A}, = (I — Py)A, A= Ay, of (2.5). We now recall from Sect. 1.10

(d) that the Oseen operator .4, generates a s.c. analytic semigroup not only on LL(2)

but also on (LZ(2), D(Aq))lf |, in particular on Bq p/”(.Q) Hence the feedback
5P

operator A, = A, similarly generates a s.c. analytic semigroup on these spaces,
being a bounded perturbation of the Oseen operator A = A,. So we can estimate
(6.4) in the norm of either of these spaces. Furthermore, the (point) spectrum of the
generator A}, on Wy, satisfies sup{Re o (A})} < —[Ay+1| < —yo by assumption.

~7_2
We shall carry our the supplemental computations explicitly in the space qu . p/" (£2)
for the case of greatest interest in the nonlinear analysis of Sects. 8, 9. In the norm of

2 / 7(£2), we obtain from (6.4) since the operators (I — Py), P are bounded

t
levoll = | e @) + ¢ / | uyonar 65
DIl < Ce 120 -
VOl oz, < CEM NGO oy,
C | e e " dr | Pywoll - . 6.6
+ /0 D dr Pl (6.6)

recalling estimate (2.13) or (5.11) for |juy| in the Bq p/ ”(£2)-norm. Since we may
choose y > yy by Theorem 2.1 (or Theorem 5.1), we then obtain

1 — e~ v—ro)
|2 <C eV ot — wo | .2 6.7
IEn ] 75 /1,( 2) |: I ”B;p/p(f?) (6.7)

By.p -

< Ce ! - , Vt>0. 6.8
= Ce ||w0||35;2/p(9) > (6.8)

Then, estimate (6.8) for ¢y (#) along with estimate (2.13) = (5.11) for wy (r) with
~0_2
y > yp yields the desired estimate (6.3) for w = wy + ¢n in the Bs,p/” (£2)-norm:

w2 < v -2 + lwy ()] or2 (6.9)
Byy" (@) N pidte) N (@)
~  —yot —yt
< [Cre™™ + e Tluoll 2z, (6.10)
< Cype " fwoll 2 6.11
lwoll 23, ©.11)

and (6.3) is proved. Similar computations from (6.4) to (6.8) apply in the LZ (£2)-norm
for ¢y (1), as the Oseen operator generates a s.c. analytic semigroup on LZ (£2) from
Sect. 1.10 (d). This, coupled with estimate (2.12) for wy (¢), yields estimate (6.2) for
the w = wy + ¢y with L% (£2)-norm. Theorem 6.1 is established. O

Remark 6.1 Computations such as those in [7, p. 1473] using the analyticity of the
Oseen semigroup e“4a' show the alternative estimates (2.18a-b) of Theorem 2.2.
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7 Maximal LP Regularity on Lz(.Q) and for T = oo of the s.c. Analytic

Semigroup e”*-4 Yielding Uniform Decay of the Linearized
w-Problem (2.1), Once Specialized as in (6.1) of Theorem 2.2 =
Theorem 6.1.

In this section, we return to the w-feedback problem (6.1), w; = Ar ,w, where py, uy
are the vectors claimed and constructed in Theorem 2.1, or Theorem 2.2 (Theorem 6.1)
and Remark 3.1. As stated in Theorem 6.1, problem (6.1) defines a s.c. analytic,
uniformly stable semigroup 74’ as in (6.2):

=

<M, e " >0 (7.1)
£0) )
where () denotes the space LL(£2) or else (Lg(.Q),D(Aq))

~0_2
B;, ,,/ 7 (£2). Define the “good” bounded operator

_1 in particular
—;,P

K
Gw=m (Z(PNw, pk)wuk) ,up € Wi C LI(RQ), pre (Wh)* C LI (),

! (7.2)
By Theorem 1.6, the Oseen operator .4, enjoys maximal L” regularity on LL(£2) up
to T < oo, see (1.48) as well as (1.50), (1.52). Then the same property holds true up
to 7T < oo for AF’q = Aq + G, as G is a bounded operator [15,31,64]. We now seek to
establish maximal L” regularity up to 7 = co of A, , i.e. of the following problem

wy — Aw+ L,(w)+Var =Gw+ F in(0,T]x 2=0 (7.3a)
divw=0 in Q (7.3b)

wlx=0 nO0,TIxI'=X (7.3¢c)

wli—0 = wo in £2, (7.3d)

L. defined in (1.39) rewritten abstractly, upon application of the Helmholtz projection
P, to(7.3a) and Fy = P, F, as

w, =Apqw+ Py F = Ayw+ PyGw+ Py F (7.4)
—VAgw — Agqw + PyGuw + P,F. (1.5)

[Pl

Wilog, we take v = 1 henceforth. Here we have appended a subscript “g” to the
generator A, defined in (6.1) which we rewrite as Ar ;. With F,, = P, F its solution
on LL(2) is

t
w(r) = ePralwg 4 / rrat=F (t)dt (7.6)
0
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; ‘
= e Aty + / e_Aq(’_f)(PqG — Ao g)w(t)dT + / e MU, (T)dT.
0 0
(7.7)

As the present section is preparatory for the subsequent Sects. 8 and 9, the case of
. . ~2-2 .

greatest interest here is then for wy € Bq’p/”(.Q), ie.l <g,1 < p< 2’1/2(1_1.

Nevertheless we shall treat the general case | < p, g < oo.

Theorem 7.1 As in (1.43) of Theorem 1.6, but now with T = 00, assume

Fy € LP(0, 00; L1(2)), wo € (L?,(SZ),D(Aq)>1_I/ R (7.8)

Then there exists a unique solution of problem (7.3) = (7.4) = (7.5).

we XY, = LP(0,00: D(A,)) N WP (0, 00; LY (£2)), equivalently (7.92)
w2 1, ) . p2/
w e X%, = LP(0, 00; W(2)NW (0, 00; LL(2)) < C(0, 00; By ,'"(2))

(7.9b)

(recall [2, Theorem 4.10.2, p. 180 in BUC for T = oo] already noted in (1.30))
continuously on the data: there exist constants Co, Cy such that

Co ||lw 2 < |lw + ||
OINg 2-0 gy = 1, I l

= ”w/”LP(O,oo;LlI(.Q)) + “Aqw”LP((),oo;Lq(.Q)) + ”””Yﬁ?q
(7.10a)

= Cl{ ”Fcr”Lp((),oo;Lg(_Q)) + ”wOH(Lg(-Q),D(Aq))FL , }
e
(7.10b)

~0_2
then the I.C. wy is in B;p/" (82). Equivalently,

2q
Thus for1 <q,1 < p < ,
2g — 1

(i) The map

t
F, —>/ AraU=DF (1)dT : continuous
0

(7.11)
LP(0, 00; LE(£2)) —> LP(0,00; D(Af q) = D(Ag) = D(Ay)),
whereby then automatically
LP(0, 00; LI(£2)) — WP (0, 00; LI (2)) (7.12)
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and ultimately

. L, .
LP(0, c0; LL(§2)) — Xp g0 = = L?(0, oo; D(AM)) N WP (0, oo; LL(£2))
(7.13)
(i1) The s.c. analytic semigroup eAFal on the space (Lg (£2), D(Aq))l_i e l<p<
P’

~2_2
00, as asserted in Theorem 6.1, in particular on the space Bq,,,/” £2),1<gq,1<

p < T satisfies

eMral s continuous (LZ(.Q),D(A )) ~Lp — X;oqg (equivalently — Xfffq)

in particular B /” (2) — X (equivalently — X 7

"7.14)

p.q.0

Proof Part i

Orientation The proof is a suitable modification of the proof of Theorem 1.6, that
is, of the maximal regularity of the Oseen operator A, on LZ(£2), given in Appendix
B. Namely, Step 1 = (B.3) of that proof now exploits the uniform stability of e”.4!
in (6.2)=(7.1) which was not available for the Oseen semigroup eAal in Appendix B.
Hence the convolution argument in (B.8) may now be applied up to T = oo, see below
(7.16). Next, Step 2 of the proof in (B.13)-(B.20) in Appendix B applies also in the
present proof, for T < oo, to include T = o0, as the term —A, 4 in (B.13) is replaced
in the present proof by (P;G — A, 4), with P;G bounded.

Step 1 With reference to (7.6) with wo = 0, we first establish the inequality

o
[ iy g d < ¢ [Tim o, g ar (1.15)

Indeed, from (7.6), in the LY (£2)-norm, recalling (7.1)

t
wl < [ [etrato
0

t
= Myo/O e D | Fy (7)ll dT € LP(0, 00) (7.16)

I Fo (D)l dT

being the convolution of a L' (0, co)-function with an L? (0, co)-function (Young’s
Theorem) [43]. Then (7.15) is proved.
Step 2 Again for wy = 0 we obtain from (7.7)

13 13
Agw(t) = A, / e MUT(P.G — A, w(T)dT + A, / e MU (n)dT
0 0

(7.17)
We shall establish the following inequality

[ 1001y gyt = € [ 1w g ar e [ TR 01 g
(7.18)
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(Compare with (B.4), which holds true for any 7" < oo, including T = 00). In fact,
to this end, as in that proof, using the maximal regularity up to T = oo of the Stokes
semigroup, as well as (7.8) for F,, we estimate from (7.17)

”Aqw”LP(o,oo,LZ(m) =C ”FJ”LP(O,oo,LZ(Q)) +C ||[G - A(’aq]w“LP(O,oo,LZ(.Q))
(7.19)

=< C{ ”F(T”LP(O,oo,Lg(.Q)) + C ”w”LP(O,OO,Lg(.Q)) }

+C|A (7.20)

0,qW ” LP(0,00,LL (2))

as G is bounded. Using the same interpolation argument leading to (B.20), based on
the interpolation inequality (B.11), we obtain from (7.20)

”Aqw”LP(o,m,LZ(Q)) < CllFsllp (000,28 (52)) T C Wl LP (0 00,29 (52))
+eC [|Aqwl 1p g 00,19 (2 T Ce Wl LP 0 00,1 (2)) (7.21)

from which we obtain

C
”Aqw”LP(o,oo,Lz(g)) = (m) 1 E5 2P 0,009 (2))

C+Ce
* ( 1 - 8C) Il 0,00, 2)) (7.22)

and then estimate in (7.18) in Step 2 is established.
Step 3 Substituting (7.15) in the RHS of (7.18) yields

[ 4qw]1r 000,182 = CI1FollLr 00802 (7.23)

and (7.11) is established via (7.6) with wg = 0, and D(Af ;) = D(A,).
Part ii

~)_2
Let wy € (LZ(Q),D(A,])) in particular wy € B;p/"(ﬂ) forl < g <

l—%,p’ [
oo, 1l < p< 2q/2q_1 by (1.16b) ] and consider the s.c. analytic exponentially stable

semigroup e“F.4' in such space, as guaranteed by Theorem 6.1, see (7.1):

w(t) = e*Falwg; wy = Apqw = —Agw + (P,G — Ay g)w (7.24)

t
w(t) = e ' wg + / e AP, G — A, pw(T)dT (7.25)
0
t
Agw(t) = Age ' wy + A, / e MU=D(P,G — A, w(T)dT (7.26)
0
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counterpart of (B.18), that is with —A, , in (B.18) replaced by P,G — A, , now, with
P, G bounded, see (7.2).Thus essentially the same proof leading to (B.24) yields now

Ap, w q = HAF eAF"’tw ’
” g ”LP(O,oo,L(,(.Q)) q 0 LP(0.00.L%(2))

=C IIwoll( (7.27)

L. D), 1,

with D(AFf 4) = D(Ay). Then (7.27) proves (7.14). O

8 Proof of Theorem 2.3: Well-Posedness on Xf,’f’q of the Non-Linear
z-Dynamics in Feedback Form

In this section we return to the translated non-linear z-dynamics (1.12a) and apply

to it the feedback control u = Zf (PNZ, Pk)oUk, 1.e. of the same structure as the
feedback identified on the RHS of the lmearlzed w-dynamics (6.1), which produced the
s.c. analytic, uniformly stable feedback semigroup e”F-4" on LY (§2). Here the vectors
Pk € (WR)*, uy € Wy are precisely those identified in Theorem 5.1 = Theorem 2.1.
Thus, returning to (1.12), in this section we consider the following translated feedback
non-linear problem

d
d_z —Agz+Nyz = ( (Z(ZN, pk)wuk>> ;20 = Pnz(0). 8.1

k=1

Recalling from Theorem 2.2 = Theorem 6.1, Eq. (6.1) the feedback generator A g , as
well as the bounded operator G in (7.2), we can rewrite (8.1) as

2t =Apqz—Nyz=—(WAy + Apg)z+ P,Gz — Nyz, z(0) = 2o, (8.2)

whose variation of parameters formula is

t
2(t) = eAF’th() _/ eAF~q(17T)J\fqz(‘l:)d‘E. (8.3)
0

~0_2
We already know from (6.3) that for zg € B;,p/”(fz), l<g<oo, 1<p< 2‘1/2,1,]
we have
HeAF’tho

My e ! ||ZO||~2 %p t>0 (8.4)

~2 2 5 sl
/(@) BT

with M, possibly depending on p, g. Maximal regularity properties corresponding to
the solution operator formula in (8.3) were established in Sect. 7. Accordingly, for zp €

B2, (@)and f e X5, = LP(0, 003 D(Ar ) VWP (0, 00; LE(2)), D(Asy)

@ Springer



Applied Mathematics & Optimization

= D(Ay), recall (7.11) we define the operator F by

!
F(zo, [)(t) = etra'zy — /0 Aral=IN, f(t)dr. (8.5)

The main result of this section is Theorem 2.3. restated as

Theorem8.1 Letd = 2,3, g >dand 1 < p < 2q/2q_1_ There exists a positive
constant r1 > 0 (identified in the proof below in (8.24)), such that if

20|l <o <ri, 8.6
I 0”35,;/”(9) 1 (8.6)

then the operator F in (8.5) has a unique fixed point nonlinear semigroup solution on
XOO

p.q,o
t
F(z0.2) = 2, orz(t) = ePFalzg — / eAqu(’*’)qu(r)dt 8.7)
0
which therefore is the unique solution of problem (8.2) (= (8.1)) in X;‘fqﬂg.

The proof of Theorem 2.3 = Theorem 8.1 is accomplished in two steps.
Step 1

Theorem8.2 Letd = 2,3, g >dand1 < p < zq/zq_l. There exists a positive

constant r1 > 0 (identified in the proof below in (8.24)) and a subsequent constant

r > 0 (identified in the proof below in (8.22)) depending on r1 > 0 and the constant

C > 0in (8.20), such that with ”10”52—2/,; @ < ry asin (8.6), the operator F (2o, f)
q.p

maps the ball B(0,r) in X7, , into itself. O

Theorem 8.1 will follow then from Theorem 8.2 after establishing that
Step 2

Theorem8.3 Letd = 2,3, ¢ >3 and1 < p < Zq/zq_l. There exists a positive
constant ry > 0, such that if HZOHEZJ/”(Q) < ry as in (8.6), then there exists a

constant 0 < po < 1, such that the operator F (2o, f) defines a contraction in the

ball B(0, po) of X5, » )

The Banach contraction principle then establishes Theorem 8.1, once we prove
Theorems 8.2 and 8.3.

Proof of Theorem 8.2 Step 1 We start from definition (8.5) of F and invoke the maximal
t
regularity properties (7.14) for eArat and (7.13) for / eAF'q(tft)J\/qf(r)dt. We
0
obtain from (8.5)

t
1o, NOllx,, < ez + ‘ / AratON f()de 8.8)
P4.o 0 X%, 5
= [ a0l o2y ) + IV lnortsion | (89)
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Step 2 By the definition N f = Py[(f - V) f]in (1.11), we estimate ignoring || P,
and using, sup [1g()|]" = [sup (Jlg(-)D]"

”qu”ip(o@o;LZ(Q» 5/(; ”P [(f- V)] ”Lq(g)

00 r/
5/ {/ If(t,x)lqlvf(t,x)lqdﬂ} " (8.10)
0 2
00 l/q l/q p
5/ {[supr(t, ->|Q] U If(t,x)lqdﬁ} }dr
0 22 2
8.11)

< /0 IV £ oo £y ) (8.12)

= sup [If(, )IILq(Q)f IVF N oy dt (8.13)

0<t<oo

= ||f||L°C(O 00: L4 (2)) ”Vf”LV(O,oo;L"O(.Q)) . (8.14)

Step 3 The following embeddings hold true:

(1) [23, Proposition 4.3, p. 1406 with u = 0, s = oo, r = ¢q] so that the required
formula reduces to 1 > 1/ p» as desired

fe€Xpgo = [ €L™0, 00 LE(£2)) (8.15a)
so that, ||/l oc(0,00:28 (2)) = € I1f llxsp (8.15b)

p.q.0
(ii) [30, Theorem 2.4.4, p. 74 requiring C'-boundary]
Wh(Q2) c L®(2) forq>dim 2 =d, d=2,3, (8.16)

so that, with p > 1,4 > 3:

“Vf”LP(() 00 LOO(_Q)) — C ”Vf”LP(O 00; Wl q(g)) — C ”f”Lp(O 00; W2 ‘1([2)) (817)
<C llfllx;;oq_a (8.18)

In going from (8.17) to (8.18) we have recalled the definition of f € X Ooq in (1.28),
(7.13), as f was taken at the outset on D(A, ) = D(A,) C L1(£2). Then, the
sought-after final estimate of the non-linear term Nyf. f e X °° » below (8.4), is
obtained from substituting (8.15b) and (8.18) into the RHS of (8. 14) We obtain

2
INGf o oeet iy < C 1A, + f € Xpyor (8.19)
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Returning to (8.8), we finally, obtain by (8.19)

17 Go. Dlixge,, < Clollzaz, o+ 11, | (8.20)

q.P

Step 4 We now impose the restrictions on the data on the RHS of (8.20): z is in a ball

of radius r; > 0 in Bq p/” (£2) and f isin a ball of radius r > O in X°°q . We further
demand that the final result F(zq, f) shall lie in a ball of radius r in X¢° g0 Thus we
obtain from (8.20)

17 Go. Nlixge,, < ol zs, o+l | sCitr <r @21)
q.p

This implies
1—J/1—4c? 1+/1-4C2
Crimr+Cn<0 or — Y2 ) ZEV ZACT (g0
2C 2C
whereby
1
{range of values of r} —> interval [0, E]’ asr; N\ 0 (8.23)

a constraint which is guaranteed by taking

r <

1
Yok C being the constant in (8.20). (8.24)

We have thus established that by taking r; as in (8.24) and subsequently r as in (8.22),
then the map

3 ~272/)
F(zo, f) takes: {ball in By ,""(£2) }

of radius r
ballin X7°, into ballin X7°,
of radius r of radius r
d , 1 . 8.25
<q <p< -1 (8.25)
This establishes Theorem 8.2. O

Proof of Theorem 8.3 Step 1 For fi, f> both in the ball of X f,oq , of radius r obtained
in the proof of Theorem 8.2, we estimate from (8.5):

t
IF o, i) = Fzo, f)llxs, , = H /O AP DING fi1(2) = Ny fo()Jd

0
XP,KI.G

(8.26)
<1 [Ny fi = No 2 1o 0,00 2.2 (8.27)
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after invoking the maximal regularity property (7.13).
Step 2 Nextrecalling N, f = P,[(f-V) f1from (1.11), we estimate the RHS of (8.27).
In doing so, we add and subtract (f> - V) fi,set A = (f1 - V)fi—(f2-V)fi, B=
(f2-V)fi = (f2-V) f2, and use

|A+ B|9 <21[|A19 +[B|?]  (%).

[55, p. 12] We obtain, again ignoring || P, H

%) 1/ p
NG fi —qu2||Lp(o,oo;Lg(Q))§/O {[/QKfl'V)fl —(f2~V)fz|"d9] q} dt

(8.28)
IS P/q
:/ [f |A+B|qd.Q] dt (8.29)
0 2
00 Plq
52(1/ /[|A|‘1+|B|q]d9} dt (8.30)
0 2
00 P
:zq/ [/ |A|qd(2+/ |B|‘Idsz]/"} dt
0 2 2
(8.31)
00 P
:2[]/O |:||A||L£q(g)+||B”%q(Q)i| q} dr  (3.32)

a2 [~ b
(by e =202 | {lAlLae) +1BlLoey | (833)
oo
(by ) <2rtatia /O (14174 )+ 1B1L 4 ) Jdr (834

=2+t /O (1€ = 2 D)1l

+ 102 DS = PNy Jde (8.35)
= 27504 [T 71 = i 19 il
1210y o) IV UL = )1 g Jat (8.36)

Step 3 We now notice that regarding each of the integral term in the RHS of (8.36)
we are structurally and topologically as in the RHS of (8.12), except that in (8.36) the
gradient terms V f1, V(f1 — f») are penalized in the L (£2)-norm which is dominated
by the L°°(§2)-norm, as it occurs for the gradient term V f in (8.12). Thus we can
apply to each integral term on the RHS of (8.36) the same argument as in going from
(8.12) to the estimates (8.15b) and (8.18) with ¢ > dim £2 = 3. We obtain

p
[N 1 = Ny 217 s 002 2y < RHS of (8.36)

see (8.14) = CLIA = 210 o ety IV Al 0 o)

+ Hf2||L°°(O 00: L4 (2)) IvV(fi — f2)”ip(0,oo;l‘oc(9) } (837)
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see (8.15b) and (8.18) < C{ It = ol WAl A+l 11— fallkss }
(8.38)

=clifi- Ay, (10 +1R1E )} (839)

Finally (8.39) yields

1
> /
[N fi = No ol rosestscan = €77 11 = Fallxs,, (Wil + 15205 )" (8:40)
by ) =27 A = fllx,, (i, + 1520k, )-
(8.41)

Step 4 Using estimate (8.41) on the RHS of estimate (8.27) yields

1F o, fi) = Fzo. f)llxg,, < Ko lfi = Lol (Wfillxs,, +1f2lxs, )
(8.42)
K, = m2"/rC"r (i as in (8.27), C as in (8.39)). Next, pick fi, f» in the ball of
X% of radius R:

e R 8.43
o0 oo < . .
I fillxs, I ol < (8.43)
Then
IFGo, f0) = FGo. fD)llxs,, < pollfi = fallxs, , (844)
and F(zo, f) is a contraction on the space X ;fq’g as soon as
po=2K,R < lorR < '/ak,, K, =m2/rCr. (8.45)

In this case, the map F(z¢, f) defined in (8.5) has a fixed point z in X f,f’q,a

t
F(z0,2) =z, orz = elralzg — /0 rral=IN, z(1)dT (8.46)

and such fixed point z € Xloffq’ » 1s the unique solution of the translated non-linear
equation (8.1), or (8.2) with finite dimensional control « in feedback form, as described
by the RHS of (8.1). Theorem 8.1 is proved. O

9 Proof of Theorem 2.4: Local Exponential Decay of the Non-Linear
Translated z-Dynamics (8.1) with Finite Dimensional Localized
Feedback Control

In this section we return to the feedback problem (8.1) rewritten equivalently as in
(8.3)

t
2(1) = ePralzg —/ eAF“’(Fr)NqZ(T)dT' ©.D
0
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For zq in a small ball of 32 o (£2), Theorem 8.1 provides a unique solution in a ball

of X;',Oq - We recall from (6 3)=(8.4)

HeAF’[’tZo

t>0. 9.2)

—Yot
2 < Mye ||ZO||~2 2
B ray = JP@)’

~0_2
Our goal now is to show that for z( in a small ball of B; ) /p (£2), problem (9.1) satisfies
the exponential decay

2@l -2, < Ce™™ ||20||~2 2, . t >0, for some constants,
q.p q P (£2)

a>0,C=C,>1.

Step 1 Starting from (9.1) and using (9.2) we estimate

t
/ ePra (’7I)J\/‘,Jz(r)dr
0

lz®l < Mye " izoll o2 + su
B;p/p(g) 1l 31)/11(9) ()Stfpoo §q;2/p(9)
9.3)
!
< Mye ||20||~2 y, +Ci / eAF-q(’*T)/\/;z(t)dt 9.4)
Byp " (82) 0 X?)ng
< Mye ™ zoll 22 >0 0) +Ca [Nz 1o 000282 ©.5)
2 _
”Z(t)” ~3 pz/p(Q) = Myoe yor ”ZOHE;Z;Z/”(Q) + C3 ”Z”XZ?qJ 5 C3 = C2C (9.6)
In going from (9.3) to (9.4) we have recalled the embedding X°° pao L™

(0, 00; Bq,p/” (£2)) from (1.30). Next, in going from (9.4) to (9.5) we have used the
maximal regularity property (7.13). Finally, to go from (9.5) to (9.6) we have invoked
estimate (8.19).

Step 2 We shall next establish that

Izl xoe

q,0

2
= Millzoll .- gyt Klizllxss, » hence flzllxse (1=K llzllxs, )

p.q.9
‘il’

= Mifizoll - o) 9.7)

In fact, to this end, we take the X ;’,Oq »-estimate of Eq.(9.1). We obtain

t
/ Aral=IN 7 (1)dt 9.8)

lellxs,, < et '20|
0

Pq.oc

"

XOO

P:q.0 X

p.q.0

from which then (9.7) follows by invoking the maximal regularity property (7.14) on
eAral as well as the maximal regularity estimate (7.13) followed by use of of (8.19),
as in going from (9.4) to (9.6)
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Z”Lp(o,oo;LZ(Q)) 99)

t
/ errat=DNL 2 (T)dT
0

= M”Nq
X?)qu

Cllzllxs - (9.10)

p.q.0

Thus (9.7) is proved with K = MC where C is the same constant occurring in (8.19),
hence in (8.21), (8.22).
Step 3 The well-posedness Theorem 8.1 says that

{ If |Izoll ~2 2/1, <r } { The solution z satisﬁes} ©.11)

(£2)
for rq sufﬁc1ently small ||Z||X;?q,n =r

where r satisfies the constraint (8.22) in terms of r; and some constant C in (8.19)
that occurs for K = M C in (9.10). We seek to guarantee that we can obtain

1 1 1
lellx,, <7 < 2% = 5ve (< o)
9.12)

1
hence 5 < 1— K lizllxs, -

where w.l.o.g. we can take the maximal regularity constant M in (7.13) to satisfy
M > 1. Again, the constant C arises from application of estimate (8.19). This is
indeed possible by choosing 1 > 0 sufficiently small. In fact, as 1 N\ 0, (8.23) shows
that the interval ry;, < r < ryq. of corresponding values of r tends to the interval

1 . 1 1
0, Ei| Thus (9.12) can be achieved as ryin \( 0: 0 < rpin <1 < 23iC < i
Next, (9.12) implies that (9.7) holds true and yields then
2l , < 2M0 20l o3, ) < 2000, 9.13)

Substituting (9.13) in estimate (9.6) then yields with M= max{M,,, M1}

Izl o2y, < Mye™ 7 ||ZO||~ Y, +4C3 M7 |1z0l1* 9.14)
Bj,,,/’( o) = b o 1 - 2/,,(9)

‘I[’ qp

= M|e ™ +4MCs ||z0||~ > } lzoll -»_2 (9.15)
[ 2P @) rdte)

Dl < M[e ™™ +4MC _ 9.16

120023, = M[e7 +4MCan] I2ol 2 9.16)

recalling the constant 1 > 0 in (9.11).

Step 4 Now take T sufficiently large and r; > O sufficiently small such that
B=Me T +4M>Cyry < 1. 9.17)
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Then (9.15) implies by (9.17)

z2(T)]| -2 < 20| <22 and hence 9.18a
”()”ﬁm”<> Bl ”2/”9) ( )

qp

Iz T ry, < Blz(r= DTz, < B lzolr2, . (9.18b)
( By," @) Pl Byy" @) P BT @)

Since B < 1, the semigroup property of the evolution implies that there are constants
My > 1,y > 0 such that

Iz -p2 < Mye~ vt ||Zo||~ 2, t>0 9.19)
idte) )’ (

This proves Theorem 2.4. O

Remark 9.1 The above computations—(9.17) through (9.19) - can be used to support
qualitatively the intuitive expectation that “the larger the decay rate y; in (6.3) = (8.4)
= (9.2) of the linearized feedback w-dynamics (6.1), the larger the decay rate ¥ in
(9.19) of the nonlinear feedback z-dynamics (2.20) = (8.1); hence the larger the rate
y in (2.29) of the original y-dynamics in (2.28)”.

The following considerations are somewhat qualitative. Let S(#) denote the non-

linear semigroup in the space B 1 »'"(£2), with infinitesimal generator [A Fg Nq]
describing the feedback z- dynamlcs (2.20)=(8.1), hence (8.2), as guaranteed by the

~N_2
well posedness Theorem 2.3 = Theorem 8.1. Thus, z(¢; zg) = S(¢)zp on B;,p/” (£2).
By (9.17), we can rewrite (9.18a) as:

1S <B<l. (9.20)

~_2
(5, @)
It follows from [5, p. 178] via the semigroup property that

~ . In g
— vy is just below T < 0. 9.21)

Pick ri > 0 in (9.17) so small that 4M2C3r1 is negligible, so that g is just above
Me T 5o In B is just above [In M — yT], hence

Inp . . InM
—— is just above (—yp) + (9.22)
T T
Hence, by (9.21), (9.22), R
- In M
e (9.23)

and the larger yy, the larger is ¥, as desired.
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10 Well-Posedness of the Pressure y for the z-Problem (1.7) in
Feedback Form, and of the Pressure 7 for the y-Problem (1.1) in
Feedback Form (2.22) in the Vicinity of the Equilibrium Pressure
Me.

The 7z — problem in feedback form We return to the translated z problem (1.7),
with £, (z) given by (1.39)

2t —VAZ+L.(2)+ (z-V)z+ Vyxy =m(Fz) in Q (10.1a)
divz=0 in Q (10.1b)

z=0 on X (10.1¢)

z7(0,x) = yo(x) — ye(x) on 2 (10.1d)

with Fz given in the feedback form as in (2.20) = (8.1)

K
m(Fz) =m (Z (zn. pk)wuk) , ZN = Pnz (10.1e)

k=1

for which Theorem 2.3 = Theorem 8.1 provides a local well-posedness result (2.22),
(2.23) for the z variable. We now complement such well-posedness for z with a cor-
responding local well-posedness result for the pressure .

Theorem 10.1 Consider the setting of Theorem 2.3 = Theorem 8.1 for problem (10.1a-
e). Then the following well-posedness result for the pressure x holds true, where we
recall the spaces Yl‘fq for T = oo and Wl’q(Q) in (1.29) as well as the steady state
pressure 1w, from Theorem 1.1:

Ixllys, < Cllvo = vell o, {nyo = el o+ 1} .02

qa.p

Proof We first apply the full maximal-regularity (1.33) to the Stokes component of
problem (10.1) with F, = P, (mF(Z) —Le(2) — (z- V)z) to obtain

lzllxss, , + xllyze

=C { [ Palm(F2) = - V)2 = L@ 1y (0. 0xs 18 () T 1200322 (Q)}
a.p

<C { | Pylm(F2)1] )+ 1Pz V)z|

L7 (0,00:28 (52) L7 (0.00:L4(2))

1 PaLe@] 1y (0 cccr809) + 120l 22 (@} : (10.3)
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But Py[mF(z)] = mF(z) as the vectors u in the definition of F in (2.26) are
up € Wy C LL(82). Moreover F € L(L&(£2)), we obtain

| Patm(F2] < Cilzlxs,, - (10.4)

L7 (0.00:L4(22))

recalling the space Xp 7.0 from (1.28). Next, recalling (8.19) for qu =P [(z . V)z],
see (1.11), we obtain

[ Paz- 9] < G lzliyg,, - (10.5)

Lr(0.00:L8(2))
The equilibrium solution {y,, 7.} is given by Theorem 1.1 as satisfying
“ye”WZJI(_Q) + el g < c ||f||Lq(Q)7 1 <g <oo. (10.6)

We next estimate the term Py L.(z) = Py[(ye - V)z + (2 - V)y.]in (10.3)

[PaLe@l o, 1809) = 1P eIz + Pa@D3e] o 1820 (10.7)
”P (y" V)ZHLP Ooo Lq(g) + ”P (z. V)ngLp Ooo Lq(g))
(10.8)
< Iyello@) 192 o ;8 o)
+ ”Z”LP(O,oo;Lg(.Q)) IVyellpao) (10.9)
<2C 1 fllLee) ”Z”LP(O,oo;LZ(Q)) (10.10)
< Csllzllxs (10.11)

P.q.0

with the constant C3 depending on the L?(£2)-norm of the datum f. Setting now
C4 = C -max{C1, C, C3} and substituting (10.4), (10.5), (10.11) in (10.3), we obtain

2
lzllxs, , + lxllyg, < Ca {nzn% +2llzly, | + ||zo||§3wz,p(g)} (10.12)

Next we drop the term || z|| xg, , on the left hand side of (10.12) and invoking (9.13)
to estimate ||z|| X%, . . Thus we obtain

m<c{ 2 2120 o } 10.13
Itz = Cs{leolsy, 2000z, o +laoll o | (1013)
_ o 1}, €=3c 10.14

C llzoll 2z/,,(m{nzonB;pz/p(Qﬁ 5 (10.14)

and (10.14) proves (10.2), as desired, recalling (1.7e). ]
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They — probleminfeedbackform We return to the original y-problem however in
feedback form as in (2.26), (2.27), for which Theorem 2.5(i) proves a local well-
posedness result. We now complement such well-posedness result for y with the
corresponding local well-posedness result for the pressure 7.

Theorem 10.2 Consider the setting of Theorem 2.5 for the y-problem in (2.27). Then,
the following well-posedness result for the pressure 7 holds true:

7w = 7ellyr < llm = 7ellyge, = Cllyo = yellgjfpz/p(m {Ilyo - yellgs;z/,,(m + 1} (10.15)

+ llyellw2a o) + 1}
(10.16)

<C L - : -
= { llyo ”82_,,2/” @ [l yelly2 q(82) } { llyoll B;FZ/,, @

<C {“yOHEZ’Z/”(Q) + ||f||Lq(Q)} {||y0||53y72/,, + 1 fllza) + 1} (10.17)

q.p p o (82)
wllyr <C - e — o 1
Izllyr, = Cllyo yellB;pz/p @ illyo yeIIB;pz/,, @ + }
1
+cT/r I7ellfraey, 0<T <o0 (10.18)
e[, it |
= ||y0||3;p2/p(g) + ||f||L<l(.Q) ”yOHB:_,,Z/”(Q) + ||f||Lq(9) +

+ T 1 fllgagay, 0<T < oo (10.19)

Proof We return to the estimate (10.2) for y and recall x = © — 7, from (1.7¢) to
obtain (10.15). We next estimate y — y, by

— o <C e . . . 10.20
lvo Ye”B;p?/p @ = { ||y0||B§.pz/p(Q) + ||yc||W2 a(£2) } ( )

which substituted in (10.15) yields (10.16). In turn, (10.16) leads to (10.17) by means
of (10.6). O
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Appendix A: On Helmholtz Decomposition

We return to the Helmholtz decomposition in (1.4), (1.5) and provide additional infor-
mation.
For M C L9(52), 1 < q < oo, we denote the annihilator of M by

M+ = {feLq’(:z):/ fgd2 =0, forallgeM} (A1)
2

where ¢’ is the dual exponent of g : l/q + 1/q/ =1.
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Proposition A.1 [26, Prop. 2.2.2, p. 6], [21, Ex. 16, p. 115], [17] Let 2 C RY be an
open set and let 1 < g < oo.

(a) The Helmholtz decomposition exists for L4 (£2) if and only if it exists for LY (£2),
and we have: (adjoint of P;) = P,;‘ = P, (in particular P, is orthogonal), where P,
is viewed as a bounded operator L?(£2) —> L9(£2), and Pq* = P, as a bounded

operator L9 (2) —> L9 (£2), Yo+ Yy =1
(b) Then, with reference to (1.5)

1 , L ’
[Lg(sz)] = G7(2) and [Gq(sz)] — L7(2). (A.22)
Remark A.1 Throughout the paper we shall use freely that
/

(LL(2)) = LE (2), 611 PR (A.2b)

Thus can be established as follows. From (1.5) write LZ (£2) as a factor space LI (£2) =
L1(£2)/G9(82) = X /M so that [55, p. 135].

/ / / J— ’
(L8(@) = (L7@)/G*(2) = (x/M) = M* = [c1(@)| =18 ().
(A.2¢)

In the last step, we have invoked (A.2a), which is also established in [21, Lemma 2.1,
p. 116]. Similarly

/ / 1 /
(G1(2)) = (LU(2)/LL(2)) = [Lg(sz)] =G7(2).  (A2d)
Appendix B: Proof of Theorem 1.6: Maximal Regularity of the Oseen
Operator AgonL1(Q),1<p,q <00, T< 0

Part I: (1.46). By (1.41) with o =0

t
U(t) = / A (1)dr. (B.1)
0
where by the statement preceding Theorem 1.4
eAa =0 <Ml g<t <t (B.2)
L(LG(£2))
for M > 1, b possibly depending on g.
Step 1 We have the following estimate
T T
P p
[ 1w @ngy g dr < cr [ 1m0, o d 83)
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where the constant C7 may depend also on p, g, b. This follows at once from the
Young’s inequality for convolutions [43, p. 26]:

t
WOl =M [ D IF©lg 0 dr € LPO.T). T < o0,
0

and the convolution of the L? (0, T)-function || F, || L9(2) and the L' (0, T)-function

P isin LP (0, T'). More elementary, one can use Holder inequality with 1/ pt+ l/ 5=

and obtain an explicit constant.
Step 2 Claim: Here we shall next complement (B.3) with the estimate

T T T
/O 4}y g dt =C fO 1 174 )t +C /O 1Fo N}y o dt (BA)

to be shown below. Using (B.3) in (B.4) then yields

T T
[ 140001y gy ar = r [T 1E 01y g dr (B.5)

With respect to (1.41) with 9 = 0, then (B.5) says
Fy € LP(0,T; LL(2)) — ¥ € LP(0, T; D(A,) = D(Ay)) (B.6)
while (1.40) then yields via (B.6)
Fy € LP(0,T; LL(82)) — ¥, € LP(0, T; L1(£2)) B.7)

continuously. Then, (B.6), (B.7) shows part (i) of Theorem 1.6.

Proof of (B.4): In this step, with ¥y = 0, we shall employ the alternative formula, via
(1.42) (v = 1, wlog)

t t
V() = / e A= (A, Y (v)dT + f e MU FE (1)dr, (B.8)
0 0

where by maximal regularity of the Stokes operator —A, on the space LL(£2), as
asserted in Theorem 1.5.ii, Eq (1.35), we have in particular

t
Fy € LP(0,T; LL(£2)) —> / e 4D F, (v)dt € LP(0, T; D(A,)) continuously.
0
(B.9)
Regarding the first integral term in (B.8) we shall employ the (complex) interpola-
1
tion formula (1.22), and recall from (1.9) that D(A, ) = D(Aq/z):

D(Apq) = D(A;/z) = [D(Ay), LE($2)] (B.10)

12
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so that the interpolation inequality [62, Theorem p 53, Eq. (3)] with 6 = 1/, yields
from (B.10)

lallpa,, = lall_, 1,y <C ||Cl||p n ||Cl|| q
“ D(4,?) ~ (4g) TNLE (@) (B.11)

=¢ ||a||D(Aq) + Ce ”a”LZ(Q) .

[Since D(A;/z) = W, 9(2) N LL(2) by (1.22), then for a € D(A,) = W4(2) N

Wol’q (2)NLL(£2), see (1.17), we may as well invoke the interpolation inequality for
W-spaces. [1, Theorem 4.13, p. 74]:

lallyia o) < & lallwzae) + Ce llallzg gy

We return to (B.8) and obtain

t t
Aqw(z)qu/O e—Aq“—f)(—Ao,q)w(r)dr+Aq/0 e 4D F _(t)dr. (B.12)

Hence via the maximal regularity of the uniformly stable Stokes semigroup e~ 44/,

Eq. (1.35), (B.11) yields

HAqW”Lp(o,T;LZ(Q)) = C{ ”onqw”LP(O,T;LZ(Q)) + ”Fff”L”(O,T;LZ(Q)) } (B.13)
by (B.11) = ¢ ||Aqw||LP(0,T;LZ(.Q)) + Ce |W||L1'(O,T;L‘Z,(9))
+C ||Fa||Lp(0,T;L(‘1,(_Q)) (B-14)

¢’ = ¢C > 0 arbitrarily small. Hence (B.14) yields

Cy C
l4a¥ | oo rirscon = 775 Wherorsen + 75 Wollror8wy
(B.15)
and estimate (B.4) of Step 2 is established. Part I of Theorem 1.6 is proved.

~0_2
Part II: (1.49). For simplicity of notation, we shall write the proof on B; p/” (£2)
ie.forl <g,p < 2q/zq_]. The proof on (LZ(£2), D(Aq))l_L » in the other case
T

/5,1 < p is exactly the same.
~2-2 . . .
Step I Let ng € By, p/p (£2) and consider the s.c. analytic Oseen semigroup e’ on

~0_2
the space B,;,,/”(.Q), as asserted by Theorem 1.4.ii (take v = 1 wlog):

n(t) = ealng, orn = Agn=—Agn— Aggn. (B.16)
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Then we can rewrite 1 as

t
n(t) = e 4'no + /0 e (A, In(r) dt (B.17)
t
Aqn(t)que_Aq’no—i—Aq/ e~ AT (—A, In(r) dr. (B.18)
0

We estimate, recalling the maximal regularity (1.35), (1.36) as well as the uniform
decay (1.25) of the Stokes operator.

”Aq”H roriraey =€ ||’70||§2J/p(m +C HA04177||LP(0,T;L?,(Q)) (B.19)
q.p

<C ||?70||§5;2/p(m +eC HAq’?HLp(o,T;Lz(Q))

+Ce IInlle(o,T;Lg(m) (B.20)

after invoking, in the last step, the interpolation inequality (B.11). Thus (B.20) yields
via (1.18)

|4

q H LP(0,T;L(82)) ”-’4(1’7 H LP(0,T;LL(52))

IA

Ce
N 4+ — . . (B.21
o ol 2o Y ToC il 0.7:L8 2y - (B-2D)

~7_2
Step 2 With ng € B; p/ "(£2), since et generates a s.c (analytic) semigroup on
2 /p (£2), Theorem 1.4.ii, we have

() = et g eC(O T: B, /”(9)) c L”(O T: By, /”(.Q)) C LP(0. T; L9(£2))

(B.22)
continuously, where in the last step, we have recalled that Bq p/ ”(£2) is the interpola-
tion between L7 (§2) and W>9(£2), see (1.16b). (B.22) says explicitly

100, 7ecg.ay) = € M0l 2 (B.23)
Step 3 Substituting (B.23) in (B.21) yields
[Aanl o (0.7.1 (@) = € Il 70 g, (B.24)

and (1.49) is established, from which (1.50) follows at once. Thus Theorem 1.6 is
proved. O
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