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a b s t r a c t

We consider an initial–boundary-value problem for a thermoelastic Kirchhoff
& Love plate, thermally insulated and simply supported on the boundary, in-
corporating rotational inertia and a quasilinear hypoelastic response, while the
heat effects are modeled using the hyperbolic Maxwell–Cattaneo–Vernotte law
giving rise to a ‘second sound’ effect. We study the local well-posedness of the
resulting quasilinear mixed-order hyperbolic system in a suitable solution class of
smooth functions mapping into Sobolev Hk-spaces. Exploiting the sole source of
energy dissipation entering the system through the hyperbolic heat flux moment,
provided the initial data are small – not in the full topology of our solution class,
but in a lower topology corresponding to weak solutions we prove a nonlinear
stabilizability estimate furnishing global existence & uniqueness and exponential
decay of classical solutions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a PDE model of a prismatic thermoelastic plate of a uniform thickness h > 0. Let the bounded
domain Ω ⊂ Rd, d ∈ {1, 2, 3}, with a smooth boundary ∂Ω parametrize the mid-plane of the plate. Further,
let K : R → R with K ′(0) > 0 and K ′′(0) = 0 be a smooth function related to the stress–strain curve
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Table 1
Summary of results on Eqs. (1.1)–(1.3) in bounded domains.

γ = 0 γ > 0

τ = 0 Exponential stability Exponential stability
Maximal Lp-regularity/analyticity No maximal Lp-regularity/analyticity

τ > 0 No exponential stability Exponential stability
No maximal Lp-regularity/analyticity No maximal Lp-regularity/analyticity

(see Appendix A) and the plate thickness h. This kind of nonlinearity arises from so-called “hypoelastic”
material laws discussed in Appendix A. Continuing, let α, β, η > 0 and γ, τ, σ ≥ 0 be constant. With w, θ, q
denoting the vertical displacement, a properly scaled thermal moment and the x3-moment of the heat flux,
respectively, the associated dynamics is governed by a quasilinear plate equation

wtt − γ△wtt + △K(△w) + α△θ = 0 in (0, ∞) × Ω , (1.1)
βθt + div q + σθ − α△wt = 0 in (0, ∞) × Ω , (1.2)

τqt + q + η∇θ = 0 in (0, ∞) × Ω (1.3)

subject to hinged boundary conditions

w = △w = θ = 0 on (0, ∞) × ∂Ω (1.4)

and usual initial conditions

w(0, ·) = w0, wt(0, ·) = w1, θ(0, ·) = θ0, q(0, ·) = q0 in Ω . (1.5)

The parameters α, β, γ, η, σ, τ in Eqs. (1.1)–(1.3) can uniquely be expressed in terms of various physical
constants and the plate thickness h described in Appendix A.

Later in the paper, we will restrict our attention to the case γ > 0 and τ > 0. Also, to be consistent
with the overwhelming majority of mathematical publications in the area, we will assume σ = 0. While
the latter constant needs to be positive (cf. Appendix A or [24, Chapter 6.1]) from the physical point of
view, from the mathematical point of view, discarding this lower-order perturbation neither changes the
underlying topology nor the qualitative stability properties of the system. Moreover, it makes the stability
analysis more challenging as a natural dissipativity source is eliminated keeping the only damping arising
from q.

Depending on the choice of the γ and τ parameters in Eqs. (1.1)–(1.3), the system represents various types
of thermoelastic Kirchhoff–Love plates (viz. [53, p. 2]). While the presence of the γ△wtt-term in Eq. (1.1)
accounts for rotational inertia for γ > 0 or neglects the latter if γ = 0, the positive relaxation time τ > 0
in Eq. (1.3) originates from the Maxwell–Cattaneo–Vernotte’s (or, for short, Cattaneo’s) law of relativistic
heat conduction vs. the classic Fourier’s law of heat conduction for τ = 0. Hence, Eqs. (1.1)–(1.3) embody
four possible thermoelastic plate models. Further distinctions are made based on the response K(·) being
linear vs. nonlinear and the domain Ω being the full space Rd or a domain with boundary such as bounded
domains, exterior domains, half-spaces or wave-guides, etc. Finally, in case Ω is a domain with boundary, a
set of boundary conditions selected from a wide range of combinations need to be adopted (cf. [2, Chapter
2], [18, Chapter 4], [24, Chapter 1], [32–34,36]).

We continue our discussion with a brief review of the vast body of literature on Eqs. (1.1)–(1.3). Table 1
summarizes some of these results for bounded domains Ω .

In the linear situation, i.e., K(z) = az for some a > 0, it is well known that the thermoelastic system
(1.1)–(1.3) comprising a Kirchhoff–Love plate equation without rotational inertia (γ = 0) coupled with the
standard parabolic heat equation (τ = 0) generates an analytic semigroup on a respective finite-energy space
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for a wide range of boundary conditions [32–34,36]. These results were subsequently improved by showing
the maximal Lp-regularity of the underlying semigroup [12,13,42,43]. It was further shown the associated
energy decays exponentially as t → ∞ [4,22,39,55]. The exponential stability extends to the quasilinear
situation with K(z) = z + z3 in the class of (possibly, not unique) global weak solutions [26]. Turning to
strong solutions, both the well-posedness via maximal Lp-regularity and the exponential stability of small
solutions hold true for general superquadratic C3-nonlinearities K(·) [38].

Introducing a “second sound” effect (a non-diffusive heat transfer mechanism characterized by wave-like
heat propagation [11]) into the system (1.1)–(1.3) by replacing the Fourier’s law with the Cattaneo’s one
(τ > 0) while neglecting rotational inertia (γ = 0), the well-posedness (on the amended phase space) is
preserved but the maximal Lp-regularity/analyticity of the system is violated and the exponential decay
of solutions is destroyed [16,49,50]. This surprising effect is quite subtle and can be best understood by
studying the spectrum of the related generator using Gearhart–Prüss’ criterion. Very simply put, in the
absence of parabolicity (viz. τ = 0), discarding rotational inertia (viz. γ = 0) leads to a loss of regularity
as wt ∈ H1(Ω) is no longer furnished by the space topology. Nonetheless, the system is still expected to
exhibit polynomial decay (cf. [16]). A change of qualitative behavior also occurs in the full space Ω = Rd,
where regularity-loss phenomena occur [51]. In the nonlinear situation, the well-posedness still remains open
— even in the full-space (cf. [52, p. 8140]).

Taking into account rotational inertia (γ > 0) and adopting Fourier’s law of heat conduction (τ =
0), the thermoelastic plate system is rendered hyperbolic–parabolic. In the nonlinear situation, both the
semilinear [5] and the quasilinear problems [29] have been studied in bounded domains. While the model
exhibits hyperbolic characteristics, the viscous diffusive effect of the heat equation still has beneficial
effects on regularity of the overall system. This allowed to perform a Kato-type fixed-point iteration to
establish the local well-posedness of the quasilinear system by decoupling the elastic and the thermal parts
of the system [29]. Under a smallness condition on the initial data, the energy dissipation through the
thermal component of the system was sufficient to prove a global stabilization estimate leading to global
existence of classical solutions. In the full space Ω = Rd, the well-posedness and decay rates have also been
established — both in the linear [51] and the nonlinear cases [52]. A recent systematic study [15] on abstract
fractional-power thermoelastic plate systems should also be mentioned.

A number of control-theoretic results for linear Kirchhoff–Love thermoelastic plates with and without
rotational inertia (γ ≥ 0) subject to Fourier’s law of heat conduction (τ = 0) are also known in the literature.
See, e.g., [3,6,7,10,14,23,30,35] and references therein.

Turning to the hyperbolic–hyperbolic case (τ > 0, γ > 0), linear well-posedness and exponential stability
in bounded domains have been established and singular limits τ → 0, γ → 0 have been studied [53]. Similar
investigations of the linear system in the full space were performed as well [51] and subsequently generalized
to the nonlinear case [52].

The thrust of this article is to investigate nonlinear equations (1.1)–(1.3) in a bounded smooth domain
Ω subject to the boundary conditions (1.4). The distinct features of our problem are:

• The rotational inertia are accounted for by the presence of the γ△wtt-term (γ > 0) in the ‘elastic’
Equation (1.1). This makes the problem hyperbolic-like.

• The heat conduction obeys Maxwell–Cattaneo–Vernotte’s law rather than the classic Fourier’s law which
translates into (i) lack of dissipative effect in Eq. (1.2) and (ii) lack of the regularity otherwise typically
associated with the heat equation. These two properties – dissipation and regularity – the “key players”
in any quasilinear theory — are severely compromised by the model under consideration.

Unlike the hyperbolic–parabolic case (γ > 0, τ = 0), as we will later see in Section 3, our system is
hyperbolic–hyperbolic. Therefore, no regularizing effects are inherited either from analyticity (when γ =
τ = 0) or dissipativity/viscosity of the heat transfer (when γ > 0, τ = 0). The nonlinear plate system
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(1.1)–(1.3) for τ, γ > 0 has previously been investigated by Racke & Ueda [52]. However, our present study
is inasmuch completely different from the cited work – both phenomenologically and methodologically – as
(i) we consider an initial–boundary value problem in a bounded domain Ω instead of the full space Rd, where
the latter is amenable to classical differential calculus and (ii) only impose a genuine smallness condition
on the lower energy of the initial data (corresponding to the topology of weak solution), in contrast to the
smallness of the highest-order energy assumed in [52].

Our goal is to show that the resulting nonlinear system generates well-posed dynamics for ‘arbitrary’
regular data satisfying compatibility conditions and that, for small data, the dynamics is global provided
the size of initial data is well calibrated. The challenge is, of course, to overcome difficulties related to
compromised regularity of linear solutions and compromised dissipation in the presence of highly nonlinear
internal force represented by a severely unbounded operator which nonlinearly depends on the principal part
of the elliptic operator. This compels one to perform the analysis at a high topological level with appropriate
mechanisms for the propagation of restricted dissipation. This challenge manifests itself on both levels: local
and global. In particular, when carrying out the Kato-iteration in Appendix B, in contrast to the hyperbolic–
parabolic case (viz. [29]), elastic Equation (1.1) cannot be decoupled from thermal equations (1.2)–(1.3).
As for the global stabilizability estimate, the main difficulty arises from the fact that the dissipation is only
available in Eq. (1.3) for q (and, thus, θt) and as such does not propagate any regularity. This is in contrast
to [29], where strong diffusion in the thermal variable provides with favorable estimates involving spatial
derivatives of θ. In fact, in the linear case, the model can be viewed a “compact” perturbation of the “square
root” of a damped elastic structure [37]. This is not the case in the present model. Phenomenologically,
this kind of dissipation rather corresponds to ‘frictional’ damping known for purely elastic problems and is
commonly considered a weak damping — as opposed to strong viscoelastic or Kelvin & Voigt damping.

As to the effect of rotational inertia, writing down energy dissipation relations for both cases, viz., τ > 0,
γ = 0 and II: τ > 0, γ > 0, one sees that, while looking similar at the first glance, they have a major
difference: Namely, the dissipation term present in case I is supposed to reconstruct a one-derivative higher-
level energies both of △w and θ. In short, the pressure term must provide observation of four derivatives of w

and of two derivatives of θ. This is in contrast with the case II, where the same reconstruction is needed only
for three derivatives of w and one derivative of θ. Thus, the reconstruction itself (viz. unique continuation)
is valid in both cases, however, with the loss of topology. This naturally leads to polynomial – rather than
exponential – decay rates (compromised topology) in case I. All these complications supersede the level of
technicality of our recent hyperbolic–parabolic (viz. γ > 0, τ = 0) result [29] making the present paper
substantially more challenging and, hopefully, mathematically interesting than our earlier contribution.

Another important feature of the present paper is the smallness argument employed in our proofs.
Provided the nonlinear coefficient in the “elliptic part” stays positive, apart from the aforementioned
indispensable compatibility and regularity conditions, the initial data are assumed small merely in the
lowest topology associated with “finite energy” or mild solutions. This is an important improvement as
most quasilinear results assume the smallness of the data in the highest topology (e.g., [25,26,28,29,38]).
From the technical point of view, this makes the stability proof more challenging and requires an extra
degree of diligence as the lowest-level energy needs to be carefully traced and properly “factored out” in
our nonlinear estimates using suitable interpolation procedures, etc. The final argument for the “globality”
depends on two coupled and cooperating “barrier inequalities”, rather than a single one — as is the case in
the usual quasilinear theory.

Last but not least, a further contribution of this paper is a physical derivation of the thermoelastic plate
model (1.1)–(1.5). While the macroscopic description of Kirchhoff & Love plates with geometric nonlinear-
ity [24, Chapter 1] and nonlinear material response [29] is known in the literature for the case of Fourier’s
heat conduction, to the best of authors’ knowledge, no rigorous Kirchhoff & Love thermoelastic plate models
with Cattaneo’s heat conduction have been available in the literature up to date. (Parenthetically, one
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should mention the Reissner–Mindlin–Timoshenko plate with Cattaneo’s heat conduction and the geometric
nonlinearity derived in the thesis [47].) Instead, previous works on thermoelastic Kirchhoff & Love plates with
Cattaneo’s law (viz. [51–53], etc.) have implicitly ‘conjectured’ the physical model. However, the thermal
moment θ and the (planar) heat flux moment q were invariably misspecified as the temperature and the
heat flux, respectively, and the natural extra damping σθ in Eq. (1.2) was overlooked. In this paper, we
close this gap by combining various results on related plate systems into a consistent physical model behind
Eqs. (1.1)–(1.5).

To conclude the introduction, we mention several open problems which naturally arise. In addition to
simply supported boundary conditions, one would like to have a theory for clamped and free boundary
conditions. Particularly, the latter are challenging due to the fact that harmonic functions are not controlled
by “free” boundary conditions imposed on the biharmonic operator. This difficulty can be overcome, while
significantly increasing the level of technicality, by localizing the problem [13,34]. Similar caveats remain
true for clamped beams (except for the necessity of spatial localization) as the reduction step of Section 3
fails in such case as well. Hence, treating either clamped or free boundary conditions would go far beyond
a trivial modification of the present paper. Indeed, the main difference between the hinged and the other
two types of boundary conditions is that, in the hinged (or the “commutative”) case, we have an operator
calculus associated with the model: −△ = A for functions with zero Dirichlet data and △2 = A2 for functions
with hinged boundary data. For clamped boundary conditions, this is no longer the case. Both clamped and
free boundary conditions lead to non-commutative algebras. There is no proper identification between the
differential operator and the powers of A. While the powers of A still define the topology in appropriate
Sobolev spaces, calculations on the PDE model give rise to boundary terms which need to be handled. Some
of these boundary terms are not controlled by respective energy terms. In the clamped case, this could be
handled by the so called “hidden boundary regularity” (cf. [27,31]). However, one would still need to prove
that the dissipativity relations (in some sense) remain preserved. The latter is essential for the energy decay.
In the free case, there is no “hidden regularity” making the analysis even more challenging.

Finally, we mention that Kirchhoff-type equations have been recently considered with fractional and,
possibly, degenerate Laplacians [17,46]. Global solutions for small data and blow-up of solutions for data
outside of the potential well have been recently established in [46]. The arguments involved rely on nonlocal
elliptic theory. It would be interesting to consider such models within the framework of thermoelasticity.

The rest of the paper is structured as follows. Following the present Introduction Section 1, Section 2
summarizes all of the main results of the article on local and global well-posedness as well as exponential
stability of Eqs. (1.1)–(1.5). In Section 3, the system (1.1)–(1.5) is reduced to an equivalent non-vectorial
second-order system. Subsequently, in Section 4, a local well-posedness result is established by applying a
fixed-point argument to a linearization of the equivalent reduced system from Section 3. In Section 5, the
unique classical local solution is extended globally – provided the initial data are sufficiently small at the
lowest energy level – and an exponential decay rate is further proved. Finally, in the appendix, a brief physical
derivation of Eqs. (1.1)–(1.5) is presented in Appendix A while Appendix B establishes a solution theory for
the linearized version of the latter equations with time- and space-dependent coefficients. This furnishes a
powerful auxiliary machinery for the development of the nonlinear local theory.

2. Main results

In this section, we summarize all of the central results of this paper on the quasilinear plate equations
(1.1)–(1.5). In the following, we assume Ω ⊂ Rd, d ∈ {1, 2, 3}, is a bounded, smooth domain. As previously
announced in the Introduction Section 1, the constant σ will be assumed zero throughout the rest of the
paper. All of the results stated below trivially remain true for σ as the σθ-term is a Lipschitzian perturbation
and has the correct sign adding even more damping to the system.
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Definition 2.1. Let s ≥ 2. A classical solution to Eqs. (1.1)–(1.5) on [0, T ] at the energy level s is a triple
(w, θ, q) : [0, T ] × Ω̄ → R × R × Rd with

w, △w ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
))

∩ Cs
(
[0, T ], L2(Ω)

)
,

θ ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
))

, q ∈
( s−1⋂

m=0
Cm

(
[0, T ],

(
Hs−m(Ω)

)d))
which, being plugged into Eqs. (1.1)–(1.5), renders them tautological. Classical solutions on [0, T ) and [0, ∞)
are defined correspondingly.

The choice s = 2 in Definition 2.1 is standard in the linear situation, i.e., when K(·) is linear. In this
case, by virtue of the standard semigroup theory, for any initial data (w0, w1, θ0, q) ∈

(
H4(Ω) ∩ H1

0 (Ω)
)

×(
H2(Ω) ∩ H1

0 (Ω)
)

× H1
0 (Ω) ×

(
H1(Ω)

)d with △w0 ∈ H1
0 (Ω) there exists a unique classical solution at

the energy level s = 2. In contrast, if K(·) is genuinely nonlinear, in general, one cannot expect a classical
solution for the initial data at the energy level s = 2 (cf. [21, Remark 14.4]). Therefore, moving to higher
energy levels is unavoidable to obtain classical solutions in the general nonlinear case.

In this paper, we prove the global well-posedness and exponential stability of classic solutions for s ≥ 3.
In particular, when s = 3, the solution space in Definition 2.1 rewrites as

w, △w ∈
( 2⋂

m=0
Cm

(
[0, T ], H3−m(Ω) ∩ H1

0 (Ω)
))

∩ C3(
[0, T ], L2(Ω)

)
,

θ ∈
( 2⋂

m=0
Cm

(
[0, T ], H3−m(Ω) ∩ H1

0 (Ω)
))

, q ∈
( 2⋂

m=0
Cm

(
[0, T ],

(
H3−m(Ω)

)d))
.

As usual in quasilinear theory, the presence of nonlinearity not only amounts to putting additional
Sobolev regularity assumptions on the initial data and smoothness conditions on K(·), but requires suitable
‘compatibility conditions’ described below.

Given a classical solution to Eqs. (1.1)–(1.5) at an energy level s ≥ 2, by applying the ∂m
t -operator,

m = 0, . . . , s − 2, we obtain the compatibility conditions

∂m
t w(0, ·), △∂m

t w(0, ·) ∈ Hs−m(Ω) ∩ H1
0 (Ω), ∂s

t w(0, ·) ∈ H2(Ω) ∩ H1
0 (Ω),

∂m
t θ(0, ·) ∈ Hs−m(Ω) ∩ H1

0 (Ω) and ∂m
t q(0, ·) ∈

(
Hs−m(Ω)

)d
(2.1)

for m = 0, . . . , s − 1. Although the solution is a priori unknown, ∂m
t w(0, ·), m = 2, . . . , s, ∂l

tθ(0, ·) and
∂l

tq(0, ·), l = 1, . . . , s − 1, can iteratively be computed from w0, w1, θ0, q0 using a procedure outlined below.
To this end, let

A : D(A) ⊂ L2(Ω) → L2(Ω), u ↦→ −△u with D(A) :=
{

u ∈ H1
0 (Ω) | △u ∈ L2(Ω)

}
(2.2)

denote the L2(Ω)-realization of the negative Dirichlet–Laplacian. If ∂Ω ∈ C2, the standard elliptic theory
suggests D(A) = H2(Ω) ∩ H1

0 (Ω) with A being an isomorphism between D(A) and L2(Ω). Similarly, if
∂Ω ∈ Cs for some s ≥ 2, the operator A can be viewed as an isomorphism between Hs(Ω) ∩ H1

0 (Ω) and
Hs−2(Ω). Here and in the sequel, we use the notation H0

0 (Ω) ≡ H0(Ω) := L2(Ω).
With this notation, Eqs. (1.1)–(1.3) can be cast into the equivalent form:

A(γ + A−1)wtt + AK(△w) − αAθ = 0 in (0, ∞) × Ω , (2.3)
βθt + div q + αAwt = 0 in (0, ∞) × Ω , (2.4)

τqt + q + η∇θ = 0 in (0, ∞) × Ω . (2.5)
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Provided K(·) is sufficiently smooth, by sequentially applying the ∂t-operator to Eqs. (2.3)–(2.5), us-
ing the product rule, Faà di Bruno’s formula and exploiting the invertibility of (γ + A−1), for any
m ≥ 1, wm+1, θm, qm can be expressed via w0, . . . , wm, θ0, . . . , θm−1, q0, . . . , qm−1. Indeed, evaluating
Eqs. (2.3)–(2.5) at t = 0 and applying A−1 to Eq. (2.3), we get

w2 = −
(
γ + A−1)−1(

K(△w0) − αθ0)
,

θ1 = − 1
β

(
div q0 + αAw1)

and q1 = − 1
τ

(
q + η∇θ

)
expressing w2, θ1, q1 in terms of w0, w1, θ0, q0. Similarly, for m = 2, . . . , s, applying the ∂m−2

t -operator, we
get

wm = −
(
γ + A−1)−1

(
∂m−2

t

(
K(△w)

))⏐⏐⏐
t=0

− αθm−2,

θm−1 = − 1
β

(
div qm−2 + αAwm−1)

and qm−1 = − 1
τ

(
qm−2 + η∇θm−2)

.

Thus, by virtue of the product rule and Faà di Bruno’s formula, the right-hand sides can be expressed in
terms of w0, . . . , wm−1, θ0, . . . , θm−2 and q0, . . . , qm−2. This construction can easily be made rigorous using
an induction procedure starting at m = 2.

Definition 2.2. Let wm, θm, qm, m ≥ 0, denote the ‘initial values’ for ∂m
t w, ∂m

t θ and ∂m
t q as described

above (see also [20, p. 96]).

Suppose w is smooth. Then, we can write:

△K(△w) = K ′(△w)△2w + K ′′(△w)|∇△w|2. (2.6)

Hence, the sign of K ′(·) decides the positive ellipticity of −△K(△·). Further details and explanations will
be presented in the sections to follow.

Assumption 2.3. Let s ≥ ⌊ d
2 ⌋ + 2 be an integer and let Ω ⊂ Rd be a bounded domain with ∂Ω ∈ Cs.

Here, the floor function ⌊x⌋ denotes the integer part of x, i.e., the largest integer not exceeding x.

1. Let K ∈ Cs+1(R,R).
2. Let the initial data satisfy the regularity and compatibility conditions

wm, △wm ∈ Hs−m(Ω) ∩ H1
0 (Ω) for m = 0, . . . , s − 1, ws ∈ H2(Ω) ∩ H1

0 (Ω) and

θk ∈ Hs−k(Ω) ∩ H1
0 (Ω), qk ∈

(
Hs−k(Ω)

)d for k = 0, . . . , s − 1,

where H0(Ω) := L2(Ω).
3. For the “initial” (positive) ellipticity of K ′(△w0)△, suppose

min
x∈Ω̄

K ′(△w0(x)
)

> 0, where △w0 ∈ C0(Ω̄) by virtue of Sobolev’s embedding theorem.

Theorem 2.4 (Local Existence & Uniqueness). Suppose Assumption 2.3 is satisfied for some s ≥ ⌊ d
2 ⌋ + 2.

Then Eqs. (1.1)–(1.5) possess a unique classical solution (w, θ, q) at the energy level s on a maximal interval
[0, Tmax) (possibly, small, but not empty) such that:

1. “Local non-degeneracy:” minx∈Ω̄ K ′(△w(t, x)
)

> 0 for any t ∈ [0, Tmax).
2. “Blow-up or eventual degeneracy if solution non-global:” Unless Tmax = ∞, either the ellipticity

condition is eventually violated

min
x∈Ω̄

K ′(△w(t, x)
)

→ 0 as t ↗ Tmax (2.7)

or/and the blow-up occurs △w(t, ·)
2

Hs(Ω) → ∞ as t ↗ Tmax. (2.8)
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3. “Solution map continuity:” For any T > 0, ε > 0 and N > 0, the solution mapping (w0, w1, θ0, q0) ↦→
(w, wt, θ, q) is a continuous function from

MT,ε,N :=
{

(w0, w1, θ0, q0)
⏐⏐ (w0, w1, θ0, q0) satisfy Assumption 2.3 and admit

a classical solution (w, θ, q) with min
t∈[0,T ]

min
x∈Ω̄

K ′(△w(t, x)
)

≥ ε,

max
0≤t≤T

s∑
m=0

∂m
t w(t, ·)

2
Hs+2−m(Ω) ≤ N2

}

endowed with the topology of H3(Ω) × H2(Ω) × H1(Ω) ×
(
H1(Ω)

)d to L∞(
0, T ; H3(Ω) × H2(Ω) ×

H1(Ω) ×
(
H1(Ω)

)d)
. Note that the set MT,ε,N is non-empty for small ε, large N and small T .

This choice of s = ⌊ d
2 ⌋+2 is known to be optimal for quasilinear wave-equation-like problems. For a more

detailed discussion, we refer to [29, Remark 4.2].
For the sake of simplicity, we now assume Ω ⊂ Rd, d = 2, 3, and establish global existence and uniqueness

of classical solutions at the energy level s = ⌊ d
2 ⌋ + 2 ≡ 3. In addition to Assumption 2.3, we require:

Assumption 2.5. Let K(·) satisfy K(0) = 0, K ′(0) > 0, K ′′(0) = 0.

For instance, for any real number α, the function K(z) = z + αz3 from [26,29] satisfies Assumption 2.5.
Note that the condition K(0) = 0 is mathematically redundant, but is fulfilled by real-world material
responses for physical reasons discussed in Appendix A.

By continuity, Assumption 2.5 furnishes the existence of a number ρ > 0 such that

K ′(z) > 0 for |z| < ρ. (2.9)

Theorem 2.6 (Global Well-Posedness). Let Assumptions 2.3 and 2.5 be satisfied for d ∈ {2, 3} and s = 3.
Then, for any number M > 0, there exists a (small) number δM,ρ > 0, depending on M and ρ, such that for
any initial data (w0, w1, θ0, q0) satisfying

∥△w0∥L∞(Ω) < ρ, (2.10)

X0 :=
3∑

m=0
∥wm∥2

H5−m(Ω) +
2∑

m=0
∥θm∥2

H3−m(Ω) +
2∑

m=0
∥qm∥2

(H3−m(Ω))d < M2, (2.11)

∥w0∥2
H3(Ω) + ∥w1∥2

H2(Ω) + ∥θ0∥2
H1(Ω) + ∥ div q0∥2

L2(Ω) < δ2
M,ρ (2.12)

the unique local solution (w, θ, q) to Eqs. (1.1)–(1.5) given in Theorem 2.4 exists globally, i.e., Tmax = ∞.

Remark 2.7. The boundedness assumption for ∥△w0∥L∞(Ω) formulated in Eq. (2.10) above is natural in
light of the initial positive ellipticity condition in Assumption 2.3 as well as Eq. (2.9). However, it can be
eliminated if the function K ′(·) is positive everywhere in R, and consequently the choice of δ only depends
on M . The latter assumption K ′(·) > 0 corresponds to the monotonicity of the stress–strain curve/diagram
and is physically sound for various materials, e.g., for brittle ones when fracture phenomena are ignored,
and is commonly employed in the theory of finite elasticity (cf. [9, p. 53], [19], [40, p. 16], etc.). In this case,
we do not need the smallness of ∥△w0∥L∞(Ω) and we obtain a ‘large-data’ result provided the function K(·)
satisfies appropriate “growth conditions” at infinity (cf. Eqs. (5.29)–(5.31)).
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As a ‘by-product’, we will obtain our main stabilization result:

Theorem 2.8 (Exponential Stability). Under the conditions of Theorem 2.6, there exist positive constants
C and κ such that

s∑
m=0

∂m
t w(t, ·)

2
Hs+2−m(Ω) +

s−1∑
m=0

∂m
t θ(t, ·)

2
Hs−m(Ω) +

s−1∑
m=0

∂m
t q(t, ·)

2
(Hs−m(Ω))d ≤ Ce−κtX

3/2
0

for t ≥ 0, where the initial energy X0 is defined in Eq. (2.11).

3. Equivalent transformation

To facilitate the analytic treatment of Eqs. (1.1)–(1.5), we first reduce Eqs. (1.1)–(1.5) to an equivalent
lower-order non-vectorial system. Exploiting the operator A defined in Eq. (2.2), introduce the new variables

z := Aw and p := div q. (3.1)

Applying the div-operator to Eq. (1.3), the system (1.1)–(1.5) is reduced to(
A−1 + γ

)
ztt − AK(−z) − αAθ = 0 in (0, ∞) × Ω , (3.2)

βθt + p + αzt = 0 in (0, ∞) × Ω , (3.3)
τpt + p − ηAθ = 0 in (0, ∞) × Ω (3.4)

subject to homogeneous Dirichlet–Dirichlet boundary conditions

z = θ = 0 on (0, ∞) × ∂Ω (3.5)

and initial conditions

z(0, ·) = z0, zt(0, ·) = z1, θ(0, ·) = θ0, p(0, ·) = p0 in Ω (3.6)

with z0 := Aw0, z1 := Aw1 and p0 := div q0. We want to show the original system (1.1)–(1.5) and
the reduced system (3.2)–(3.6) are equivalent in appropriate solution classes. The uniqueness of solutions
(without being indispensable) will simplify our arguments. Similar to Definition 2.1 for the original system
(1.1)–(1.5), for the reduced system, we have:

Definition 3.1. Let s ≥ 2. Under a classical solution to Eqs. (3.2)–(3.6) on [0, T ] at the energy level s, we
understand a function triple (z, θ, p) : [0, T ] × Ω̄ → R × R × R satisfying

z ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
))

∩ Cs
(
[0, T ], L2(Ω)

)
,

θ ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
))

, p ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−1−m(Ω)

))
and, being plugged into Eqs. (3.2)–(3.6), turning them into tautology. Classical solutions on [0, T ) and [0, ∞)
are defined correspondingly.

The following equivalence theorem is proved in the supplementary Section.
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Theorem 3.2. Let s ≥ ⌊ d
2 ⌋ + 2. A triple (w, θ, q) is a classical solution (1.1)–(1.5) if and only if (z, θ, p)

defined in Eq. (3.1) is a classical solution to Eqs. (3.2)–(3.6). Conversely, (z, θ, p) is a classical solution to
Eqs. (3.2)–(3.6) if and only if

w(t, ·) = A−1z(t, ·) and q(t, ·) = q0 + ∇A−1 div q0 − ∇A−1p(t, ·)

is a classical solution to Eqs. (1.1)–(1.5) at the same energy level.

Hence, in the following, we investigate the more tractable – but nonetheless equivalent – non-vectorial
reduced system (3.2)–(3.6).

4. Local well-posedness: Proof of Theorem 2.4

To prove Theorem 2.4, we consider the reduced system (3.2)–(3.6). Recalling Eq. (2.6) and letting

a(ξ) = K ′(−ξ) and f(ξ, η) = K ′′(ξ)|η|2 for ξ ∈ R, η ∈ Rd,

we can write
AK(z) = a(z)Az − f(z, ∇z). (4.1)

Hence, Eqs. (3.2)–(3.6) can equivalently be expressed as(
A−1 + γ

)
ztt + a(z)Az − αAθ = f(z, ∇z) in (0, ∞) × Ω , (4.2a)

βθt + p + αzt = 0 in (0, ∞) × Ω , (4.2b)
τpt + p − ηAθ = 0 in (0, ∞) × Ω , (4.2c)

z = θ = 0 in (0, ∞) × ∂Ω , (4.2d)
z(0, ·) = z0, zt(0, ·) = z1, θ(0, ·) = θ0, p(0, ·) = p0 in Ω . (4.2e)

Remark 4.1. The results of this section remain true for general functions a(·) and f(·, ·), which are not
necessarily related to the function K(·) via Eq. (4.1).

With a straightforward modification of the construction performed in Section 2, we get:

Definition 4.2. Let zm, θm, pm, m ≥ 0, denote the ‘initial values’ for ∂m
t z, ∂m

t θ and ∂m
t p.

In the spirit of Assumption 2.3, we impose the following conditions:

Assumption 4.3. Let s ≥ ⌊ d
2 ⌋ + 2 be an integer and let Ω ⊂ Rd be a bounded domain with ∂Ω ∈ Cs.

1. Let a ∈ Cs−1(R,R) and f ∈ Cs−1(R × Rd,R).
2. Let the initial data satisfy the regularity and compatibility conditions

zm ∈ Hs−m(Ω) ∩ H1
0 (Ω) for m = 0, . . . , s − 1, zs ∈ L2(Ω) and

θk ∈ Hs−k(Ω) ∩ H1
0 (Ω), pk ∈ Hs−1−k(Ω) for k = 0, . . . , s − 1,

where H0(Ω) := L2(Ω).
3. For the “initial ellipticity” of a(z0)A, suppose

min
x∈Ω̄

a
(
z0(x)

)
> 0, where z0 ∈ C0(Ω̄) by virtue of Sobolev’s embedding theorem.
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We also introduce the following notation for the time–space gradient operator used for the proof of
Theorem 4.5:

D̄n :=
(
(∂t, ∇)α | α ∈ Nd+1

0 , 0 ≤ |α| ≤ n
)

for n ≥ 0. (4.3)

Remark 4.4. By the equivalence Theorem 3.2, (w0, w1, θ0, p0) satisfy Assumption 2.3 if and only if
(z0, z1, θ0, q0) satisfy Assumption 4.3 and q0 ∈

(
Hs−1(Ω)

)d.

Next, we prove the following ‘auxiliary’ result for the reduced system (4.2a)–(4.2e):

Theorem 4.5 (Local Well-Posedness). Suppose Assumption 4.3 is true for some s ≥ ⌊ d
2 ⌋ + 2. Then

Eqs. (4.2a)–(4.2e) possess a unique classical solution (z, θ, p) at the energy level s on a maximal interval
[0, Tmax) ̸= ∅ such that:

1. “Local non-degeneracy:” minx∈Ω̄ a
(
z(t, x)

)
> 0 for any t ∈ [0, Tmax).

2. “Blow-up or eventual degeneracy if solution non-global:” Unless Tmax = ∞, either the ellipticity
condition is violated

min
x∈Ω̄

a
(
z(t, x)

)
→ 0 as t ↗ Tmax (4.4)

or/and the blow-up occurs z(t, ·)
2

Hs(Ω) → ∞ as t ↗ Tmax. (4.5)

3. “Solution map continuity:” For any T > 0, ε > 0 and N > 0, the solution mapping (z0, z1, θ0, p0) ↦→
(z, zt, θ, p) is a continuous function from

MT,ε,N :=
{

(z0, z1, θ0, p0)
⏐⏐ (z0, z1, θ0, p0) satisfy Assumption 4.3 and admit

a classical solution (z, θ, p) with min
t∈[0,T ]

min
x∈Ω̄

a
(
z(t, x)

)
≥ ε,

max
0≤t≤T

s∑
m=0

∂m
t z(t, ·)

2
Hs−m(Ω) ≤ N2

}
endowed with the topology of H1(Ω)×L2(Ω)×H1(Ω)×

(
H1(Ω)

)d to L∞(
0, T ; H1(Ω)×L2(Ω)×H1(Ω)×(

H1(Ω)
)d)

.

Proof. When treating the z-component in this proof, we will rather closely follow the streamlines of
[29, Section 4]. A major difference over [29, Section 4] is that the equation for z cannot be decoupled from
those for θ, p due to hyperbolicity of the problem under consideration because of the presence of a strong
coupling between the equations. Besides, the topologies for thermal variables are principally different in
both cases. Therefore, it does not appear legitimate to skip the present proof and merely appeal to the
analogy with [29, Section 4].

Using the second Hilbert’s identity(
A−1 + γ

)−1 = 1
γ − 1

γ A−1(
A−1 + γ

)−1
,

Eqs. (4.2a)–(4.2e) are transformed to a second-order hyperbolic system

ztt + 1
γ a(z)Az − α

γ Aθ + Bθ = F (z, θ) in (0, ∞) × Ω , (4.6)
βθt + p + αzt = 0 in (0, ∞) × Ω , (4.7)

τpt + p − ηAθ = 0 in (0, ∞) × Ω , (4.8)
z = θ = 0 on (0, ∞) × ∂Ω , (4.9)



230 I. Lasiecka, M. Pokojovy and X. Wan / Nonlinear Analysis 186 (2019) 219–258

z(0, ·) = z0, zt(t, ·) = z1, θ(0, ·) = θ0, p(0, ·) = p0 in Ω , (4.10)

perturbed by the nonlinear nonlocal operator F (·) given by

F (z) = 1
γ (1 − Iγ)f(z, ∇z) + 1

γ Iγ

(
a(z)Az

)
, (4.11)

where the compact linear operator
Iγ := A−1(

γ + A−1)−1

is a continuous mapping from Hs(Ω) to Hs+2(Ω) ∩ H1
0 (Ω) for any s ≥ 0 and

B := α
γ IγA = α

γ

(
γ + A−1)−1

is a bounded linear operator on both Hs(Ω) and Hs(Ω) ∩ H1
0 (Ω) for any s ≥ 0.

Step 1: Amending the nonlinearity a(·). Since no global positivity is available for a(·), the ellipticity condition
for a

(
z(t, ·)

)
A can be violated at any time t > 0. To preliminarily rule out this possible degeneracy, the

following construction proves to be helpful.
On the strength of the continuity of z0 and the connectedness of Ω , we get

z0(Ω̄) =
[
min
x∈Ω̄

z0(x), max
x∈Ω̄

z0(x)
]

=: J0. (4.12)

By Assumption 4.3.3, a(·) is positive on J0. Since a−1(
(0, ∞)

)
is open and J0 ⊂ a−1(

(0, ∞)
)
, for ϵ > 0

sufficiently small, we consider
J0 ⊂ Jϵ := a−1(

[ϵ, ∞)
)

̸= ∅. (4.13)

Further, there exists a global Cs-extension âϵ(·) (denoted for simplicity by â(·)) of a(·) such that

â(z) = a(z) for z ∈ J0 and inf
z∈Jϵ

â(z) ≥ ϵ > 0. (4.14)

We replace Eq. (4.6) with

ztt + 1
γ â(z)Az − α

γ Aθ = F (z, θ) in (0, ∞) × Ω (4.15)

and first consider the amended system (4.15), (4.7)–(4.10). The idea behind this modification is that, despite
both systems being a priori not equivalent, the equivalence will turn out to be valid a posteriori — provided
the time T is short.

To solve the amended problem (4.15), (4.7)–(4.10), we transform it to a fixed-point problem and
consequently solved using the Banach’s fixed-point theorem. As previously pointed out, our procedure is
reminiscent of [20, Theorem 5.2] and [29, Section 4].

Step 2: Defining the fixed-point mapping. Recalling H0
0 (Ω) ≡ H0(Ω) := L2(Ω), for N > 0 and T > 0, let

X(N, T ) denote the set of all regular distributions (z, θ, q) such that

∂m
t z ∈ C0(

[0, T ], Hs−m(Ω)
)

for m = 0, 1, . . . , s,

∂k
t θ ∈ C0(

[0, T ], Hs−m(Ω)
)

and ∂k
t p ∈ C0(

[0, T ], Hs−1−m(Ω)
)

for k = 0, 1, . . . , s − 1
(4.16)

satisfying the boundary conditions

∂m
t z = ∂k

t θ = 0 on [0, T ] × ∂Ω for m = 0, 1, . . . , s − 1 and k = 0, 1, . . . , s − 2

and the initial conditions
∂m

t z(0, ·) = zm in Ω for m = 0, 1, . . . , s,

∂k
t θ(0, ·) = θk, ∂k

t p(0, ·) = pk in Ω for k = 0, 1, . . . , s − 1
(4.17)
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along with the energy estimate

max
0≤t≤T

(
∥D̄sz(t, ·)∥2

L2(Ω) + ∥D̄s−1θ(t, ·)∥2
H1(Ω) + ∥D̄s−1p(t, ·)∥2

L2(Ω)

)
≤ N2 (4.18)

with the time–space gradient D̄(·) defined in Eq. (4.3). By a standard argument (cf. [29, p. 195]), for any
T0 > 0 and sufficiently large N > 0, the set X(N, T ) is not empty for any T ∈ (0, T0].

For (z̄, θ̄, p̄) ∈ X(N, T ), consider the linear operator F mapping (z̄, θ̄, p̄) to a function triple (z, θ, p)
solving the linear nonhomogeneous system

ztt − āij(t, x)∂xi
∂xj

z − α
γ Aθ + Bθ = f̄(t, x) in (0, ∞) × Ω , (4.19)

βθt + p + αzt = 0 in (0, ∞) × Ω , (4.20)
τpt + p − ηAθ = 0 in (0, ∞) × Ω , (4.21)

z = θ = 0 on (0, ∞) × ∂Ω , (4.22)
z(0, ·) = z0, zt(t, ·) = z1, θ(0, ·) = θ0, p(0, ·) = p0 in Ω , (4.23)

with
āij(t, x) := 1

γ â
(
z̄(t, x)

)
δij∂xi

∂xj
,

f̄(t, x) := 1
γ

(
(1 − Iγ)f(z̄, ∇z̄)

)
(t, x) + 1

γ

(
Iγ

(
â(z̄)Az̄

))
(t, x)

(4.24)

for (t, x) ∈ [0, T ] × Ω . Note that F only depends on z̄, not on θ̄, p̄.
We show F is well-defined. Taking into account the regularity of z̄, invoking Assumption 4.3 and Eq. (4.14)

as well as Sobolev’s embedding theorem, we can verify that Assumption B.2 is satisfied with

γi = max
0≤t≤T

γ̄i

(z̄(t, ·)


Hs−1(Ω)

)
for i = 0, 1, (4.25)

for appropriate continuous functions γ0, γ1 : [0, ∞) → (0, ∞), where we used the Sobolev’s embedding
∇z̄(t, ·) ∈ H2(Ω) ↪→ L∞(Ω) along with the elliptic estimateIγ

(
â(z̄)Az̄

)
Hm+2(Ω) ≤ C

â(z̄)Az̄


Hm(Ω) for m = 0, 1, . . . , s − 2.

Here and in the sequel, C > 0 denotes a generic constant. Hence, by virtue of Theorem B.3, Eqs. (4.19)–(4.23)
possesses a unique classical solution (z, θ, p) with

z ∈
( s−1⋂

m=0
Cm

(
[0, T ], Hs−m(Ω)

))
∩ Cs

(
[0, T ], L2(Ω)

)
,

θ ∈
s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω)

)
, p ∈

s−1⋂
m=0

Cm
(
[0, T ], Hs−1−m(Ω)

)
.

Therefore, the mapping F is well-defined.

Step 3: Showing the self-mapping property.
We prove that F maps X(N, T ) into itself provided N is sufficiently large and T is sufficiently small. To

this end, we define

E0 :=
s∑

m=0
∥zm∥2

Hs−m(Ω) +
s−1∑
k=0

∥θk∥2
Hs−k(Ω) +

s−1∑
k=0

∥pk∥2
Hs−1−k(Ω)

+
s−2∑
m=0

max
0≤t≤T

∂m
t f(t, ·)

2
Hs−2−m(Ω) +

∫ T

0

∂s−1
t f(t, ·)

2
L2(Ω)dt.
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Similar to [29, Equations (4.19), (4.20)]. Taking into account Eqs.(4.17), (4.18) and (4.24) and applying
Sobolev’s embedding theorem, the fundamental theorem of calculus along with [20, Theorem B.6] yields∫ T

0
∥∂s−1

t f̄(t, ·)∥2
L2(Ω)dt ≤ C(N)(1 + T ), (4.26)

max
0≤t≤T

( s−2∑
m=0

∥∂m
t f̄(t, ·)∥2

Hs−2−m(Ω)

)
≤ C(E0) + C(N)(1 + T ). (4.27)

Plugging Eqs. (4.26) and (4.27) into the energy estimate in Theorem B.3, we arrive at

max
0≤t≤T

(
∥D̄sz(t, ·)∥2

L2(Ω) + ∥D̄s−1θ(t, ·)∥2
H1(Ω) + ∥D̄s−1p(t, ·)∥2

L2(Ω)

)
≤ K̄(E0, γ0, γ1)ζ(N, T ) (4.28)

with positive constants γ0, γ1 defined in Eq. (4.25), a positive ‘constant’ K̄, being a continuous function of
its variables, and

ζ(N, T ) =
(

1 + C(N)T 1/2
5∑

i=0
T i/2

)
exp

(
T 1/2C(N)(1 + T 1/2 + T + T 3/2)

)
.

Select N such that
K̄(E0, γ0, γ1) ≤ 1

2 N2.

Due to the continuity of ζ(N, ·) in T = 0 and the fact ζ(N0, 0) = 1, there exists T > 0 such that
ζ
(
N, (0, T ]

)
⊂ [1, 2]. Hence, the estimate in Eq. (4.28) is satisfied with N2 on the right-hand side. Thus,

(z, θ, p) ∈ X(N, T ) implying F maps X(N, T ) into itself.

Step 4: Proving the contraction property. Consider the metric space

Y :=
{

(z, θ, p)
⏐⏐ z, zt, |∇z| ∈ L∞(

0, T ; L2(Ω)
)
, θ ∈ L∞(

0, T ; H1(Ω)
)

and p ∈ L∞(
0, T ; L2(Ω)

)}
endowed with the distance

ρ
(
(z, θ, p), (z̄, θ̄, p̄)

)
= ess sup

0≤t≤T

( D̄1(
z − z̄

)
(t, ·)

2
L2(Ω) +

(θ − θ̄)(t, ·)
2

H1(Ω)

+
(p − p̄)(t, ·)

2
L2(Ω)

)
1/2

for (z, θ, p), (z̄, θ̄, p̄) ∈ Y . Being endowed with its natural topology, Y is complete. Arguing as [29, p. 197],
we see X(N, T ) ⊂ Y is closed in Y .

We now prove that F : X(N, T ) → X(N, T ) is a contraction mapping with respect to ρ. For (z̄, θ̄, p̄),
(z̄∗, z̄∗, p̄∗) ∈ X(N, T ), let (z, θ, p) := F

(
(z̄, θ̄, p̄)

)
, (z∗, θ∗, p∗) := F

(
(z̄∗, θ̄∗, p̄∗)

)
. With (z̄, θ̄, p̄), (z̄∗, θ̄∗, p̄∗),

(z, θ, p), (z∗, θ∗, p∗) all lying in X(N, T ), Eq. (4.18) together with Sobolev’s embedding theorem imply

ess sup
0≤t≤T

(
D̄1(z̄, z̄∗, z, z∗)

)
(t, ·)


L∞(Ω) ≤ CN. (4.29)

Recalling Eqs. (4.6)–(4.7), we can easily see (z̃, θ̃, p̃) := (z − z∗, θ − θ∗, p − p∗) satisfies

z̃tt + 1
γ â(z)Az̃ − α

γ Aθ̃ + Bθ̃ =
(
F (z̄) − F (z̄∗)

)
−

(
â(z̄) − â(z̄∗)

)
Az∗, (4.30)

βθ̃t + p̃ + αz̃t = 0, (4.31)
τ p̃t + p̃ − ηAθ̃ = 0, (4.32)

z̃|∂Ω = θ̃|∂Ω = 0, (4.33)
z̃(0, ·) ≡ 0, z̃t(t, ·) ≡ 0, θ̃(0, ·) ≡ 0, p̃(0, ·) ≡ 0. (4.34)
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Multiplying Eqs. (4.30)–(4.32) in L2(
(0, t) × Ω

)
with 1

γ z̃t, 1
γη Aθ̃ and p̃, respectively, using the fact

∥∇â(z)∥L∞((0,T )×Ω) ≤ C(N)

and proceeding similar to the energy estimate part of the proof of Theorem B.3, we obtainD̄1z̃(t, ·)
2

L2(Ω) +
θ̃(t, ·)

2
H1(Ω) +

p̃(t, ·)
2

L2(Ω)

≤ C(N)
∫ t

0

(
F (z̄) − F (z̄∗)

)
−

(
â(z̄) − â(z̄∗)

)
Az∗

2

L2(Ω)
dt

(4.35)

for t ∈ [0, T ]. In view of local Lipschitzianity of â(·) and f(·, ·) (and, thus, that of F (·) from Eq. (4.11) on
L2(Ω)) together with the energy bound in Eq. (4.18), Eq. (4.35) implies

max
0≤t≤T

(D̄1z̃(t, ·)
2

L2(Ω) +
θ̃(t, ·)

2
H1(Ω) +

p̃(t, ·)
2

L2(Ω)

)
≤ C(N)T

(
max

0≤t≤T

D̄1z̃(t, ·)
2

L2(Ω) +
θ̃(t, ·)

2
H1(Ω) +

p̃(t, ·)
2

L2(Ω)

)
.

Thus, selecting T sufficiently small such that λ := C(N)T < 1, we arrive at

ρ
(
(z, θ, p), (z∗, θ∗, p∗)

)
≤ λρ

(
(z̄, θ̄, p̄), (z̄∗, θ̄∗, p̄∗)

)
meaning F is a contraction on the closed subset X(N, T ) of the metric space Y . Thus, on the strength of
Banach’s fixed-point theorem, F possesses a unique fixed point (z, θ, p) ∈ X(N, T ). Having the smoothness
specified in Eq. (4.16), by definition of the fixed-point mapping F (·), (z, θ, p) is the unique classical solution
to Eqs. (4.6)–(4.10) at the energy level s.

With the solution from Step 5 at hand, similar to [29, Section 4], we let ϵ ↘ 0 and arrive at the solution
to the original problem. Next, one can easily show that the blow-up can only happen if the higher-order
norm blows-up, i.e., if Eq. (4.5) holds. Finally, the continuity of the solution map follows similar to Step 4.
For the sake of completeness, a detailed proof of these latter claims is provided in the supplementary Section
available online. □

Recalling the equivalence Theorem 3.2 stating

w(t, ·) = A−1z(t, ·) and q(t, ·) = q0 + ∇A−1 div q0 − ∇A−1p(t, ·),

we get the local well-posedness in the class specified in Definition 2.1 for the original system (1.1)–(1.5) as
claimed in Theorem 2.4.

5. Global existence and long-time behavior: Proof of Theorems 2.6 and 2.8

In this section, we restrict ourselves to the case s = 3 and prove that the local solutions to Eqs. (1.1)–(1.5)
(or, equivalently, (4.2a)–(4.2e)) established in Theorem 2.4 exist globally (i.e., Tmax = ∞) and their energy
decays exponentially — given the initial data are small enough in the lowest topology. It is worth pointing
out that, throughout the proofs in this section, we operate with general s and only put s = 3 at the very end
to achieve the desired results. This demonstrates the crucialness of Assumption 2.5 paired with the smallness
of the initial data in the lower topology instead of the higher one. See also Remark 5.4 for details.

For technical convenience, in lieu of the functions a(z) and f(z, ∇z) from Eq. (4.2a), throughout this
Section, we will use the function F (·) defined via

F (z) = K ′(0)z − K(z) (5.1)
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representing the remainder of the second-order Taylor expansion of −K(·) around 0. Then, it follows from
Assumption 2.5 that

F ′(0) = K ′(0) − K ′(0) = 0 and F ′′(0) = K ′′(0) = 0. (5.2)

As before, the operator A denotes the negative Dirichlet–Laplacian and z = −△w = Aw.
With this notation, the system (4.2a)–(4.2e) becomes

(A−1 + γI)ztt + Az − αAθ = AF (z) in (0, ∞) × Ω , (5.3a)
βθt + p + αzt = 0 in (0, ∞) × Ω , (5.3b)

τpt + p − ηAθ = 0 in (0, ∞) × Ω , (5.3c)
z = θ = 0 on (0, ∞) × ∂ Ω , (5.3d)

z(0, ·) = z0, zt(0, ·) = z1, θ(0, ·) = θ0, p(0, ·) = p0 in Ω . (5.3e)

Notation: For a local classic solution triple (z, θ, p) established in Theorem 2.4, recall the following topological
solution spaces:

z, θ ∈
( 2⋂

m=0
Cm

(
[0, T ], H3−m(Ω) ∩ H1

0 (Ω)
))

∩ C3(
[0, T ], L2(Ω)

)
,

=: C0(
[0, T ], Z3

)
≡ C0(

[0, T ], T3
)
,

p = div q ∈
( 2⋂

k=0
Ck

(
[0, T ], H2−k(Ω)

))
=: C0(

[0, T ], P3
)
,

where we denote
Z3 =

{
(z, zt, ztt, zttt) | z ∈ H3(Ω) ∩ H1

0 (Ω), zt ∈ H2(Ω) ∩ H1
0 (Ω), ztt ∈ H1(Ω) ∩ H1

0 (Ω), zttt ∈ L2(Ω)
}

,

T3 =
{

(θ, θt, θtt) | θ ∈ H3(Ω) ∩ H1
0 (Ω), θt ∈ H2(Ω) ∩ H1

0 (Ω), θtt ∈ H1(Ω) ∩ H1
0 (Ω), θttt ∈ L2(Ω)

}
,

P3 =
{

(p, pt, ptt) | p ∈ H2(Ω), pt ∈ H1(Ω), ptt ∈ L2(Ω)
}

equipped with the natural product norms. For instance,

∥z(t)∥2
Z3 = ∥z(t)∥2

H3(Ω) + ∥zt(t)∥2
H2(Ω) + ∥ztt(t)∥2

H1(Ω) + ∥zttt(t)∥2
L2(Ω)

and
X(t) = ∥z(t)∥2

Z3 + ∥θ(t)∥2
T3 + ∥p(t)∥2

P3 . (5.4)

For the sake of simplicity, we write z(t) instead of
(
z, zt, ztt, zttt

)
(t), etc.

In addition, to facilitate the application of multiplier techniques in this section, we introduce the weighted
energies Ek(t), k = 1, 2, 3, as follows,

E1(t) := 1
2

(A−1/2zt

2
2 + γ

zt

2
2 +

A1/2z
2

2 + β
A1/2θ

2
2 + τ

η

p
2

2

)
, (5.5)

E2(t) := 1
2

(A−1/2ztt

2
2 + γ

ztt

2
2 +

A1/2zt

2
2 + β

A1/2θt

2
2 + τ

η

pt

2
2

)
, (5.6)

E3(t) := 1
2

(A−1/2zttt

2
2 + γ

zttt

2
2 +

A1/2ztt

2
2 + β

A1/2θtt

2
2 + τ

η

ptt

2
2

)
(5.7)

and
E(t) =

(z, zt, ztt, θ, θt, p, pt)(t, ·)
2

E
= E1(t) + E2(t) + E3(t). (5.8)

Finally, the higher-order norms as parts of X(t) not bounded by E(t), are defined as

Y (t) = ∥z∥2
H3(Ω) +∥z∥2

H2(Ω) +∥zt∥2
H2(Ω) +∥θ∥2

H3(Ω) +∥θt∥2
H2(Ω) +∥θttt∥2

L2(Ω) +∥p∥2
H2(Ω) +∥pt∥2

H1(Ω). (5.9)
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In our model – in particular, in view of the hinged boundary conditions (1.4) – it is clear that X(t) and
E(t) + Y (t) are equivalent. Thus, we write

Y (t) = X(t) − E(t)

for the convenience of proofs.
Last but not least, throughout this section, we use

⟨
·, ·

⟩
to denote the L2(Ω)-inner product. By ∥u∥p we

denote Lp(Ω)-norm of u. In what follows, we work with “smooth” solutions whose existence has been already
guaranteed by Theorem 2.4. Thus, formal PDE calculations performed below are well justified.

Lemma 5.1 (A Priori Energy Observability). Let Assumptions 2.3 and 2.5 be satisfied. Then, for T ∈
(0, Tmax],

E(T ) + C1

∫ T

0
E(t) dt ≤ C2

[
E(0) + [E1(0)](s−1)/4[X(0)](s+1)/4 + [E1(T )](s−1)/4[X(T )](s+1)/4

]
+ C3

N∑
i=1

∫ T

0
[E1(t)]αi [X(t)]βi dt, (5.10)

for some N ∈ N and αi > 0, βi > 1, i = 1, . . . , N .

Proof. Step 1: Level 1 energy estimates. We start with estimates of energies at Level 1 defined in (5.5).
Thereafter, in Step 2, time differentiation of the system will lead to desired estimates at Levels 2 and 3.

Step 1.1: Energy identity. We multiply Eqs. (5.3a)–(5.3c) with zt, Aθ, and p, respectively, and then add
up the (appropriately weighted) three identities to get

E1(T ) +
∫ T

0

1
η

p
2

2 dt = E1(0) +
∫ T

0

⟨
AF (z), zt

⟩
dt, (5.11)

whence we also obtain the energies bound∫ T

0

p
2

2dt ≤ C
(

E1(0) +
∫ T

0

⟨
AF (z), zt

⟩
dt

)
. (5.12)

Step 1.2: We multiply (5.3b) with zt to deduce

1
2

∫ T

0

zt

2
2dt ≤ C

∫ T

0

p
2

2dt − C

∫ T

0

⟨
θt, zt

⟩
dt. (5.13)

To estimate the last term in (5.13), we first rewrite (5.3a) as

ztt = BAF (z) − αBAz + BAθ (5.14)

with the linear operator

B := (A−1 + αI)−1 : D(Aα) → D(Aα) for any α ≥ 0

being bounded due to the norm invariance. In particular, by [29, p. 194 or p. 203], B is a bounded, self-adjoint
operator on L2(Ω). We thus have

Bx


2 ≤ Cγ

x


2 and, more generally,AαBz


2 ≤ C
Aαz


2 for any α ≥ 0 (5.15)

paralleled by the same estimate for the adjoint of B.
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Hence, after multiplying (5.14) with θ and integrating by parts in time, as well as noticing that the
operators A and B commute, we get

−
∫ T

0

⟨
zt, θt

⟩
dt ≤ C1

(
E1(0) + E1(T )

)
+

∫ T

0

⟨
BAF (z), θ

⟩
dt (5.16)

+ ϵ1

∫ T

0

A1/2z
2

2dt + Cϵ1

∫ T

0

A1/2θ
2

2dt.

Plugging (5.16) into (5.13), we see that

1
2

∫ T

0

zt

2
2dt ≤ C

∫ T

0

p
2

2dt + C1
(
E1(0) + E1(T )

)
(5.17)

+ ϵ1

∫ T

0

A1/2z
2

2dt + Cϵ1

∫ T

0

A1/2θ
2

2dt +
∫ T

0

⟨
BAF (z), θ

⟩
dt.

Step 1.3: Next, we multiply (5.3a) with z to get

α

2

∫ T

0

A1/2z
2

2dt ≤ C2
(
E1(0) + E1(T )

)
(5.18)

+ Cγ

∫ T

0

zt

2
2dt + Cα

∫ T

0

A1/2θ
2

2dt −
∫ T

0

⟨
AF (z), z

⟩
dt.

Similarly, we multiply (5.17) with 4Cγ and add it to (5.18) to obtain (after cancellations and estimating
E1(T ) from the first energy estimate):

Cγ

∫ T

0

zt

2
2dt + α

2

∫ T

0

A1/2z
2

2dt ≤ C

∫ T

0

p
2

2dt + C
(
E1(0) + E1(T )

)
+ 4Cγϵ1

∫ T

0

A1/2z
2

2dt + (4CγCϵ1 + Cα)
∫ T

0

A1/2θ
2

2dt (5.19)

+ 4Cγ

∫ T

0

⟨
BAF (z), θ

⟩
dt −

∫ T

0

⟨
AF (z), z

⟩
dt,

where C3 = 4CγC1 + C2.

Step 1.4: Finally, by multiplying (5.3c) with θ, we arrive at∫ T

0

A1/2θ
2

2 dt ≤ C
(
E1(0) + E1(T )

)
+ C

∫ T

0

p
2

2 dt + ϵ2

∫ T

0

θt

2
2 dt, (5.20)

where the last term can be estimated via (5.3b) using the multiplier θt:

β

2

∫ T

0

θt

2
2 dt ≤ C

∫ T

0

p
2

2 dt + Cβ

∫ T

0

zt

2
2 dt. (5.21)

Plugging (5.20) and (5.21) into (5.19), we get

Cγ

∫ T

0

zt

2
2dt + α

2

∫ T

0

A1/2z
2

2dt +
∫ T

0

A1/2θ
2

2dt ≤ C

∫ T

0

p
2

2dt + C
(
E1(0) + E1(T )

)
+ 4Cγϵ1

∫ T

0

A1/2z
2

2dt +
(

(4CγCϵ1 + Cα + 1)2Cβ

β
ϵ2

) ∫ T

0

zt

2
2dt (5.22)

+ 4Cγ

∫ T

0

⟨
BAF (z), θ

⟩
dt −

∫ T

0

⟨
AF (z), z

⟩
dt,
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Step 1.5: Now, in (5.22), we first choose ϵ1 small enough such that 4Cγϵ1 < α
4 , then second ϵ2 small

enough such that (4CγCϵ1 + Cα + 1) 2Cβ

β ϵ2 <
Cγ

2 . Cancellations of terms on both sides of (5.22) then follow,
which leads to

E1(T ) +
∫ T

0

Cγ

2
zt

2
2 + α

4

∫ T

0

A1/2z
2

2 +
A1/2θ

2
2 +

p
2

2dt

≤ Cα,β,γE1(0) + 4Cγ

∫ T

0

⟨
BAF (z), θ

⟩
dt −

∫ T

0

⟨
AF (z), z

⟩
dt + C̃α,β,γ

⟨
AF (z), zt

⟩
dt,

or

E1(T ) + C1

∫ T

0
E1(t)dt ≤ C2E1(0) + C3

∫ T

0

⟨
AF (z), zt

⟩
+

⟨
BAF (z), θ

⟩
dt −

⟨
AF (z), z

⟩
dt, (5.23)

where C1, C2, C3 depend on α, β, and γ.

Step 2: Level 2 and 3 energy estimates. Recall from (5.6) and (5.7) that

E2(t) = 1
2

(A−1/2ztt

2
2 + γ

ztt

2
2 + α

A1/2zt

2
2 + β

A1/2θt

2
2 + τ

η

pt

2
2

)
,

E3(t) = 1
2

(A−1/2zttt

2
2 + γ

zttt

2
2 + α

A1/2ztt

2
2 + β

A1/2θtt

2
2 + τ

η

ptt

2
2

)
.

To mimic the energy estimate (5.23) for the system (5.3a)–(5.3c), we perform a time-differentiation first.
Denoting

G(z) = ∂tF (z) = F ′(z)zt and H(z) = ∂tG(z) = F ′′(z)z2
t + F ′(z)ztt, (5.24)

we obtain higher-energy inequalities

E2(T ) + C1

∫ T

0
E2(t)dt (5.25)

≤ C2E2(0) + C3

∫ T

0

⟨
AG(z), ztt

⟩
+

⟨
BAG(z), θt

⟩
dt −

⟨
AG(z), zt

⟩
dt

and

E3(T ) + C1

∫ T

0
E3(t)dt (5.26)

≤ C2E3(0) + C3

∫ T

0

⟨
AH(z), zttt

⟩
+

⟨
BAH(z), θtt

⟩
dt −

⟨
AH(z), ztt

⟩
dt.

Adding (5.23)–(5.26) together and using X(t) = E1(t) + E2(t) + E3(t) from (5.8) leads to

E(T ) + C1

∫ T

0
E(t)dt ≤ C2E(0) + C3

( ∫ T

0

(⟨
AF (z), zt

⟩
+

⟨
BAF (z), θ

⟩
+

⟨
AF (z), z

⟩)
dt

+
∫ T

0

(⟨
AG(z), ztt

⟩
+

⟨
BAG(z), θt

⟩
+

⟨
AG(z), zt

⟩)
dt (5.27)

−
∫ T

0

(⟨
AH(z), zttt

⟩
+

⟨
BAH(z), θtt

⟩
+

⟨
AH(z), ztt

⟩)
dt

)
.

The estimate above is the fundamental observability/stabilizability estimate which reconstructs the full
integral of the energy

∫ T

0 E(t) dt from the initial data E(0) modulo nonlinear terms represented by F (z).
Clearly, such observability inequality captures the effect of the propagation of the damping in the system.
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Indeed, the original system has only one source of dissipation — the thermal flux q. Observability estimate
demonstrates that this dissipation is propagated onto the remaining quantities: the vertical displacement and
the thermal moment. In the linear case, such estimates lead at once to exponential decays of the energy valid
for the entire system. A similar result, yet using Lyapunov’s indirect method, has recently been obtained for
the linear case in [53].

Step 3: Superlinear estimates. Let us recall from (5.8) that E(t) = E1(t) + E2(t) + E3(t). Our goal now
is to estimate the nine different integrals containing nonlinear terms in (5.27).

Apart from the integral of
⟨
AH(z), zttt

⟩
, eight of nine terms in (5.27) are estimated similarly. We will

illustrate the estimates based on
∫ T

0

⟨
AF (z), zt

⟩
dt and

∫ T

0

⟨
AG(z), ztt

⟩
dt in Step 3.1 and 3.2 below and skip

the rest. Regarding the highest-order term (in time and space combined),
∫ T

0

⟨
AH(z), zttt

⟩
dt, its estimation

involves total differentiation to be demonstrated in Step 3.3 and 3.4 below.

Step 3.0: We first prepare some technical estimates that will be frequently used for the remainder of this
section. First, via Sobolev’s embedding and interpolation inequalities, we have

∥z(t)∥s
∞ ≤ c∥z(t)∥s/2

H2 ∥z(t)∥s/2
H1 ≤ c[E1(t)]s/4∥z(t)∥s/2

H2 ,

∥∇z(t)∥4 ≤ c∥z(t)∥3/4
H2 ∥z(t)∥1/4

H1 ≤ c[E1(t)]1/8∥z(t)∥3/4
H2 ,

∥z(t)∥4 ≤ c∥z(t)∥3/4
H1

z(t)
1/4

2 .

(5.28)

In the calculations below, we shall use E1 as a shorthand for the norm of z bounded from above by the
z-component of E1(t). Similar convention applies to E2 and E3 as well.

Further, recall F (z) = K ′(0)z − K(z) ∈ Cs+1(R,R) by Assumption 2.3 and F ′(0) = 0 and F ′′(0) =
K ′′(0) = 0 on the strength of Eq. (5.2). Therefore, provided |z| ≤ M for some positive number M , we have
the following bounds on the derivatives of F (·):

|F ′(z)| ≤ cM |z|s−1
, (5.29)

|F ′′(z)| ≤ cM |z|s−2
, (5.30)

|F ′′′(z)| + |F (4)(z)| ≤ cM , (5.31)

with the constant cM depending on M . Due to the boundedness of the initial data (cf. Eq. (2.11) or (5.58))
as well as the temporal continuity of local solutions, we can invoke (5.29)–(5.31) for t ∈ [0, Tmax). Later, we
will show a posteriori that the solution is globally bounded (cf. Eq. (5.59)), hence Eqs. (5.29)–(5.31) hold
for any t > 0.

Step 3.1: A direct computation of AF (z), while exploiting the fact that f(z) vanishes on the boundary
and AF (z) = −△F (z), furnishes the identity

AF (z) = F ′(z)Az − F ′′(z)|∇z|2. (5.32)

Hence, ∫ T

0

⏐⏐⟨AF (z), zt

⟩⏐⏐ dt ≤
∫ T

0

⏐⏐⟨F ′(z)Az, zt

⟩⏐⏐ dt +
∫ T

0

⏐⏐⏐⟨F ′′(z)|∇z|2, zt

⟩⏐⏐⏐ dt

≤
∫ T

0
Cϵ∥z∥2(s−1)

∞
Az

2
2 + ϵ

zt

2
2dt + Cϵ∥z∥2(s−2)

∞ ∥∇z∥4
4dt

≤
∫ T

0
Cϵ∥z∥2(s−1)

∞
Az

2
2 + ϵ

zt

2
2dt + Cϵ∥z∥2s−4

∞ ∥z∥3
H2∥z∥H1dt
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≤ ϵ

∫ T

0
E1(t) + Cϵ

[
[E1(t)](s−1)/2∥z∥s−1+2

H2 + ∥z∥s−2+1
H1 ∥z∥s−2+3

H2

]
dt

≤ ϵ

∫ T

0
E1(t)dt + Cϵ

∫ T

0
E1(t)(s−1)/2∥z∥s+1

H2 dt,

where we have used the estimates from (5.28). Recall that we can choose ϵ ≪ 1. Therefore, without loss of

generality, ϵC3 ≪ C1. This assumption enables us to dominate the integral ϵ

∫ T

0
E1(t)dt by C1

∫ T

0
Xdt on

the left-hand side of (5.27). The same procedure can be repeated a finite number of times whenever a similar
term appears while estimating other terms on the right-hand side of (5.27).

Step 3.2: Computing AG(z) explicitly:

AG(z) = A(F ′(z)zt) = −F ′′′(z)zt|∇z|2 − 2F ′′(z)(∇z · ∇zt) + F ′′(z)ztAz + F ′(z)Azt, (5.33)

we get ∫ T

0

⏐⏐⟨AG(z), ztt

⟩⏐⏐ dt ≤
∫ T

0

⏐⏐⏐⟨F ′′′(z)zt|∇z|2, ztt

⟩⏐⏐⏐ dt + 2
∫ T

0

⏐⏐⟨F ′′(z)(∇z · ∇zt), ztt

⟩⏐⏐ dt

+
∫ T

0

⏐⏐⟨F ′′(z)ztAz, ztt

⟩⏐⏐ dt +
∫ T

0

⏐⏐⟨F ′(z)Azt, ztt

⟩⏐⏐ dt, (5.34)

which can be estimated term-by-term as follows:

• The last term of (5.34) can be treated similarly as in Step 3.1:∫ T

0

⏐⏐⟨F ′(z)Azt, ztt

⟩⏐⏐ dt ≤
∫ T

0
∥z∥s−1

∞
Azt


2

ztt


2 ≤ C

∫ T

0
E

(s−1)/4
1 E

1/2
2 ∥z∥(s−1)/2

H2 ∥zt∥H2 dt.

• The second and the third term yield:

2
∫ T

0

⏐⏐⟨F ′′(z)(∇z · ∇zt), ztt

⟩⏐⏐ dt +
∫ T

0

⏐⏐⟨F ′′(z)ztAz, ztt

⟩⏐⏐ dt

≤ 2
∫ T

0
∥z∥s−2

∞
∇z · ∇zt


2

ztt


2dt +

∫ T

0
∥z∥s−2

∞
ztztt


2

Az


2dt

≤ 2
∫ T

0
∥z∥s−2

∞ ∥∇z∥2
L4∥∇zt∥2

L4E
1/2
2 dt +

∫ T

0
∥z∥s−2

∞ ∥zt∥2
L4∥ztt∥2

L4∥z∥H2dt

≤ C

∫ T

0
∥z∥s−2

∞ ∥z∥3/2
H2 ∥z∥1/2

H1 ∥zt∥3/2
H2 ∥zt∥1/2

H1 E
1/2
2

+ ∥z∥s−2
∞ ∥zt∥3/2

H1 ∥zt∥1/2
2 ∥ztt∥3/2

H1 ∥ztt∥1/2
2 ∥z∥H2dt

≤ C

∫ T

0

(
E

(s−1)/4
1 E

3/4
2 ∥z∥(s+1)/2

H2 ∥zt∥3/2
H2 + E

(s−1)/4
1 E2E

3/4
3 ∥z∥s/2

H2
)
dt.

• The first term is treated similarly:∫ T

0

⏐⏐⏐⟨F ′′′(z)zt|∇z|2, ztt

⟩⏐⏐⏐ dt ≤ C

∫ T

0
∥∇z∥2

4
ztt


2dt ≤ C

∫ T

0
E

1/4
1 ∥z∥3/2

H2 E
1/2
2 dt.

Step 3.3: Now, directly evaluating AH(z), we estimate∫ T

0

⟨
AH(z), zttt

⟩
dt ≤ ϵ

∫ T

0

zttt

2
2dt + Cϵ

∫ T

0

A(F ′′(z)z2
t )

2
2dt +

∫ T

0

⟨
A(F ′(z)ztt), zttt

⟩
dt. (5.35)
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For the second part, in view of

A(F ′′(z)z2
t ) = F (4)(z)|∇z|2z2

t + F ′′′(z)Azz2
t + 4F ′′′(z)zt(∇z · ∇zt) (5.36)

+ 2F ′′(z)|∇zt|2 + 2F ′′(z)ztAzt,

we can estimate term-by-term as follows:F (4)(z)|∇z|2z2
t

2
2, ≤ C∥∇z∥4

L4∥zt∥4
∞ ≤ CE

1/2
1 ∥z∥3

H2∥zt∥4
H2 ,F ′′′(z)Azz2

t

2
2 ≤ C∥z∥2

H2∥zt∥4
∞ ≤ C∥z∥2

H2∥zt∥2
H2∥zt∥2

H1 ,

≤ C∥z∥2
H2∥zt∥2

H2∥zt∥H2∥zt∥2 ≤ E
1/2
1 ∥z∥2

H2∥zt∥3
H2 ,F ′′′(z)zt(∇z · ∇zt)

2
2 ≤ C∥zt∥2

∞
(∇z · ∇zt)

2
2 ≤ CE

1/4
1 ∥zt∥11/2

H2 ,F ′′(z)ztAzt


2

2 ≤ C∥z∥s−2
∞ ∥zt∥2

∞∥zt∥2
H2 ≤ CE

(s−2)/4
1 ∥z∥(s−2)/2

H2 ∥zt∥4
H2 .

Step 3.4: The third part contains the highest-order term among the nonlinear terms. We first observe that⟨
A(F ′(z)ztt), zttt

⟩
=

⟨
A1/2(F ′(z)ztt), A1/2zttt

⟩
=

⟨
F ′′(z)zttA

1/2z, A1/2zttt

⟩
+

⟨
F ′(z)A1/2ztt, A1/2zttt

⟩
=

⟨
A1/2(

F ′′(z)zttA
1/2z

)
, zttt

⟩
+

⟨
F ′(z)A1/2ztt, A1/2zttt

⟩
. (5.37)

For the former term, we have⟨
A1/2(

F ′′(z)zttA
1/2z

)
, zttt

⟩
≤ c

zttt


2

(ztt(A1/2z)2
2 +

F ′′(z)A1/2zttA
1/2z


2 +

F ′′(z)zttAz


2

)
.

We estimate these terms similarly as before:ztt(A1/2z)2
2 ≤ ∥ztt∥6∥∇z∥2

6 ≤ c∥ztt∥H1∥∇z∥2
H1 ≤ cE

1/2
3

∇z


2∥∇z∥H2 ≤ cE
1/2
3 E

1/2
1 ∥z∥H3 ,A1/2zttA

1/2z


2 ≤ ∥A1/2z∥∞
A1/2ztt


2 ≤ c∥A1/2z∥1/2

H1 ∥A1/2z∥1/2
H2

A1/2ztt


2,

≤ cE
1/2
3 ∥A1/2z∥1/2

H1 ∥A1/2z∥1/2
H2zttAz


2 ≤ ∥ztt∥4∥Az∥4 ≤ c∥ztt∥6∥Az∥3 ≤ E

1/2
3

Az
1/2

2 ∥Az∥1/2
H1 .

Having accounted for ∥F ′′(z)∥∞ ≤ cE
(s−2)/4
1 ∥z∥(s−2)/2

H2 , we obtain⟨
A1/2(

F ′′(z)zttA
1/2z

)
, zttt

⟩
≤ cE3

(
E

1/2
1 ∥z∥H3 + E

(s−2)/4
1 ∥z∥(s−1)/2

H2 ∥z∥1/2
H3

)
. (5.38)

Finally, the second term in (5.37) can be cast into the form⟨
F ′(z)A1/2ztt, A1/2zttt

⟩
= 1

2∂t

⟨
F ′(z)A1/2ztt, A1/2ztt

⟩
− 1

2
⟨
F ′′(z)zt, (A1/2ztt)2⟩

. (5.39)

Therefore, the time integral of (5.39) becomes∫ T

0

⟨
F ′(z)A1/2ztt, A1/2zttt

⟩
dt ≤ ∥z∥s−1

∞
A1/2ztt

2
2

⏐⏐⏐T

0
+ C

∫ T

0
∥z∥s−2

∞ ∥zt∥∞
A1/2ztt

2
2 dt

≤ E
(s−1)/4
1 ∥z∥(s−1)/2

H2 E3

⏐⏐⏐T

0
+ C

∫ T

0
E

(s−2)/4
1 ∥z∥(s−2)/2

H2 E
1/4
2 ∥zt∥1/2

H2 E3 dt. (5.40)

Step 3.5. The estimates for the remaining superlinear terms produce similar results and are somewhat
simpler due to their higher regularity. Consider, for instance, the least regular term

∫ T

0
⟨
BAH(z), θtt

⟩
dt.

Recalling B is a bounded operator on H1
0 (Ω) and the fact it commutes with Aα, we obtain⟨

BAH(z), θtt

⟩
=

⟨
A1/2H(z), A1/2Bθtt

⟩
≤ ϵE3(t) + Cϵ∥A1/2H(z)∥2, (5.41)



I. Lasiecka, M. Pokojovy and X. Wan / Nonlinear Analysis 186 (2019) 219–258 241

where

∥A1/2H(z)∥ ≤ ∥F ′(z)∥∞
A1/2ztt


2 + ∥F ′′(z)∥∞

(ztt∇z


2 +
zt∇zt


2

)
+ ∥F ′′′(z)∥∞

z2
t ∇z


2

≤ E
(s−1)/4
1 ∥z∥(s−1)/2

H2 E
1/2
3 + E

(s−2)/4
1 ∥z∥(s−2)/2

H2

(
∥z∥H3E

1/2
2 +

zt

1/4
2 ∥zt∥H1∥zt∥3/4

H2

)
+ C∥zt∥2

H2E
1/2
1 .

Step 4: Combining Steps 3.1–3.5 together, we arrive at the final superlinear inequality:

E(T ) + C1

∫ T

0
E(t) dt ≤ C2

(
E(0) + E

(s−1)/4
1 (0)X(s+1)/4(0) + E

(s−1)/4
1 (T )X(s+1)/4(T )

)
+ C3

N∑
i=1

∫ T

0
E

αi
1 (t)Xβi(t) dt, (5.42)

where N ∈ N, αi > 0, βi > 1 for i = 1, . . . , N . □

Lemma 5.2 (Super-Linear Estimate of the Full Energy X(t)). Under the same assumptions as in Lemma 5.1,
the following inequality holds true:

X(T ) + C1

∫ T

0
X(t) dt ≤ C2

[
E(0) + E

(s−1)/4
1 (0)X(s+1)/4(0)

+
N∑

i=1
E

αi
1 (T )Xβi(T ) +

N∑
i=1

∫ T

0
E

αi
1 (t)Xβi(t) dt

]
, (5.43)

where N ∈ N and αi > 0, βi > 1 for i = 1, . . . , N .

Proof. There remains to estimate the missing terms Y (T ) and
∫ T

0
Y (t) dt.

Step 0: On the strength of Eqs. (5.3a)–(5.3c), we have the estimate
j=2∑
j=0

(
∥∂j

t z(T )∥2
H1 + ∥∂j

t θ(T )∥2
H1 +

∂j
t p(T )

2
2

)
+

zttt(T )
2

2

+
∫ T

0

(
∥∂j

t z(t)∥2
H1 + ∥∂j

t θ(t)∥2
H1 +

∂j
t p(t)

2
2

)
+

zttt(t)
2

2dt (5.44)

≤ CE(T ) + C

∫ T

0
E(t) dt.

Step 1: Space-regularity boost for θ and p. From Eq. (5.3b),

∥p∥2
H1 ≤ C

(
∥θt∥|2H1 + ∥zt∥2

H1
)

≤ C
(
E1(t) + E2(t)

)
≤ CE(t).

Applying the time-derivative operator to the both sides of (5.3b), we can see with (5.44) that

∥pt∥2
H1 ≤ C(∥θtt∥2

H1 + ∥ztt∥2
H1) ≤ c

(
E3(t) + E3(t)

)
≤ CE(t). (5.45)

Another temporal differentiation yieldsθttt(t)
2

2 ≤ C
(ptt

2
2 +

zttt

2
2

)
≤ C

(
E2(t) + E3(t)

)
≤ CE(t).

Similarly, a time-differentiation of (5.3c) gives

∥θt∥2
H2(Ω) ≤ C

Aθt

2
2 ≤ C

(ptt


2 +

pt


2

)2 ≤ C
(
E2(t) + E3(t)

)
≤ CE(t). (5.46)
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Moreover, via (5.3c), (5.45) leads to the estimate of the H3-norm of θ:

∥θ∥2
H3(Ω) ≤ C∥Aθ∥2

H1 ≤ C(∥pt∥2
H1 + ∥p∥2

H1) ≤ CE(t). (5.47)

Finally, using (5.3c), we get
∥Aθt∥2 ≤ C

(
∥pt∥2 + ∥ptt∥2)

≤ CE(t). (5.48)

Adding up the estimates above, we obtain the following extra regularityAθ(t)
2

2 +
Aθt(t)

2
2 +

θttt(t)
2

2 + ∥θ(t)∥2
H3 + ∥p(t)∥2

H1 + ∥pt(t)∥2
H1 ≤ CE(t). (5.49)

Step 2: Estimate of the H2-norm of z. This estimate involves nonlinear terms.
We first recall the identity

AF (z) = F ′(z)Az − F ′′(z)|∇z|2. (5.50)

Plugging the above identity into (5.3a), we observe

Az = (γI + A−1)ztt + αAθ + F ′(z)Az − F ′′(z)|∇z|2, (5.51)

which implies Az
2

2 ≤ CE(t) + ∥F ′(z)∥2
∞∥Az∥2 + ∥F ′′(z)∥2

∞
|∇z|2

2
2 (5.52)

or
∥z∥2

H2 ≤ C
(
E(t) + ∥z∥2s−2

∞ ∥z∥2
H2 + ∥z∥2s−4

∞ ∥∇z∥4
4
)

. (5.53)

To proceed, we invoke the embedding H7/4(Ω) ↪→ W 1,4(Ω) for d ≤ 3 and obtain

∥∇z∥4
4 ≤ C∥z∥4

H7/4 ≤ ∥z∥3
H2∥z∥H1 ≤ ϵ∥z∥6

H2 + Cϵ∥z∥2
H1 ≤ ϵ∥z∥6

H2 + CϵE1(t).

Applying this inequality with the frequently used embedding (5.28) to (5.52), we get

∥z(t)∥2
H2 ≤ C

(
E(t) + E

(s−1)/2
1 ∥z∥s+1

H2 + E
(s−2)/2
1 ∥z∥s+4

H2 + E
s/2
1 ∥z∥s−2

H2
)
. (5.54)

Step 3: H2-norms of zt and p. We start by applying the time derivative to both sides of (5.51) to obtain

Azt = (γI + A−1)zttt + αAθt + F ′(z)Azt + F ′′(z)ztAz − F ′′′(z)zt|∇z|2 − F ′′(z)(∇z · ∇zt). (5.55)

This gives, after accounting for (5.48),Azt

2
2 ≤

( (γI + A−1)zttt + Aθt

2
2 +

F ′(z)Azt

2
2 +

F ′′(z)
2

∞

ztAz
2

2

+
F ′′′(z)

2
∞

zt|∇z|2


2 +
F ′′(z)

2
∞

(∇z · ∇zt)
2

2

)
≤ C

(
E(t) + ∥z∥2s−2

∞
Azt

2
2 + ∥z∥2s−4

∞
ztAz

2
2 + C

zt|∇z|2
2

2 + ∥z∥2s−4
∞

(∇z · ∇zt)
2

2

)
.

A term-by-term estimation as before leads to

∥zt∥2
H2 ≤ CE + E

(s−1)/2
1 ∥z∥s−1

H2 ∥zt∥2
H2 + E

(s−2)/2
1 ∥z∥s

H2∥z∥H1∥zt∥H2

+ E
1/2
1 ∥z∥3

H2∥z∥H1∥zt∥H2 + E
(2s−3)/4
1 ∥z∥s−1/2

H2 ∥z∥1/2
H1 ∥zt∥3/2

H2 .

Now, (5.3b) and (5.49) yield the same bounds for the H2-norm of p.

Step 4: H3-norm of z. This time, we apply the ∇-operator on both sides of (5.3a), or (5.51), to get

∇Az = ∇(γI + A−1)ztt + α∇Aθ + 3F ′′(z)Az∇z + F ′(z)∇Az − F ′′′(z)|∇z|2∇z (5.56)
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and, thus, ∇Az
2

2 ≤ CE + ∥θ∥2
H3 + ∥z∥2s−4

∞ ∥Az∥2
4∥∇z∥2

4 + ∥z∥2s−2
∞

∇Az
2

2 + ∥∇z∥∞
|∇z|2

2
2.

One last application of the embedding and interpolation inequalities leads to

∥z∥2
H3 ≤ CE + E

(s−2)/2
1 ∥z∥s

H2∥z∥2
H3 + E

(s−1)/2
1 ∥z∥s−1

H2 ∥z∥2
H3 + E

1/2
1 ∥z∥3

H2∥z∥H3 . (5.57)

Step 5: Combining all of the previous steps with the estimate of E(t) (5.42), the desired result follows. □

Theorem 5.3. Under the conditions of Lemma 5.2, in particular, Eq. (5.43), and the assumption

X(0) ≤ M for some M > 0, (5.58)

there exists a δ > 0, depending on M and ρ (defined in Eq. (2.9)), such that, whenever E1(0) < δ, the local
solution exists globally, i.e., Tmax = ∞. Moreover, the associated higher energy decays exponentially, namely,

X(t) ≤ Ce−κtX(s+3)/4(0), (5.59)

where C, κ > 0 and the constant δ is given in Eq. (5.77) in the proof below. Hence, when s = 3, Theorems 2.6
and 2.8 are established.

Proof. After some minimal amendments, Eq. (5.43) rewrites as

X(T ) + C1

∫ T

0
X(t) dt ≤ C2

((
1 + E

(s−1)/4
1 (0)

)
X(s+3)/4(0)

+
N∑

i=1

∫ T

0
E

αi
1 (T )Xβi(T ) +

N∑
i=1

∫ T

0
E

αi
1 (t)Xβi(t) dt

)
. (5.60)

We first proceed with our energy estimate inequality. Let C1, C2, C3 and α1, . . . , αN , β1, . . . , βN , N be
the constants from (5.60). Introduce the (smooth) functions

f(x, y) = y − C2

N∑
i=1

xαiyβi = y
(

1 − C2

N∑
i=1

xαiyβi−1
)

(5.61)

g(x, y) = C1y − C2

N∑
i=1

xαiyβi = C1y
(

1 − C2

C1

N∑
i=1

xαiyβi−1
)

. (5.62)

Recall βi − 1 > 0. Now, we can express the function f from Eq. (5.60) as

f
(
E1(T ), X(T )

)
+

∫ T

0
g
(
E1(t), X(t)

)
dt ≤ C2

(
1 + E

(s−1)/4
1 (0)

)
X(s+3)/4(0). (5.63)

We will apply a modified ‘barrier method’ to show the desired result. Before doing so, we need an additional
estimate on E1(t).

Step 1: Refer to the E1-inequality (5.23). We apply usual embedding and interpolation techniques to these
‘lower-order’ terms. In particular,⟨

AF, zt

⟩
≤ ∥z∥s−1

∞
Az


2

zt


2 + ∥z∥s−2

∞
∇z

2
2

≤ CE
(s+1)/4
1 ∥z∥(s+1)/2

H2 + CE
(s+2)/4
1 ∥z∥(s−2)/2

H2

≤ CE
(s+1)/4
1 ∥z∥(s+1)/8

H1
∥z∥3(s+1)/8

H3
+ CE

(s+2)/4
1 ∥z∥(s−2)/2

H2

= CE
3(s+1)/8
1 ∥z∥3(s+1)/8

H3
+ CE

(s+2)/4
1 ∥z∥(s−2)/2

H2

(5.64)
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with 3(s+1)
8 > 1 and s+2

4 > 1. The other two nonlinear terms can be estimated in exactly the same way.
Hence,

E1(T ) + C3

∫ T

0
E1(t) dt ≤ C4

(
E1(0) +

N∑
j=1

∫ T

0
E

γj
1 (t)Xτj (t) dt

)
, (5.65)

where γj > 1 and τj > 0 for j = 1, . . . , N . Letting

k(x, y) = C3x − C4

N∑
j=1

xγj yτj = x
(

C3 − C4

N∑
j=1

xγj−1yτj

)
,

Eq. (5.65) can be expressed as

E1(T ) +
∫ T

0
k
(
E1(t), X(t)

)
dt ≤ C4E1(0). (5.66)

Step 2: Global existence. Let
(
z(0), θ(0), p(0)

)
be the initial data triple and let Tmax denote the maximal

existence time of the local (smooth-in-time) solution. Our thrust is to show that, given some small bound
on E1(0), we have Tmax = ∞.

Step 2.1: Arguing by contradiction, suppose Tmax < ∞, and X(Tmax) = ∞. Letting M0 = (2C2 +
1)X(s+3)/4

0 , define

T ∗ = sup
{

t ∈ (0, Tmax] | X(s) ≤ 2M0 for any s ∈ [0, t]
}

≤ Tmax < ∞ (5.67)

and
T ∗∗ = sup

{
t ∈ (0, T ∗]

⏐⏐ k
(
E1(s), X(s)

)
− C3

2 E1(s) ≥ 0 for all s ∈ [0, t]
}

≤ T ∗. (5.68)

Eq. (5.67) suggests that
X(T ∗) = 2M0, (5.69)

otherwise, we can extend T ∗ due to the continuity of X(t) in time.
We also observe that T ∗∗ > 0 if E1(0) is small enough. Indeed, since the function k(E1(s), X(s))− C3

2 E1(s)
vanishes for E1(s) = 0, it suffices to prove that it is increasing with respect to E1(s). A quick calculation
shows that for |y| ≤ 2M0,

∂

∂x

(
k(x, y) − C3

2 x

)
≥ C2

2 − C4

N∑
j=1

γj xγj−1(2M0)τj .

Thanks to the fact that γj − 1 > 0, the right-hand side function has a unique positive root. Let δ1 be this
root, namely,

δ1 > 0 is the number such that C2

2 − C4

N∑
j=1

γj δ
γj−1
1 (2M0)τj = 0. (5.70)

Hence, when 0 < E1(0) < δ1, k(E1(0), X(0)) − C3
2 E1(0) is strictly positive, making T ∗∗ strictly positive

as well.

Step 2.2: We claim that T ∗∗ = T ∗. Again, arguing by contradiction, we would otherwise have
k
(
E1(T ∗∗), X(T ∗∗)

)
− C3

2 E1(T ∗∗) = 0 due to the temporal continuity of the latter function. Thus,

C3 − C4

N∑
j=1

E
γj−1
1 (T ∗∗)Xτj (T ∗∗) = C3

2 and k
(
E1(t), X(t)

)
≥ C3

2 E1(t) for any t ∈ [0, T ∗∗].
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Solving the first equation for E1(T ∗∗), we get a unique solution (depending on X(T ∗∗)) subsequently denoted
as a ∈ R.

Using the second inequality and plugging it into (5.66), we obtain

E1(T ∗∗) + C3

2

∫ T ∗∗

0
E1(t) dt ≤ C4E1(0). (5.71)

Imposing the condition
E1(0) < δ2 = a

2C4
, (5.72)

we would arrive at the contradiction: E1(T ∗∗) < a
2 ̸= a.

Step 2.3: Thus, T ∗∗ = T ∗ and E1(t) ≤ C4E1(0) for any t ∈ [0, T ∗]. Now, assuming

E1(0) < δ3 = ρ

C4
(5.73)

with ρ defined in (2.9), we have K ′(z) > 0 for any t ∈ [0, T ∗] meaning the positive ellipticity holds true.
Next, we proceed to Eq. (5.63). Recalling the definitions in Eqs. (5.61) and (5.62) as well as the bound

X(t) ≤ 2M0 in [0, T ∗], we let δ4 be a small number such that

1 − C2

N∑
i=1

δ
αi
4 (2M0)βi−1 ≥ 1

2 and 1 − C2

C1

N∑
i=1

δ
αi
4 (2M0)βi−1 ≥ 1

2 . (5.74)

Hence, f
(
E1(T ∗), X(T ∗)

)
≥ 1

2 X(T ∗) and g
(
E1(t), X(t)

)
≥ 1

2 X(t) for any t ∈ [0, T ∗]. Together with
Eq. (5.63), we get

X(T ∗) +
∫ T ∗

0
X(t) dt ≤ 2C2

(
1 + E

(s−1)/4
1 (0)

)
X(s+3)/4(0). (5.75)

Since X(t) ≤ 2M0, it follows that

2C2
(
1 + E

(s−1)/4
1 (0)

)
X(s+3)/4(0) ≤ 2C2 · 2X(s+3)/4(0) < 2M0 if E1(0) < 1. (5.76)

In summary, selecting
δ = min{δ1, δ2, δ3, 1} (5.77)

with δi, i = 1, . . . , 4 defined in Eqs. (5.70), (5.72), (5.73), (5.74), respectively, we get X(T ∗) < 2M0
contradicting Eq. (5.69). Hence, we have Tmax = ∞ and 2M0 as a global bound for X(t).

Step 3: Exponential stability. Eq. (5.75) now becomes

X(T ) +
∫ T

0
X(t) dt ≤ 4C2X(s+3)/4(0)

for any T > 0. A standard Datko & Pazy-type propagation argument (cf. [29, p. 211]) furnishes the
exponential decay of X(T ). □

Remark 5.4. We conclude this section by pointing out that, in order a smallness condition on the lower
energy E1(0) (in lieu of the smallness of the full energy X(0)) to be sufficient, Assumption 2.5 is critical. To
see this, consider, for instance, the lower-order nonlinearity K(z) = z−z2+αz3. Thus, F (′z) = 2z−3αz2 and
F ′′(0) = 2. With this example, the superlinear inequality for X(t) (cf. Eq. (5.60)) still holds, but the other
one for E1(t) (cf. Eq. (5.65)) fails. Indeed, the inner product

⟨
AF, zt

⟩
in (5.64) contains

⟨
F ′′(z)|∇z|2, zt

⟩
,

which can (optimally) be estimated as⟨
F ′′(z)|∇z|2, zt

⟩
≤ C

|∇z|2


2

zt


2 = C∥∇z∥2

4
zt


2 ≤ C∥z∥1/2

H1 ∥z∥3/2
H2 ∥zt∥L2 ≤ CE

3/4
1 X3/4

with a constant bound from |F ′′(z)|. Therefore, one cannot obtain a superlinear bound for E1. Nevertheless,
if seeking for a weaker result with a smallness condition on X(0) instead (for instance, as in [29] or [52]),
the nonlinearity K(z) = z − z2 would be admissible. This should not be surprising as our Assumption 2.5
is weakened, accordingly.
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Appendix A. Model description (d = 2)

In this appendix section, we derive a macroscopic model for a prismatic thermoelastic plate of uniform
thickness h > 0 and constant material density ρ > 0. As a reference configuration, we choose the
domain Bh := Ω × (− h

2 , h
2 ) of R3, where the bounded domain Ω ⊂ R2 is referred to as the mid-plane

of the plate. The governing equation for the elastic part can be adopted verbatim from [29, Section 2],
while the thermal equations will closely resemble [47, Chapter 1.5.2]. The material comprising the plate is
assumed incompressible and elastically/thermally homogeneous and isotropic. While geometric and thermal
nonlinearities are going to be discarded in what follows, our model will incorporate a nonlinearity in the
hypoelastic material law allowing us to adequately describe such genuinely nonlinear elastic materials as
rubber, liquid crystal elastomers, biological tissues, etc. Hypoelastic material laws have attracted major
attention both in physical and mathematical literature. See, e.g., [45, Chapter 1], [1], [24, Chapter 1],
[47, Chapter 1] or [26,29,38], etc. and references therein. The desired model will be obtained as a sort of
Taylor’s expansion of the 3D equations of thermoelasticity as h → 0 (cf. [24, Chapter 1]).

A.1. Thermoelastic plate as a 3D prismatic body

We begin with formulating the system of nonlinear 3D thermoelasticity. To this end, in the Lagrangian
coordinates, let U = (U1, U2, U3)T denote the displacement vector, T stand for the absolute temperature
and Q = (Q1, Q2, Q3)T be the associated heat flux. Denote by T0 > 0 a constant reference temperature
rendering the body free of elastic and/or thermal stresses. Further, let S be the entropy and

σ = (σij)1≤i,j≤3 and εelast = 1
2
(
∇U + (∇U)T

)
stand for the first Piola & Kirchhoff stress tensor and the infinitesimal Cauchy strain tensor, respectively.
The total stress tensor is assumed to decompose into elastic and thermal stresses via

σ = σelast − σtherm. (A.1)

In absence of external body forces and heat sources, according to [1, p. 142] and [24, Chapter 1], the
momentum and energy balance equations are expressed as

ρUtt + div σ = 0 in (0, ∞) × Bh, (A.2a)
TSt + div Q = 0 in (0, ∞) × Bh. (A.2b)

With conservation/continuity Eqs. (A.2a)–(A.2b) at hand, we proceed to constitutive relations relating
the stress tensor to the strain tensor/displacement gradient, the entropy to the temperature and the heat
flux to the temperature gradient. As previously mentioned, following [1, p. 142], we assume the material is
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incompressible and isotropic and the elastic stress and strain directional tensors (viz. [18, Chapter 1, §6])
coincide. Next, we postulate a hypoelastic relation between the stress tensor σelast and the strain tensor
εelast. Due to material isotropy and incompressibility, following [18, p. 42], such hypoelastic relation can be
described as

σelast
int = κ(εelast

int ) (A.3)

where the elastic strain and stress intensities

εelast
int =

√
2

3

(
(tr εelast)2 − tr

(
(εelast)2))

, σelast
int =

√
2

3

(
(tr σelast)2 − tr

(
(σelast)2))

are the second invariants (i.e., properly scaled ‘second’ eigenvalues) of εelast and σelast, respectively.

Remark A.1. The elastic stress–strain response κ(·) must naturally satisfy κ(0) = 0 and is typically
measured experimentally, for example, through a tensile test experiment. Being usually estimated through
a statistical regression procedure, κ(·) can be reliably estimated only over a compact range of arguments.
For this and many other reasons (such as possible material failure, etc.), the behavior of κ(·) at infinity
should be viewed as a mathematical idealization. Nonetheless, assuming κ(·) is defined globally, in addition
to satisfying lim|s|→∞

⏐⏐κ(s)
⏐⏐ = ∞, the function needs to be globally positive to give rise to a signed elastic

energy function W = W (∇U). This is a reasonable assumption – both physically and mathematically –
widely adopted in the Theory of Finite Elasticity (cf. [45, Chapter 1]). When the global positivity of κ(·)
is violated (see, e.g., a class of hypoelastic laws proposed in [1, Equation (6)]), mathematical difficulties are
artificially created putting unnecessarily constraints on the magnitude of the displacement gradient.

For the thermal stresses and strains, following [24, Chapter 1.6], we adopt the linear isotropic homoge-
neous law

σtherm = 3Bεtherm, (A.4)

where B is the bulk modulus. Letting E > 0 and ν ∈
(
−1, 1

2
)

denote the Young’s modulus and Poisson’s
ratio, since the material is assumed incompressible, we would formally obtain ν = 1

2 rendering the bulk
modulus B = E

3(1−2ν) infinite. In fact, as recently demonstrated in [41], this singularity does not occur
experimentally as B remains bounded (and even decreases!) as ν ↗ 1

2 . Similarly, instead of hitting 0 at
ν = 1

2 −, the shear modulus G remains positive — even though several magnitudes smaller than B. It
has further been shown that ∂B

∂ν ( 1
2 −) = 0. Hence, without violating the incompressibility condition, we can

assume ν < 1
2 . Linearizing κ(·) around 0 (cf. [1, Equation 13]) and using the classic definition of structural

rigidity
κ′(0)h3

9 = Eh3

12(1 − ν2) ,

we obtain E = 4(1−ν2)
3 κ(0), which leaves the Poisson’s ratio ν a free parameter.

Further, with τ = T − T0 representing the relative temperature, our thermal linearity and isotropy
assumptions suggest

εtherm = ατI3×3, (A.5)

where α > 0 denotes the thermal expansion coefficient (cf. [24, p. 29]), while a linear approximation of the
entropy relations [44, Chapter 1] around T = T0 reads as

S = γ tr
(
εelast) + ρc

T0
τ, (A.6)

where c > 0 is the heat capacity and γ = 3Bα.
Finally, invoking the Cattaneo’s law of relativistic heat conduction, we obtain

τ0Qt + Q − λ0∇τ = 0, (A.7)
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where τ0 > 0 is a relaxation time (not to be confused with the temperature τ) and λ0 > 0 is the heat
conductivity number. Compared to the classic Fourier’s law (i.e., τ0 = 0), the Cattaneo’s law has a hyperbolic
nature giving rise to the so-called ‘second sound’ effect and a finite thermal signal propagation speed. While
often being quantitatively indistinguishable from the Fourier’s law, the Cattaneo’s law becomes critical at
small time–space scales and/or large heat pulse amplitudes as the latter is the case in laser cleaning (see,
e.g., [8,48] and references therein) and numerous other applications [11], etc. Since the plate is thin in the
x3-direction, it is legitimate to approximate the equation for Q3 in (A.7) via the Fourier’s law and obtain

τPQt + Q − λ0∇τ = 0 with P :=

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ (A.8)

or, equivalently,
τQi + Qi = −λ0∂xi

τ, i = 1, 2, Q3 = −λ0∂x3τ,

while keeping the genuine Cattaneo’s law for Q1 and Q2-components
Combining Eqs. (A.1), (A.4)–(A.7) and plugging them into Eqs. (A.2a)–(A.2b), we arrive at

ρUtt + div σelast + γ∇τ = 0 in (0, ∞) × Bh, (A.9a)
ρcτt + div Q + γT0 div Ut = 0 in (0, ∞) × Bh, (A.9b)

τ0PQt + Q − λ0∇τ = 0 in (0, ∞) × Bh (A.9c)

with σelast = σelast(∇U) implicitly given via Eq. (A.3) and the tensor alignment assumption. The equations
of 3D dynamical thermoelasticity (A.9a)–(A.9c) are the starting point of our further plate modeling
procedure.

A.2. The averaging procedure

Following [24] and neglecting the in-plane displacements, we adopt the Kirchhoff & Love’s structural
assumption of undeformable normals:

U1(x1, x2, x3) = −x3wx1(x1, x2), U2(x1, x2, x3) = −x3wx2(x1, x2),

U3(x1, x2, x3) = w(x1, x2),
(A.10)

where w is referred to as the bending component or the vertical displacement. Practically speaking,
Eq. (A.10) means that the linear filaments, which were perpendicular to the mid-plane before deformation,
are mandated to remain straight and perpendicular to the deformed mid-plane. Hence, the dynamics of the
deflection vector U is reduced to that of the bending component w.

Motivated by [24, Chapter 1.6], we introduce the thermal component

θ(x1, x2) = 12α

h3

∫ h/2

−h/2
x3τdx3

as the x3-moment of the thermal strain ατ , which, in turn, on the strength of Eq. (A.5), is proportional
to the x3-moment of the temperature τ . Here, the normalization factor is obtained as a reciprocal of
h3/12 =

∫ h/2
−h/2 x3dx3. Similarly, following [47, Chapter 1.5], let

q(x1, x2) = 12
h3

∫ h/2

−h/2
x3

(
Q1
Q2

)
dx3.

Proceeding as [29, Section 2], Eq. (A.9a) can be reduced to

ρhwtt − ρh3

12 △wtt + △K(△w) + D 1+ν
2 △θ = 0 in (0, ∞) × Ω . (A.11)
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Here, D = Eh3

12(1−ν2) is referred to as the flexural rigidity. The nonlinear response K(·) is obtained from κ(·)
by means of

K(s) = h2
√

3

[
Iκ

](
hs√

3

)
, where

[
If

]
(s) = s−2

∫ s

0
ξf(ξ)dξ for s ∈ R\{0}. (A.12)

In contrast to [1], the rotational inertia △wtt-term is not neglected here allowing for an adequate description
of thicker plates than those accounted for by the standard theory.

Multiplying Eq. (A.9b) with 12x3
h3 and integrating over x3, we obtain

12
h3

2∑
i=1

∂xi

∫ h/2

−h/2
x3qdx3 + 12

h3

∫ h/2

−h/2
x3

∂Q3

∂x3
dx3 + 12ρc

h3 ∂t

∫ h/2

−h/2
x3τdx3 − γT0△wt = 0

and, thus,

div q + 12
h3

∫ h/2

−h/2
x3

∂Q3

∂x3
dx3 + ρc

α
θt − γT0△wt = 0. (A.13)

Integrating by parts and using Eq. (A.8), we compute∫ h/2

−h/2
x3

∂Q3

∂x3
dx3 = −

∫ h/2

−h/2
Q3dx3 + x3Q3

⏐⏐⏐h/2

−h/2

= λ0

∫ h/2

−h/2

∂τ

∂x3
dx3 + x3Q3

⏐⏐⏐h/2

−h/2
=

(
λ0τ + x3Q3

)⏐⏐⏐h/2

−h/2
(A.14)

= λ0
(
τ(t, x1, x2, h

2 ) − τ(t, x1, x2, − h
2 )

)
+ h

2
(
Q3(t, x1, x2, h

2 ) + Q3(t, x1, x2, − h
2 )

)
.

Following [24, p. 30], we assume the Newton’s cooling law is applied to plate’s upper and lower faces:

Q3(t, x1, x2, h
2 ) = λ1τ(t, x1, x2, h

2 ), Q3(t, x1, x2, − h
2 ) = −λ1τ(t, x1, x2, − h

2 ) (A.15)

for some λ1 > 0. Using the Taylor’s expansion

τ(t, x1, x2, x3) = τ0(t, x1, x2) + x3τ1(t, x1, x2)

and observing θ = ατ1, we can write

τ(t, x1, x2, x3)
⏐⏐h/2
−h/2 = hτ1(t, x1, x2) = h

α θ(t, x1, x2). (A.16)

The combination of Eqs. (A.13)–(A.16) furnishes
ρc
α τt + 12

αh2
(
λ0 + hλ1

2
)
θ + div q − γT0△wt = 0. (A.17)

Multiplying the equations for Q1, Q2 in (A.8) with 12x3
h3 and integrating over x3, we get

τ0qt + q − λ0
α ∇θ = 0. (A.18)

Combining Eqs. (A.11), (A.17), (A.18), we arrive at

ρhwtt − ρh3

12 △wtt + △K(△w) + D 1+µ
2 △θ = 0 in (0, ∞) × Ω , (A.19a)

ρc
α ∂tθ + div q + 12

αh2
(
λ0 + hλ1

2
)
θ + γT0△wt = 0 in (0, ∞) × Ω , (A.19b)

τ0qt + q − λ0
α ∇θ = 0 in (0, ∞) × Ω . (A.19c)

Various boundary conditions can be adopted for Eqs. (A.19a)–(A.19c) (cf. [2, Chapter 2], [18, Chapter
4], [24, Chapter 1], [32–34,36]). In this paper, we consider a simply supported plate held at the reference
temperature on the boundary ∂Ω :

w = △w = θ = 0 in (0, ∞) × ∂Ω .

For the sake of convenience, outside of this Section, the constants in Eq. (A.19a)–(A.19c) will be renamed
and/or normalized to obtain the mathematically more convenient system (1.1)–(1.3).
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Appendix B. Well-posedness for linearized equations

The following well-posedness result is based on an extension of Kato’s [21] solution theory for abstract
time-dependent evolution equations developed by Jiang & Racke [20, Appendix A]. The arguments presented
below are an adaptation of [29, Appendix A.1]. In contrast to [29], Eqs. (B.2a)–(B.2f) comprise a hyperbolic
system so that Eq. (B.2a) for z does not decouple from Eqs. (B.2b)–(B.2c) for θ, p. This makes the analysis
more complicated as all components need to be treated simultaneously. This can be explained by the fact
that Eqs. (B.2a)–(B.2c) inherit hyperbolic nature from the original plate system (1.1)–(1.3).

Let Ω ⊂ Rd be a bounded domain with a Cs-boundary ∂Ω for some s ≥ ⌊ d
2 ⌋ + 2. Further, let

T > 0 be arbitrary, but fixed. Throughout this appendix as well as the proof of Theorem 2.4, as before,
H0

0 (Ω) ≡ H0(Ω) := L2(Ω) and D̄n is the time–space gradient defined in Eq. (4.3).
Further, let ϕδ := exp

( 1
1−(·/δ)2

)
1(−δ,δ) denote the one-dimensional Friedrichs’ mollifier with a ‘window

size’ δ > 0. For any L1-function w : [0, T ] ×Ω → R, consider the C∞(Ω)-approximation (cf. [54, Chapters 8
and 9]) of w:

wδ(t, ·) =
∫ T

0
ϕδ(t − s)w(s, ·)ds for t ∈ [0, T ] in Ω . (B.1)

The following result by Jiang & Racke [20, Lemma A.12] will be used in the sequel.

Lemma B.1. For arbitrary a ∈ C1(
[0, T ], L∞(Ω)

)
and w ∈ C0(

[0, T ], L2(Ω)
)

and any sufficiently small
ε > 0, there holds

lim
δ→0

∫ T −ε

ε

∂t

(
(aw)δ(t, ·) − awδ(t, ·)

)2
L2(Ω)dt = 0.

Consider the following linear system with time- and space-dependent coefficients:

ztt(t, x) − āij(t, x)∂xi
∂xj

z(t, x) − α
γ Aθ + Bθ = f̄(t, x) for (t, x) ∈ (0, T ) × Ω , (B.2a)

βθt(t, x) + p(t, x) + αzt(t, x) = 0 for (t, x) ∈ (0, T ) × Ω , (B.2b)
τpt(t, x) + p(t, x) − ηAθ(t, x) = 0 for (t, x) ∈ (0, T ) × Ω , (B.2c)

z(t, x) = 0, θ(t, x) = 0 for (t, x) ∈ [0, T ] × ∂Ω , (B.2d)
z(0, x) = z0(x), zt(0, x) = z1(x) for x ∈ Ω , (B.2e)
θ(0, x) = θ0(x), p(0, x) = p0(x) for x ∈ Ω . (B.2f)

Here, B is a bounded linear operator on all Hs(Ω), s ≥ 0, and Hs(Ω) ∩ H1
0 (Ω), s ≥ 1, spaces and A is

the negative Dirichlet–Laplacian, which should not be confused with the generator A(t) defined in Eq. (B.3)
below.

Assumption B.2 (cf. [29, Appendix]). Let s ≥ ⌊ d
2 ⌋+2 be a fixed integer and let γ0, γ1 be positive numbers.

Assume the following conditions are satisfied.

1. Coefficient symmetry: āij(t, x) = āji(t, x) for (t, x) ∈ [0, T ] × Ω̄ .
2. Coefficient regularity: āij ∈ C0(

[0, T ] × Ω̄
)

and

∂xk
āij ∈ L∞(

0, T ; Hs−1(Ω)
)
, ∂m

t āij ∈ L∞(
0, T ; Hs−1−m(Ω)

)
for m = 1, 2, . . . , s − 1.

3. Coercivity: For z ∈ H1
0 (Ω) and t ∈ [0, T ], ∥z∥2

H1(Ω) ≤ γ0
⟨
āij(t, ·)∂xi

z, ∂xj
z
⟩

L2(Ω).
4. Elliptic regularity: For m = 0, 1, . . . , s − 2, z(t, ·) ∈ H1

0 (Ω) and āij(t, ·)∂xi
∂xj

z(t, ·) ∈ Hm(Ω) for a.e.
t ∈ [0, T ] implies u(t, ·) ∈ Hm+2(Ω) and

∥z(t, ·)∥Hm+2(Ω) ≤ γ1

(
∥āij(t, ·)∂xi

∂xj
z(t, ·)∥Hm(Ω) + ∥z(t, ·)∥L2(Ω)

)
for a.e. t ∈ [0, T ].
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5. Right-hand side regularity: For m = 0, 1, . . . , s − 2,

∂m
t f̄ ∈ C0(

[0, T ], Hs−2−m(Ω)
)
, ∂s−1

t f̄ ∈ L2(
0, T ; L2(Ω)

)
.

6. Compatibility conditions: For k, l, m = 0, 1, . . . , s − 1,

z̄m ∈ Hs−m(Ω) ∩ H1
0 (Ω), z̄s ∈ L2(Ω), θ̄l ∈ Hs−l(Ω) ∩ H1

0 (Ω), p̄k ∈ Hs−1−k(Ω)

where z̄m, θ̄l, p̄k are recursively defined via

z̄0(x) = z0(x), z̄1(x) = z1(x), θ̄0(x) = θ0(x), p̄0(x) = p0(x),⎛⎝ z̄m

θ̄m−1

p̄m−1

⎞⎠ (x) =

⎛⎜⎜⎜⎝
(m−2∑

n=0

(
m − 2

n

)
∂n

t āij∂xi
∂xj

z̄m−2−n + α
γ Aθ̄m−2 − Bθ̄m−2 + ∂m−2

t f̄i

)
(0, x)

− 1
β p̄m−2(x) − α

β z̄m−1(x)
− 1

τ p̄m−2(x) + η
τ

(
Aθ̄m−2)

(x)

⎞⎟⎟⎟⎠
for m ≥ 2 and x ∈ Ω .

Note that our Assumption B.2 differs both from [20, Assumption A.2.1] and [29, Assumption A.2].

Theorem B.3. Under Assumption B.2, the initial–boundary value problem (B.2a)–(B.2f) possesses a unique
classical solution (z, θ, p) such that

z ∈
s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
)

∩ Cs
(
[0, T ], L2(Ω)

)
,

θ ∈
s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω) ∩ H1

0 (Ω)
)
, p ∈

s−1⋂
m=0

Cm
(
[0, T ], Hs−1−m(Ω)

)
.

Moreover, letting

ϕ0 = ∥āij(0, ·)∥L∞(Ω) + ∥∂xk
āij(0, ·)∥Hs−1(Ω),

ϕ = max
0≤t≤T

(
∥āij(t, ·)∥L∞(Ω) + ∥∂xk

āij(t, ·)∥Hs−1(Ω) +
s−1∑
m=1

∥∂m
t āij(t, ·)∥Hs−1−m(Ω)

)
,

there exist a positive number K1, which is a continuous function of ϕ0, γ0 and γ1, and a positive number K2,
which continuously depends on ϕ, γ0 and γ1, such that

max
0≤t≤T

(D̄sz(t, ·)
2

L2(Ω) +
D̄s−1θ(t, ·)

2
H1(Ω) +

D̄s−1p(t, ·)
2

L2(Ω)

)
≤ K1Λ0 exp

(
K2T 1/2(1 + T 1/2 + T + T 3/2)

)
,

where

Λ0 :=
s∑

m=0
∥z̄m∥2

Hs−m(Ω) +
s−1∑
m=0

∥θ̄m∥2
Hs−m(Ω) +

s−1∑
m=0

∥p̄m∥2
Hs−1−m(Ω)

+ (1 + T ) sup
0≤t≤T

D̄s−2f̄(t, ·)


L2(Ω) + T 1/2
∫ T

0
∥∂s−1

t f̄(t, ·)∥2
L2(Ω)dt.

Proof. This proof adopts the abstract solution theory [20, Theorems A.3 and A.9]. When treating the
z-variable, we follow the streamlines of Lasiecka et al. [29, Appendix A.1].
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Existence and uniqueness at basic regularity level. For t ∈ [0, T ], define a bounded linear operator

A(t) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0
−āij(t, ·)∂xi

∂xj
0 −α

γ
A + B 0

0 α

β
0 1

β

0 0 −η

τ
A

1
τ

⎞⎟⎟⎟⎟⎟⎟⎠ : Y1 −→ X0, (B.3)

where the Hilbert space
X0 := H1

0 (Ω) × L2(Ω) × H1
0 (Ω) × L2(Ω)

is endowed with the inner product

⟨V, V̄ ⟩t :=
⟨
āij(t, ·)∂xi

z, ∂xj
z̄
⟩

L2(Ω) + ⟨y, ȳ⟩L2(Ω) + β
γ ⟨A1/2θ, A1/2θ̄⟩L2(Ω) + τ

γη ⟨p, p̄⟩L2(Ω)

for (z, y, θ, p), (z̄, ȳ, θ̄, p̄) ∈ X0 (the bilinear form ⟨·, ·⟩t is equivalent with the standard inner product on X0

due to coercivity Assumption B.2.3) and the Hilbert space

Y1 :=
(
H2

0 (Ω) ∩ H1
0 (Ω)

)
× H1

0 (Ω) ×
(
H2

0 (Ω) ∩ H1
0 (Ω)

)
× H1

0 (Ω)

is equipped with the usual inner product. With this notation, letting V := (z, ∂tz, θ, p), Eqs. (B.2a)–(B.2f)
can be cast into the form of an abstract Cauchy problem

∂tV (t) + A(t)V (t) = F (t) in (0, T ), V (0) = V 0 (B.4)

with F = (0, f̄ , 0, 0) and V 0 = (z0, z1, θ0, p0).
We want to show that the triple

(
A; X0, Y1

)
is a CD-system as defined in [20, Section A.1]. Obviously,

D
(
A(t)

)
= Y1. In particular, this means the domain of A(t) is time-independent, and the operator A(t)

itself is closed. Indeed, suppose

A(t)

⎛⎜⎜⎝
z
y
θ
p

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

−y

−āij(t, ·)∂xi
∂xj

z − α

γ
Aθ + Bθ

α

β
y + 1

β
p

−η

τ
Aθ + 1

τ
p

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ H1
0 (Ω) × L2(Ω) × L2(Ω) × L2(Ω).

Inspecting the first component, we get y ∈ H1
0 (Ω). Since p ∈ L2(Ω) and 0 ∈ ρ

(
A(t)

)
, the fourth inclusion

yields θ ∈ H2(Ω)∩H1
0 (Ω). Now, exploring the second inclusion, B.2.4 suggests z ∈ H2(Ω)∩H1

0 (Ω). Finally,
combining these regularity properties, the third inclusion furnishes y ∈ H1

0 (Ω).
For t ∈ [0, T ], consider the “elliptic” problem(

A(t) + λ
)
V = F with F ≡ (f1, f2, f3, f4) ∈ X0.

Letting V = (z, y, θ, p) and expressing Eq. (B.5) in the component form, we get

− y + λz = f1, (B.5a)
− āij(t, ·)∂xi

∂xj
z − α

γ Aθ + Bθ + λy = f2, (B.5b)
α
β y + 1

β p + λθ = f3, (B.5c)
− η

τ Aθ + p
τ + λp = f4. (B.5d)
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Solving Eqs. (B.5a) and (B.5d) for y and z, respectively,

y = λz − f1 and p =
(
λ + 1

τ

)−1(
f4 + η

τ Aθ
)

and plugging the result into Eqs. (B.5b), (B.5c), we arrive at(
λ2 − āij(t, ·)∂xi

∂xj

)
z −

(
α
γ A − B

)
θ = f2 + λf1, (B.6a)

α
β λz +

(
η

βτ

(
λ + 1

τ

)−1
A + λ

)
θ = f3 + α

β f1 − 1
β

(
λ + 1

τ

)−1
f4. (B.6b)

Multiplying Eqs. (B.6a)–(B.6b) in L2(Ω) with α2

β2 z̄ and λθ̄, respectively, z̄, θ̄ being two arbitrary H1
0 (Ω)-

function, and integrating by parts using the boundary conditions (B.2d), we obtain the variational equation

a
(
(z, θ), (z̄, θ̄)

)
= F

(
(z̄, θ̄)

)
,

with the bilinear form

a((z, θ), (z̄, θ̄)) = α2

β2 ⟨āij(t, ·)∂xi
z, ∂xj

z⟩L2(Ω) + α2

β2
⟨(

∂xi
āij(t, ·)

)
z, ∂xj

z
⟩

L2(Ω)

+ α2

β2 λ2⟨z, z̄⟩L2(Ω) − α3

γβ2 ⟨A1/2θ, A1/2z̄⟩L2(Ω) + α2

β2 ⟨Bθ, z̄⟩L2(Ω) + α
β λ2⟨z, θ̄⟩L2(Ω)

+ η
βτ λ

(
λ + 1

τ

)−1⟨A1/2θ, A1/2θ̄⟩L2(Ω) + λ2⟨θ, θ̄⟩L2(Ω)

(B.7)

and the linear functional

F
(
(z̄, θ̄)

)
= α2

β2 ⟨f2 + λf1, z̄⟩L2(Ω) + λ
⟨
f3 + α

β f1 − 1
β

(
λ + 1

τ

)−1
f4, θ̄

⟩
L2(Ω). (B.8)

Clearly, both a(·, ·) and F are continuous on V × V and V, respectively, with V :=
(
H1

0 (Ω)
)2. Further, for

sufficiently large λ, applying Young’s and the Poincaré & Friedrichs inequalities and using the boundedness
of ∥∂xi

āij∥L∞ (viz. Assumption B.2.2) and that of B, we estimate

a
(
(z, θ), (z, θ)

)
≥ α2

β2 ⟨āij(t, ·)∂xi
z, ∂xj

z⟩L2(Ω) − ε∥z∥2
H1(Ω) − Cε∥z∥2

L2(Ω)

+ α2

β2 λ2∥z∥2
L2(Ω) − ε∥z∥2

H1(Ω) − Cε∥θ∥2
H1(Ω) − α2

2β2 λ2∥z∥2
L2(Ω) − λ2

2 ∥θ∥2
L2(Ω)

+ η
βτ λ

(
λ + 1

τ

)−1A1/2θ
2

L2(Ω) + λ2∥θ∥2
L2(Ω)

(B.9)

for any ε > 0. Now, selecting ε sufficiently small and, if necessary, increasing λ, we easily see that B(·, ·) is
coercive, i.e.,

a
(
(z, θ), (z, θ)

)
≥ κ

(
∥z∥2

H1(Ω) + ∥θ∥2
H1(Ω)

)
for some κ > 0. Hence, invoking Lax & Milgram’s Lemma, we obtain a unique solution (z, θ) ∈

(
H1

0 (Ω)
)2 to

Eqs. (B.6a)–(B.6b). By elliptic regularity (cf. Assumption B.2.4), Eq. (B.6b) implies θ ∈ H2(Ω) ∩ H1
0 (Ω).

Next, plugging in θ into Eq. (B.6a), Assumption B.2.4 suggests z ∈ H2(Ω) ∩ H1
0 (Ω). Substituting

into Eq. (B.6), we further get y, p ∈ H1
0 (Ω). Hence, we found a solution V = (z, y, θ, p) ∈ D

(
A(t)

)
to Eq. (B.5). The estimate ∥V ∥X0 ≤ C∥F∥X0 for some C > 0 immediately follows from Lax & Milgram’s
Lemma and Eq. (B.6). Hence,

(
A(t) + λ

)
is a maximal operator on X0.

Further, we prove the operator A(t) + λ is accretive for any sufficiently large λ > 0. Using integration by
parts and the boundary conditions (B.2d), we estimate⟨

A(t)V, V
⟩

X0
= −

⟨
āij(t, ·)∂xi

∂xj
z, y

⟩
L2(Ω) −

⟨
āij(t, ·)∂xi

z, ∂xj
y
⟩

L2(Ω)

− α
γ ⟨Aθ, y⟩L2(Ω) + α

γ ⟨A1/2θ, A1/2y⟩L2(Ω) + 1
γ ⟨A1/2p, A1/2θ⟩L2(Ω)

+ ⟨Bθ, y⟩L2(Ω) − 1
γ ⟨Aθ, p⟩L2(Ω) + 1

γη ∥p∥2
L2(Ω)
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= 1
γη ∥p∥2

L2(Ω) −
∂xi

āij(t, ·)


L∞(Ω)∥z∥H1(Ω)∥y∥L2(Ω) + ⟨Bθ, y⟩L2(Ω)

≥ −λ0∥V ∥2
X0

for some λ0 > 0 depending on γ, η, τ , ∥B∥L(L2(Ω)) and
∂xi

āij(t, ·)


L∞((0,T )×Ω) (cf. Assumptions B.2.2 and
B.2.3). Hence, by virtue of Lumer & Phillips’ Theorem and standard perturbation results, A(t) is a negative
generator of a C0-semigroup of contractions on X0. Summarizing, we have shown

(
A(t)

)
t∈[0,T ] is a stable

family of infinitesimal negative generators of C0-semigroups on X0 with stability constants M = 1, ω = λ0.
Taking into account regularity conditions from Assumption B.2.5, we can apply [20, Theorem A.3] and get
a unique classical solution

V ∈ C0(
[0, T ], Y1

)
∩ C1(

[0, T ], X0
)

at the basic regularity level, which is equivalent with

z ∈ C2(
[0, T ], L2(Ω)

)
∩ C1(

[0, T ], H1
0 (Ω)

)
∩ C0(

[0, T ], H2(Ω) ∩ H1
0 (Ω)

)
,

θ ∈ C1(
[0, T ], H1

0 (Ω)
)

∩ C0(
[0, T ], H2(Ω) ∩ H1

0 (Ω)
)
,

p ∈ C1(
[0, T ], L2(Ω)

)
∩ C0(

[0, T ], H1
0 (Ω)

)
.

Higher regularity. For the proof of higher solution regularity, we consider the following increasing double
scale

(
(Xj , Yj)

)
j≥0 of Hilbert spaces with Y0 := X0 and

Xj =
(
Hj+1(Ω) ∩ H1

0 (Ω)
)
×Hj(Ω)×

(
Hj+1(Ω) ∩ H1

0 (Ω)
)
×Hj(Ω),

Y j =
(
Hj+1(Ω) ∩ H1

0 (Ω)
)
×

(
Hj(Ω) ∩ H1

0 (Ω)
)
×

(
Hj+1(Ω) ∩ H1

0 (Ω)
)
×

(
Hj(Ω) ∩ H1

0 (Ω)
)

for j ≥ 1.

On the strength of Eq. (B.3), the condition

∂tA ∈ Lip
(
[0, T ], L(Yj+s+5, Xj)

)
for j = 0, . . . , s − r − 1 and r = 0, . . . , s − 2

reduces to verifying

∂r
t āij(t, ·)∂xi

∂xj
and ∂r

t A, ∂r
t B ∈ Lip

(
[0, T ], L

(
Hj+r+2(Ω) ∩ H1

0 (Ω), Hj(Ω)
))

(B.10)

for j = 0, . . . , s − r − 1 and r = 0, . . . , s − 2. Eq. (B.10) is a direct consequence of Assumption B.2.2 and the
Sobolev’s embedding H⌊d/2⌋+1(Ω) ↪→ L∞(Ω). In a similar fashion, exploiting Assumption B.2.4, we observe
for j = 0, . . . , s − 2 and ϕ ∈ Y1 and a.e. t ∈ [0, T ] that A(t)ϕ ∈ Xj implies

ϕ ∈ Yj+1 and ∥ϕ∥Yj+1 ≤ K
(
∥A(t)ϕ∥Xj

+ ∥ϕ∥X0

)
for some constant K > 0,

which does not depend on ϕ. Further, Assumption B.2.5 yields

∂tF ∈ C0(
[0, T ], Xs−1−k

)
for k = 0, . . . , s − 2 and ∂s−1

t F ∈ L1(0, T ; X0).

Finally, Assumption B.2.6 implies compatibility conditions in sense of [20, Equations (A.8) and (A.9)]. Hence,
applying [20, Theorem A.9] at the energy level s−1, we obtain additional regularity for the classical solution
satisfying

V ∈
s−1⋂
m=0

Cm
(
[0, T ], Ys−1−m

)
.

Resubstituting, this yields the desired regularity for z, θ, p. Energy estimates. For n = 1, . . . , s − 1, applying
the ∂n−1

t -operator to Eqs. (B.2a)–(B.2c) and recalling the compatibility conditions from Assumption B.2.6,
obtain

∂2
t

(
∂n−1

t z
)

− āij∂xi
∂xj

(
∂n−1

t z
)

−
(

α
γ A − B

)(
∂n−1

t θ
)

= hn in (0, T ) × Ω , (B.11a)
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β∂t

(
∂n−1

t θ
)

+
(
∂n−1

t p
)

+ α∂t

(
∂n−1

t z
)

= 0 in (0, T ) × Ω , (B.11b)
τ∂t

(
∂n−1

t p
)

+
(
∂n−1

t p
)

− ηA
(
∂n−1

t θ
)

= 0 in (0, T ) × Ω , (B.11c)
∂n−1

t z = 0, ∂n−1
t θ = 0 in (0, T ) × ∂Ω , (B.11d)

∂n−1
t z(0, ·) = zn−1, ∂t

(
∂n−1

t z
)
(0, ·) = zn in Ω , (B.11e)

∂n−1
t θ(0, ·) = θn−1, ∂n−1

t p(0, ·) = pn−1 in Ω (B.11f)

with

hn−1 = ∂n−1
t f̄ +

n−1∑
m=1

(
n − 1

m

)(
∂m

t āij

)
∂xi

∂xj
∂n−1−m

t z. (B.12)

For t ∈ [0, T ], multiplying Eqs. (B.11b) and (B.11c) in L2(
(0, t) × Ω

)
with 1

γ A∂n−1
t θ and 1

γη ∂n−1
t p,

respectively, integrating by parts while taking into account the boundary conditions (B.11d) and adding
up the resulting identities, we get

β

2γ

A1/2∂n−1
t θ

2
L2(Ω)

⏐⏐τ=t

τ=0 + 1
γ

∫ t

0
⟨A1/2∂n−1

t p, A1/2∂n−1
t θ⟩L2(Ω)dτ

+ α

γ

∫ t

0
⟨A1/2∂n

t z, A1/2∂n−1
t θ⟩L2(Ω)dτ + τ

2γη

∂n−1
t p

2
L2(Ω)

⏐⏐τ=t

τ=0 (B.13)

+ 1
γη

∫ t

0

∂n−1
t p

2
L2(Ω)dτ − 1

γ

∫ t

0
⟨A1/2∂n−1

t θ, A1/2∂n−1
t p⟩L2(Ω)dτ ≡ 0.

Summing up over n = 1, . . . , s − 1, we find

1
C

s−2∑
n=0

( ∂n
t θ(t, ·)

2
H1(Ω) +

∂n
t p(t, ·)

2
L2(Ω)

)
+α

γ

s∑
n=1

∫ t

0
⟨A1/2∂n

t z, A1/2∂n−1
t θ⟩L2(Ω)dτ

≤ CΛ0 +
s−2∑
n=0

∫ t

0

(∂n
t θ(τ, ·)

2
H1(Ω) +

∂n
t p(τ, ·)

2
L2(Ω)

)
dτ

(B.14)

for a large generic constant C > 0. To derive an estimate for ∂s−1
t θ and ∂s−1

t p, we use the mollifier
from Eq. (B.1). Convolving Eqs. (B.11b), (B.11c) for n = s − 1 with the Friedrichs’ kernel ϕδ, we obtain for
any t ∈ [ε, T − ε]: (

∂s−1
t θ

)
δ

+
(
∂s−2

t p
)

δ
+ α

(
∂s−1

t z
)

δ
= 0 in (0, T ) × Ω , (B.15)

τ
(
∂s−1

t p
)

δ
+

(
∂s−2

t p
)

δ
− ηA

(
∂s−2

t θ
)

δ
= 0 in (0, T ) × Ω , (B.16)

where we used fact that
(
∂tw

)
δ

= ∂t

(
wδ

)
and

(
∂nθ

)
δ
,

(
∂np

)
δ

satisfy the same homogeneous Dirichlet
boundary conditions as for ∂n

t θ and ∂n
t p. Applying the ∂t-operator to Eqs. (B.15), (B.16) and multiplying

in L2(
(0, t) × Ω

)
with 1

γ A
(
∂s−1

t θ
)

δ
and 1

γη

(
∂s−1

t p
)

δ
, respectively, Similar to Eqs. (B.13), (B.14), we get for

t ∈ [ε, T − ε]:
1
C

((∂s−1
t θ)δ(t, ·)

2
H1(Ω) +

(∂s−1
t p)δ(t, ·)

2
L2(Ω)

)
+ α

γ

∫ t

0

⟨
∂s

t (A1/2z)δ, ∂s−1
t (A1/2θ)δ

⟩
L2(Ω)dτ

≤ C
((∂s−1

t θ)δ(ε, ·)
2

H1(Ω) +
(∂s−1

t p)δ(ε, ·)
2

L2(Ω)

)
(B.17)

+
∫ t

0

((∂n
t θ)δ(τ, ·)

2
H1(Ω) +

(∂n
t p)δ(τ, ·)

2
L2(Ω)

)
dτ.

Repeating the same procedure for the z-component (cf. [29, pp. 216–218]), we get

1
C

s−1∑
n=1

( ∂n
t z(t, ·)

2
L2(Ω) +

∂n−1
t z(t, ·)

2
H1(Ω)

)
−α

γ

s−1∑
n=1

∫ t

0
⟨A1/2∂n

t z, A1/2∂n−1
t θ⟩L2(Ω)dτ

≤ C(ϕ0, γ0)Λ0 + C(ϕ, γ0)
∫ t

0

D̄sz
2

L2(Ω)dτ + C

s−1∑
n=1

∫ t

0

∂n−1
t θ

2
L2(Ω)dτ

(B.18)
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as well as

1
C

( (∂s
t z)δ(t,·)

2
L2(Ω) +

(∂s−1
t z)δ(t, ·)

2
H1(Ω)

)
−α

γ

∫ t

0

⟨
∂s

t (A1/2z)δ, ∂s−1
t (A1/2θ)δ

⟩
L2(Ω)dτ

≤ C(ϕ0, γ0)
((D̄sz)δ(ε, ·)

2
L2(Ω) +

(∂s−1
t z)δ(t, ·)

2
L2(Ω)

)
+ C(γ0, γ0)(1 + T −1/2)

∫ t

0

(D̄sz)δ(τ, ·)
2

L2(Ω)dτ

+ T 1/2
∫ t

ε

∂t(hs−2)δ

2
L2dτ +

∫ t

ε

∥ηδ∥2
L2(Ω)dτ + C

s−1∑
n=1

∫ t

0

(∂s−1
t θ)δ

2
L2(Ω)dτ

(B.19)

for t ∈ [ε, T − ε] with the ‘commutator’

ηδ(t, ·) =
(

āij(t, ·)∂s−2
t ∂xi

∂xj
z(t, ·)

)
δ

− āij(t, ·)
(

∂s−2
t ∂xi

∂xj
z(t, ·)

)
δ
.

Adding up Eqs. (B.14), (B.17)–(B.19), invoking the regularity of z, θ and p from the previous step of the
proof and using [29, Equation (A.17)] and Lemma B.1 to “eliminate” (∂s−1

t z)δ(t, ·) and ηδ on the right-hand
side of Eq. (B.19), we send ε → 0 and then δ → 0 to arrive at the estimate

s∑
n=1

( ∂n
t z(t, ·)

2
L2(Ω) +

∂n−1
t z(t, ·)

2
H1(Ω)

)
+

s−1∑
n=1

(∂n
t θ(t, ·)

2
H1(Ω) +

∂n
t θ(t, ·)

2
L2(Ω)

)
≤ C(ϕ0, γ0)Λ0 + C(ϕ, γ0)(1 + T 1/2 + T −1/2)

×
∫ t

0

(
∥D̄sz(τ, ·)∥2

L2(Ω) + ∥D̄s−1θ(τ, ·)∥2
H1(Ω) + ∥D̄s−1p(τ, ·)∥2

L2(Ω)

)
dτ.

(B.20)

To close the estimate in Eq. (B.20), respective space-derivatives on the left-hand side need to be recon-
structed. To this end, we use Eqs. (B.11a)–(B.11c) to write

ηA
(
∂n−1

t θ
)

= τ∂t

(
∂n−1

t p
)

+
(
∂n−1

t p
)
,

āij∂xi
∂xj

(
∂n−1

t z
)

= ∂2
t

(
∂n−1

t z
)

− α
γ A

(
∂n−1

t θ
)

+ B
(
∂n−1

t θ
)

− hn,(
∂n−1

t p
)

= −β∂t

(
∂n−1

t θ
)

− α∂t

(
∂n−1

t z
)
.

Starting at n = s − 1 and iteratively going down to n = 1, while exploiting the elliptic regularity of A and
āij∂xi

∂xj
from Assumption B.2.4 as well as regularity of hn from Assumption B.2.5, repeating the arguments

of our closedness proof for A(t) at the basic energy level and the streamlines of [29, pp. 217–218], we getD̄sz(t, ·)
2

L2(Ω) +
D̄s−1θ(t, ·)

2
H1(Ω) +

D̄s−1p(t, ·)
2

L2(Ω)

≤ C(ϕ0, γ0, γ1)Λ0 + C(ϕ, γ0, γ1)(1 + T 1/2 + T + T −1/2)

×
∫ t

0

(D̄sz(τ, ·)
2

L2(Ω) +
D̄s−1θ(τ, ·)

2
H1(Ω) +

D̄s−1p(τ, ·)
2

L2(Ω)

)
dτ.

The assertion of Theorem B.3 is now a direct consequence of Gronwall’s inequality. □

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.na.2019.
02.019.
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[47] M. Pokojovy, Zur Theorie wärmeleitender Reissner-Mindlin Platten (Ph.D. thesis), University of Konstanz, Germany,

2011.
[48] H.-T. Qi, H.-Y. Xu, X.-W. Guo, The Cattaneo-type time fractional heat conduction equation for laser heating, Comput.

Math. Appl. 66 (2013) 824–831.
[49] R. Quintanilla, R. Racke, Qualitative aspects of solutions in resonators, Arch. Mech. 60 (2011) 345–360.
[50] R. Quintanilla, R. Racke, Qualitative aspects of solutions in resonators, Addendum to, Arch. Mech. 63 (2011) 429–435.
[51] R. Racke, Y. Ueda, Dissipative structures for thermoelastic plate equations in Rn, Adv. Differential Equations 21 (7/8)

(2016) 601–630.
[52] R. Racke, Y. Ueda, Nonlinear thermoelastic plate equations – Global existence and decay rates for the Cauchy problem,

J. Differential Equations 263 (2017) 8138–8177.
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