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Abstract
Weconsider 2- or 3-dimensional incompressibleNavier–Stokes equations defined on a
bounded domainΩ , with no-slip boundary conditions and subject to an external force,
assumed to cause instability. We then seek to uniformly stabilize such N–S system, in
the vicinity of an unstable equilibrium solution, in critical Lq -basedSobolev andBesov
spaces, by finite dimensional feedback controls. These spaces are ‘close’ to L3(Ω) for
d = 3. This functional setting is significant. In fact, in the case of the uncontrolled N–S
dynamics, extensive research efforts have recently lead to the space L3(R3) as being
a critical space for the issue of well-posedness in the full space. Thus, our present
work manages to solve the stated uniform stabilization problem for the controlled
N–S dynamics in a correspondingly related function space setting. In this paper, the
feedback controls are localized on an arbitrarily small open interior subdomain ω of
Ω . In addition to providing a solution of the uniform stabilization problem in such crit-
ical function space setting, this paper manages also to much improve and simplify, at
both the conceptual and computational level, the solution given in the more restrictive
Hilbert space setting in the literature. Moreover, such treatment sets the foundation for
the authors’ final goal in a subsequent paper. Based critically on said low functional
level where compatibility conditions are not recognized, the subsequent paper solves
in the affirmative a presently open problem: whether uniform stabilization by localized
tangential boundary feedback controls, which—in addition—are finite dimensional,
is also possible in dim Ω = 3.

Keywords Navier-Stokes equations · 3-dimensional · Stabilization

B Roberto Triggiani
rtrggani@memphis.edu

1 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

2 IBS, Polish Academy of Sciences, Warsaw, Poland

3 B621 Institut für Mathematik und Wissenschaftliches Rechnen, 8010 Graz Heinrichstrasse, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-019-09607-9&domain=pdf


Applied Mathematics & Optimization

1 Introduction

1.1 Controlled Dynamic Navier–Stokes Equations

Let, at first,Ω be an open connected bounded domain inRd , d = 2, 3with sufficiently
smooth boundary Γ = ∂Ω . More specific requirements will be given below. Let ω be
an arbitrarily small open smooth subset of the interiorΩ ,ω ⊂ Ω , of positive measure.
Let m denote the characteristic function of ω: m(ω) ≡ 1, m(Ω\ω) ≡ 0. Consider
the following controlled Navier–Stokes Equations with no-slip Dirichlet boundary
conditions, where Q = (0,∞) × Ω, Σ = (0,∞) × Γ :

yt (t, x) − νΔy(t, x) + (y · ∇)y + ∇π(t, x) = m(x)u(t, x) + f (x) in Q (1.1a)

div y = 0 in Q (1.1b)

y = 0 on Σ (1.1c)

y(0, x) = y0(x) in Ω

(1.1d)

Notation As already done in the literature, for the sake of simplicity, we shall adopt
the same notation for function spaces of scalar functions and function spaces of vector
valued functions. Thus, for instance, for the vector valued (d-valued) velocity field y or
external force f , we shall simplywrite say y, f ∈ Lq(Ω) rather than y, f ∈ (Lq(Ω))d

or y, f ∈ Lq(Ω). This choice is unlikely to generate confusion. Byway of orientation,
we state at the outset twomain points. For the linearizedw-problem (1.13) below in the
feedback form (2.16), the corresponding well-posedness and global feedback uniform
stabilization result, Theorem 2.2, holds in general for 1 < q < ∞. Instead, the final,
main well-posedness and feedback uniform, local stabilization result, Theorem 2.5,
for the nonlinear problem (2.27) or (2.28) corresponding to the original problem (1.1)

will require q > 3, see (8.16), in the d = 3-case, hence 1 < p <
6

5
; and q > 2, in the

d = 2-case, hence 1 < p < 4
3 ; see (1.16). Let u ∈ L p(0, T ; Lq(Ω)) be the control

input and y = (y1, . . . , yd) be the corresponding state (velocity) of the system. Let
ν > 0 be the viscosity coefficient. The function v(t, x) = m(x)u(t, x) can be viewed
as an interior controller with support in Qω = (0,∞)×ω. The initial condition y0 and
the body force f ∈ Lq(Ω) are given. The scalar function π is the unknown pressure.

1.2 Stationary Navier–Stokes Equations

The following result represents our basic starting point.

Theorem 1.1 Consider the following steady-state Navier–Stokes equations in Ω

−νΔye + (ye.∇)ye + ∇πe = f in Ω (1.2a)

div ye = 0 in Ω (1.2b)

ye = 0 on Γ (1.2c)
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Let 1 < q < ∞. For any f ∈ Lq(Ω) there exits a solution (not necessarily unique)
(ye, πe) ∈ (W 2,q(Ω) ∩ W 1,q

0 (Ω)) × (W 1,q(Ω)/R).

For the Hilbert case q = 2, see [12, Thm. 7.3, p. 59] . For the general case 1 < q <

∞, see [4, Thm. 5.iii, p. 58].

Remark 1.1 It is well-known [32,37,56] that the stationary solution is unique when
“the data is small enough, or the viscosity is large enough” [56, p. 157; Chap. 2] that
is, if the ratio ‖ f ‖/ν2 is smaller than some constant that depends only onΩ [18, p. 121].
When non-uniqueness occurs, the stationary solutions depend on a finite number of
parameters [18, Theorem 2.1, p. 121] asymptotically in the time dependent case.

Remark 1.2 The case where f (x) in (1.1a) is replaced by ∇g(x) is noted in the liter-
ature as arising in certain physical situations, where f is a conservative vector field.
The analysis of this relevant case is postponed to Remark 1.4, at the end of Sect. 1.

1.3 Main Goal of the Present Paper

For a given external force f , if the Reynolds number 1
ν
is sufficiently large, then the

steady state solution ye in (1.2) becomes unstable (in a quantitative sense to be made
more precise in Sect. 2.2 below) and turbulence occurs.

The main goal of the present paper is then—at first qualitatively—to feedback sta-
bilize the non-linear N–S model (1.1) subject to rough (noN–Smooth) initial condition
y0, in the vicinity of an (unstable) equilibrium solution ye in (1.2). Thus this paper
pertains to the general context of “turbulence suppression or attenuation” in fluids. The
general topic of turbulence suppression (or attenuation) in fluids has been the object
of many studies over the years, mostly in the engineering literature—through exper-
imental studies and via numerical simulation—and under different geometrical and
dynamical settings. The references cited in the present paper by necessity refer mostly
to the mathematical literature, and most specifically on the localized interior control
setting of problem (1.1). A more precise description thereof is as follows: establish
interior localized exponential stabilization of problem (1.1) near an unstable equi-
librium solution by means of a finite dimensional localized, spectral-based feedback
control, in the important case of initial conditions y0 of low regularity, as technically
expressed by y0 being in suitable Lq /Besov space with tight indices. In particular,
local exponential stability for the velocity field y near an equilibrium solution ye will
be achieved in the topology of the Besov space

(
Lq(Ω), W 2,q(Ω)

)
1−1/p,p = B

2−2/p
q,p (Ω), 1 < p <

2q

2q − 1
; q > d, d = 2, 3.

(1.3)
See more precisely (1.16a). We note the tight indices: e.g. 1 < p < 6/5
for q > d = 3. In such setting, the compatibility conditions on the bound-
ary of the initial conditions are not recognized. This feature is precisely our key
objective within the stabilization problem. The fundamental reason is that such
feature will play a critical role in the successor paper [35] in showing that:
local tangential boundary feedback stabilization near an unstable equilibrium solut
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ion with finite dimensional controls is possible also in dimension d = 3, thus solving
in the affirmative a recognized open problem in the stabilization area. This point will
be more appropriately expanded in Sect. 1.6 below. For d = 3, the space is (1.3) in
‘close’ to L3(Ω).
Criticality of the space L3 We now expand on one message of the abstract regarding
the ‘criticality’ of the space L3(Ω). In the case of the uncontrolled N–S equations
defined on the full space R

3, extensive research efforts have recently lead to the
discovery that the space L3(R3) is a ‘critical’ space for the issue of well-posedness.
Assuming that some divergence free initial data in L3(R3) would produce finite time
singularity, then there exists a so-calledminimal blow-up initial data in L3(R3) [22,27].
More precisely, let y now be a solution of the N–S equations (1.1a-b-d) with m ≡
0, f ≡ 0, as defined on the whole spaceR3. For any divergence free I.C. y0 ∈ L3(R3),
denote by Tmax (y0) the maximal time of existence of the mild solution starting from
y0. Define

ρmax = sup
{
ρ : Tmax (y0) = ∞ for every divergence free y0 ∈ L3(R3),

with ‖y0‖L3(R3) < ρ
}
.

The following result holds [27, Theorem 4.1, p. 14]: Suppose ρmax < ∞. Then
there exists some y0 ∈ L3(R3), ‖y0‖L3(R3) = ρmax , whose Tmax (y0) < ∞, i.e. the
corresponding solution blows up in finite time. Of the numerous works that followed
the pioneering work of [36] along this line of research, we quote in addition [16,41,
47,48].

Thus, our present work manages to solve the uniform stabilization problem for the
controlled N–S equations as (1.1a-b-d) in a correspondingly related low-regularity
function space setting. A further justification of our low-regularity level of the Besov
space in (1.3) is provided by the final goal of our line of research in the subsequent Part
II [35]. Based critically on said low-regularity level of the Besov space (1.3), which
does not recognize compatibility conditions on the boundary of the initial conditions—
such Part II solves in the affirmative a presently open problem by showing that uniform
stabilization by localized tangential boundary feedback controls which moreover are
finite dimensional is possible also in dim Ω = d = 3.

The successor [35] to the present work will extensively review the literature as it
pertains to the boundary stabilization case, particularly with tangential control action.
Accordingly, below we shall review the present study mostly in comparison with the
prior solution of the localized interior stabilization in the Hilbert-based treatment of
the original work [7] (via a Riccati-based finite dimensional control), followed by
[10] (via a spectral based finite dimensional control) and textbook versions thereof [6,
Chap. 4]. Additional relevant references include [13,14,19,20,44–46,49,51–54,58,61].
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1.4 Qualitative Orientation

1.4.1 On the Local, Interior, Feedback Stabilization Problem: Past Literature

We start with an unstable steady state solution ye, given an external force f , and a
sufficiently large Reynold number 1

ν
, as described in Sect. 1.3. We deliberately aim at

rough (non-smooth) initial conditions y0. We then seek a finite-dimensional interior
localized feedback control u, such that the corresponding N–S problem is well-posed
in a suitable function space setting (depending on the I.C. y0) and its solution y
in (1.1) is locally exponentially stable near the equilibrium solution ye, in a suitably
corresponding norm.This problemwas originally posed and solved in theHilbert space
setting in [7, Theorem 2.2, p. 1449] by means of a finite dimensional Riccati-based
feedback control u, where exponential decay is obtained in the D(A

1/4)-topology.
Here A is the positive self-adjoint Stokes operator in (1.17) with q = 2 in the space
H with L2(Ω)-topology. See (1.6) below. A similar exponential decay result, in the
same D(A

1/4)-topology, is given in [10, Thm. 5.1, p. 42], this time by means of a
finite-dimensional, spectral-based feedback control u. These results are reproduced in
textbook form in [6, Chap. 4].

Regarding the solution given in these Hilbert-space based references, we point out
(at present) two defining, linked characteristics of their finite dimensional treatment:

(i) The number of stabilizing (localized) controls for the (complex-valued) nonlinear
dynamics (1.1) is N = sup{Ni ; i = 1, . . . , M}, that is, the max of the algebraic
multiplicity Ni of the M distinct unstable eigenvaluesλi , see (2.2), of the projected
Oseen operator Au

N in (2.5).
(ii) in the fully general case, the algebraic (Kalman rank) conditions for controllabil-

ity under which the finite dimensional feedback control is explicitly constructed
involve the Grahm–Schmidt orthogonalization of the generalized eigenfunctions
of the adjoint (Au

N )∗, making the test difficult to verify. Only in the case where
the restrictionAu

N in (2.5) of the Oseen operatorA in (1.10) is semisimple (alge-
braic and geometric multiplicity of the unstable eigenvalues coincide), are the
controllability tests given in terms of eigenfunctions of (Au

N )∗.

1.4.2 Additional Goals of the Present Paper as Definite Improvements over the
Literature

We list these main additional goals of the present work aimed at markedly improving
both the results and the approach of the original reference [7], followed by [10] and
their textbook version [6, Chap. 4]. They are:

(i) With reference to part (i) in Sect. 1.4.1, our next goal is to obtain (in the
general case of Theorem 4.1) that the number of finite dimensional stabiliz-
ing controls needed for the (complex valued version of the) dynamics (1.1) is
K = sup{�i ; i = 1, . . . , M}, where �i is the geometric multiplicity of the M
distinct unstable eigenvalues λi in (2.2). This is a notable reduction in the number
of needed controls over the max algebraic multiplicity N in (i) of Sect. 1.4.1.
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(ii) Intimately linked to goal (i) is the next goal to obtain the controllability Kalman
rank condition of Sect. 3 be expressed in terms of only the eigenfunctions—not
the generalized eigenfunctions: as in the past literature [8–10], [6, Chap. 4]—of
the adjoint (Au

N )∗.
(iii) An important additional goal is to simplify and make more transparent the

well-posedness and local stabilization arguments for the non-linear problem,
in particular through a direct analysis of the nonlinear operator Nq in (1.11),
called B in [7], not its approximation sequence Bε as in [7, Sect. 4, p1480] or [6,
Proof of Therorem 3.4, pp. 107–110]. More precisely, unlike these references,
the present paper carries out an analysis of the critical issues based on the maxi-
mal regularity property of the linearized feedback operator AF (= AF,q ) in (6.1)
in the critical Lq /Besov setting. This point also is further expanded in Sect. 1.6
below.

(iv) A final goal—in line with goal (iii) above—is to obtain corresponding results
for the pressure π in (1.1a), as part of the same maximal regularity property of
the linearized feedback operator AF (= AF,q ) in (6.1), unlike [7, Theorem 2.3,
p. 1450].

1.5 What is One KeyMotivation for Seeking Interior Localized Feedback
Exponential Stabilization of Problem (1.1) in the Topology of the Besov Space
in (1.3)?

As already discussed in Sect. 1.3, obtaining the resulting stabilization in a non-
Hilbertian setting is of theoretical interest in itself, and is in line with recent
developments in 3-d N–S equations defined on the entire space R

3, where recent
breakthroughs have identified the space L3(R3) as a critical space for well-posedness,
possessing the minimal blow up initial data property [22,27]. However, our main
original motivation for the present study is another. The present paper intends to test
Lq /Besov spaces techniques initially in the interior localized feedback stabilization
problem (1.1) in the critical low regularity setting of (1.3). The true aim is, however,
to export them with serious additional technical difficulties, to solve the presently
recognized open problem of the local feedback exponential stabilization of the N–
S equations with finite-dimensional feedback tangential boundary controllers in the
case of dimension d = 3 [35]. In fact, present state-of-the-art has succeeded [33,34]
in establishing local exponential stabilization (asymptotic turbulence suppression) by
means of finite-dimensional tangential feedback boundary control in the Hilbert set-
ting and with no assumptions whatsoever on the Oseen operator in two cases:

(i) when the dimension d = 2,
(ii) when the dimension d = 3 but the initial condition y0 in (1.1.d) is compactly

supported.

In the general d = 3 case, the non-linearity of the N–S problem forces a Hilbert space
setting with a high-topology H

1/2+ε(Ω) for the initial conditions, whereby the com-
patibility conditions on the boundary kick in. These then cannot allow the stabilizing
feedback control to be finite-dimensional in general. More precisely, even at the level
of the linearized boundary problem for d = 3, open loop exponential stabilization [10,
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Proposition 3.7.1, Remark 3.7.1], [33, Proposition 2.5, Eq. (2.48)] provide a boundary
control consisting of a finite-dimensional term plus the term e−2γ1t ((I .C .)|Γ ), with
γ1 > 0 preassigned, which spoils the finite-dimensionality, unless the initial condition
is compactly supported. These limitations are in subsequent literature. In contrast, the
Besov space in (1.3) above, which is “close” to the space L3(Ω) for d = 3, has the
key, fundamental advantage of not recognizing the boundary conditions. That is why
this paper is interested in a stabilization result in such a low regularity space for d = 3,
at first in the case of interior localized control.

1.6 Comparison with PriorWork, once the Present Treatment is Specialized to the
Hilbert Setting (q = 2)

A comparison with the original prior work [7,10], reproduced in [6, Chap. 4] which
was carried out in the Hilbert setting, is in order.
Orientation Even when specialized to the Hilbert space setting (q = 2), the present
treatment offers distinct, notable advantages—both conceptual and computational over
prior literature quoted above. These include not only definitely simpler andmore direct
arguments but also transparent simplifications in the actual construction of the finite
dimensional stabilizing controllers as well as their number. Qualitative details are
given below. The main conceptual approach and the final results of the present paper
are (when specialized to the Hilbert setting) qualitatively in line with those in [7]: local
uniform stabilization of the non-linear y-problem (1.1) near an unstable equilibrium
solution ye by means of finite dimensional, arbitrarily localized controllers is based on
the corresponding result on (global) uniform stabilization of the linearized w-system
(1.13). This in turn rests on the space decomposition technique introduced in [57] for
parabolic problems (and also for differentiable semigroups): its foundational starting
point is the controllability of the finite dimensional unstable projected system wN

in (2.8a). However, in the implementation of these two fundamental phases, linear
analysis—in particular, its finite dimensional wN component—and nonlinear anal-
ysis, the present paper provides a much more attractive, more powerful and mature
treatment. We mention the most relevant new features. They are:

1. finite dimensional analysis leading, through a much more simplified and more
direct approach, to a lower (optimal) number of feedback controls;

2. infinite dimensional analysis on the nonlinear effects (the operator Nq in (1.11))
handled by critical and clean use of maximal regularity of the linearized feedback
operator AF (≡ AF,q ) in (6.1), rather than by the approximation argument as in
[7]. This refers to both y and π .

These two points are explained below.

1. Stabilization of the linearized w-problem (1.13). The key foundational alge-
braic test for controllability of the finite dimensional wN -system (2.8a) on the
finite dimensional unstable subspace W u

N is much simplified, sharper and leads,
in principle, to checkable conditions and to an implementable procedure to obtain
constructively the finite dimensional stabilizing vectors uk ∈ W u

N , pk ∈ (W u
N )∗.

In fact, the present treatment shows that (for the complexified version of the
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N–S) the required number of feedback stabilizing finite dimensional controllers
is K = sup{�i , i = 1, . . . , M}, the max of the geometric multiplicity �i of
the M distinct unstable eigenvalues λi of the Oseen operator A; not the larger
sup{Ni , i = 1, . . . , M}, the max of the algebraic multiplicity Ni of its distinct

unstable eigenvalues, as in [7,8,10], [6, Chap. 4]. Let alone N =
∑M

i=1
Ni =

dim W u
N (dimension of the generalized eigenspace of the unstable eigenvalues)

as in the treatment of [6, Assumption K.2, p. 123], where, in addition, the sim-
plifying assumption that algebraic and geometric multiplicities coincide for the
unstable eigenvalues. Moreover, the entire analysis of the present paper rests
only on the (true) eigenvectors corresponding to the unstable eigenvalues of the
adjoint operator in (3.1); not only under the Finite Dimensional Spectral Condition
(semisimplicity) as in [7] where W u

N has a basis of such (true) eigenvectors, but
also in the most general case where the projected Oseen operator Au

N is in Jordan
form, and hence the basis on W u

N consists instead of all generalized eigenvectors
corresponding to the unstable eigenvalues. As first noted in [33] in the study of
tangential boundary stabilization of the N–S equations, even in the general case
possessing only a basis of generalized eigenfunctions arising from the Jordan form,
the final test for controllability involves only the true eigenfunctions of the adjoint

textitoperator: the algebraic test (4.13), (4.14) for controllability in the general case
is exactly the same as the algebraic test (3.18) in the semisimple (diagonalizable)-
case; and only the true eigenfunctions count. This justifies why the number K of
(complex valued) stabilizing controllers as in Theorem 2.1 is equal to the supre-
mum of the geometric multiplicity of the unstable eigenvalues, not the supremum
of their larger algebraic multiplicity as in past references [7,8,10], [6, Chap. 4] as
noted above. Moreover, in [7] repeated in [6, Chap. 4] the procedure for testing
controllability in the general case was much more cumbersome and far less imple-
mentable: the original basis of generalized eigenfunctions of the adjoint operator
in the general case was transformed into an orthonormal basis of W u

N via the
Schmidt orthogonalization process, and the test for the finite dimensional con-
trollability was then based on such transformed, and thus in principle difficult to
check, orthogonalized system: a much more complicated test than the one using
just the true eigenfunctions as in (4.13).

2. Local Stabilization of the nonlinear translated z-equation (1.7) near the ori-
gin, hence of the original y-equation (1.1) near an equilibrium solution ye.
Treatment of the nonlinearity in the present work is much more transparent and
direct than the one performed in [7]. Here the analysis is directly in terms of the
nonlinear operatorNq in (1.11) and makes use of maximal regularity properties of
the linearized feedback operatorAF (≡ AF,q) in (6.1) (maximal regularity is equiv-
alent to analyticity of the semigroup in the Hilbert setting. Instead, in the Banach
setting, maximal regularity implies, but is not necessarily implied by, analyticity
of the semigroup). In contrast, in [7] with q = 2, an approximation argument of
the nonlinear operator Nq , denoted by B, was used, by introducing a sequence
of approximating operators Bε thereof [7, Sect. 4, p. 1480]. A critical step in [7]
is that the nonlinearity B (or its approximation) be controlled by the topology of
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the A
3/4 -power; and this in turn is achieved by using an optimal control approach

with A
3/4 -penalization of the solution via Riccati equations. There is no need of

this in the present treatment (the analysis of the optimization problem and Riccati
equation in a non-Hilbert setting is not the right tool). We likewise note that our
present treatment of the passage from the w-linearized problem (2.16) to the fully
non-linear z-system (2.20) is also different from the one employed in [8,34] which
was also direct in terms of the nonlinear operatorN . It was however not maximal
regularity—based, as in the present paper.

3. Well-posedness of the pressure π for the original y-problem in the feedback
form as in (2.22) in the vicinity of the equilibrium pressure πe in (1.2a). The
well-posedness result Theorem 10.2 on the pressure π of the original y-problem
on feedback form as given by (2.26), (2.27) is the Lq /Besov space counterpart of
the Hilbert (L2)-version given by [7, Theorem 2.3, p. 1450]. The present proof is
much more direct as, again, is based on maximal regularity properties. In contrast,
the proof in [7, p. 1484] is based on the approximation of the original problem.

1.7 Helmholtz Decomposition

Afirst difficulty one faces in extending the local exponential stabilization result for the
interior localized problem (1.1) from the Hilbert-space setting in [7,8] to the Lq setting
is the question of the existence of a Helmholtz (Leray) projection for the domain Ω

in R
d . More precisely: Given an open set Ω ⊂ R

d , the Helmholtz decomposition
answers the question as to whether Lq(Ω) can be decomposed into a direct sum of
the solenoidal vector space Lq

σ (Ω) and the space Gq(Ω) of gradient fields. Here,

Lq
σ (Ω) = {y ∈ C∞

c (Ω) : div y = 0 in Ω}‖·‖q

= {g ∈ Lq(Ω) : div g = 0; g · ν = 0 on ∂Ω},
for any locally Lipschitz domain Ω ⊂ R

d , d ≥ 2

Gq(Ω) = {y ∈ Lq(Ω) : y = ∇ p, p ∈ W 1,q
loc (Ω)} where 1 ≤ q < ∞.

(1.4)

Both of these are closed subspaces of Lq .

Definition 1.1 Let 1 < q < ∞ andΩ ⊂ R
n be an open set.We say that the Helmholtz

decomposition for Lq(Ω) exists whenever Lq(Ω) can be decomposed into the direct
sum (non-orthogonal)

Lq(Ω) = Lq
σ (Ω) ⊕ Gq(Ω). (1.5)

The unique linear, bounded and idempotent (i.e. P2
q = Pq ) projection operator Pq :

Lq(Ω) −→ Lq
σ (Ω) having Lq

σ (Ω) as its range and Gq(Ω) as its null space is called
the Helmholtz projection. Additional information is given in Appendix A.

This is an important property in order to handle the incompressibility conditiondiv y ≡
0. For instance, if such decomposition exists, the Stokes equation (say the linear version
of (1.1) with control u ≡ 0) can be formulated as an equation in the Lq setting. Here
below we collect a subset of known results about Helmholtz decomposition. We refer
to [26, Sect. 2.2], in particular to the comprehensive Theorem 2.2.5 in this reference,
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which collects domains for which the Helmholtz decomposition is known to exist.
These include the following cases:

(i) any open set Ω ⊂ R
d for q = 2, i.e. with respect to the space L2(Ω); more

precisely, for q = 2, we obtain the well-known orthogonal decomposition (in
the standard notation, where ν =unit outward normal vector on Γ ) [12, Prop.
1.9, p. 8]

L2(Ω) = H ⊕ H⊥ (1.6a)

H = {φ ∈ L2(Ω) : div φ ≡ 0 in Ω; φ · ν ≡ 0 on Γ } (1.6b)

H⊥ = {ψ ∈ L2(Ω) : ψ = ∇h, h ∈ H1(Ω)}; (1.6c)

(ii) a bounded C1-domain in R
d [17], 1 < q < ∞ [21, Theorem 1.1, p. 107,

Theorem 1.2, p 114] for C2-boundary;
(iii) a bounded Lipschitz domain Ω ⊂ R

d (d = 3) and for 3
2 − ε < q < 3+ ε sharp

range [17];
iv a bounded convex domain Ω ⊂ R

d , d ≥ 2, 1 < q < ∞ [17].

On the other hand, on the negative side, it is known that there exist domains Ω ⊂ R
d

such that the Helmholtz decomposition does not hold for some q �= 2 [38].
Assumption (H–D) Henceforth in this paper, we assume that the bounded domain
Ω ⊂ R

d under consideration admits a Helmholtz decomposition for the values of
q, 1 < q < ∞, here considered at first, for the linearized problem (1.13) below.
The final result Theorem 2.5 for the non-linear problem (1.1) will require q > d, see
(8.16), in the case of interest d = 2, 3.

1.8 Translated Nonlinear Navier–Stokes z-Problem: Reduction to Zero Equilibrium

We return to Theorem 1.1 which provides an equilibrium pair {ye, πe}. Then, as in
[7,8,33] we translate by {ye, pe} the original N–S problem (1.1). Thus we introduce
new variables

z = y − ye, χ = π − πe (1.7a)

and obtain the translated problem

zt − νΔz + (ye · ∇)z + (z · ∇)ye + (z · ∇)z + ∇χ = mu in Q
(1.7b)

div z = 0 in Q
(1.7c)

z = 0 on Σ

(1.7d)

z(0, x) = y0(x) − ye(x) on Ω

(1.7e)
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We shall accordingly study the local null feedback stabilization of the z-problem
(1.7), that is, feedback stabilization in a neighborhood of the origin. As usual, we next
apply the projection Pq below (1.5) to the translated N–S problem (1.7) to eliminate
the pressure χ . We thus proceed to obtain the corresponding abstract setting for the
problem (1.7) as in [7] except in the Lq -setting rather than in the L2-setting as in this
reference. Note that Pq zt = zt , since z ∈ Lq

σ (Ω) in (1.4).

1.9 Abstract Nonlinear TranslatedModel

First, for 1 < q < ∞ fixed, the Stokes operator Aq in Lq
σ (Ω)with Dirichlet boundary

conditions is defined by [23, p. 1404, 26, p. 1]

Aq z = −PqΔz, D(Aq) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ (Ω). (1.8)

The operator Aq has a compact inverse A−1
q on Lq

σ (Ω), hence Aq has a compact
resolvent on Lq

σ (Ω).
Next, we introduce the first order operator Ao,q ,

Ao,q z = Pq [(ye . ∇)z + (z . ∇)ye], D(Ao,q) = D(A
1/2
q ) ⊂ Lq

σ (Ω), (1.9)

where theD(A
1/2
q ) is defined explicitly in (1.22) below. Thus, Ao,q A−1/2

q is a bounded

operator on Lq
σ (Ω), and thus Ao,q is bounded on D(A

1/2
q )

∥∥Ao,q f
∥∥ =

∥
∥∥Ao,q A−1/2

q A−1/2
q Aq f

∥
∥∥ ≤ Cq

∥
∥∥A

1/2
q f

∥
∥∥ , f ∈ D(A

1/2
q ).

This leads to the definition of the Oseen operator

Aq = −(ν Aq + Ao,q), D(Aq) = D(Aq) ⊂ Lq
σ (Ω). (1.10)

Finally, we define the projection of the nonlinear portion of the static operator in (1.7b)

Nq(z) = Pq [(z · ∇)z], D(Nq) = W 1,q(Ω) ∩ L∞(Ω) ∩ Lq
σ (Ω). (1.11)

[As shown in (8.16) in the analysis of the non-linear problem, at the end we shall use
W 1,q(Ω) ⊂ L∞(Ω) for q > dim Ω = 3 [30, Theorem 2.4.4, p. 74, requiring C1

boundary.]]
Thus, theNavier–Stokes translated problem (1.7), after application of theHelmholtz

projector Pq in Definition 1.1 and use of (1.8)–(1.11), can be rewritten as the following
abstract equation in Lq

σ (Ω):

dz

dt
+ ν Aq z + Ao,q z + Pq [(z · ∇)z] = Pq(mu) or

dz

dt
− Aq z + Nq z

= Pq(mu) in Lq
σ (Ω) (1.12a)

z(x, 0) = z0(x) = y0(x) − ye in Lq
σ (Ω). (1.12b)
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1.10 The Linearized Problem of the TranslatedModel

Next, still for 1 < q < ∞,we consider the following linearized systemof the translated
model (1.7) or (1.12):

dw

dt
+ ν Aqw + Ao,qw = Pq(mu) or

dw

dt
− Aqw = Pq(mu) in Lq

σ (Ω)

(1.13a)

w0(x) = y0(x) − ye in Lq
σ (Ω). (1.13b)

1.11 Some Auxiliary Results for Problem (1.13): Analytic Semigroup Generation,
Maximal Regularity, Domains of Fractional Powers

In this subsection we collect some known results to be used in the sequel.

(a) Definition of Besov spaces Bs
q,p on domains of class C1 as real interpolation of

Sobolev spaces Let m be a positive integer, m ∈ N, 0 < s < m, 1 ≤ q < ∞, 1 ≤
p ≤ ∞, then we define [23, p. 1398]

Bs
q,p(Ω) = (Lq(Ω), W m,q(Ω)) s

m ,p (1.14a)

This definition does not depend on m ∈ N [63, p. xx]. This clearly gives

W m,q(Ω) ⊂ Bs
q,p(Ω) ⊂ Lq(Ω) and ‖y‖Lq (Ω) ≤ C ‖y‖Bs

q,p(Ω) . (1.14b)

We shall be particularly interested in the following special real interpolation space
of the Lq and W 2,q spaces (m = 2, s = 2 − 2

p ):

B
2− 2

p
q,p (Ω) = (

Lq(Ω), W 2,q(Ω)
)
1− 1

p ,p. (1.15)

Our interest in (1.15) is due to the following characterization [3, Thm. 3.4], [23,
p. 1399]: if Aq denotes the Stokes operator introduced in (1.8), then

(
Lq

σ (Ω),D(Aq )
)

1− 1
p ,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g|Γ = 0

}

if
1

q
< 2 − 2

p
< 2 (1.16a)

(
Lq

σ (Ω),D(Aq )
)

1− 1
p ,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g · ν|Γ = 0

}
≡ B̃

2−2/p
q,p (Ω)

if 0 < 2 − 2

p
<

1

q
; or 1 < p <

2q

2q − 1
. (1.16b)

Notice that, in (1.16b), the condition g · ν|Γ = 0 is an intrinsic condition of the
space Lq

σ (Ω) in (1.4), not an extra boundary condition as g|Γ = 0 in (1.16a).
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Remark 1.3 In the analysis of well-posedness and stabilization of the nonlinear N–S
problem (1.1), with control u in feedback form—such as the non linear translated
feedback problem (2.20) = (8.1)—we shall need to impose the constrain q > 3, see
Eq (8.16), to obtain the embedding W 1,q ↪→ L∞(Ω) in our case of interest d = 3,
as already noted below (1.11). What is then the allowable range of the parameter p
in such case q > 3? The intended goal of the present paper is to obtain the sought-

after stabilization result in a function space, such as a B
2−2/p
q,p (Ω)-space, that does not

recognize boundary conditions of the I.C. Thus, we need to avoid the case in (1.16a), as
this implies a Dirichlet homogeneous B.C. Instead, we need to fit into the case (1.16b).

We shall then impose the condition 2 − 2

p
<

1

q
<

1

3
and then obtain that p must

satisfy p <
6

5
. Moreover, analyticity and maximal regularity of the Stokes problem

will require p > 1. Thus, in conclusion, the allowed range of the parameters p, q under
which we shall solve the well-posedness and stabilization problem of the nonlinear

N–S feedback system (2.20) = (8.1) for d = 3, in the space B̃
2−2/p
q,p (Ω) which—as

intended—does not recognize boundary conditions is: q > 3, 1 < p <
6

5
. See

Theorems 2.3 through 2.5.

(b) The Stokes and Oseen operators generate a strongly continuous analytic semi-
group on Lq

σ (Ω), 1 < q < ∞.

Theorem 1.2 Let d ≥ 2, 1 < q < ∞ and let Ω be a bounded domain in R
d of class

C3. Then

(i) the Stokes operator −Aq = PqΔ in (1.8), repeated here as

− Aqψ = PqΔψ, ψ ∈ D(Aq) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ (Ω) (1.17)

generates a s.c analytic semigroup e−Aq t on Lq
σ (Ω). See [24] and the review

paper [26, Theorem 2.8.5, p. 17].
(ii) The Oseen operator Aq in (1.10)

Aq = −(ν Aq + Ao,q), D(Aq) = D(Aq) ⊂ Lq
σ (Ω) (1.18)

generates a s.c analytic semigroup eAq t on Lq
σ (Ω). This follows as Ao,q is

relatively bounded with respect to A
1/2
q , defined in (1.22), see below (1.9): thus

a standard theorem on perturbation of an analytic semigroup generator applies
[39, Corollary 2.4, p. 81].

(iii)

0 ∈ ρ(Aq) = the resolvent set of the Stokes operator Aq (1.19a)

A−1
q : Lq

σ (Ω) −→ Lq
σ (Ω) is compact (1.19b)
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(iv) The s.c. analytic Stokes semigroup e−Aq t is uniformly stable on Lq
σ (Ω): there

exist constants M ≥ 1, δ > 0 (possibly depending on q) such that

∥∥∥e−Aq t
∥∥∥L(Lq

σ (Ω))
≤ Me−δt , t > 0. (1.20)

(c) Domains of fractional powers, D(Aα
q ), 0 < α < 1 of the Stokes operator Aq

on Lq
σ (Ω), 1 < q < ∞,

Theorem 1.3 For the domains of fractional powers D(Aα
q ), 0 < α < 1, of the Stokes

operator Aq in (1.8) = (1.17), the following complex interpolation relation holds true
[25] and [26, Theorem 2.8.5, p. 18]

[D(Aq), Lq
σ (Ω)]1−α = D(Aα

q ), 0 < α < 1, 1 < q < ∞; (1.21)

in particular

[D(Aq), Lq
σ (Ω)] 1

2
= D(A

1/2
q ) ≡ W 1,q

0 (Ω) ∩ Lq
σ (Ω). (1.22)

Thus, on the space D(A
1/2
q ), the norms

‖∇ · ‖Lq (Ω) and ‖ ‖Lq (Ω) (1.23)

are equivalent via Poincaré inequality.

(d) The Stokes operator −Aq and the Oseen operator Aq , 1 < q < ∞ generate
s.c. analytic semigroups on the Besov space

(
Lq

σ (Ω),D(Aq )
)

1− 1
p ,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g|Γ = 0

}

if
1

q
< 2 − 2

p
< 2; (1.24a)

(
Lq

σ (Ω),D(Aq )
)

1− 1
p ,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g · ν|Γ = 0

}
≡ B̃

2−2/p
q,p (Ω)

if 0 < 2 − 2

p
<

1

q
. (1.24b)

Theorem1.2 states that the Stokes operator−Aq generates a s.c analytic semigroup
on the space Lq

σ (Ω), 1 < q < ∞, hence on the spaceD(Aq) in (1.17), with norm
‖ · ‖D(Aq ) = ∥∥Aq · ∥∥Lq

σ (Ω)
as 0 ∈ ρ(Aq). Then, one obtains that the Stokes

operator −Aq generates a s.c. analytic semigroup on the real interpolation spaces
in (1.24). Next, the Oseen operator A = −(ν Aq + Ao,q) likewise generates a
s.c. analytic semigroup eAq t on Lq

σ (Ω) since Ao,q is relatively bounded w.r.t.

A
1/2
q , as Ao,q A−1/2

q is bounded on Lq
σ (Ω). Moreover Aq generates a s.c. analytic

semigroup on D(Aq) = D(Aq) (equivalent norms). Hence Aq generates a s.c.
analytic semigroup on the real interpolation space of (1.24). Here below, however,
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we shall formally state the result only in the case 2 − 2/p < 1/q . i.e. 1 < p <

2q/2q−1, in the space B̃
2−2/p
q,p (Ω), as this does not contain B.C. The objective of

the present paper is precisely to obtain stabilization results on spaces that do not
recognize B.C.

Theorem 1.4 Let 1 < q < ∞, 1 < p < 2q/2q−1.

(i) The Stokes operator −Aq in (1.17) generates a s.c. analytic semigroup e−Aq t

on the space B̃
2−2/p
q,p (Ω) defined in (1.16) = (1.24) which moreover is uniformly

stable, as in (1.20),

∥∥∥e−Aq t
∥∥∥L
(

B̃
2−2/p
q,p (Ω)

) ≤ Me−δt , t > 0. (1.25)

(ii) The Oseen operator Aq in (1.18) generates a s.c. analytic semigroup eAq t on the

space B̃
2−2/p
q,p (Ω) in (1.16) = (1.24).

(e) Space of maximal L p regularity on Lq
σ (Ω) of the Stokes operator −Aq , 1 <

p < ∞, 1 < q < ∞ up to T = ∞. We return to the dynamic Stokes problem in
{ϕ(t, x), π(t, x)}

ϕt − Δϕ + ∇π = F in (0, T ] × Ω ≡ Q (1.26a)

div ϕ ≡ 0 in Q (1.26b)

ϕ|Σ ≡ 0 in (0, T ] × Γ ≡ Σ (1.26c)

ϕ|t=0 = ϕ0 in Ω, (1.26d)

rewritten in abstract form, after applying the Helmholtz projection Pq to (1.26a)
and recalling Aq in (1.17) as

ϕ′ + Aqϕ = Fσ ≡ Pq F, ϕ0 ∈ (Lq
σ (Ω),D(Aq)

)
1− 1

p ,p (1.27)

Next,we introduce the space ofmaximal regularity for {ϕ, ϕ′} as [26, p. 2; Theorem
2.8.5.iii, p. 17], [23, pp. 1404–1405], with T up to ∞:

X T
p,q,σ = L p(0, T ;D(Aq)) ∩ W 1,p(0, T ; Lq

σ (Ω)) (1.28)

(recall (1.8) for D(Aq)) and the corresponding space for the pressure as

Y T
p,q = L p(0, T ; Ŵ 1,q(Ω)), Ŵ 1,q(Ω) = W 1,q(Ω)/R. (1.29)

The following embedding, also called trace theorem, holds true [3, Theorem4.10.2,
p. 180, BUC for T = ∞], [40].
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X T
p,q,σ ⊂ X T

p,q ≡ L p(0, T ; W 2,q(Ω)) ∩ W 1,p(0, T ; Lq(Ω))

↪→ C
(
[0, T ]; B

2−2/p
q,p (Ω)

)
. (1.30)

For a function g such that div g ≡ 0, g|Γ = 0 we have g ∈ X T
p,q ⇐⇒ g ∈

X T
p,q,σ , by (1.4).

The solution of Eq. (1.27) is

ϕ(t) = e−Aq tϕ0 +
∫ t

0
e−Aq (t−s)Fσ (τ )dτ. (1.31)

The following is the celebrated result on maximal regularity on Lq
σ (Ω) of the

Stokes problem due originally to Solonnikov [50] reported in [26, Theorem
2.8.5.(iii) and Theorem 2.10.1, p. 24 for ϕ0 = 0], [42], [23, Proposition 4.1 ,
p. 1405].

Theorem 1.5 Let 1 < p, q < ∞, T ≤ ∞. With reference to problem (1.26) = (1.27),
assume

Fσ ∈ L p(0, T ; Lq
σ (Ω)), ϕ0 ∈

(
Lq

σ (Ω),D(Aq)
)

1− 1
p ,p

. (1.32)

Then there exists a unique solution ϕ ∈ X T
p,q,σ , π ∈ Y T

p,q to the dynamic Stokes
problem (1.26) or (1.27), continuously on the data: there exist constants C0, C1 inde-
pendent of T , Fσ , ϕ0 such that via (1.30)

C0 ‖ϕ‖
C
(
[0,T ];B

2−2/p
q,p (Ω)

) ≤ ‖ϕ‖X T
p,q,σ

+ ‖π‖Y T
p,q

≡ ∥∥ϕ′∥∥
L p(0,T ;Lq

σ (Ω))
+ ∥∥Aqϕ

∥∥
L p(0,T ;Lq

σ (Ω))
+ ‖π‖Y T

p,q

≤ C1

{
‖Fσ ‖L p(0,T ;Lq

σ (Ω)) + ‖ϕ0‖(Lq
σ (Ω),D(Aq )

)
1− 1

p ,p

}
.

(1.33)
In particular,

(i) With reference to the variation of parameters formula (1.31) of problem (1.27)
arising from the Stokes problem (1.26), we have recalling (1.28): the map

Fσ −→
∫ t

0
e−Aq (t−τ)Fσ (τ )dτ : continuous (1.34)

L p(0, T ; Lq
σ (Ω)) −→ X T

p,q,σ ≡ L p(0, T ;D(Aq)) ∩ W 1,p(0, T ; Lq
σ (Ω))

(1.35)

(ii) The s.c. analytic semigroup e−Aq t generated by the Stokes operator −Aq (see

(1.17)) on the space
(

Lq
σ (Ω),D(Aq)

)

1− 1
p ,p

(see statement below (1.24)) satis-

fies
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e−Aq t : continuous
(

Lq
σ (Ω),D(Aq)

)

1− 1
p ,p

−→ X T
p,q,σ

≡ L p(0, T ;D(Aq)) ∩ W 1,p(0, T ; Lq
σ (Ω)) (1.36a)

In particular via (1.24b), for future use, for 1 < q < ∞, 1 < p <
2q

2q−1 , the s.c.

analytic semigroup e−Aq t on the space B̃
2−2/p
q,p (Ω), satisfies

e−Aq t : continuous B̃
2−2/p
q,p (Ω) −→ X T

p,q,σ . (1.36b)

(iii) Moreover,
for future use, for 1 < q < ∞, 1 < p <

2q
2q−1 , then (1.33) specializes to

‖ϕ‖X T
p,q,σ

+ ‖π‖Y T
p,q

≤ C

{
‖Fσ ‖L p(0,T ;Lq

σ (Ω)) + ‖ϕ0‖
B̃
2−2/p
q,p (Ω)

}
. (1.37)

(f) Maximal L p regularity on Lq
σ (Ω) of the Oseen operator Aq , 1 < p <

∞, 1 < q < ∞, up to T < ∞ We next transfer the maximal regularity of
the Stokes operator (−Aq) on Lq

σ (Ω)-asserted in Theorem 1.5 into the maximal
regularity of the Oseen operatorAq = −ν Aq − Ao,q in (1.18) exactly on the same
space X T

p,q,σ defined in (1.28), however only up to T < ∞.
Thus, consider the dynamic Oseen problem in {ψ(t, x), π(t, x)} with equilibrium
solution ye, see (1.2):

ψt − Δψ + Le(ψ) + ∇π = F in (0, T ] × Ω ≡ Q (1.38a)

div ψ ≡ 0 in Q (1.38b)

ψ |Σ ≡ 0 in (0, T ] × Γ ≡ Σ (1.38c)

ψ |t=0 = ψ0 in Ω, (1.38d)

Le(ψ) = (ye.∇)ψ + (ψ.∇)ye (1.39)

rewritten in abstract form, after applying the Helmholtz projector Pq to (1.38a)
and recalling Aq in (1.18), as

ψt = Aqψ + Pq F = −ν Aqψ − Ao,qψ + Fσ , ψ0 ∈ (Lq
σ (Ω),D(Aq)

)
1− 1

p ,p

(1.40)
whose solution is

ψ(t) = eAq tψ0 +
∫ t

0
eAq (t−τ)Fσ (τ )dτ. (1.41)

ψ(t) = e−ν Aq tψ0 +
∫ t

0
e−ν Aq (t−τ)Fσ (τ )dτ

−
∫ t

0
e−ν Aq (t−τ) Ao,qψ(τ)dτ. (1.42)
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Theorem 1.6 Let 1 < p, q < ∞, 0 < T < ∞. Assume (as in (1.32))

Fσ ∈ L p(0, T ; Lq
σ (Ω)

)
, ψ0 ∈ (Lq

σ (Ω),D(Aq)
)
1− 1

p ,p (1.43)

where D(Aq) = D(Aq), see (1.18). Then there exists a unique solution ψ ∈
X T

p,q,σ , π ∈ Y T
p,q of the dynamic Oseen problem (1.38), continuously on the data:

that is, there exist constants C0, C1 independent of Fσ , ψ0 such that

C0 ‖ϕ‖
C
(
[0,T ];B

2−2/p
q,p (Ω)

) ≤ ‖ϕ‖X T
p,q,σ

+ ‖π‖Y T
p,q

≡ ∥∥ϕ′∥∥
L p(0,T ;Lq (Ω))

+ ∥∥Aqϕ
∥∥

L p(0,T ;Lq (Ω))
+ ‖π‖Y T

p,q

(1.44)

≤ CT

{
‖Fσ ‖L p(0,T ;Lq

σ (Ω)) + ‖ϕ0‖(Lq
σ (Ω),D(Aq )

)
1− 1

p ,p

}

(1.45)

where T < ∞. Equivalently, for 1 < p, q < ∞
(i) The map

Fσ −→
∫ t

0
eAq (t−τ)Fσ (τ )dτ : continuous

L p(0, T ; Lq
σ (Ω)) −→ L p(0, T ;D(Aq) = D(Aq)

) (1.46)

where then automatically, see (1.40)

L p(0, T ; Lq
σ (Ω)) −→ W 1,p(0, T ; Lq

σ (Ω)) (1.47)

and ultimately

L p(0, T ; Lq
σ (Ω)) −→ X T

p,q,σ ≡ L p(0, T ;D(Aq)
) ∩ W 1,p(0, T ; Lq

σ (Ω)).

(1.48)
(ii) The s.c. analytic semigroup eAq t generated by the Oseen operator Aq (see (1.18))

on the space
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p satisfies for 1 < p, q < ∞

eAq t : continuous
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p −→ L p(0, T ;D(Aq) = D(Aq)
)

(1.49)
and hence automatically by (1.28)

eAq t : continuous
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p −→ X T
p,q,σ . (1.50)
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In particular, for future use, for 1 < q < ∞, 1 < p <
2q

2q−1 , we have that the s.c.

analytic semigroup eAq t on the space B̃
2−2/p
q,p (Ω), satisfies

eAq t : continuous B̃
2−2/p
q,p (Ω) −→ L p(0, T ;D(Aq) = D(Aq)

)
, T < ∞.

(1.51)
and hence automatically

eAq t : continuous B̃
2−2/p
q,p (Ω) −→ X T

p,q,σ , T < ∞. (1.52)

A proof is given in Appendix B.

Remark 1.4 The literature reports physical situations where the volumetric force f is
actually replaced by ∇g(x); that is, f is a conservative vector field. Thus, returning to
Eq. (1.2a) with f (x) replaced now by ∇g(x) we see that a solution of such stationary
problem is ye = 0, πe = g, hence Le(·) ≡ 0 by (1.39). Returning to Eq. (1.1a) with
f replaced by ∇g(x) and applying to the resulting equation the projection operator
Pq , one obtains in this case the projected equation

yt − ν PqΔy + Pq
[
(y · ∇)y

] = Pq(mu) in Q. (1.53)

This, along with the solenoidal and boundary conditions (1.1b), (1.1c), yields the
corresponding abstract form recalling also (1.11)

yt + ν Aq y + Nq y = Pq(mu) in Lq
σ (Ω). (1.54)

Then y-problem (1.54) is the same as the z-problem (1.12a), except without the Oseen
term Ao,q . The linearized version of problem (1.54) is then

ηt + ν Aqη = Pq(mu) in Lq
σ (Ω), (1.55)

which is the same as the w-problem (1.13a), except without the Oseen term Ao,q . The
s.c. analytic semigroup e−ν Aq t driving the linear equation (1.55) is uniformly stable in

Lq
σ (Ω), see (1.20), as well as in B̃

2−2/p
q,p (Ω), see (1.25). Then, in the case of the present

Remark, the present paper may be used to enhance at will the uniform stability of the
corresponding problem with u given in feedback form as in the RHS of Eq. (2.20) as
to obtain a decay rate much bigger than the original δ > 0 in (1.20) or (1.25). Thus
there is no need to perform the translation y −→ z of Sect. 1.8, when f in (1.2a) is
replaced by ∇g(x); i.e. ye = 0 in this case. The important relevance of the present
Remark will be pointed out in the follow-out paper [35] where only finitely many
localized tangential boundary feedback controls will be employed to the so far open
case dim Ω = 3. The corresponding required “unique continuation property” holds
true for the Stokes problem (ye = 0), see [59,60].
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2 Main Results

2.1 Orientation

All the main results of this paper, Theorems 2.1 through 2.5, are stated (at first) in
the complex state space setting Lq

σ (Ω) + i Lq
σ (Ω). Thus, the finitely many stabilizing

feedback vectors pk, uk constructed in the subsequent proofs belong to the complex
finite dimensional unstable subspace (W u

N )∗ and W u
N respectively. The question then

arises as to transfer back these results into the original real setting. This issue was
resolved in [7]. Here, such translation, taken from [7], from the results in the complex
setting (Theorems2.1 through2.5) into corresponding results in the original real setting
is given in Sect. 2.7.
Step 1 First, we will show in Theorem 2.2 that the linearized Navier–Stokes prob-
lem wt = Aqw + Pq(mu) in (1.13) can be uniformly (exponentially) stabilized in
the basic space Lq

σ (Ω), 1 < q < ∞ in fact, in the space D(Aθ
q), 0 ≤ θ ≤ 1,

or
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p, in particular B̃
2−2/p
q,p (Ω) by means of an explicitly con-

structed, finite dimensional spectral-based feedback controller mu, localized on ω,
whose structure is given in (2.16).
Step 2 Next, we proceed to the non-linear translated Navier–Stokes z-problem (1.12)
with a control u having the same structure as the finite-dimensional, spectral based
stabilizing control used in the linearized problem (1.13). This strategy leads to the non-
linear feedback z-problem (2.20). We then establish two results for problem (2.20):
(i) The first, Theorem 2.3, is that problem (2.20) is locally well-posed, i.e. for small

initial data z0, in the desired space B̃
2−2/p
q,p (Ω). It will require the constraint q > 3,

see (8.16), to obtain W 1,q(Ω) ↪→ L∞(Ω) for d = 3. In achieving this result, we
must factor in what is the deliberate, sought-after goal of the present paper: that is, to
obtain (well-posedness and) uniform stabilization of the original non-linear problem
(1.1) near an equilibrium solution, in a function space that does not recognize boundary

conditions. This is the space B̃
2−2/p
q,p (Ω)having only the boundary condition g·ν|Γ = 0

inherited from the basic Lq
σ (Ω)-space, see (1.16b) and statement below it. In contrast,

we deliberately exclude then the space in (1.16a), p > 2q/2q−1, having an explicit
additional B.C. In conclusion, for the nonlinear problem, we need to work with the

space B̃
2−2/p
q,p (Ω) in (1.16b), and this requires for d = 3 the range q > 3, 1 < p <

2q/2q−1, that is 1 < p < 6/5 where the boundary conditions are not recognized. In this

case the space B̃
2−2/p
q,p (Ω) = (

Lq
σ (Ω),D(Aq)

)
1−1/p,p with index 1− 1/p close to zero

is “close” to the space Lq(Ω), for q > 3. Accordingly, with reference to the feedback

z-problem (2.20), we take z0 ∈ B̃
2−2/p
q,p (Ω), q > 3, 1 < p < 6/5 sufficiently small,

and show that (2.20) is well-posed in the function space X∞
p,q,σ in (1.28). To this end,

we use critically the maximal regularity result Theorem 7.1. This is Theorem 2.3.
(ii) Second, we address the stabilization problem and show that such Navier–Stokes
feedbackproblem (2.20) is, in fact, locally exponentially stabilizable in a neighborhood

of the zero equilibrium solution in the state space B̃
2−2/p
q,p (Ω). This is Theorem 2.4.
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Such results, Theorem 2.3 and the Theorem 2.4 for the translated Navier–Stokes
z-problem (2.20) in feedback form then at once translate into counterpart results of
local well-posedness and local interior stabilization of the original y-problem (1.1)
in a neighborhood of the equilibrium solution ye, with an explicit finite dimensional
feedback control localized onωwhose structure is given in (2.28b). Thus Theorem 2.5
gives the main result of the present paper.

2.2 Introducing the Problem of Feedback Stabilization of the Linearized
w-Problem (1.13) on the Complexified Lq�(˝) Space

Preliminaries In this subsection we take q fixed, 1 < q < ∞ throughout. Accord-
ingly, to streamline the notation in the preceding setting of Sect. 1, we shall drop
the dependence on q of all relevant quantities and thus write P, A, Ao,A instead of
Pq , Aq , Ao,q ,Aq . We return to the linearized system (1.13).

Moreover, as in [7,8], we shall henceforth let Lq
σ (Ω) denote the complexified space

Lq
σ (Ω) + i Lq

σ (Ω), whereby then we consider the extension of the linearized problem
(1.13) to such complexified space. Thus, henceforth,w will meanw+ iw̃, u will mean
u + i ũ, w0 will mean w0 + iw̃0:

dw

dt
+ ν Aw + A0w = P(mu), or

dw

dt
− Aw = P(mu), w(0) = w0 on Lq

σ (Ω).

(2.1)
As noted in Theorem 1.2(iii), the Oseen operatorA has compact resolvent on Lq

σ (Ω).
It follows that A has a discreet point spectrum σ(A) = σp(A) consisting of isolated
eigenvalues {λ j }∞j=1, which are repeated according to their (finite) algebraic multiplic-

ity � j . However, sinceA generates a C0 analytic semigroup on Lq
σ (Ω), its eigenvalues

{λ j }∞j=1 lie in a triangular sector of a well-known type.
The case of interest in stabilization occurs where A has a finite number, say N , of

eigenvalues λ1, λ2, λ3, . . . , λN on a complex half plane {λ ∈ C : Re λ ≥ 0} which
we then order according to their real parts, so that

· · · ≤ Re λN+1 < 0 ≤ Re λN ≤ · · · ≤ Re λ1, (2.2)

each λi , i = 1, . . . , N , being an unstable eigenvalue repeated according to its geo-
metric multiplicity �i . Let M denote the number of distinct unstable eigenvalues λ j of
A, so that �i is equal to the dimension of the eigenspace corresponding to λi . Instead,

N =
∑M

i=1
Ni is the sum of the corresponding algebraic multiplicity Ni of λi , where

Ni is the dimension of the corresponding generalized eigenspace.
There are results in the literature [28] that quantify the number of unstable eigen-

values in terms of the system parameters. Denote by PN and P∗
N the projections given

explicitly by [29, p. 178], [7,8]

PN = − 1

2π i

∫

Γ

(λI − A)−1 dλ : Lq
σ (Ω) onto W u

N (2.3a)
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P∗
N = − 1

2π i

∫

Γ̄

(
λI − A∗)−1

dλ : (Lq
σ (Ω))∗ onto (W u

N )∗ ⊂ Lq ′
σ (Ω), (2.3b)

by (A.2c), whereΓ (respectively, its conjugate counterpart Γ̄ ) is a smooth closed curve
that separates the unstable spectrum from the stable spectrum ofA (respectively,A∗).
As in [8, Sect. 3.4, p. 37], following [57],we decompose the space Lq

σ (Ω) into the sum
of two complementary subspaces (not necessarily orthogonal):

Lq
σ (Ω) = W u

N ⊕W s
N ; W u

N ≡ PN Lq
σ (Ω); W s

N ≡ (I−PN )Lq
σ (Ω); dim W u

N = N
(2.4)

where each of the spaces W u
N and W s

N (which depend on q, but we suppress such
dependence) is invariant under A (= Aq), and let

Au
N = PNA = A|W u

N
; As

N = (I − PN )A = A|W s
N

(2.5)

be the restrictions of A to W u
N and W s

N respectively. The original point spectrum
(eigenvalues) {λ j }∞j=1 of A is then split into two sets

σ(Au
N ) = {λ j }N

j=1; σ(As
N ) = {λ j }∞j=N+1, (2.6)

and W u
N is the generalized eigenspace ofAu

N in (2.1). The system (2.1) on Lq
σ (Ω) can

accordingly be decomposed as

w = wN + ζN , wN = PN w, ζN = (I − PN )w. (2.7)

After applying PN and (I − PN ) (which commute with A) on (2.1), we obtain via
(2.5)

on W u
N : w′

N − Au
N wN = PN P(mu); wN (0) = PN w0 (2.8a)

on W s
N : ζ ′

N − As
N ζN = (I − PN )P(mu); ζN (0) = (I − PN )w0 (2.8b)

respectively.
Main result Wemay now state the main feedback stabilization result of the linearized
problem (1.13) (= (2.1)) on the complexified space Lq

σ (Ω)). The proof is constructive.
How to construct the finitely many stabilizing vectors will be established in the proof.

We anticipate the fact (noted in (3.2) and (4.0)) below that, for 1 < p, q < ∞:

W u
N = space of generalized

eigenfunctions of Aq (= Au
N )

corresponding to its distinct

unstable eigenvalues

⊂
{ (

Lq
σ (Ω),D(Aq )

)
1− 1

p ,p
[D(Aq ), Lq

σ (Ω)
]
1−α

= D(Aα
q ), 0 ≤ α ≤ 1

⊂ Lq
σ (Ω).

(2.9)
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2.3 Uniform (Exponential) Stabilization of the Linear Finite-Dimensional
wN-Problem (2.8a) in the SpaceWu

N byMeans of a Finite-Dimensional, Explicit,
Spectral Based Feedback Control Localized on!

Theorem 2.1 Let λ1, ., λi , ., λM be the unstable distinct eigenvalues of the Oseen oper-
ator A(= Aq) (see (1.10)) with geometric multiplicity �i and set K = sup {� j ; j =
1, . . . , M}. Let ω be an arbitrarily small open portion of the interior with sufficiently
smooth boundary ∂ω. Then: Given γ > 0 arbitrarily large, one can construct suitable
interior vectors [u1, . . . , uK ] in the smooth subspace W u

N of Lq
σ (ω), 1 < q < ∞, and

accordingly obtain a K-dimensional interior controller u = uN acting on ω, of the
form

u =
K∑

k=1

μk(t)uk, uk ∈ W u
N ⊂ Lq

σ (Ω), μk(t) = scalar, (2.10)

such that, once inserted in the finite dimensional projected wN -system in (2.8), yields
the system

w′
N − Au

N wN = PN P

(

m

(
K∑

k=1

μk(t)uk

))

, (2.11)

whose solution then satisfies the estimate

‖wN (t)‖Lq
σ (Ω) + ‖uN (t)‖Lq

σ (ω) ≤ Cγ e−γ t ‖PN w0‖Lq
σ (Ω) , t ≥ 0. (2.12)

In (2.12) we may replace the Lq
σ (Ω)-norm, 1 < q < ∞, alternatively either with the(

Lq
σ (Ω),D(Aq)

)
1− 1

p ,p norm, 1 < q < ∞; or else with the
[D(Aq), Lq

σ (Ω)
]
1−α

=
D(Aα

q )-norm, 0 ≤ α ≤ 1, 1 < q < ∞. In particular, we also have

‖wN (t)‖
B̃
2−2/p
q,p (Ω)

+‖uN (t)‖
B̃
2−2/p
q,p (Ω)

≤ Cγ e−γ t ‖PN w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0, (2.13)

in the B̃
2−2/p
q,p (Ω)-norm, 1 < q < ∞, p < 2q/2q−1.

[Estimate (2.13) will be invoked in the nonlinear stabilization proof of Sect. 9.]

Moreover, the above control u = uN =
∑K

k=1
μk(t)uk, the terms uk ∈ W u

N , in

(2.10) can be chosen in feedback form: that is, of the form μk(t) = (wN (t), pk)ω

for suitable vectors pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω) depending on γ . Here and henceforth

(v1, v2)ω =
∫

ω

v1 · v̄2 dω, v1 ∈ W u
N ⊂ Lq

σ (Ω), v2 ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω). In

conclusion, wN in (2.11) satisfying (2.12), (2.13) is the solution of the following
equation on W u

N (see (2.8)):

w′
N − Au

N wN = PN P

(

m

(
K∑

k=1

(wN (t), pk)ωuk

))

, uk ∈ W u
N ⊂ Lq

σ (Ω),

pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω), (2.14a)
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rewritten as

w′
N = ĀuwN , wN (t) = eĀu t PN w0, wN (0) = PN w0. (2.14b)

A proof of Theorem 2.1 is given in Sect. 5.

2.4 GlobalWell-Posedness and Uniform Exponential Stabilization on the
Linearizedw-Problem (2.1) in Various Lq�(Ä)-Based Spaces, by Means of the
Same Feedback Control Obtained for thewN-Problem in Sect. 2.3

Again, 1 < q < ∞ throughout this section.

Theorem 2.2 With reference to the unstable, possibly repeated, eigenvalues {λ}N
j=1 in

(2.2), M of which are distinct, let ε > 0 and set γ0 = |Re λN+1| − ε. Then the same
K-dimensional feedback controller

u = uN =
K∑

k=1

(wN (t), pk)ωuk, uk ∈ W u
N ⊂ Lq

σ (Ω), pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω),

(2.15)
constructed in Theorem 2.1, (2.14a) and yielding estimate (2.12), (2.13) for the finite-
dimensional projected wN -system (2.8), once inserted, this time in the full linearized
w-problem (2.1), yields the linearized feedback dynamics (wN = PN w):

dw

dt
= Aw + P

(

m

(
K∑

k=1

(PN w, pk)ωuk

))

≡ AF w (2.16)

where AF is the generator of a s.c. analytic semigroup in the space Lq
σ (Ω). Here,

A = Aq , P = Pq , AF = AF,q Moreover, such dynamics w in (2.16) (equivalently,
such generator AF in (2.16)) is uniformly stable in the space Lq

σ (Ω):

∥∥∥eAF tw0

∥∥∥
Lq

σ (Ω)
= ‖w(t;w0)‖Lq

σ (Ω) ≤ Cγ0e−γ0t ‖w0‖Lq
σ (Ω) , t ≥ 0 (2.17)

or for 0 < θ < 1 and δ > 0 arbitrarily small
∥∥∥Aθ

q eAF tw0

∥∥∥
Lq

σ (Ω)
=

∥∥
∥Aθ

q w(t;w0)

∥∥
∥

Lq
σ (Ω)

≤
⎧
⎨

⎩

Cγ0,θ e−γ0t
∥∥
∥Aθ

q w0

∥∥
∥

Lq
σ (Ω)

, t ≥ 0, w0 ∈ D(Aθ
q) (2.18a)

Cγ0,θ,δe−γ0t ‖w0‖Lq
σ (Ω) , t ≥ δ > 0. (2.18b)

As in the case of Theorem 2.1, we may replace the Lq
σ (Ω)-norm in (2.17), 1 < q < ∞,

with the

123



Applied Mathematics & Optimization

(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p-norm, 1 < p, q < ∞; in particular, with the B̃
2−2/p
q,p (Ω)-

norm

∥
∥∥eAF tw0

∥
∥∥

B̃
2−2/p
q,p (Ω)

= ‖w(t;w0)‖
B̃
2−2/p
q,p (Ω)

≤ Cγ0e−γ0t ‖w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0

1 < q < ∞, 1 < p <
2q

2q − 1
.

(2.19)

A proof of Theorem 2.2 is given in Sect. 6.

2.5 LocalWell-Posedness and Uniform (Exponential) Null Stabilization of the
Translated Nonlinear z-Problem (1.7) or (1.12) by Means of a Finite
Dimensional Explicit, Spectral Based Feedback Control Localized on!

Starting with the present section, the nonlinearity of problem (1.1) will impose for
d = 3 the requirement q > 3, see (8.16) below. As our deliberate goal is to obtain

the stabilization result in the space B̃
2−2/p
q,p (Ω) which does not recognize boundary

conditions, then the limitation p < 2q/2q−1 of this space applies. In conclusion, our
well-posedness and stabilization results will hold under the restriction q > 3, 1 <

p < 6/5 for d = 3, and q > 2, 1 < p < 4/3 for d = 2.

Theorem 2.3 For d = 3, let 1 < p < 6/5 and q > 3, while for d = 2, let 1 < p < 4/3
and q > 2. Consider the nonlinear z-problem (1.12) in the following feedback form

dz

dt
− Aq z + Nq z = Pq

(

m

(
K∑

k=1

(PN z, pk)ωuk

))

(2.20)

i.e. subject to a feedback control of the same structure as in the linear w-dynamics
(2.16), Here pk, uk are the same vectors as constructed in Theorem 2.1, and appearing
in (2.14) or (2.16). There exists a positive constant ρ > 0 such that, if the initial
condition z0 satisfies

‖z0‖
B̃
2−2/p
q,p (Ω)

< ρ, (2.21)

then problem (2.20) defines a unique solution z in the space (see (1.28), (1.30))

z ∈ X∞
p,q,σ ≡ L p(0,∞;D(Aq)) ∩ W 1,p(0,∞; Lq

σ (Ω)) (2.22)

↪→ C([0,∞); B̃
2−2/p
q,p (Ω)), (2.23)

where D(Aq) is topologically W 2,q(Ω) ∩ Lq
σ (Ω), see (1.8).

A proof of Theorem 2.3 is given in Sect. 8.
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Theorem 2.4 In the situation of Theorem 2.3, we have that such solution is uniformly

stable on the space B̃
2−2/p
q,p (Ω): there exist constants γ̃ > 0, Mγ̃ ≥ 1, such that said

solution satisfies

‖z(t; z0)‖
B̃
2−2/p
q,p (Ω)

≤ Mγ̃ e−γ̃ t ‖z0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0. (2.24)

A proof of Theorem 2.4 is given in Sect. 9. It will be critically based on the maximal
regularity of the semigroup eAF t giving the solution of the feedbackw-problem (2.16),
AF = AF,q . Remark 9.1, at the end of Sect. 9, will provide insight on the relationship
between γ̃ in the nonlinear case in (2.24) and γ0 in the corresponding linear case in
(2.17).

2.6 LocalWell-Posedness and Uniform (Exponential) Stabilization of the Original
Nonlinear y-Problem (1.1) in a Neighborhood of an Equilibrium Solution ye, by
Means of a Finite Dimensional Explicit, Spectral Based Feedback Control
Localized on!

The result of this subsection is an immediate corollary of Sect. 2.5.

Theorem 2.5 Let 1 < p < 6/5, q > 3, d = 3; and 1 < p < 4/3, q > 2, d = 2.
Consider the original N–S problem (1.1). Let ye be a given equilibrium solution as
guaranteed by Theorem 1.1 for the steady state problem (1.2). For a constant ρ > 0,

let the initial condition y0 in (1.1d) be in B̃
2−2/p
q,p (Ω) and satisfy

Vρ ≡
{

y0 ∈ B̃
2−2/p
q,p (Ω) : ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

≤ ρ
}
, ρ > 0. (2.25)

If ρ > 0 is sufficiently small, then

(i) for each y0 ∈ Vρ , there exists an interior finite dimensional feedback controller

u = F(y − ye) =
K∑

k=1

(PN (y − ye), pk)ωuk (2.26)

that is, of the same structure as in the translated N–S z-problem (2.20), with
the same vectors pk, uk in (2.14) or (2.16), such that the closed loop problem
corresponding to (1.1)

yt − νΔy + (y · ∇)y + ∇π = m(F(y − ye)) + f (x) in Q (2.27a)

div y = 0 in Q (2.27b)

y = 0 on Σ (2.27c)

y|t=0 = y0 in Ω (2.27d)
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rewritten abstractly after application of the Helmholtz projection Pq as

yt + ν Aq y + Nq y = Pq

[
m
(
F(y − ye)

)+ f (x)
]

(2.28a)

= Pq

[
m

( K∑

k=1

(
PN (y − ye), pk

)
ω

uk

)
+ f (x)

]
(2.28b)

y(0) = y0 ∈ B̃
2−2/p
q,p (Ω) (2.28c)

has a unique solution y ∈ C
([0,∞); B̃

2−2/p
q,p (Ω)

)
.

(ii) Moreover, such solution exponentially stabilizes the equilibrium solution ye in the

space B̃
2−2/p
q,p (Ω): there exist constants γ̃ > 0 and Mγ̃ ≥ 1 such that said solution

satisfies

‖y(t) − ye‖
B̃
2−2/p
q,p (Ω)

≤ Mγ̃ e−γ̃ t ‖y0 − ye‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0, y0 ∈ Vρ. (2.29)

Once the neighborhood Vρ is obtained to ensure the well-posedness, then the
values of Mγ̃ and γ̃ do not depend on Vρ and γ̃ can be made arbitrarily large
through a suitable selection of the feedback operator F.

See Remark 9.1 comparing γ̃ in (2.29) with γ0 in (2.17).

2.7 Results on the Real Space Setting

Here we shall complement the results of Theorems 2.1 through 2.5 by giving their
version in the real space setting. We shall quote from [7]. In the complexified setting
Lq

σ (Ω) + i Lq
σ (Ω) we have that the complex unstable subspace W u

N is,

W u
N = W 1

N + iW 2
N (2.30)

= space of generalized eigenfunctions {φ j }N
j=1 of the operator

Aq(= Au
q) corresponding to

its N unstable eigenvalues. (2.31)

Set φ j = φ1
j + iφ2

j with φ1
j , φ

2
j real. Then:

W 1
N = Re W u

N = span{φ1
j }N

j=1; W 2
N = I m W u

N = span{φ2
j }N

j=1. (2.32)

The stabilizing vectors pk, uk, k = 1, . . . , K are complex valued with uk ∈ W u
N ⊂

Lq
σ (Ω), and pk ∈ (W u

N )∗ ⊂ Lq ′
σ (Ω), as in (2.15).

The complex-valued uniformly stable linear w-system in (2.16) with K complex
valued stabilizing vectors admits the following real-valued uniformly stable counter-
part
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dw

dt
= Aqw+Pq

(

m

(
K∑

k=1

Re (wN (t), pk)ω Re uk −
K∑

k=1

Im (wN (t), pk)ω Im uk

))

(2.33)
with 2K ≤ N real stabilizing vectors, see [7, Eq. 3.52a, p. 1472]. If K = sup {�i , i =
1, . . . , M} is achieved for a real eigenvalue λi (respectively, a complex eigenvalue
λi ), then the effective number of stabilizing controllers is K ≤ N , as the generalized
functions are then real, since ye is real; respectively, 2K ≤ N , for, in this case,
the complex conjugate eigenvalue λ̄ j contributes an equal number of components in
terms of generalized eigenfunctions φλ̄ j

= φ̄λ j . In all cases, the actual (effective)
upper bound 2K is 2K ≤ N . For instance, if all unstable eigenvalues were real and
simple then K = 1, and only one stabilizing controller is actually needed.

Similarly, the complex-valued locally (near ye) uniformly stable nonlinear y-system
(2.28) with K complex-valued stabilizing vectors admits the following real-valued
locally uniformly stable counterpart

dy

dt
− ν Aq y + Nq y

= Pq

(

m

(
K∑

k=1

Re (y − ye, pk)ω Re uk −
K∑

k=1

Im (y − ye, pk)ω Im uk

))

(2.34)

with 2K ≤ N real stabilizing vectors, see [8, p. 43].

3 Algebraic Rank Condition for thewN-Dynamics in (2.8a) Under the
(Preliminary) Finite-Dimensional Spectral Assumption (FDSA)

Preliminaries: For i = 1, . . . , M , we now denote by {φi j }�i
j=1, {φ∗

i j }�i
j=1 the nor-

malized linearly independent eigenfunctions (on Lq
σ (Ω) and (Lq

σ (Ω))′ = Lq ′
σ (Ω),

respectively 1/q + 1/q ′ = 1 invoking property (A.2b) of Appendix A) corresponding
to the unstable distinct eigenvalues λ1, . . . , λM of A and λ̄1, . . . , λ̄M of A∗, respec-
tively:

Aφi j = λiφi j ∈ D(Aq) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ (Ω) ∈ Lq(Ω) (3.1a)

A∗φ∗
i j = λ̄iφ

∗
i j ∈ D(A∗

q) = W 2,q ′
(Ω) ∩ W 1,q ′

0 (Ω) ∩ Lq ′
σ (Ω) ∈ Lq ′

(Ω). (3.1b)

FDSA: We henceforth assume in this section that for each of the distinct eigenvalues
λ1, . . . , λM of A, algebraic and geometric multiplicity coincide:

W u
N ,i ≡ PN ,i Lq

σ (Ω) = span{φi j }�i
j=1; (W u

N ,i )
∗ ≡ P∗

N ,i (Lq
σ (Ω))∗ = span{φ∗

i j }�i
j=1;
(3.2)

Here PN ,i , P∗
N ,i are the projections corresponding to the eigenvalues λi and λ̄i , respec-

tively. For instance, PN ,i is given by an integral such as the one on the RHS of
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(2.3a), where now Γ is a closed smooth curve encircling the eigenvalue λi and no
other. Similarly P∗

N ,i . The space W u
N ,i = range of PN ,i is the algebraic eigenspace

of the eigenvalues λi , and �i = dim W u
N ,i is the algebraic multiplicity of λi , so that

�1 + �2 + · · · + �M = N . As a consequence of the FDSA, we obtain

W u
N ≡ PN Lq

σ (Ω) = span{φi j }M �i
i=1, j=1; (W u

N )∗ ≡ P∗
N (Lq

σ (Ω))∗ = span{φ∗
i j }M �i

i=1, j=1.

(3.3)
Without the FDSA, W u

N is the span of the generalized eigenfunctions of A, corre-
sponding to its unstable distinct eigenvalues {λ j }M

j=1; and similarly for (W u
N )∗ (see

the subsequent section). In other words, the FDSA says that the restrictionAu
N in (2.5)

is diagonalizable or that Au
N is semisimple on W u

N in the terminology of [29, p. 43].
Under the FDSA, any vector w ∈ W u

N admits the following unique expansion [29,

p. 12, Eq. (2.16)], [7, p. 1453], in terms of the basis {φi j }M �i
i=1, j=1 in Lq

σ (Ω) and its

adjoint basis [29, p. 12] {φ∗
i j }M �i

i=1, j=1 in (Lq
σ (Ω))∗:

W u
N � w =

M,�i∑

i, j

(w, φ∗
i j )φi j ; (φi j , φ

∗
hk) =

{
1 if i = h, j = k

0 otherwise
(3.4)

that is, the system consisting of {φi j } and {φ∗
i j }, i = 1, . . . , M, j = 1, . . . , �i , can

be chosen to form bi-orthogonal sequences. Here ( , ) denotes the scalar product
between W u

N and (W u
N )∗ [29, p. 12]. i.e. ultimately, the duality pairing in Ω between

Lq
σ (Ω) and (Lq

σ (Ω))∗. Next, we return to the wN -dynamics in (2.8a), rewritten here
for convenience

on W u
N : w′

N − Au
N wN = PN P(mu); wN (0) = PN w0. (3.5)

The term PN P(mu) expressed in terms of adjoint basesNext, letμ ∈ Lq(ω)where
q > 1. Here below we compute the RHS of the term PN P(mu) via the adjoint bases
expansion in (3.4), where we notice that P∗ P∗

N φ∗
i j = φ∗

i j because φ∗
i j ∈ D(A∗), so

that φ∗
i j is invariant under the projections P∗ and P∗

N . With ( f , g)ω =
∫

ω

f ḡ dω, we

obtain

W u
N � PN P(mu) =

M,�i∑

i, j=1

(PN P(mu), φ∗
i j )φi j =

M,�i∑

i, j=1

(mu, φ∗
i j )φi j =

M,�i∑

i, j=1

(u, φ∗
i j )ωφi j ,

(3.6)
so that the dynamics (3.5) on W u

N becomes
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on W u
N : w′

N − Au
N wN =

M,�i∑

i, j=1

(u, φ∗
i j )ωφi j . (3.7)

Selection of the scalar interior control function u in finite dimensional separated
form (with respect to K coordinates) Next, we select the control u of the form given
in (2.10)

u =
K∑

k=1

μk(t)uk, uk ∈ W u
N ⊂ Lq

σ (Ω), μk(t) = scalar (3.8)

so that the term in (3.6) in W u
N specializes to

W u
N � PN P(mu) =

M,�i∑

i, j=1

{
K∑

k=1

(uk, φ
∗
i j )ωμk(t)

}

φi j . (3.9)

Substituting (3.9) on the RHS of (3.5), we finally obtain

on W u
N : w′

N − Au
N wN =

M,�i∑

i, j=1

{
K∑

k=1

(uk, φ
∗
i j )ωμk(t)

}

φi j . (3.10)

The dynamics (3.10) in coordinate form on Wu
N Our next goal is to express the finite

dimensional dynamics (3.10) on the N -dimensional space W u
N in a component-wise

form. To this end, we introduce the following ordered bases βi and β of length �i and
N respectively:

βi = [φi1, . . . , φi�i ] : basis on W u
N ,i

β = β1 ∪ β2 ∪ · · · ∪ βM

= [φ11, . . . , φ1�1, φ21, . . . , φ2�2 , . . . , φM1, . . . , φM�M ] : basis on W u
N .

(3.11)

Thus, we can represent the N -dimensional vector wN ∈ W u
N as column vector ŵN =

[wN ]β as,

wN =
M,�i∑

i, j=1

w
i j
N φi j ; and set ŵN

= col[w1,1
N , . . . , w

1,�1
N , . . . , w

i,1
N , . . . , w

i,�i
N , . . . , w

M,1
N , . . . , w

M,�M
N ]. (3.12)

Remark 3.1 The eigenfunction φi j belongs to Lq
σ (Ω) as well as to D(Aq) =

D(Aq). Thus, by real/complex interpolation, see (1.16)/(1.21) they also belong to(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p as well as to
[D(Aq), Lq

σ (Ω)
]
1−α

= D(Aα
q ), 0 ≤ α ≤ 1; in

particular, φi j ∈ B̃
2−2/p
q,p (Ω). See (B.11) or (B.12) in Appendix B. Thus, exponential

decay in C
N of the CN -vector ŵN translates at once into exponential decay with the
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same rate in any of the spaces Lq
σ (Ω),

(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p,D(Aα
q ), in particular,

B̃
2−2/p
q,p (Ω) for the vector wN , views as a vector on any one of these spaces. This

remark applies to wN (t) and uN (t) in Theorem 2.1, Eqs. (2.12), (2.13) as well as
Theorem 2.2, Eqs. (2.17)–(2.19).

Lemma 3.1 In C
N , with respect to the ordered basis β : {φi j }M �i

i=1, j=1 of normalized
eigenfunctions of Au

N , we may rewrite system (3.10) = (3.12) = (2.8a) as

(ŵN )′ − ΛŵN = U μ̂K (3.13)

where

Λ =

⎡

⎢⎢⎢⎢
⎣

λ1 I1 0
λ2 I2

. . .

0 λM IM

⎤

⎥⎥⎥⎥
⎦

: N × N , Ii : �i × �i identity (3.14)

Ui =

⎡

⎢⎢
⎢
⎣

(u1, φ
∗
i1)ω . . . (uK , φ∗

i1)ω
(u1, φ

∗
i2)ω . . . (uK , φ∗

i2)ω
...

. . .
...

(u1, φ
∗
i�i

)ω . . . (uK , φ∗
i�i

)ω

⎤

⎥⎥
⎥
⎦

: �i × K ; U =

⎡

⎢⎢
⎢
⎣

U1
U2
...

UM

⎤

⎥⎥
⎥
⎦

: N × K ;

μ̂K =

⎡

⎢⎢
⎢
⎣

μ1
μ2
...

μK

⎤

⎥⎥
⎥
⎦

: K × 1; (3.15)

where ( f , g)ω =
∫

ω

f ḡ dω and we take K ≥ �i , i = 1, . . . , M. Thus (3.13) gives

the dynamics on W u
N as a linear N-dimensional ordinary differential equation in

coordinate form in C
N .

Proof Recalling the basis βi and the definitions of Ui in (3.15), we can rewrite the
term in (3.9) with respect to this basis as

[PN P(mu)]βi = Ui μ̂K : �i × 1; (3.16)

Then with respect to the basis β in (3.11) and recalling the definition U in (3.15), we
can rewrite the term (3.9) with respect to this basis as

[PN P(mu)]β =

⎡

⎢⎢
⎢
⎣

U1
U2
...

UM

⎤

⎥⎥
⎥
⎦

μ̂K =

⎡

⎢⎢
⎢
⎣

U1μ̂K

U2μ̂K
...

UM μ̂K

⎤

⎥⎥
⎥
⎦

= U μ̂K : N × 1. (3.17)
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Finally, clearlyAu
N becomes the diagonal matrix Λ in (3.14) with respect to the basis

β, recalling its eigenvalues in (3.1). ��
The following is the main result of the present section.

Theorem 3.1 Assume the FDSA. It is possible to select vectors u1, . . . , uK ∈
Lq

σ (ω), q > 1, K = sup {�i : i = 1, . . . , M}, such that the matrix Ui of size �i × K
in (3.15) satisfies

rank[Ui ] = f ull = �i or rank

⎡

⎢⎢⎢
⎣

(u1, φ
∗
i1)ω . . . (uK , φ∗

i1)ω
(u1, φ

∗
i2)ω . . . (uK , φ∗

i2)ω
...

...

(u1, φ
∗
i�i

)ω . . . (uK , φ∗
i�i

)ω

⎤

⎥⎥⎥
⎦

= �i ; �i × K for each i = 1, . . . , M . (3.18)

Proof Step 1 By selection, see (3.1) and statement preceding it, the set of vectors

φ∗
i1, . . . , φ

∗
i�i

is linearly independent in Lq ′
σ (Ω), q ′ is the Hölder conjugate of q, 1/q +

1/q ′ = 1, for each i = 1, . . . , M . Next, if the set of vectors {φ∗
i1, . . . , φ

∗
i�i

} were

linearly independent in Lq ′
σ (Ω), i = 1, . . . , M , the desired conclusion (3.18) for the

matrix Ui to be full rank, would follow for infinitely many choices of the vectors
u1, . . . , uK ∈ Lq

σ (Ω).
Claim: The set {φ∗

i1, . . . , φ
∗
i�i

} is linearly independent on Lq ′
σ (ω), for each i =

1, . . . , M .
The proof will critically depend on a unique continuation result [60] see also [7,

Lemma 3.7, p. 1466]. By contradiction, let us assume that the vectors {φ∗
i1, . . . , φ

∗
i�i

} ∈
Lq ′

σ (Ω) are instead linearly dependent, so that

φ∗
i�i

=
�i −1∑

j=1

α jφ
∗
i� j

in Lq ′
σ (Ω) (3.19)

with constants α j not all zero. We shall then conclude by [7, Lemma 3.7] and [60]
below, that in fact φ∗

i�i
≡ 0 on all of Ω as well, thereby making the system {φ∗

i j , j =
1, . . . , �i } linearly dependent on Ω , a contradiction. To this end, define the following

function (depending on i) in Lq ′
σ (Ω)

φ∗ =
⎡

⎣
�i −1∑

j=1

α jφ
∗
i� j

− φ∗
i�i

⎤

⎦ ∈ Lq ′
σ (Ω), i = 1, . . . , M . (3.20)

As each φ∗
i j is an eigenvalue ofA∗ (or (Au

N )∗) corresponding to the eigenvalue λ̄i , see
(3.1), so is the linear combination φ∗. This property, along with (3.19) yields that φ∗
satisfies the following eigenvalue problem for the operator A∗ (or (Au

N )∗):

A∗φ∗ = λ̄φ∗, div φ∗ = 0 in Ω; φ∗ = 0 in ω, by (3.19). (3.21)
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But the linear combination φ∗ in (3.20) of the eigenfunctions φ∗
i j ∈ D(A∗) satisfies

itself the Dirichlet B.C φ∗∣∣
∂Ω

= 0. Thus the explicit PDE version of problem (3.21)
is

−νΔφ∗ − (Le)
∗φ∗ + ∇ p∗ = λ̄iφ

∗ in Ω; (3.22a)

div φ∗ = 0 in Ω; (3.22b)

φ∗|∂Ω = 0; φ∗ = 0 in ω; (3.22c)

φ∗ ∈ D(A∗); (Le)
∗φ∗ = (ye.∇)φ∗ + (φ∗.∇)∗ye, (3.23)

where ( f .∇)∗ye is a d-vector whose i th component is
∑d

j=1(Di ye j ) f j [8, p. 55].
Step 2 The critical point is now that the over-determined problem (3.22) implies the
following unique continuation result:

φ∗ = 0 in Lq ′
σ (Ω); or by (3.20) φ∗

i�i
= α1φ

∗
i1+α2φ

∗
i2+· · ·+α�i −1φ

∗
i�i −1 in Lq ′

σ (Ω),

(3.24)

i.e. the set {φ∗
i1, . . . , φ

∗
i�i

} in linearly dependent on Lq ′
σ (Ω). But this is false, by the

very selection of such eigenvectors, see (3.1) and statement preceding it. Thus, the
condition (3.24) cannot hold.

The required unique continuation result is established in [7, Lemma3.7] or [60]. The
original proof is done in the Hilbert setting but we may invoke the same result because
φ∗ has more regularity and integrability than required since φ∗ is an eigenfunction of
A∗. Thus the claim is established. In conclusion: it is possible to select, in infinitely
many ways, interior functions u1, . . . , uK ∈ Lq

σ (Ω) such that the algebraic full rank
condition (3.18) holds true for each i = 1, . . . , M . ��

4 Algebraic Rank Conditions for the DynamicswN in (2.8a) in the
General Case

In the present section we dispense with the FDSA (3.2). More precisely, we shall
obtain Theorem 2.1 without assuming the FDSA (3.2). Thus now

W u
N = space of generalized eigenfunctions of Aq(= Au

N ) (4.0)

corresponding to its distinct unstable eigenvalues.

Warning: In this section we shall denote by �i the geometric multiplicity of the eigen-
value λi and by Ni its algebraic multiplicity.
Step 1 To treat this computationally more complicated case we shall, essentially
invoke the classical result on controllability of a finite-dimensional, time-invariant
system {A,B},A : N × N ,B : N × p where A is given in Jordan form J . Let again
λ1, λ2, . . . , λM be the distinct eigenvalues of A = J . Let Ai denote all the Jordan
blocks associated with the eigenvalue λi ; let �i be the number of Jordan blocks of A
(i.e the number of linearly independent eigenvectors associated with the eigenvalue
λi ). Let Ai j be j th Jordan block in Ai corresponding to a Jordan cycle of length N i

j .
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That is:

A = diag{A1,A2, . . . ,AM }; Ai = diag{Ai1,Ai2, . . . ,Ai�i }. (4.1)

Partition the matrix B accordingly:

A
(N×N )

=

⎡

⎢⎢⎢⎢⎢
⎣

A1 0
A2

. . .

0 AM

⎤

⎥⎥⎥⎥⎥
⎦

; B
(N×p)

=

⎡

⎢⎢⎢
⎣

B1
B2
...

BM

⎤

⎥⎥⎥
⎦

(4.2)

Ai
(Ni ×Ni )

=

⎡

⎢
⎢⎢⎢⎢
⎣

Ai1 0
Ai2

. . .

0 Ai�i

⎤

⎥
⎥⎥⎥⎥
⎦

; Bi
(Ni ×p)

=

⎡

⎢⎢⎢
⎣

Bi1
Bi2
...

Bi�i

⎤

⎥⎥⎥
⎦

(4.3)

Ai j
(Ni

j ×Ni
j )

=

⎡

⎢⎢
⎢⎢⎢
⎣

λi 1 0
λi 1

. . . 1

0 λi

⎤

⎥⎥
⎥⎥⎥
⎦

; Bi j
(Ni

j ×p)

=

⎡

⎢
⎢⎢
⎣

b1i j

b2i j
...

bLi j

⎤

⎥
⎥⎥
⎦

. (4.4)

If Eλi and Kλi denote the eigenspace and the generalized eigenspace associated with
the eigenvalue λi , i = 1, . . . , M , then dim Eλi = �i = # of Jordan blocks in Ai , dim
Kλi = Ni , N i

j = length of jth-cycle associated with λi ; j = 1, . . . , �i . We have dim

W u
N = N =

M∑

i=1

Ni =
M∑

i=1

�i∑

j=1

N i
j . In (4.4), the last row of Bi j is denoted by bLi j . The

following result is classical [11, p. 165].

Theorem 4.1 [33, Theorem 3.1] The pair {J ,B}, J : N ×N, Jordan form,B : N × p is
controllable if and only if, for each i = 1, . . . , M (that is for each distinct eigenvalue)
the rows of the �i × p matrix constructed with all “last” rows bLi1, . . . , bLi�i

B
L
i =

⎡

⎢⎢⎢
⎣

BLi1
BLi2

...

BLi�i

⎤

⎥⎥⎥
⎦

: �i × p (4.5)

are linearly independent (on the field of complex numbers). [A direct proof uses Hautus
criterion for controllability [11].]

We next apply the above Theorem 4.1 to thewN -problem (2.8a) and (3.5). To this end,
we select a Jordan basis βi for the operator (Au

N )i on W u
N ,i given by
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Jordan Basis:

βi =
{

e11(λi ), e12(λi ), . . . , e1
Ni
1
(λi )

...e21(λi ), e22(λi ), . . . , e2
Ni
2
(λi )

... . . .
...e�i
1 (λi ), e�i

2 (λi ), . . . , e�i

N i
�i

(λi )
}
. (4.6a)

Here the first vectors of each cycle: e11(λi ), e21(λi ), . . . , e�i
1 (λi ) are eigenvectors of

(Au
N )i corresponding to the eigenvalue λi , while the remaining vectors in βi are

corresponding generalized eigenvectors. Thus, in the notation (3.1), we have

φi1 = e11(λi ); φi2 = e21(λi ); . . . ; φi�i = e�i
1 (λi ). (4.6b)

Next, we can choose a bi-orthogonal basis β∗
i of ((Au

N )∗)i corresponding to its eigen-
value λ̄i given by
Bi-orthogonal Basis:

β∗
i =

{
Φ1

1 (λ̄i ),Φ
1
2 (λ̄i ), . . . , Φ

1
Ni
1
(λ̄i )

...Φ2
1 (λ̄i ),Φ

2
2 (λ̄i ), . . . , Φ

2
Ni
2
(λ̄i )

... . . .
...Φ

�i
1 (λ̄i ),Φ

�i
2 (λ̄i ), . . . , Φ

�i

N i
�i

(λ̄i )
}
. (4.7a)

Thus, in the notation (3.1), we have

φ∗
i1 = Φ1

1 (λ̄i ); φ∗
i2 = Φ2

1 (λ̄i ); . . . ; φ∗
i�i

= Φ
�i
1 (λ̄i ). (4.7b)

In the bi-orthogonality relationship between the vectors in (4.6) and those in (4.7),
the first eigenvector e11(λi ) of the first cycle in βi is associated with the last generalized
eigenvector Φ1

Ni
1
(λ̄i ) of the first cycle in β∗

i ; etc, the last generalized eigenvector

e1
Ni
1
(λi ) of the first cycle in βi is associated with the first eigenvector Φ1

1 (λ̄i ) of the

first cycle in β∗
i ; etc. (Fig. 1).

Fig. 1 Relation between the generalized eigenvectors ofAu
N and (Au

N )∗
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Thus, if f ∈ W u
N ,i , the following expression holds true:

f = ( f , Φ1
Ni
1
(λ̄i ))e

1
1(λi ) + · · · + ( f , Φ1

1 (λ̄i ))e
1
Ni
1
(λi )

+ · · · + ( f , Φ
�i

N i
�i

(λ̄i ))e
�i
1 (λi ) + · · · + ( f , Φ

�i
1 (λ̄i ))e

�i

N i
�i

(λi ). (4.9)

This expansion is the counterpart of
∑�i

j=1
(w, φ∗

i j )φi j ∈ W u
N ,i in (3.4) under the

FDSA. Next, we apply (4.9) to f = PN P(mu). More specifically, we shall write the
vector representation of PN P(mu)with respect to the basis βi in (4.6a), andmoreover,
in line with Theorem 4.1, we shall explicitly note only the coordinates corresponding
to the vectors e1

Ni
1
(λi ), e2

Ni
2
(λi ), . . . , e�i

N i
�i

(λi ), each being the last vector of each cycle

in (4.6a).

[PN P(mu)]βi =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

× × ×(
u, Φ1

1 (λ̄i )
)

ω
. . . . . . . . . . . . .

× × ×(
u, Φ2

1 (λ̄i )
)

ω
. . . . . . . . . . . . .

× × ×(
u, Φ

�i
1 (λ̄i )

)

ω

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

←− last row of the 1st cycle

←− last row of the 2nd cycle

←− last row of the �th
i cycle

(4.10)

The symbol × × × corresponds to terms which we do not care about. In fact, to
exemplify, since P∗ P∗

N Φ1
1 (λ̄i ) = Φ1

1 (λ̄i ) see above (3.6)

(
PN P(mu),Φ1

1 (λ̄i )
)

Ω
= (

mu, Φ1
1 (λ̄i )

)
Ω

= (
u, Φ1

1 (λ̄i )
)
ω
. (4.11)

This is the relevant counterpart of expansion PN P(mu) =
∑M,�i

i, j=1
(u, Φ∗

i j )ωΦi j

in (3.6) under the FDSA. Notice that (4.10) involves only the eigenvectors
Φ1

1 (λ̄i ),Φ
2
1 (λ̄i ), . . . , Φ

�i
1 (λ̄i ) of (Au

N )∗ corresponding to the eigenvalue λ̄i . Next,

recalling (2.10): u =
∑K

k=1
μk(t)uk , we obtain that the corresponding counterpart

of (3.15) is
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Ui =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

× × ×
(u1, Φ

1
1 )ω (u2, Φ

1
1 )ω . . . (uK , Φ1

1 )ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× × ×
(u1, Φ

2
1 )ω (u2, Φ

2
1 )ω . . . (uK , Φ2

1 )ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× × ×
(u1, Φ

�i
1 )ω (u2, Φ

�i
1 )ω . . . (uK , Φ

�i
1 )ω

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

←− row bLi1(u)

←− row bLi2(u)

←− row bLi�i (u)

(4.12)

Again, the relevant rows exhibited in (4.12) correspond to the last rows of each Jordan
sub-block {Ai1,Ai2, . . . ,Ai�i } in (4.3). In (4.12) we have displayed only such relevant
rows: bLi1, bLi2, . . . , bLi�i According to Theorem 4.1, the test for controllability as
applied to the system (3.5), i.e to the pair {Au

N , B}, B = col [B1, B2, . . . , BM ], is

rank

⎡

⎢⎢⎢
⎣

row bLi1 of Bi

row bLi2 of Bi
...

row bLi�i of Bi

⎤

⎥⎥⎥
⎦

= rank

⎡

⎢⎢⎢
⎣

(
u1, Φ

1
1

(
λ̄i
))

ω
. . .

(
uK , Φ1

1

(
λ̄i
))

ω(
u1, Φ

2
1

(
λ̄i
))

ω
. . .

(
uK , Φ2

1

(
λ̄i
))

ω
...

...(
u1, Φ

�i
1

(
λ̄i
))

ω
. . .

(
uK , Φ

�i
1

(
λ̄i
))

ω

⎤

⎥⎥⎥
⎦

= �i

(4.13)
i = 1, . . . , M . But this is exactly the test obtained in (3.18) via the identification in
(4.7b):

φ∗
i1 = Φ1

1 (λ̄i ), φ
∗
i2 = Φ2

1 (λ̄i ), . . . , φ
∗
i�i

= Φ
�i
1 (λ̄i ) (4.14)

involving only eigenvectors, not generalized eigenvectors. Thus the remainder of the
proof in Sect. 3 past (3.18) applies and shows Theorem 3.1 without the FDSA. We
have

Theorem 4.2 With reference to Ui in (4.12), it is possible to select interior vectors
u1, . . . , uK ∈ W u

N ⊂ Lq
σ (Ω), K = sup {�i : i = 1, . . . , M}, such that the algebraic

conditions (4.13) hold true, i = 1, . . . , M.

We close this section by writing down the counterpart of the expansion (3.10) for
the wN -dynamics in terms of the basis β = β1 ∪ β2 ∪ · · · ∪ βM , see (3.11), (4.6a),
(4.9) of the generalized eigenvectors in the present general case.

onW u
N : w′

N − Au
N wN

=
M∑

i=1

{ K∑

k=1

[
(uk, Φ

1
Ni
1
(λ̄i ))ωμk(t)

]
e11(λi ) + · · · + . . .

+
K∑

k=1

[
(uk, Φ

1
1 (λ̄i ))ωμk(t)

]
e1

Ni
1
(λi )

+ · · · + . . .
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+
K∑

k=1

[
(uk, Φ

�i

N i
�i

(λ̄i ))ωμk(t)

]
e�i
1 (λi ) + · · · + . . .

+
K∑

k=1

[
(uk, Φ

�i
1 (λ̄i ))ωμk(t)

]
e�i

N i
�i

(λi )

}
. (4.15)

5 Proof of Theorem 2.1: Arbitrary Decay Rate of thewN-Dynamics
(3.5) or (4.15) (or (3.13) Under the FDSA) by a Suitable
Finite-Dimensional Interior Localized Feedback Control u

We are now in a position to obtain Theorem 2.1, which we restate for convenience.
Let 1 < q < ∞.

Theorem 5.1 Let λ1, . . . , λM be the unstable distinct eigenvalues of A and let ω be
an arbitrarily small open portion of the interior with smooth boundary ∂ω. By virtue
of Theorem 4.2, pick interior vectors [u1, . . . , uK ] in W u

N ⊂ Lq
σ (Ω) such that the

rank conditions (4.13) hold true, with K = sup {�i : i = 1, . . . , M} (respectively,
Theorem 3.1 and the (same) rank conditions (3.18) under FDSA).

Then: Given γ > 0 arbitrarily large, there exists a K -dimensional interior con-
troller u = uN acting on ω, of the form given by (3.8), with the vectors uk given by
Theorem 4.2 via the rank conditions (4.13), such that, once inserted in (4.15) yield the
estimate

‖wN (t)‖Lq
σ (Ω) + ‖uN (t)‖Lq

σ (ω) ≤ Cγ e−γ t ‖PN w0‖Lq
σ (Ω) , t ≥ 0, (5.1a)

where the Lq
σ (Ω)-norm in (5.1a)may be replaced by the

(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p- norm

, 1 < p, q < ∞; in particular the B̃
2−2/p
q,p (Ω)-norm, 1 < q < ∞, 1 < p <

2q

2q − 1
:

‖wN (t)‖
B̃
2−2/p
q,p (Ω)

+ ‖uN (t)‖
B̃
2−2/p
q,p (Ω)

≤ Cγ e−γ t ‖PN w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0.

(5.1b)
Here, wN is the solution of (4.15) (respectively (3.10) under the FDSA) , i.e., (3.5)
corresponding to the control u = uN in (3.8). Moreover, such controller u = uN can
be chosen in feedback form: that is, with reference to the explicit expression (3.8) for

u, of the form μk(t) = (wN (t), pk)ω for suitable vectors pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω)

depending on γ . In conclusion, wN in (5.1) is the solution of the equation on W u
N (see

(3.5)) specialized as (4.15)

w′
N − Au

N wN = PN P

(

m

(
K∑

k=1

(wN (t), pk)ωuk

))

,

×uk ∈ W u
N ⊂ Lq

σ (Ω), pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω) (5.2)
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rewritten as

w′
N = ĀuwN , wN (t) = eĀu t PN w0, wN (0) = PN w0. (5.3)

Proof Step 1 Following [33] the proof consists in testing controllability of the linear,
finite-dimensional system (3.5), in short, the pair

{J , B}, B = U : N × K , K = sup {�i ; i = 1, . . . , M} (5.4)

U = [U1, . . . , UM ]tr, Ui given by (4.12) (or by (3.15) under FDSA). J is the Jordan
form of Au

N with respect to the Jordan basis β = β1 ∪ · · · ∪ βM , βi being given by
(4.6a). But the rank conditions (4.13) precisely asserts such controllability property
of the pair {Au

N = J , B}, in light of Theorem 4.1.
Step 2 Having established the controllability criterion for the pair {Au

N = J , B} then
by the well-known Popov’s criterion in finite-dimensional theory, there exists a real
feedback matrix Q = K × N , such that the spectrum of the matrix (J + B Q) =
(J + U Q) may be arbitrarily preassigned; in particular, to lie in the left half-plane
{λ : Re λ < −γ < −Re λN+1}, as desired. The resulting closed-loop system

(ŵ′
N ) − J ŵN = UuN , (5.5)

is obtained with C
N -vector uN = QŵN , Q being the K × N matrix with row vec-

tors [ p̂1, . . . , p̂K ], μk
N = (ŵN , p̂k) in the CN -inner product and hence decays with

exponential rate ∣∣ŵN (t)
∣∣
CN ≤ Cγ e−γ t

∣∣ŵN (0)
∣∣
CN , t ≥ 0. (5.6)

But the N -dimensional vector wN ∈ W u
N ⊂ Lq

σ (Ω) is represented by the CN -vector
ŵN = [wN ]β , where in the general case of Sect. 4, β is a Jordan basis of generalized
eigenfunctions of Aq(= Au

N ) corresponding to its M distinct unstable eigenvalues.
Such basis is given by β = β1 ∪ β2 ∪ · · · ∪ βM , where a representative βi is given in
(4.6a). The whole basis can be read off from (4.15). In the special case of Sect. 3 where
the FDSA holds, the basis β in W u

N is given by the eigenfunctions of the Au
N corre-

sponding to its M distinct eigenvalues, see (3.11). But such eigenfunctions/generalized
eigenfunctions are in D(Aq), hence smooth. Thus, the exponential decay in (5.6) of
the coordinate vector ŵN in C

N translates in same exponential decay of the vector
wN (t) ∈ W u

N not only in the Lq
σ (Ω)-norm but also in the D(Aq) = D(Aq)-norm,

hence in the
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p-norm, in particular in the B̃
2−2/p
q,p (Ω)-norm. See

also Remark 3.1. Thus, returning from C
N × C

N back to W u
N × (W u

N )∗, there exist
suitable p1, . . . , pK ∈ (W u

N )∗ ⊂ Lq ′
σ (Ω), such that μk

N = (wk, pk), whereby the
closed-loop system (5.2) corresponds precisely to (4.15) via PN P(mu) written in
terms of the Jordan basis of eigenvectors β in (4.6a).

Thus not only we obtain in view of (5.2), (5.3) and (5.6)

‖wN (t)‖Lq
σ (Ω) =

∥∥∥eĀu t PN w0

∥∥∥
Lq

σ (Ω)
≤ Cγ e−γ t ‖PN w0‖Lq

σ (Ω) , t ≥ 0, (5.7)
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but also, say 1 < q < ∞, 1 < p <
2q

2q − 1

‖wN (t)‖
B̃
2−2/p
q,p (Ω)

=
∥
∥∥eĀu t PN w0

∥
∥∥

B̃
2−2/p
q,p (Ω)

≤ Cγ e−γ t ‖PN w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0.

(5.8)
Hence with uN = QwN , we obtain not only

‖wN (t)‖Lq
σ (Ω) + ‖uN (t)‖Lq

σ (ω) = ‖wN (t)‖Lq
σ (Ω) + ‖QwN (t)‖Lq

σ (Ω) (5.9)

≤ ( |Q| + 1
) ∥∥∥eĀu t PN w0

∥∥∥
Lq

σ (Ω)
≤ Cγ e−γ t ‖PN w0‖Lq

σ (Ω) (5.10)

but also, say

‖wN (t)‖
B̃
2−2/p
q,p (Ω)

+ ‖uN (t)‖
B̃
2−2/p
q,p (Ω)

≤ Cγ e−γ t ‖PN w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0.

(5.11)
��

Remark 5.1 Under the FDSA, checking controllability of the system (3.13) is easier.
To this end, we can pursue, as usual, two strategies.

A first strategy invokes the well-known Kalman controllability criterion by con-
structing the N × K N Kalman controllability matrix

K = [B,ΛB,Λ2B, . . . , ΛN−1B] =

⎡

⎢⎢
⎣

B1 J1B1 . . . J N−1
1 B1

B2 J2B2 . . . J N−1
2 B2

. . . . . . . . . . . . . . . . . . . . . . .

BM JM BM . . . J N−1
M BM

⎤

⎥⎥
⎦ , (5.12)

B = col [B1, B2, . . . , BM ], Bi = Ui : �i × �i (5.13)

of size N × K N , N = dim W u
N , Ji = λi Ii : �i × �i , Bi = Ui : �i × �i , and

requiring that it be full rank.
rank K = full = N . (5.14)

In view of generalized Vandermond determinants, we then have

rank K = N if and only if rank Ui = �i (full) i = 1, . . . , M, (5.15)

precisely as guaranteed by (3.18). A second strategy invokes the Hautus controllability
criterion:

rank[Λ − λi I , B] = rank[Λ − λi I , U ] = N (full) (5.16)

for all unstable eigenvaluesλi , 1, . . . , M , yielding again the condition that rank [Ui ] =
�i , 1, . . . , M , as generated by (3.18).
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6 Proof of Theorem 2.2: Feedback Stabilization of the Original
Linearizedw-Oseen System (1.13) by a Finite Dimensional
Feedback Controller

The main result on the feedback stabilization of the linearized w-system (1.13) =
(2.1) by a finite dimensional controller is Theorem 2.2, here reformulated in part for
convenience in the context of the development of the present proof. Throughout this
section 1 < q < ∞.

Theorem 6.1 Let the Oseen operatorA have N possibly repeated unstable eigenvalues
{λ j }N

j=1 of which M are distinct. Let ε > 0 and set γ0 = |Re λN+1| − ε. Consider the
setting of Theorem 5.1 so that, in particular, the feedback finite-dimensional control

u = uN is given by u = uN =
∑K

k=1
(wN (t), pk)uk and satisfies estimates (5.1)

with γ > 0 arbitrarily large, for vectors p1, . . . , pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω) and vectors
u1, . . . , uk ∈ W u

N ⊂ Lq
σ (Ω) given by Theorem 5.1. Thus, the linearized problem (2.1)

specializes to (2.16)

dw

dt
= Aw + P

(

m

(
K∑

k=1

(wN (t), pk)ωuk

))

≡ AF w. (6.1)

Here AF = AF,q is the generator of a s.c. analytic semigroup on either the space
Lq

σ (Ω), 1 < q < ∞, or on the space
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p, 1 < p, q < ∞,

in particular on the space B̃
2−2/p
q,p (Ω), 1 < q, 1 < p < 2q/2q−1. Moreover, such

dynamics w (equivalently, generator AF ) in (6.1) is uniformly stable in each of these
spaces, say

∥
∥∥eAF tw0

∥
∥∥

Lq
σ (Ω)

= ‖w(t, w0)‖Lq
σ (Ω) ≤ Cγ0e−γ0t ‖w0‖Lq

σ (Ω) , t ≥ 0. (6.2)

or say

∥∥
∥eAF tw0

∥∥
∥

B̃
2−2/p
q,p (Ω)

= ‖w(t, w0)‖
B̃
2−2/p
q,p (Ω)

≤ Cγ0e−γ0t ‖w0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0.

(6.3)

Proof Step 1 According to Theorem 5.1, the finite-dimensional system wN in (2.8a)
= (3.5) is uniformly stabilized by the finite dimensional feedback controller u = uN

given in the RHS of (5.2) = RHS of (6.1) with an arbitrary preassigned decay rate
γ > 0, as given, either in the Lq

σ (Ω)-norm, or in the
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p-norm in

(5.1a), or in particular, in the B̃
2−2/p
q,p (Ω)-norm as in (5.1b).

Step 2 Next, we examine the impact of such constructive feedback control uN on the
ζN -dynamics (2.8b), whose explicit solution can be given by a variation of parameter
formula,

ζN (t) = eA
s
N tζ(0) +

∫ t

0
eA

s
N (t−r)(I − PN )P(muN (r))dr . (6.4)
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in the notation As
N = (I − PN )A, A = Aq , of (2.5). We now recall from Sect. 1.10

(d) that the Oseen operatorAq generates a s.c. analytic semigroup not only on Lq
σ (Ω)

but also on
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p, in particular on B̃
2−2/p
q,p (Ω). Hence the feedback

operator AF = AF,q similarly generates a s.c. analytic semigroup on these spaces,
being a bounded perturbation of the Oseen operator A = Aq . So we can estimate
(6.4) in the norm of either of these spaces. Furthermore, the (point) spectrum of the
generator As

N on W s
N satisfies sup{Re σ(As

N )} < − |λN+1| < −γ0 by assumption.

We shall carry our the supplemental computations explicitly in the space B̃
2−2/p
q,p (Ω)

for the case of greatest interest in the nonlinear analysis of Sects. 8, 9. In the norm of

B̃
2−2/p
q,p (Ω), we obtain from (6.4) since the operators (I − PN ), P are bounded

‖ζN (t)‖ ≤
∥
∥∥eA

s
N tζ(0)

∥
∥∥+ C

∫ t

0

∥
∥∥eA

s
N (t−τ)

∥
∥∥ ‖uN (τ )‖ dτ (6.5)

‖ζN (t)‖
B̃
2−2/p
q,p (Ω)

≤ Ce−γ0t ‖ζ(0)‖
B̃
2−2/p
q,p (Ω)

+ C
∫ t

0
e−γ0(t−r)e−γ r dr ‖PN w0‖

B̃
2−2/p
q,p (Ω)

. (6.6)

recalling estimate (2.13) or (5.11) for ‖uN ‖ in the B̃
2−2/p
q,p (Ω)-norm. Since we may

choose γ > γ0 by Theorem 2.1 (or Theorem 5.1), we then obtain

‖ζN (t)‖
B̃
2−2/p
q,p (Ω)

≤ C

[

e−γ0t + e−γ0t 1 − e−(γ−γ0)t

γ − γ0

]

‖w0‖
B̃
2−2/p
q,p (Ω)

(6.7)

≤ Ce−γ0t ‖w0‖
B̃
2−2/p
q,p (Ω)

, ∀t > 0. (6.8)

Then, estimate (6.8) for ζN (t) along with estimate (2.13) = (5.11) for wN (t) with

γ > γ0 yields the desired estimate (6.3) for w = wN + ζN in the B̃
2−2/p
q,p (Ω)-norm:

‖w(t)‖
B̃
2−2/p
q,p (Ω)

≤ ‖ζN (t)‖
B̃
2−2/p
q,p (Ω)

+ ‖wN (t)‖
B̃
2−2/p
q,p (Ω)

(6.9)

≤ [
C̃γ0e−γ0t + Cγ e−γ t ] ‖w0‖

B̃
2−2/p
q,p (Ω)

(6.10)

≤ Cγ0e−γ0t ‖w0‖
B̃
2−2/p
q,p (Ω)

(6.11)

and (6.3) is proved. Similar computations from (6.4) to (6.8) apply in the Lq
σ (Ω)-norm

for ζN (t), as the Oseen operator generates a s.c. analytic semigroup on Lq
σ (Ω) from

Sect. 1.10 (d). This, coupled with estimate (2.12) for wN (t), yields estimate (6.2) for
the w = wN + ζN with Lq

σ (Ω)-norm. Theorem 6.1 is established. ��
Remark 6.1 Computations such as those in [7, p. 1473] using the analyticity of the
Oseen semigroup eAq t show the alternative estimates (2.18a-b) of Theorem 2.2.
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7 Maximal Lp Regularity on Lq�(˝) and for T = ∞ of the s.c. Analytic

Semigroup eAF,qt Yielding UniformDecay of the Linearized
w-Problem (2.1), Once Specialized as in (6.1) of Theorem 2.2 =
Theorem 6.1.

In this section, we return to thew-feedback problem (6.1),wt = AF,qw, where pk, uk

are the vectors claimed and constructed in Theorem 2.1, or Theorem 2.2 (Theorem 6.1)
and Remark 3.1. As stated in Theorem 6.1, problem (6.1) defines a s.c. analytic,
uniformly stable semigroup eAF,q t as in (6.2):

∥∥∥eAF,q t
∥∥∥L(·) ≤ Mγ0e−γ0t , t ≥ 0 (7.1)

where (·) denotes the space Lq
σ (Ω) or else

(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p, in particular

B̃
2−2/p
q,p (Ω). Define the “good” bounded operator

Gw = m

(
K∑

k=1

(PN w, pk)ωuk

)

, uk ∈ W u
N ⊂ Lq

σ (Ω), pk ∈ (W u
N )∗ ⊂ Lq ′

σ (Ω),

(7.2)
By Theorem 1.6, the Oseen operator Aq enjoys maximal L p regularity on Lq

σ (Ω) up
to T < ∞, see (1.48) as well as (1.50), (1.52). Then the same property holds true up
to T < ∞ forAF,q = Aq + G, as G is a bounded operator [15,31,64]. We now seek to
establish maximal L p regularity up to T = ∞ of AF,q , i.e. of the following problem

wt − Δw + Le(w) + ∇π = Gw + F in (0, T ] × Ω ≡ Q (7.3a)

div w ≡ 0 in Q (7.3b)

w|Σ ≡ 0 in (0, T ] × Γ ≡ Σ (7.3c)

w|t=0 = w0 in Ω, (7.3d)

Le defined in (1.39) rewritten abstractly, upon application of the Helmholtz projection
Pq to (7.3a) and Fσ = Pq F , as

wt = AF,qw + Pq F = Aqw + Pq Gw + Pq F (7.4)

= −ν Aqw − Ao,qw + Pq Gw + Pq F . (7.5)

Wlog, we take ν = 1 henceforth. Here we have appended a subscript “q” to the
generator AF defined in (6.1) which we rewrite as AF,q . With Fσ = Pq F its solution
on Lq

σ (Ω) is

w(t) = eAF,q tw0 +
∫ t

0
eAF,q (t−τ)Fσ (τ )dτ (7.6)
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= e−Aq tw0 +
∫ t

0
e−Aq (t−τ)(Pq G − Ao,q)w(τ)dτ +

∫ t

0
e−Aq (t−τ)Fσ (τ )dτ.

(7.7)

As the present section is preparatory for the subsequent Sects. 8 and 9, the case of

greatest interest here is then for w0 ∈ B̃
2−2/p
q,p (Ω), i.e. 1 < q, 1 < p < 2q/2q−1.

Nevertheless we shall treat the general case 1 < p, q < ∞.

Theorem 7.1 As in (1.43) of Theorem 1.6, but now with T = ∞, assume

Fσ ∈ L p(0,∞; Lq
σ (Ω)), w0 ∈

(
Lq

σ (Ω),D(Aq)
)

1−1/p,p
. (7.8)

Then there exists a unique solution of problem (7.3) = (7.4) = (7.5).

w ∈ X∞
p,q,σ = L p(0,∞;D(Aq)) ∩ W 1,p(0,∞; Lq

σ (Ω)), equivalently (7.9a)

w ∈ X∞
p,q = L p(0,∞; W 2,q(Ω))∩W 1,p(0,∞; Lq

σ (Ω)) ↪→ C
(
0,∞; B

2−2/p
q,p (Ω)

)

(7.9b)

(recall [2, Theorem 4.10.2, p. 180 in BUC for T = ∞] already noted in (1.30))
continuously on the data: there exist constants C0, C1 such that

C0 ‖w‖
C
(
0,∞;B

2−2/p
q,p (Ω)

) ≤ ‖w‖X∞
p,q,σ

+ ‖π‖Y ∞
p,q

≡ ∥∥w′∥∥
L p(0,∞;Lq (Ω))

+ ∥∥Aqw
∥∥

L p(0,∞;Lq (Ω))
+ ‖π‖Y ∞

p,q

(7.10a)

≤ C1

{
‖Fσ ‖L p(0,∞;Lq

σ (Ω)) + ‖w0‖(Lq
σ (Ω),D(Aq )

)
1− 1

p ,p

}
.

(7.10b)

Thus for 1 < q, 1 < p <
2q

2q − 1
, then the I.C. w0 is in B̃

2−2/p
q,p (Ω). Equivalently,

(i) The map

Fσ −→
∫ t

0
eAF,q (t−τ)Fσ (τ )dτ : continuous

L p(0,∞; Lq
σ (Ω)) −→ L p(0,∞;D(AF,q) = D(Aq) = D(Aq)),

(7.11)

whereby then automatically

L p(0,∞; Lq
σ (Ω)) −→ W 1,p(0,∞; Lq

σ (Ω)) (7.12)
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and ultimately

L p(0,∞; Lq
σ (Ω)) −→ X∞

p,q,σ = L p(0,∞;D(AF,q )) ∩ W 1,p(0,∞; Lq
σ (Ω))

(7.13)
(ii) The s.c. analytic semigroup eAF,q t on the space

(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p, 1 < p <

∞, as asserted in Theorem 6.1, in particular on the space B̃
2−2/p
q,p (Ω), 1 < q, 1 <

p <
2q

2q − 1
, satisfies

eAF,q t : continuous
(
Lq

σ (Ω),D(Aq )
)
1− 1

p ,p −→ X∞
p,q,σ (equivalently −→ X∞

p,q )

in particular B̃
2−2/p
q,p (Ω) −→ X∞

p,q,σ (equivalently −→ X∞
p,q ).

(7.14)

Proof Part i
Orientation The proof is a suitable modification of the proof of Theorem 1.6, that
is, of the maximal regularity of the Oseen operatorAq on Lq

σ (Ω), given in Appendix
B. Namely, Step 1 = (B.3) of that proof now exploits the uniform stability of eAF,q t

in (6.2)=(7.1) which was not available for the Oseen semigroup eAq t in Appendix B.
Hence the convolution argument in (B.8) may now be applied up to T = ∞, see below
(7.16). Next, Step 2 of the proof in (B.13)–(B.20) in Appendix B applies also in the
present proof, for T ≤ ∞, to include T = ∞, as the term −Ao,q in (B.13) is replaced
in the present proof by (Pq G − Ao,q), with Pq G bounded.
Step 1 With reference to (7.6) with w0 = 0, we first establish the inequality

∫ ∞

0
‖w(t)‖p

Lq
σ (Ω)

dt ≤ C
∫ ∞

0
‖Fσ (t)‖p

Lq
σ (Ω)

dt . (7.15)

Indeed, from (7.6), in the Lq
σ (Ω)-norm, recalling (7.1)

‖w(t)‖ ≤
∫ t

0

∥
∥∥eAF,q (t−τ)

∥
∥∥ ‖Fσ (τ )‖ dτ

≤ Mγ0

∫ t

0
e−γ0(t−τ) ‖Fσ (τ )‖ dτ ∈ L p(0,∞) (7.16)

being the convolution of a L1(0,∞)-function with an L p(0,∞)-function (Young’s
Theorem) [43]. Then (7.15) is proved.
Step 2 Again for w0 = 0 we obtain from (7.7)

Aqw(t) = Aq

∫ t

0
e−Aq (t−τ)(Pq G − Ao,q)w(τ)dτ + Aq

∫ t

0
e−Aq (t−τ)Fσ (τ )dτ

(7.17)
We shall establish the following inequality

∫ ∞

0

∥
∥Aqw(t)

∥
∥p

Lq
σ (Ω)

dt ≤ C
∫ ∞

0
‖w(t)‖p

Lq
σ (Ω)

dt + C
∫ ∞

0
‖Fσ (t)‖p

Lq
σ (Ω)

dt .

(7.18)
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(Compare with (B.4), which holds true for any T ≤ ∞, including T = ∞). In fact,
to this end, as in that proof, using the maximal regularity up to T = ∞ of the Stokes
semigroup, as well as (7.8) for Fσ , we estimate from (7.17)

∥∥Aqw
∥∥

L P (0,∞,Lq
σ (Ω))

≤ C ‖Fσ ‖L P (0,∞,Lq
σ (Ω)) + C

∥∥[G − Ao,q ]w∥∥L P (0,∞,Lq
σ (Ω))

(7.19)

≤ C
{

‖Fσ ‖L P (0,∞,Lq
σ (Ω)) + C ‖w‖L P (0,∞,Lq

σ (Ω))

}

+ C
∥∥Ao,qw

∥∥
L P (0,∞,Lq

σ (Ω))
, (7.20)

as G is bounded. Using the same interpolation argument leading to (B.20), based on
the interpolation inequality (B.11), we obtain from (7.20)

∥
∥Aqw

∥
∥

L P (0,∞,Lq
σ (Ω))

≤ C ‖Fσ ‖L P (0,∞,Lq
σ (Ω)) + C ‖w‖L P (0,∞,Lq

σ (Ω))

+ εC
∥∥Aqw

∥∥
L P (0,∞,Lq

σ (Ω))
+ Cε ‖w‖L P (0,∞,Lq

σ (Ω)) (7.21)

from which we obtain

∥∥Aqw
∥∥

L P (0,∞,Lq
σ (Ω))

≤
(

C

1 − εC

)
‖Fσ ‖L P (0,∞,Lq

σ (Ω))

+
(

C + Cε

1 − εC

)
‖w‖L P (0,∞,Lq

σ (Ω)) (7.22)

and then estimate in (7.18) in Step 2 is established.
Step 3 Substituting (7.15) in the RHS of (7.18) yields

∥∥Aqw
∥∥

L P (0,∞,Lq
σ (Ω))

≤ C ‖Fσ ‖L P (0,∞,Lq
σ (Ω)) (7.23)

and (7.11) is established via (7.6) with w0 = 0, and D(AF,q) = D(Aq).
Part ii

Let w0 ∈ (
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p,
[
in particular w0 ∈ B̃

2−2/p
q,p (Ω) for 1 < q <

∞, 1 < p < 2q/2q−1 by (1.16b)
]
and consider the s.c. analytic exponentially stable

semigroup eAF,q t in such space, as guaranteed by Theorem 6.1, see (7.1):

w(t) = eAF,q tw0; wt = AF,qw = −Aqw + (Pq G − Ao,q)w (7.24)

w(t) = e−Aq tw0 +
∫ t

0
e−Aq (t−τ)(Pq G − Ao,q)w(τ)dτ (7.25)

Aqw(t) = Aqe−Aq tw0 + Aq

∫ t

0
e−Aq (t−τ)(Pq G − Ao,q)w(τ)dτ (7.26)
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counterpart of (B.18), that is with −Ao,q in (B.18) replaced by Pq G − Ao,q now, with
Pq G bounded, see (7.2).Thus essentially the same proof leading to (B.24) yields now

∥∥AF,qw
∥∥

L P (0,∞,Lq
σ (Ω))

=
∥∥∥AF,qeAF,q tw0

∥∥∥
L P (0,∞,Lq

σ (Ω))

≤ C ‖w0‖(Lq
σ (Ω),D(Aq )

)
1− 1

p ,p

(7.27)

with D(AF,q) = D(Aq). Then (7.27) proves (7.14). ��

8 Proof of Theorem 2.3: Well-Posedness on X∞
p,q of the Non-Linear

z-Dynamics in Feedback Form

In this section we return to the translated non-linear z-dynamics (1.12a) and apply

to it the feedback control u =
∑K

k=1
(PN z, pk)ωuk , i.e. of the same structure as the

feedback identified on theRHSof the linearizedw-dynamics (6.1),which produced the
s.c. analytic, uniformly stable feedback semigroup eAF,q t on Lq

σ (Ω). Here the vectors
pk ∈ (W u

N )∗, uk ∈ W u
N are precisely those identified in Theorem 5.1 = Theorem 2.1.

Thus, returning to (1.12), in this section we consider the following translated feedback
non-linear problem

dz

dt
− Aq z + Nq z = Pq

(

m

(
K∑

k=1

(zN , pk)ωuk

))

; z0 = PN z(0). (8.1)

Recalling from Theorem 2.2 = Theorem 6.1, Eq. (6.1) the feedback generatorAF,q as
well as the bounded operator G in (7.2), we can rewrite (8.1) as

zt = AF,q z − Nq z = −(ν Aq + Ao,q)z + Pq Gz − Nq z, z(0) = z0, (8.2)

whose variation of parameters formula is

z(t) = eAF,q t z0 −
∫ t

0
eAF,q (t−τ)Nq z(τ )dτ. (8.3)

We already know from (6.3) that for z0 ∈ B̃
2−2/p
q,p (Ω), 1 < q < ∞, 1 < p < 2q/2q−1

we have ∥∥∥eAF,q t z0
∥∥∥

B̃
2−2/p
q,p (Ω)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0 (8.4)

with Mγ0 possibly depending on p, q. Maximal regularity properties corresponding to
the solution operator formula in (8.3) were established in Sect. 7. Accordingly, for z0 ∈
B̃
2−2/p
q,p (Ω) and f ∈ X∞

p,q,σ ≡ L p(0,∞;D(AF,q))∩W 1,p(0,∞; Lq
σ (Ω)), D(AF,q)
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= D(Aq), recall (7.11) we define the operator F by

F(z0, f )(t) = eAF,q t z0 −
∫ t

0
eAF,q (t−τ)Nq f (τ )dτ. (8.5)

The main result of this section is Theorem 2.3. restated as

Theorem 8.1 Let d = 2, 3, q > d and 1 < p < 2q/2q−1. There exists a positive
constant r1 > 0 (identified in the proof below in (8.24)), such that if

‖z0‖
B̃
2−2/p
q,p (Ω)

< r1, (8.6)

then the operator F in (8.5) has a unique fixed point nonlinear semigroup solution on
X∞

p,q,σ

F(z0, z) = z, or z(t) = eAF,q t z0 −
∫ t

0
eAF,q (t−τ)Nq z(τ )dτ (8.7)

which therefore is the unique solution of problem (8.2) (= (8.1)) in X∞
p,q,σ .

The proof of Theorem 2.3 = Theorem 8.1 is accomplished in two steps.
Step 1

Theorem 8.2 Let d = 2, 3, q > d and 1 < p < 2q/2q−1. There exists a positive
constant r1 > 0 (identified in the proof below in (8.24)) and a subsequent constant
r > 0 (identified in the proof below in (8.22)) depending on r1 > 0 and the constant
C > 0 in (8.20), such that with ‖z0‖

B̃
2−2/p
q,p (Ω)

< r1 as in (8.6), the operator F(z0, f )

maps the ball B(0, r) in X∞
p,q,σ into itself. ��

Theorem 8.1 will follow then from Theorem 8.2 after establishing that
Step 2

Theorem 8.3 Let d = 2, 3, q > 3 and 1 < p < 2q/2q−1. There exists a positive
constant r1 > 0, such that if ‖z0‖

B̃
2−2/p
q,p (Ω)

< r1 as in (8.6), then there exists a

constant 0 < ρ0 < 1, such that the operator F(z0, f ) defines a contraction in the
ball B(0, ρ0) of X∞

p,q,σ ��
The Banach contraction principle then establishes Theorem 8.1, once we prove

Theorems 8.2 and 8.3.

Proof of Theorem 8.2 Step 1Westart fromdefinition (8.5) ofF and invoke themaximal

regularity properties (7.14) for eAF,q t and (7.13) for
∫ t

0
eAF,q (t−τ)Nq f (τ )dτ . We

obtain from (8.5)

‖F(z0, f )(t)‖X∞
p,q,σ

≤
∥
∥∥eAF,q t z0

∥
∥∥

X∞
p,q,σ

+
∥∥
∥∥

∫ t

0
eAF,q (t−τ)Nq f (τ )dτ

∥∥
∥∥

X∞
p,q,σ

(8.8)

≤ C
[
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ∥
∥Nq f

∥
∥

L p(0,∞;Lq
σ (Ω))

]
. (8.9)
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Step 2 By the definition Nq f = Pq [( f · ∇) f ] in (1.11), we estimate ignoring
∥∥Pq

∥∥

and using, sup
·
[ |g(·)| ]r = [sup

·
(|g(·)|)]r

∥∥Nq f
∥∥p

L p(0,∞;Lq
σ (Ω))

≤
∫ ∞

0

∥∥Pq [( f · ∇) f ]∥∥p
Lq

σ (Ω)
dt

≤
∫ ∞

0

{∫

Ω

| f (t, x)|q |∇ f (t, x)|q dΩ

}p/q

dt (8.10)

≤
∫ ∞

0

{[
sup
Ω

|∇ f (t, ·)|q
]1/q

[ ∫

Ω

| f (t, x)|q dΩ

]1/q
}p

dt

(8.11)

≤
∫ ∞

0
‖∇ f (t, ·)‖p

L∞(Ω)
‖ f (t, ·)‖p

Lq
σ (Ω)

dt (8.12)

≤ sup
0≤t≤∞

‖ f (t, ·)‖p
Lq

σ (Ω)

∫ ∞

0
‖∇ f (t, ·)‖p

L∞(Ω) dt (8.13)

= ‖ f ‖p
L∞(0,∞;Lq

σ (Ω))
‖∇ f ‖p

L p(0,∞;L∞(Ω))
. (8.14)

Step 3 The following embeddings hold true:

(i) [23, Proposition 4.3, p. 1406 with μ = 0, s = ∞, r = q] so that the required
formula reduces to 1 ≥ 1/p, as desired

f ∈ X∞
p,q,σ ↪→ f ∈ L∞(0,∞; Lq

σ (Ω)) (8.15a)

so that, ‖ f ‖L∞(0,∞;Lq
σ (Ω)) ≤ C ‖ f ‖X∞

p,q,σ
(8.15b)

(ii) [30, Theorem 2.4.4, p. 74 requiring C1-boundary]

W 1,q(Ω) ⊂ L∞(Ω) for q > dim Ω = d, d = 2, 3, (8.16)

so that, with p > 1, q > 3:

‖∇ f ‖p
L p(0,∞;L∞(Ω))

≤ C ‖∇ f ‖p
L p(0,∞;W 1,q (Ω))

≤ C ‖ f ‖p
L p(0,∞;W 2,q (Ω))

(8.17)

≤ C ‖ f ‖p
X∞

p,q,σ
(8.18)

In going from (8.17) to (8.18) we have recalled the definition of f ∈ X∞
p,q,σ in (1.28),

(7.13), as f was taken at the outset on D(AF,q ) = D(Aq) ⊂ Lq
σ (Ω). Then, the

sought-after final estimate of the non-linear term Nq f , f ∈ X∞
p,q,σ below (8.4), is

obtained from substituting (8.15b) and (8.18) into the RHS of (8.14). We obtain

∥∥Nq f
∥∥

L p(0,∞;Lq
σ (Ω))

≤ C ‖ f ‖2X∞
p,q,σ

, f ∈ X∞
p,q,σ . (8.19)
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Returning to (8.8), we finally, obtain by (8.19)

‖F(z0, f )‖X∞
p,q,σ

≤ C
{

‖z0‖
B̃
2−2/p
q,p (Ω)

+ ‖ f ‖2X∞
p,q,σ

}
. (8.20)

Step 4 We now impose the restrictions on the data on the RHS of (8.20): z0 is in a ball

of radius r1 > 0 in B̃
2−2/p
q,p (Ω) and f is in a ball of radius r > 0 in X∞

p,q,σ . We further
demand that the final result F(z0, f ) shall lie in a ball of radius r in X∞

p,q,σ . Thus we
obtain from (8.20)

‖F(z0, f )‖X∞
p,q,σ

≤ C
{

‖z0‖
B̃
2−2/p
q,p (Ω)

+ ‖ f ‖2X∞
p,q,σ

}
≤ C(r1 + r2) ≤ r (8.21)

This implies

Cr2 − r + Cr1 ≤ 0 or
1 −√

1 − 4C2r1
2C

≤ r ≤ 1 +√
1 − 4C2r1
2C

(8.22)

whereby
{
range of values of r

} −→ interval
[
0,

1

C

]
, as r1 ↘ 0 (8.23)

a constraint which is guaranteed by taking

r1 ≤ 1

4C2 , C being the constant in (8.20). (8.24)

We have thus established that by taking r1 as in (8.24) and subsequently r as in (8.22),
then the map

F(z0, f ) takes:

{
ball in B̃

2−2/p
q,p (Ω)

of radius r1

}

×
{
ball in X∞

p,q,σ

of radius r

}
into

{
ball in X∞

p,q,σ

of radius r

}
,

d < q, 1 < p <
2q

2q − 1
. (8.25)

This establishes Theorem 8.2. ��
Proof of Theorem 8.3 Step 1 For f1, f2 both in the ball of X∞

p,q,σ of radius r obtained
in the proof of Theorem 8.2, we estimate from (8.5):

‖F(z0, f1) − F(z0, f2)‖X∞
p,q,σ

=
∥∥∥
∥

∫ t

0
eAF,q (t−τ)

[Nq f1(τ ) − Nq f2(τ )
]
dτ

∥∥∥
∥

X∞
p,q,σ

(8.26)

≤ m̃
∥∥Nq f1 − Nq f2

∥∥
L p(0,∞;Lq

σ (Ω))
(8.27)
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after invoking the maximal regularity property (7.13).
Step 2Next recallingNq f = Pq [( f ·∇) f ] from (1.11), we estimate the RHS of (8.27).
In doing so, we add and subtract ( f2 · ∇) f1, set A = ( f1 · ∇) f1 − ( f2 · ∇) f1, B =
( f2 · ∇) f1 − ( f2 · ∇) f2, and use

|A + B|q ≤ 2q[ |A|q + |B|q ] (∗).

[55, p. 12] We obtain, again ignoring
∥
∥Pq

∥
∥:

∥
∥Nq f1 − Nq f2

∥
∥

L p(0,∞;Lq
σ (Ω))

≤
∫ ∞
0

{[ ∫

Ω
|( f1 · ∇) f1 − ( f2 · ∇) f2|q dΩ

]1/q
}p

dt

(8.28)

=
∫ ∞
0

[ ∫

Ω
|A + B|q dΩ

]p/q

dt (8.29)

≤ 2q
∫ ∞
0

{∫

Ω

[ |A|q + |B|q ]dΩ

}p/q

dt (8.30)

= 2q
∫ ∞
0

{[ ∫

Ω
|A|q dΩ +

∫

Ω
|B|q dΩ

]1/q
}p

dt

(8.31)

= 2q
∫ ∞
0

{[
‖A‖q

Lq (Ω)
+ ‖B‖q

Lq (Ω)

]1/q
}p

dt (8.32)

( by (∗)) ≤ 2q · 21/q

∫ ∞
0

{
‖A‖Lq (Ω) + ‖B‖Lq (Ω)

}p
dt (8.33)

( by (∗)) ≤ 2p+q+1/q

∫ ∞
0

[
‖A‖p

Lq (Ω)
+ ‖B‖p

Lq (Ω)

]
dt (8.34)

= 2p+q+1/q

∫ ∞
0

[
‖(( f1 − f2) · ∇) f1‖p

Lq (Ω)

+ ‖( f2 · ∇)( f1 − f2)‖p
Lq (Ω)

]
dt (8.35)

= 2p+q+1/q

∫ ∞
0

{
‖ f1 − f2‖p

Lq (Ω)
‖∇ f1‖p

Lq (Ω)

+ ‖ f2‖p
Lq

σ (Ω)
‖∇( f1 − f2)‖p

Lq (Ω)

}
dt (8.36)

Step 3 We now notice that regarding each of the integral term in the RHS of (8.36)
we are structurally and topologically as in the RHS of (8.12), except that in (8.36) the
gradient terms∇ f1,∇( f1− f2) are penalized in the Lq

σ (Ω)-normwhich is dominated
by the L∞(Ω)-norm, as it occurs for the gradient term ∇ f in (8.12). Thus we can
apply to each integral term on the RHS of (8.36) the same argument as in going from
(8.12) to the estimates (8.15b) and (8.18) with q > dim Ω = 3. We obtain

∥∥Nq f1 − Nq f2
∥∥p

L p(0,∞;Lq
σ (Ω))

≤ RHS of (8.36)

see (8.14) ≤ C
{

‖ f1 − f2‖p
L∞(0,∞;Lq

σ (Ω))
‖∇ f1‖p

L p(0,∞;L∞(Ω))

+ ‖ f2‖p
L∞(0,∞;Lq

σ (Ω))
‖∇( f1 − f2)‖p

L p(0,∞;L∞(Ω)

}
(8.37)
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see (8.15b) and (8.18) ≤ C
{

‖ f1 − f2‖p
X∞

p,q,σ
‖ f1‖p

X∞
p,q,σ

+ ‖ f2‖p
X∞

p,q,σ
‖ f1 − f2‖p

X∞
p,q,σ

}

(8.38)

= C
{

‖ f1 − f2‖p
X∞

p,q,σ

( ‖ f1‖p
X∞

p,q,σ
+ ‖ f2‖p

X∞
p,q,σ

)}
(8.39)

Finally (8.39) yields

∥
∥Nq f1 − Nq f2

∥
∥

L p(0,∞;Lq
σ (Ω))

≤ C
1/p ‖ f1 − f2‖X∞

p,q,σ

(
‖ f1‖p

X∞
p,q,σ

+ ‖ f2‖p
X∞

p,q,σ

)1/p
(8.40)

(by (∗)) ≤ 2
1/p C

1/p ‖ f1 − f2‖X∞
p,q,σ

(
‖ f1‖X∞

p,q,σ
+ ‖ f2‖X∞

p,q,σ

)
.

(8.41)

Step 4 Using estimate (8.41) on the RHS of estimate (8.27) yields

‖F(z0, f1) − F(z0, f2)‖X∞
p,q,σ

≤ K p ‖ f1 − f2‖X∞
p,q,σ

(
‖ f1‖X∞

p,q,σ
+ ‖ f2‖X∞

p,q,σ

)

(8.42)
K p = m̃2

1/p C
1/p (m̃ as in (8.27), C as in (8.39)). Next, pick f1, f2 in the ball of

X∞
p,q,σ of radius R:

‖ f1‖X∞
p,q,σ

, ‖ f2‖X∞
p,q,σ

≤ R. (8.43)

Then
‖F(z0, f1) − F(z0, f2)‖X∞

p,q,σ
≤ ρ0 ‖ f1 − f2‖X∞

p,q,σ
(8.44)

and F(z0, f ) is a contraction on the space X∞
p,q,σ as soon as

ρ0 ≡ 2K p R < 1 or R < 1/2K p , K p = m̃2
1/p C

1/p . (8.45)

In this case, the map F(z0, f ) defined in (8.5) has a fixed point z in X∞
p,q,σ

F(z0, z) = z, or z = eAF,q t z0 −
∫ t

0
eAF,q (t−τ)Nq z(τ )dτ (8.46)

and such fixed point z ∈ X∞
p,q,σ is the unique solution of the translated non-linear

equation (8.1), or (8.2) with finite dimensional control u in feedback form, as described
by the RHS of (8.1). Theorem 8.1 is proved. ��

9 Proof of Theorem 2.4: Local Exponential Decay of the Non-Linear
Translated z-Dynamics (8.1) with Finite Dimensional Localized
Feedback Control

In this section we return to the feedback problem (8.1) rewritten equivalently as in
(8.3)

z(t) = eAF,q t z0 −
∫ t

0
eAF,q (t−τ)Nq z(τ )dτ. (9.1)
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For z0 in a small ball of B̃
2−2/p
q,p (Ω), Theorem 8.1 provides a unique solution in a ball

of X∞
p,q,σ . We recall from (6.3) = (8.4)

∥∥∥eAF,q t z0
∥∥∥

B̃
2−2/p
q,p (Ω)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0. (9.2)

Our goal now is to show that for z0 in a small ball of B̃
2−2/p
q,p (Ω), problem (9.1) satisfies

the exponential decay

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ Ce−at ‖z0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0, for some constants,

a > 0, C = Ca ≥ 1.

Step 1 Starting from (9.1) and using (9.2) we estimate

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

+ sup
0≤t≤∞

∥
∥∥
∥

∫ t

0
eAF,q (t−τ)Nq z(τ )dτ

∥
∥∥
∥

B̃
2−2/p
q,p (Ω)

(9.3)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

+ C1

∥
∥∥
∥

∫ t

0
eAF,q (t−τ)Nq z(τ )dτ

∥
∥∥
∥

X∞
p,q,σ

(9.4)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

+ C2
∥
∥Nq z

∥
∥

L p(0,∞;Lq
σ (Ω))

(9.5)

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

+ C3 ‖z‖2X∞
p,q,σ

, C3 = C2C . (9.6)

In going from (9.3) to (9.4) we have recalled the embedding X∞
p,q,σ ↪→ L∞

(
0,∞; B̃

2−2/p
q,p (Ω)

)
from (1.30). Next, in going from (9.4) to (9.5) we have used the

maximal regularity property (7.13). Finally, to go from (9.5) to (9.6) we have invoked
estimate (8.19).
Step 2 We shall next establish that

‖z‖X∞
p,q,σ

≤ M1 ‖z0‖
B̃
2−2/p
q,p (Ω)

+ K ‖z‖2X∞
p,q,σ

, hence ‖z‖X∞
p,q,σ

(
1 − K ‖z‖X∞

p,q,σ

)

≤ M1 ‖z0‖
B̃
2−2/p
q,p (Ω)

(9.7)

In fact, to this end, we take the X∞
p,q,σ -estimate of Eq. (9.1). We obtain

‖z‖X∞
p,q,σ

≤
∥∥∥eAF,q t z0

∥∥∥
X∞

p,q,σ

+
∥
∥∥∥

∫ t

0
eAF,q (t−τ)Nq z(τ )dτ

∥
∥∥∥

X∞
p,q,σ

(9.8)

from which then (9.7) follows by invoking the maximal regularity property (7.14) on
eAF,q t as well as the maximal regularity estimate (7.13) followed by use of of (8.19),
as in going from (9.4) to (9.6)
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∥∥∥∥

∫ t

0
eAF,q (t−τ)Nq z(τ )dτ

∥∥∥∥
X∞

p,q,σ

≤ M̃
∥∥Nq z

∥∥
L p(0,∞;Lq

σ (Ω))
(9.9)

≤ M̃C ‖z‖2X∞
p,q,σ

. (9.10)

Thus (9.7) is proved with K = M̃C where C is the same constant occurring in (8.19),
hence in (8.21), (8.22).
Step 3 The well-posedness Theorem 8.1 says that

{
If ‖z0‖

B̃
2−2/p
q,p (Ω)

≤ r1

for r1 sufficiently small

}

�⇒
{

The solution z satisfies
‖z‖X∞

p,q,σ
≤ r

}
(9.11)

where r satisfies the constraint (8.22) in terms of r1 and some constant C in (8.19)
that occurs for K = M̃C in (9.10). We seek to guarantee that we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

‖z‖X∞
p,q,σ

≤ r < 1
2K = 1

2M̃C

(
< 1

2C

)

hence 1
2 < 1 − K ‖z‖X∞

p,q,σ
,

(9.12)

where w.l.o.g. we can take the maximal regularity constant M̃ in (7.13) to satisfy
M̃ > 1. Again, the constant C arises from application of estimate (8.19). This is
indeed possible by choosing r1 > 0 sufficiently small. In fact, as r1 ↘ 0, (8.23) shows
that the interval rmin ≤ r ≤ rmax of corresponding values of r tends to the interval[
0,

1

C

]
. Thus (9.12) can be achieved as rmin ↘ 0: 0 < rmin < r <

1

2M̃C
<

1

2C
.

Next, (9.12) implies that (9.7) holds true and yields then

‖z‖X∞
p,q,σ

≤ 2M1 ‖z0‖
B̃
2−2/p
q,p (Ω)

≤ 2M1r1. (9.13)

Substituting (9.13) in estimate (9.6) then yields with M̂ = max{Mγ0 , M1}

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ Mγ0e−γ0t ‖z0‖
B̃
2−2/p
q,p (Ω)

+ 4C3M2
1 ‖z0‖2

B̃
2−2/p
q,p (Ω)

(9.14)

= M̂

[
e−γ0t + 4M̂C3 ‖z0‖

B̃
2−2/p
q,p (Ω)

]
‖z0‖

B̃
2−2/p
q,p (Ω)

(9.15)

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ M̂
[
e−γ0t + 4M̂C3r1

] ‖z0‖
B̃
2−2/p
q,p (Ω)

(9.16)

recalling the constant r1 > 0 in (9.11).
Step 4 Now take T sufficiently large and r1 > 0 sufficiently small such that

β ≡ M̂e−γ0T + 4M̂2C3r1 < 1. (9.17)
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Then (9.15) implies by (9.17)

‖z(T )‖
B̃
2−2/p
q,p (Ω)

≤ β ‖z0‖
B̃
2−2/p
q,p (Ω)

and hence (9.18a)

‖z(nT )‖
B̃
2−2/p
q,p (Ω)

≤ β ‖z((n − 1)T )‖
B̃
2−2/p
q,p (Ω)

≤ βn ‖z0‖
B̃
2−2/p
q,p (Ω)

. (9.18b)

Since β < 1, the semigroup property of the evolution implies that there are constants
Mγ̃ ≥ 1, γ̃ > 0 such that

‖z(t)‖
B̃
2−2/p
q,p (Ω)

≤ Mγ̃ e−γ̃ t ‖z0‖
B̃
2−2/p
q,p (Ω)

, t ≥ 0 (9.19)

This proves Theorem 2.4. ��

Remark 9.1 The above computations—(9.17) through (9.19) - can be used to support
qualitatively the intuitive expectation that “the larger the decay rate γ0 in (6.3) = (8.4)
= (9.2) of the linearized feedback w-dynamics (6.1), the larger the decay rate γ̃ in
(9.19) of the nonlinear feedback z-dynamics (2.20) = (8.1); hence the larger the rate
γ̃ in (2.29) of the original y-dynamics in (2.28)”.

The following considerations are somewhat qualitative. Let S(t) denote the non-

linear semigroup in the space B̃
2−2/p
q,p (Ω), with infinitesimal generator

[
AF,q − Nq

]

describing the feedback z-dynamics (2.20)=(8.1), hence (8.2), as guaranteed by the

well posedness Theorem 2.3 = Theorem 8.1. Thus, z(t; z0) = S(t)z0 on B̃
2−2/p
q,p (Ω).

By (9.17), we can rewrite (9.18a) as:

‖S(T )‖L(B̃
2−2/p
q,p (Ω)

) ≤ β < 1. (9.20)

It follows from [5, p. 178] via the semigroup property that

− γ̃ is just below
ln β

T
< 0. (9.21)

Pick r1 > 0 in (9.17) so small that 4M̂2C3r1 is negligible, so that β is just above
M̂e−γ0T , so ln β is just above [ln M̂ − γ0T ], hence

ln β

T
is just above (−γ0) + ln M̂

T
. (9.22)

Hence, by (9.21), (9.22),

γ̃ ∼ γ0 − ln M̂

T
(9.23)

and the larger γ0, the larger is γ̃ , as desired.
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10 Well-Posedness of the Pressure � for the z-Problem (1.7) in
Feedback Form, and of the Pressure � for the y-Problem (1.1) in
Feedback Form (2.22) in the Vicinity of the Equilibrium Pressure
�e.

T he z − problem in f eedback f orm We return to the translated z problem (1.7),
with Łe(z) given by (1.39)

zt − νΔz + Le(z) + (z · ∇)z + ∇χ = m(Fz) in Q (10.1a)

div z = 0 in Q (10.1b)

z = 0 on Σ (10.1c)

z(0, x) = y0(x) − ye(x) on Ω (10.1d)

with Fz given in the feedback form as in (2.20) = (8.1)

m(Fz) = m

(
K∑

k=1

(
zN , pk

)
ω

uk

)

, zN = PN z (10.1e)

for which Theorem 2.3 = Theorem 8.1 provides a local well-posedness result (2.22),
(2.23) for the z variable. We now complement such well-posedness for z with a cor-
responding local well-posedness result for the pressure χ .

Theorem 10.1 Consider the setting of Theorem 2.3=Theorem 8.1 for problem (10.1a-
e). Then the following well-posedness result for the pressure χ holds true, where we
recall the spaces Y ∞

p,q for T = ∞ and Ŵ 1,q(Ω) in (1.29) as well as the steady state
pressure πe from Theorem 1.1:

‖χ‖Y ∞
p,q

≤ C̃ ‖y0 − ye‖
B̃
2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1

}
. (10.2)

Proof We first apply the full maximal-regularity (1.33) to the Stokes component of
problem (10.1) with Fq = Pq

(
m F(z) − Le(z) − (z · ∇)z

)
to obtain

‖z‖X∞
p,q,σ

+ ‖χ‖Y ∞
p,q

≤ C

{∥∥Pq [m(Fz) − (z · ∇)z − Le(z)]
∥∥

L p
(
0,∞;Lq

σ (Ω)
) + ‖z0‖

B̃
2−2/p
q,p (Ω)

}

≤ C

{∥∥Pq [m(Fz)]∥∥
L p
(
0,∞;Lq

σ (Ω)
) + ∥∥Pq(z · ∇)z

∥∥
L p
(
0,∞;Lq

σ (Ω)
)

+ ∥∥Pq Le(z)
∥
∥

L p
(
0,∞;Lq

σ (Ω)
) + ‖z0‖

B̃
2−2/p
q,p (Ω)

}
. (10.3)
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But Pq [m F(z)] = m F(z) as the vectors uk in the definition of F in (2.26) are
uk ∈ W u

N ⊂ Lq
σ (Ω). Moreover F ∈ L(Lq

σ (Ω)), we obtain

∥∥Pq [m(Fz)]∥∥
L p
(
0,∞;Lq

σ (Ω)
) ≤ C1 ‖z‖X∞

p,q,σ
, (10.4)

recalling the space X∞
p,q,σ from (1.28). Next, recalling (8.19) forNq z = Pq

[
(z ·∇)z

]
,

see (1.11), we obtain

∥∥Pq(z · ∇)z
∥∥

L p
(
0,∞;Lq

σ (Ω)
) ≤ C2 ‖z‖2X∞

p,q,σ
. (10.5)

The equilibrium solution {ye, πe} is given by Theorem 1.1 as satisfying

‖ye‖W 2,q (Ω) + ‖πe‖Ŵ q,1 ≤ c ‖ f ‖Lq (Ω) , 1 < q < ∞. (10.6)

We next estimate the term Pq Le(z) = Pq [(ye · ∇)z + (z · ∇)ye] in (10.3)
∥∥Pq Le(z)

∥∥
L p
(
0,∞;Lq

σ (Ω)
) = ∥∥Pq (ye.∇)z + Pq (z.∇)ye

∥∥
L p
(
0,∞;Lq

σ (Ω)
) (10.7)

≤ ∥
∥Pq (ye.∇)z

∥
∥

L p
(
0,∞;Lq

σ (Ω)
) + ∥

∥Pq (z.∇)ye
∥
∥

L p
(
0,∞;Lq

σ (Ω)
)

(10.8)

≤ ‖ye‖Lq (Ω) ‖∇z‖
L p
(
0,∞;Lq

σ (Ω)
)

+ ‖z‖
L p
(
0,∞;Lq

σ (Ω)
) ‖∇ ye‖Lq (Ω) (10.9)

≤ 2C2 ‖ f ‖Lq (Ω) ‖z‖
L p
(
0,∞;Lq

σ (Ω)
) (10.10)

≤ C3 ‖z‖X∞
p,q,σ

(10.11)

with the constant C3 depending on the Lq(Ω)-norm of the datum f . Setting now
C4 = C ·max{C1, C2, C3} and substituting (10.4), (10.5), (10.11) in (10.3), we obtain

‖z‖X∞
p,q,σ

+ ‖χ‖Y ∞
p,q

≤ C4

{
‖z‖2X∞

p,q,σ
+ 2 ‖z‖X∞

p,q,σ
+ ‖z0‖

B̃
2−2/p
q,p (Ω)

}
(10.12)

Next we drop the term ‖z‖X∞
p,q,σ

on the left hand side of (10.12) and invoking (9.13)
to estimate ‖z‖X∞

p,q,σ
. Thus we obtain

‖χ‖Y ∞
p,q

≤ C5

{
‖z0‖2

B̃
2−2/p
q,p (Ω)

+ 2 ‖z0‖
B̃
2−2/p
q,p (Ω)

+ ‖z0‖
B̃
2−2/p
q,p (Ω)

}
(10.13)

≤ C̃ ‖z0‖
B̃
2−2/p
q,p (Ω)

{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ 1
}
, C̃ = 3C5 (10.14)

and (10.14) proves (10.2), as desired, recalling (1.7e). ��
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T hey − problemin f eedback f orm We return to the original y-problem however in
feedback form as in (2.26), (2.27), for which Theorem 2.5(i) proves a local well-
posedness result. We now complement such well-posedness result for y with the
corresponding local well-posedness result for the pressure π .

Theorem 10.2 Consider the setting of Theorem 2.5 for the y-problem in (2.27). Then,
the following well-posedness result for the pressure π holds true:

‖π − πe‖Y T
p,q

≤ ‖π − πe‖Y ∞
p,q

≤ C̃ ‖y0 − ye‖
B̃
2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1

}
(10.15)

≤ Ĉ

{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q (Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q (Ω) + 1

}

(10.16)

≤ Ĉ

{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ f ‖Lq (Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ f ‖Lq (Ω) + 1

}
(10.17)

‖π‖Y T
p,q

≤ Ĉ ‖y0 − ye‖
B̃
2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1

}

+ cT
1/p ‖πe‖Ŵ 1,q (Ω) , 0 < T < ∞ (10.18)

≤ Ĉ
{

‖y0‖
B̃
2−2/p
q,p (Ω)

+ ‖ f ‖Lq (Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ f ‖Lq (Ω) + 1
}

+ cT
1/p ‖ f ‖Lq (Ω) , 0 < T < ∞. (10.19)

Proof We return to the estimate (10.2) for χ and recall χ = π − πe from (1.7e) to
obtain (10.15). We next estimate y − ye by

‖y0 − ye‖
B̃
2−2/p
q,p (Ω)

≤ C
{ ‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q (Ω)

}
. (10.20)

which substituted in (10.15) yields (10.16). In turn, (10.16) leads to (10.17) by means
of (10.6). ��
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Appendix A: On Helmholtz Decomposition

We return to the Helmholtz decomposition in (1.4), (1.5) and provide additional infor-
mation.

For M ⊂ Lq(Ω), 1 < q < ∞, we denote the annihilator of M by

M⊥ =
{

f ∈ Lq ′
(Ω) :

∫

Ω

f g dΩ = 0, for all g ∈ M

}
(A.1)

where q ′ is the dual exponent of q : 1/q + 1/q ′ = 1.
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Proposition A.1 [26, Prop. 2.2.2, p. 6], [21, Ex. 16, p. 115], [17] Let Ω ⊂ R
d be an

open set and let 1 < q < ∞.

(a) The Helmholtz decomposition exists for Lq(Ω) if and only if it exists for Lq ′
(Ω),

and we have: (adjoint of Pq ) = P∗
q = Pq ′ (in particular P2 is orthogonal), where Pq

is viewed as a bounded operator Lq(Ω) −→ Lq(Ω), and P∗
q = Pq ′ as a bounded

operator Lq ′
(Ω) −→ Lq ′

(Ω), 1/q + 1/q ′ = 1.
(b) Then, with reference to (1.5)

[
Lq

σ (Ω)
]⊥ = Gq ′

(Ω) and
[
Gq(Ω)

]⊥ = Lq ′
σ (Ω). (A.2a)

Remark A.1 Throughout the paper we shall use freely that

(
Lq

σ (Ω)
)′ = Lq ′

σ (Ω),
1

q
+ 1

q ′ = 1. (A.2b)

Thus can be established as follows. From (1.5)write Lq
σ (Ω) as a factor space Lq

σ (Ω) =
Lq(Ω)/Gq(Ω) ≡ X/M so that [55, p. 135].

(
Lq

σ (Ω)
)′ = (

Lq(Ω)/Gq(Ω)
)′ = (

X/M
)′ = M⊥ =

[
Gq(Ω)

]⊥ = Lq ′
σ (Ω).

(A.2c)
In the last step, we have invoked (A.2a), which is also established in [21, Lemma 2.1,
p. 116]. Similarly

(
Gq(Ω)

)′ = (
Lq(Ω)/Lq

σ (Ω)
)′ =

[
Lq

σ (Ω)
]⊥ = Gq ′

(Ω). (A.2d)

Appendix B: Proof of Theorem 1.6: Maximal Regularity of the Oseen
OperatorAq on Lq�(˝), 1 < p,q < ∞, T < ∞

Part I: (1.46). By (1.41) with ψ0 = 0

ψ(t) =
∫ t

0
eAq (t−τ)Fσ (τ )dτ. (B.1)

where by the statement preceding Theorem 1.4

∥∥∥eAq (t−τ)
∥∥∥L(Lq

σ (Ω))
≤ Meb(t−τ), 0 ≤ τ ≤ t (B.2)

for M ≥ 1, b possibly depending on q.
Step 1 We have the following estimate

∫ T

0
‖ψ(t)‖p

Lq
σ (Ω)

dt ≤ CT

∫ T

0
‖Fσ (t)‖p

Lq
σ (Ω)

dt (B.3)
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where the constant CT may depend also on p, q, b. This follows at once from the
Young’s inequality for convolutions [43, p. 26]:

‖ψ(t)‖Lq
σ (Ω) ≤ M

∫ t

0
eb(t−τ) ‖Fσ (τ )‖Lq

σ (Ω) dτ ∈ L p(0, T ), T < ∞,

and the convolution of the L p(0, T )-function ‖Fσ ‖Lq
σ (Ω) and the L1(0, T )-function

ebt is in L p(0, T ). More elementary, one can use Hölder inequality with 1/p +1/ p̃ = 1
and obtain an explicit constant.
Step 2 Claim: Here we shall next complement (B.3) with the estimate

∫ T

0

∥∥Aqψ(t)
∥∥p

Lq
σ (Ω)

dt ≤ C
∫ T

0
‖ψ(t)‖p

Lq
σ (Ω)

dt + C
∫ T

0
‖Fσ (t)‖p

Lq
σ (Ω)

dt (B.4)

to be shown below. Using (B.3) in (B.4) then yields

∫ T

0

∥∥Aqψ(t)
∥∥p

Lq
σ (Ω)

dt ≤ CT

∫ T

0
‖Fσ (t)‖p

Lq
σ (Ω)

dt . (B.5)

With respect to (1.41) with ψ0 = 0, then (B.5) says

Fσ ∈ L p(0, T ; Lq
σ (Ω)) −→ ψ ∈ L p(0, T ;D(Aq) = D(Aq)) (B.6)

while (1.40) then yields via (B.6)

Fσ ∈ L p(0, T ; Lq
σ (Ω)) −→ ψt ∈ L p(0, T ; Lq

σ (Ω)) (B.7)

continuously. Then, (B.6), (B.7) shows part (i) of Theorem 1.6.

Proof of (B.4): In this step, with ψ0 = 0, we shall employ the alternative formula, via
(1.42) (ν = 1, wlog)

ψ(t) =
∫ t

0
e−Aq (t−τ)(−Ao,q)ψ(τ)dτ +

∫ t

0
e−Aq (t−τ)Fσ (τ )dτ, (B.8)

where by maximal regularity of the Stokes operator −Aq on the space Lq
σ (Ω), as

asserted in Theorem 1.5.ii, Eq (1.35), we have in particular

Fσ ∈ L p(0, T ; Lq
σ (Ω)) −→

∫ t

0
e−Aq (t−τ) Fσ (τ )dτ ∈ L p(0, T ;D(Aq )) continuously.

(B.9)
Regarding the first integral term in (B.8) we shall employ the (complex) interpola-

tion formula (1.22), and recall from (1.9) that D(Ao,q) = D(A
1/2
q ):

D(Ao,q) = D(A
1/2
q ) = [D(Aq), Lq

σ (Ω)
]
1/2

(B.10)
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so that the interpolation inequality [62, Theorem p 53, Eq. (3)] with θ = 1/2 yields
from (B.10)

‖a‖D(Ao,q ) = ‖a‖D(A
1/2
q

) ≤ C ‖a‖1/2
D(Aq )

‖a‖1/2

Lq
σ (Ω)

≤ ε ‖a‖D(Aq ) + Cε ‖a‖Lq
σ (Ω) .

(B.11)

[
Since D(A

1/2
q ) = W 1,q

0 (Ω) ∩ Lq
σ (Ω) by (1.22), then for a ∈ D(Aq) = W 2,q(Ω) ∩

W 1,q
0 (Ω)∩ Lq

σ (Ω), see (1.17), we may as well invoke the interpolation inequality for
W -spaces. [1, Theorem 4.13, p. 74]:

‖a‖
W 1,q

0 (Ω)
≤ ε ‖a‖W 2,q (Ω) + Cε ‖a‖Lq

σ (Ω)

We return to (B.8) and obtain

Aqψ(t) = Aq

∫ t

0
e−Aq (t−τ)(−Ao,q)ψ(τ)dτ + Aq

∫ t

0
e−Aq (t−τ)Fσ (τ )dτ. (B.12)

Hence via the maximal regularity of the uniformly stable Stokes semigroup e−Aq t ,
Eq. (1.35), (B.11) yields

∥∥Aqψ
∥∥

L p(0,T ;Lq
σ (Ω))

≤ C
{ ∥∥Ao,qψ

∥∥
L p(0,T ;Lq

σ (Ω))
+ ‖Fσ ‖L p(0,T ;Lq

σ (Ω))

}
(B.13)

by (B.11) ≤ ε′ ∥∥Aqψ
∥
∥

L p(0,T ;Lq
σ (Ω))

+ Cε′ ‖ψ‖L p(0,T ;Lq
σ (Ω))

+ C ‖Fσ ‖L p(0,T ;Lq
σ (Ω)) (B.14)

ε′ = εC > 0 arbitrarily small. Hence (B.14) yields

∥∥Aqψ
∥∥

L p(0,T ;Lq
σ (Ω))

≤ Cε′

1 − ε′ ‖ψ‖L p(0,T ;Lq
σ (Ω)) + C

1 − ε′ ‖Fσ ‖L p(0,T ;Lq
σ (Ω))

(B.15)
and estimate (B.4) of Step 2 is established. Part I of Theorem 1.6 is proved.

Part II: (1.49). For simplicity of notation, we shall write the proof on B̃
2−2/p
q,p (Ω)

i.e. for 1 < q, p < 2q/2q−1. The proof on
(
Lq

σ (Ω),D(Aq)
)
1− 1

p ,p in the other case
2q/2q−1 < p is exactly the same.

Step 1 Let η0 ∈ B̃
2−2/p
q,p (Ω) and consider the s.c. analytic Oseen semigroup eAq t on

the space B̃
2−2/p
q,p (Ω), as asserted by Theorem 1.4.ii (take ν = 1 wlog):

η(t) = eAq tη0, or ηt = Aqη = −Aqη − Ao,qη. (B.16)
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Then we can rewrite η as

η(t) = e−Aq tη0 +
∫ t

0
e−Aq (t−τ)(−Ao,q)η(τ ) dτ (B.17)

Aqη(t) = Aqe−Aq tη0 + Aq

∫ t

0
e−Aq (t−τ)(−Ao,q)η(τ ) dτ. (B.18)

We estimate, recalling the maximal regularity (1.35), (1.36) as well as the uniform
decay (1.25) of the Stokes operator.

∥∥Aqη
∥∥

L p(0,T ;Lq (Ω))
≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

+ C
∥∥Ao,qη

∥∥
L p(0,T ;Lq

σ (Ω))
(B.19)

≤ C ‖η0‖
B̃
2−2/p
q,p (Ω)

+ εC̃
∥
∥Aqη

∥
∥

L p(0,T ;Lq
σ (Ω))

+ Cε ‖η‖L p(0,T ;Lq
σ (Ω)) (B.20)

after invoking, in the last step, the interpolation inequality (B.11). Thus (B.20) yields
via (1.18)

∥∥Aqη
∥∥

L p(0,T ;Lq
σ (Ω))

= ∥∥Aqη
∥∥

L p(0,T ;Lq
σ (Ω))

≤ C

1 − εC̃
‖η0‖

B̃
2−2/p
q,p (Ω)

+ Cε

1 − εC̃
‖η‖L p(0,T ;Lq

σ (Ω)) . (B.21)

Step 2 With η0 ∈ B̃
2−2/p
q,p (Ω), since eAq t generates a s.c (analytic) semigroup on

B̃
2−2/p
q,p (Ω), Theorem 1.4.ii, we have

η(t) = eAq tη0 ∈ C
(
0, T ; B̃

2−2/p
q,p (Ω)

)
⊂ L p

(
0, T ; B̃

2−2/p
q,p (Ω)

)
⊂ L p(0, T ; Lq

σ (Ω)
)

(B.22)

continuously, where in the last step, we have recalled that B̃
2−2/p
q,p (Ω) is the interpola-

tion between Lq(Ω) and W 2,q(Ω), see (1.16b). (B.22) says explicitly

‖η‖
L p
(
0,T ;Lq

σ (Ω))
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(B.23)

Step 3 Substituting (B.23) in (B.21) yields

∥∥Aqη
∥∥

L p
(
0,T ;Lq

σ (Ω)
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(B.24)

and (1.49) is established, from which (1.50) follows at once. Thus Theorem 1.6 is
proved. ��
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