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A note on the Moore—Gibson-Thompson equation with memory of
type 11

FILIPPO DELL’ORO, IRENA LASIECKA AND VITTORINO PATA

Abstract. We consider the Moore—Gibson—Thompson equation with memory of type II

t
Oprru(t) + adpru(t) + BASGu(t) + y Au(t) — ‘/0 gt —s)Adtu(s)ds =0

where A is a strictly positive selfadjoint linear operator (bounded or unbounded) and «, B, y > 0 satisfy
the relation y < op. First, we prove well-posedness of finite energy solutions, without requiring any
restriction on the total mass o of g. This extends previous results in the literature, where such a restriction
was imposed. Second, we address an open question within the context of longtime behavior of solutions.
We show that an “overdamping” in the memory term can destabilize the originally stable dynamics. In fact,
it is always possible to find memory kernels g, complying with the usual mass restriction o < f, such that
the equation admits solutions with energy growing exponentially fast, even in the regime y < «f where
the corresponding model without memory is exponentially stable. In particular, this provides an answer to
a question recently raised in the literature.

1. Introduction

Let (H, (-, -), || - ||) be a separable real Hilbert space, and let
A:D(A)CH—->H

be a strictly positive selfadjoint linear operator (bounded or unbounded). We consider
the Moore—Gibson—Thompson (MGT) equation with memory of type II

t
Orrrut(t) + adpu(t) + BAu(t) + y Au(t) — / gt —5)Adu(s)ds =0, (1.1)
0
where «, B, y are strictly positive fixed constants subject to the structural constraint

y <ap, (1.2)
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and the so-called memory kernel g : [0, co) — [0, 00) is an absolutely continuous
nonincreasing function of total mass

o
0 =/ g(s)ds > 0.
0

The MGT equation (1.1) is an abstract version of a wave-type equation studied in
the context of acoustic wave propagation with the so-called second sound, where the
paradox of the infinite speed of propagation is eliminated by replacing the Fourier
law by the Maxwell-Cattaneo one. As a consequence, the resulting PDE accounts
for a small time relaxation parameter t > 0, appearing in the unscaled equation
in the form td;;,u, contributing to the presence of the third-order time derivative
in the model. The model itself, originally introduced by Stokes [23], has received
considerable attention in recent years, due to plethora of applications in nonlinear
acoustic and related inverse problems, including lithotripsy, high intensity focused
ultrasounds (see the review article [9] with many references therein). On the other
hand, the mathematical properties of the resulting dynamics are intricate and drastically
different from the one derived via the Fourier law, the latter exhibiting parabolic effects.

The MGT equation without memory (i.e., with g = 0) has been intensively studied
in the recent literature (see, e.g., [9-11,16,20]). In particular, the consequences of
the hyperbolicity induced by the second sound have been shown to have profound
implications on existence/stability results in both linear and nonlinear versions of
the model. Much less is known about the effects of the memory on the dynamics,
due to molecular relaxation [8], and intrinsically present in an acoustic environment.
It is a well-known (although nonintuitive) fact that the effects of the memory may
compromise the stability properties of the original dynamics. This has been eloquently
demonstrated in [6] for a second-order hyperbolic dynamics, where the decay rates
for the energy of a wave equation with frictional damping are compromised by the
memory.

In the case of a third-order equation, the modeling of memory effects is more
complex and subtle. The memory may affect the variable u, or the variable d,u, or
even a combination of both. Accordingly, the corresponding models are labeled as
memory of type I, type II, and type III. This raises a fundamental question on the
impact of the memory terms on the stability properties of the corresponding evolutions.
Stabilizing effects of the memory are well known in the literature (see, e.g., [2, 18,22]).
However, a quantification of the stability results (via decay rates) reveals that the
memory may deteriorate the stability properties of an otherwise stable systems. An
already mentioned classical example is the damped wave equation which, under the
influence of memory, may loose exponential stability to become only polynomially
stable, as shown by Fabrizio and Polidoro [6]. In the case of the third-order equation,
the scenario is much richer and complex. Indeed, for the conservative MGT dynamics
in the critical case corresponding to y = «f, the introduction of memory of type I
can only produce strong stability (not exponential), a fact recently discovered in [3,
Theorem 4.1 and Corollary 6.2]. However, an addition of memory of type I to a stable
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dynamics (i.e., where y < «f) retains the stability of the system, and it does not
lead to a deterioration of the rates [14, Theorem 1.4]. Memory of type II is shown to
sustain stability for an already stable dynamics, provided however that the size of o is
sufficiently small [14, Theorem 1.6]. This raises the following questions:

e What happens when a larger amount of type II memory term is introduced?
e Would it be sufficient to stabilize a conservative dynamics?
e Would stability of an already stable dynamics be retained?

These issues have been raised in [3] for the case of finite memory, and in [1] for the
case of infinite memory.

In this paper, we show that there is threshold of type Il memory, where the memory
itself starts acting as an antidamper, destabilizing completely an otherwise stable dy-
namics, a much stronger negative effect than in the case of the second-order dynamics.
However, it is not true that the memory of type II is always acting as a destabilizer.
Indeed, if it is paired with the memory of type I, it may stabilize a critically unstable
wave. These results are neither intuitive nor predictable. Their proofs rely on a careful
quantitative analysis of the damping mechanism, with the aid of energy methods and
some counterexamples.

2. The model and the literature

The MGT equation without memory, i.e.,
8”[” + aanu + ,BAatM + '}/Au = 0, (21)

is a model arising in acoustics and accounting for the second sound effects and the
associated thermal relaxations in viscous fluids [7,17,23,24]. The case y < «f is re-
ferred to as subcritical, since in this regime the associated solution semigroup exhibits
an exponential decay in the natural weak energy space

H:@(A%)xm(A%)xH.

On the contrary, the case y = «f is critical, since stability (even the nonuniform one)
islost [10,16]. Finally, in the supercritical case y > af, there exist trajectories whose
energy blows up exponentially [4,10, 16]. If additional molecular relaxation phenom-
ena are taken into account, integral terms pop up in the MGT equation, leading to (1.1)
with a nonnull memory kernel [8,12-15,19]. In more generality, the convolution term
appearing in (1.1) can be taken of the form fot g(t — s)Aw(s) ds, where the variable
w is of the following three types:

u(s) (type D,
w(s) = 1§ o;u(s) (type II),
ku(s) 4+ o;u(s) for k >0 (type III).
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For the memory of type I, the picture is quite understood. As shown in [14], in the
subcritical case and under proper decay assumptions on the kernel g all the solutions
converge exponentially to zero. Instead, in the critical case the decay is only strong,
with a counterexample to exponential stability if the operator A is unbounded [3].
An interesting question becomes what is the effect of the memory of type II. Here,
in the subcritical case and with strong restrictions on the mass of memory kernel
including o < B, one shows the exponential decay of the energy [14]. In the critical
case, exponential stability holds, but with a very special choice of memory of type III,
namely w = yB~'u + du.

It is worth noting that in all the results mentioned above a structural restriction on
o is required. For the case of memory of type II, such a restriction reads

o< B.

To better understand this issue, an interesting comparison can be made with the MGT
equation without memory (2.1), which is shown to be ill-posed in H if A is unbounded
and B = O (but the same is true if 8 < 0), in the sense that the equation does
not generate a strongly continuous semigroup (see [10, Theorem 1.1]). And indeed,
equation (2.1) with (8 — 0)Ad;u in place of the term SAd;u can be considered the
limiting case of (1.1) when the kernel g converges to a multiple o of the Dirac mass at
0. This would somehow indicate that some problems might arise when o > f. Quite
unexpectedly, as it will be shown in this work, it is instead possible to have existence and
uniqueness of solutions in the natural weak energy space 7, no matter how is the size of
o. In fact, the same picture occurs for the MGT equation with memory of type I or III.

A second intriguing problem is to fully understand the effects of the memory of type
II on the longtime dynamics, within the restriction o < § (indeed, if o > B, blow up at
infinity is the general rule). In particular, whether this damping alone is able to stabilize
the equation in the critical case. As we shall see in this paper, the answer is negative.
Even more is true: a subcritical MGT equation can be exponentially destabilized by
“large” effects of the memory of type II. Hence, a posteriori, for such an equation we
may say that no critical value changing the asymptotic dynamics exists, in the sense
that blow up of solutions appears, both in the subcritical and in the critical regimes.
In particular, this provides an answer to a question raised in [3]. Actually, in the same
paper [3] a heuristic explanation was given, by noting that the action of the memory
of type II can be interpreted as an addition of a “stabilizer” and of an “antidamper” to
the MGT equation. To wit, observe that

t t
—/ gt —5)Adu(s)ds = —g(0)Au(t) + g(t)Au(0) — / g (t — s)Au(s)ds.
0 0

The above formula indicates that the memory of type II provides two opposite effects.
The static damping term g(0) Au moves the original critical value y = of to the
noncritical region y = «ff — g(0). On the other hand, the viscoelastic term — fot g(t—
s)Au(s)ds acts as an antidamper, due to the negative sign of g’. This renders the issue
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quite interesting, as it is not clear which “damping” wins the game. Of course, the
value g(0) and g'(¢) will play a crucial role.

Comparison with the previous literature The recent paper [1] is concerned with the
existence, uniqueness and stability of the MGT equation with infinite memory, i.e.,
with a more general convolution term of the form f ’ 0o &(t — s)Aw(s)ds. In the case
of memory of type I, Theorem 3.7 therein proves the exponential decay of solutions
in the subcritical case. This result has been already shown for finite memory of type
I in [14] (see also [13] for more general relaxation kernels leading to uniform but
not exponential decays). In the case of memory of type II, the same [1, Theorem
3.7] establishes the exponential decay of the energy in the subcritical case, but under
strong “smallness” type restrictions imposed on the mass of kernel o. Here, again, this
is an extension to infinite memory of the results obtained in [14] for the case of finite
memory. In short, this “smallness” condition requires a rather fast decay of the kernel
g with respect to the strictly positive value a8 — y . For exponentially decaying kernels
of the form g(r) = p8e %" with § > 0, this condition translates into o < g — ya~!.

Regarding the negative result in the case of memory of type II (conjectured in [3]),
the paper [1] evokes the lack of dissipativity of the generator for larger values of
©. One should note that dissipativity is a property of the considered inner product
and, alone, cannot prove the conjecture stated in [3, Remark 1.3], i.e., to disprove
exponential stability. In summary, the analysis carried out in [1] is inconclusive with
respect to the open question under consideration. The goal of the present paper is
to provide a rigorous proof not only of the lack of exponential stability, but of the
existence of solutions which exhibit exponential blow up at infinity, which would
have been exponentially stable without the effects of the memory of type II. This gives
the definite answer to the question asked.

Coming instead to the MGT equation with memory of type I in the critical case, it is
still unknown whether exponential stability could be achieved with suitably calibrated
relaxation kernel (fast decay and small mass). Positive results are available in the
literature but only in either subcritical regime (see [1, 14]) or critical with an addition
of suitably calibrated memory of type L.

Notation We define the family of nested Hilbert spaces depending on a parameter
relR

H =9 (A%), (w, v), = <A%u, A%v>, lull, = HA%MH .

The index r will be always omitted whenever zero. Along the paper, the Holder, Young
and Poincaré inequalities will be tacitly used in several occasions. The phase space of
our problem is

H=H'xH' x H,
endowed with the (Hilbert) product norm

2 2 2 2
G, v, w5, = llully + vllT + lwll”
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3. Well-posedness

The existence and uniqueness result for (1.1) is ensured by the following theorems.

Theorem 3.1. If the derivative g’ is bounded on bounded intervals, then for every
initial datum Uy € 'H, Eq. (1.1) admits a unique weak solution

U = (M, 8;14, 8[1‘“) (S C([O, T], H)

on the interval [0, T], for any T > 0.

Theorem 3.2. Assume the mass restriction 0 < f. Then, for every initial datum
Up € H, Eq. (1.1) admits a unique weak solution

U= (u’ 81”5 all‘u) € C([()? OO)’ H)

whose corresponding energy

t
F(t) = luIIT + 19O + 13> + fo g(t = $)1u(r) — du(s)|{ds
satisfies the energy inequality
F(r) < KF(0)e", (3.1)

for some structural constants K, w > 0 and for all t > 0.

As already mentioned in the Introduction, the first Theorem 3.1 above, within a very
mild assumption on the derivative g’ of the memory kernel, provides existence and
uniqueness of solutions in the space H without imposing the usual restriction o < 8
on the size of the mass of g. In which case, the solutions will be typically unbounded
in time and exhibit a “rough” asymptotic behavior as t — o0. To the best of our
knowledge, this is the first well-posedness result obtained for the MGT equation with
memory without assuming “smallness” restrictions imposed on the relaxation kernel.

If instead we assume ¢ < B, then the second Theorem 3.2 provides existence and
uniqueness of solutions in H which enjoy an exponential-type growth at infinity.

In order to prove the theorems, we first show a well-posedness result in the more
regular space

H=H>xH xH,

by constructing solutions to a memoryless nonhomogeneous MGT equation exploiting
the so-called MacCamy trick (see, e.g., [21]).

Lemma 3.3. For every initial datum Uy € H (and every ¢ > 0), Eq. (1.1) admits a
unique weak solution

U = (u, du, du) € C([0, T1, H)

on the interval [0, T], for any T > 0.
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Proof. Let T > 0 be arbitrarily fixed, and let R, (¢) denote the resolvent operator
associated with the kernel

1
p(s) = ——g(s).
p
This means that R;, solves the equation
t
R, (1) +/ u(t —s)Ry(s)ds = u(t), Vit=>0.
0
We now rewrite (1.1) in the form
1 ! 1
A20u(t) +/ w(t —s)A20;u(s)ds = Y (1),
0
where

1 1 1 1
Y() = —B[A_j Oppru(t) + 0 A" 20,u(t) + yAfu(t)].

If we knew in advance that Y € C([0, T], H), then the function X (r) = A%B,u(t),
being the solution to the Volterra equation on [0, T']

t
X () +/ wt —s)X(s)ds = Y(1),
0

has the explicit representation
t
X(t) =Y (1) —/ Ryt — )Y (5) ds.
0

Applying /SA% to both sides, we conclude that the function U = (u, d;u, d;;u) satisfies
the equation
amu + (xanu + ﬂAa;M + )/Al/l = QU, (32)

having set
t
Qu) = / Ry (t — $)[0r11u(s) + adpru(s) + vy Au(s)] ds.
0
Integrating by parts the first term above, we obtain
1
Qu(t) = /0 R} (t — 5)d;eu(s) ds — Ry (t)3,u(0) + Ry, (0)d,u(r)

t
+ / Ry(t — )ladu(s) + y Au(s)] ds.
0
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At this point, we observe that R, (0) = u(0) < 0. Thus, calling & = o — R,,(0) > 0
and

t
Qu(r) = /0 R, (t — $)du(s) ds — Ry (t)3u(0) (3.3)

t
+ / R, (t — )[adu(s) + yAu(s)]ds,
0
equation (3.2) reads
3;;,14—}-&3,;14—}-,3148;144—)/1414 = QU. (34)

Introducing the three-component vector

Qu = (0,0, Ou),
we can write (3.4) in the abstract form
d
EU =AU + Qy, 3.5

where
AU = (3,14, 3[[”, —&8”14 — ,3A3,M — )/Au)

Itis known from [10, Theorem 1.4] that the MGT equation without memory generates a
strongly continuous semigroup S(r) = e*/ on 7{. Hence, its nonhomogeneous version
(3.5) driven by a generic forcing term Q € L' (0, T; 7{) admits a unique solution

U = (u, du, dyu) € C([0, T, H),

and the map Q — U is continuous from L'(0, T’ 7:[) into C([0, T']; 7:[). We shall
use this fact in order to construct a fixed point solution to equation (3.5). To this end,
note that for U € C([0, T], 7:() one has Qy € LY0, T; 7:0, as this is the same as
saying that QU e LY(0, T: H), and the latter relation follows from (3.3). Indeed, if
U e(C(0,T1], 7:() since R, is bounded and R;L is summable on [0, T], it is even true
that Oy € L™®(0, T; H) (note that if U € C([0, T1, H) then u € C([0, T, H?) and
dyu € C([0, T1, H) by the very definition of H). Accordingly, from the variation-of-
constant formula we end up with

t

U0 =500+ [ St~ 5)0u s
0
to which we apply Banach contraction principle first on the space
X ={U eC(0, Tol. H) : U(0) = Uo},

with T sufficiently small, and then reiterated (due to the linearity) to the intervals
[nTy, (n + 1)Tp] until T is reached. O
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The next step is extending the result of Lemma 3.3 to the whole space H. This
will be easily accomplished by standard density arguments, once a priori estimates
involving initial data belonging to H are established. Here, different arguments are
needed depending whether we are in the framework of Theorem 3.1 or of Theorem 3.2.

Proof of Theorem 3.1. Let T > 0 be arbitrarily fixed. We start from Eq. (3.4) of the
previous proof, that is,

Orrett + @0y u + BAGu +y Au = QUy

whose solution U (which is in fact the solution to the original equation) exists in H
for initial data Uy € H. Then, we multiply by 20;;u in H, and we add to both sides
the term 2m (u, d;u)1 for m > 0 to be fixed later. We obtain the differential equality

d . .
3Vt 2613 ull® = 2y 18,ull} + 2m(u, du)1 + 2(Qu, deu),
where we set

Vo (1) = 18 (0)]1> + Bl 17 + 2y (u(t), du ) + mlu@)|3.

It is readily seen that, up to choosing m > 0 sufficiently large, there exist k» > k1 > 0
such that
UlU 07, < V@) < 2llU @15 (3.6)

Accordingly,
d N
avm = Cvm + 2<QU’ a[ﬂ/i), (37)

for some C > 0. We now claim that the inequality
t N 1 t
/ (Qu(s), dyru(s))ds < va([) + CrVm(0) + CT/ Vi (s)ds (3.8)
0 0
holds for every ¢ € [0, T]. Here and till the end of the proof, C7 > 0 denotes a generic

constant, independent of the initial data, but depending on T'. Then, integrating (3.7)
on [0, ¢], we end up with

t
Vi (t) < CrVu(0) + CT/ Vi (s)ds, Vtel0,T],
0

and the standard Gronwall lemma together with (3.6) entail
IUDIH = CrllUO)x, VYrel0,T]

We are left to prove (3.8). Recalling (3.3), we limit ourselves to show the more difficult
estimate of the higher-order term, namely

t ps
j::/o /0 Ry (s — y){u(y), o;u(s))1dyds.
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We write

5 d s
/ Ry (s — y)(u(y), 0yu(s))dy = I[/ Ry (s — y)(u(y), Bfu(s))ldy]
0 S 0

— R, (0)(u(s), dru(s))1 —/0 R (s = »){u(y), du(s))1dy.

Note that, within the boundedness assumption on g’, we have that R;l (as well as R),)
is bounded on [0, T']. Then, integrating on [0, ¢] the identity above, we are led to

t t
3=/0 Rﬂ(r—s)<u(s>,a,u<r)>1ds—RM(O)/O (u(s), dyu(s))ids
t K
—fo /O RL(s — »){u(y), dyu(s))rdyds.

We finally estimate the three terms in the right-hand side as follows:

t t
/0 Ru<r—s)<u(s),atu(r>>1ds—Ru<0>/0 (w(s), dyu(s))1ds
»  Cr (! >
58|IU(t)|IH+?/O 1U(s) |2, ds,

for any ¢ > 0 small, and

t N t N
—/0 /0 R, (s — y)(u(y), du(s))1dyds < CT/O ||U(S)||H/O IU () Indyds

t 2
< CT< /0 IIU(S)IIHdS)

t
<cr /O 1U ()13,
Therefore,
Cr (!
J<elUMI3, + T/o U (5)113,ds.

The remaining terms of fé(QU(s), 0;:u(s))ds, as we said, are controlled in a similar
(in fact easier) way, and at the end one has to use (3.6). Only at that point, one fixes ¢
in order to get the desired coefficient 1/4 (or smaller) in front of V,, (¢). This finishes
the proof. g

Proof of Thorem 3.2. We only need to show the energy inequality (3.1). To this aim,
similarly to the proof of Theorem 3.1, we take the product in H of (1.1) and 29,u,
and we add to both sides the term 2m (u, 9;u)1 for m > 0 to be fixed later. This yields
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d 2 2 2
a[llanu(t)ll + Bl T+ mllu@)f + 2y (), dut))1]

t
—2/0 g(t — 5)(Bu(s), deu(r))y ds
=2y 18:u()|IF — 2el|Beru(O)I* + 2m (), du(t))
<2(y + mF(@).

Next, calling G(t) = fot g(s)ds, we compute the integral in the left-hand side as
1
- 2/0 gt — s){(0u(s), 0 u(t))y ds
d ! 2 2
- —[/ gt = 9)du(t) = du(@)IF ds = GOl |]
drL Jy
t
+ gDl — fo g'(t = )| (t) — du(s)|] ds.

Setting

Enn(®) = 19:u@®)? + (8 = G 13u@1 + mu@IF + 2y (), du®)
t
+/ gt — )| du(t) — du(s)||7 ds,
0
since g is nonnegative and nonincreasing we arrive at the inequality
d
EEm <2(y + m)F.
Recalling that G() < ¢ < B, is then clear that, up to choosing m large enough,
kKiF () < En() < i2F (D),

for some k2 > k1 > 0. The desired conclusion follows by an application of the
Gronwall lemma. 0

Remark 3.4. One might wonder why the fixed point argument cannot be directly ap-
plied to find a solution in the space C([0, T'], H). The reason is that, in order to apply
the Banach contraction principle to (3.5), we need a forcing term Qy € L! 0, T;H).
But in general this is not the case, since if we take initial data in H we only know that
the component u belongs to H'. Therefore the term Qy is not a priori in the energy
space H, as well as the multipliers employed in the proof of Theorem 3.1. Hence, the
calculations would be only formal. Accordingly, the strategy is first finding a solution
in the more regular space C([0, T1, 7:[), and then drawing the desired conclusion by
means of energy estimates.

Remark 3.5. If A is a bounded operator, the conclusions of Theorem 3.2 are easily
attained removing the restriction o < B.
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Remark 3.6. As a final comment, it is interesting to observe that the trick of multiply-
ing both sides of the equation by (u, d;u)1, employed in the proofs above, allows to
provide a two-line proof of the well-posedness of the strongly damped wave equation
with the “wrong” sign of Au, namely

Ot + Adyu — Au =0,

which highlights the essential parabolicity of the original equation. This is not the case
if one has a lower-order dissipation. Indeed, the equation

du + A" du — Au=0
is ill-posed for ¢ < 1, as the real part of the spectrum of the associated linear operator

is not bounded above.

4. The case of the exponential kernel

We now dwell on the particular case of the exponential kernel
g(s) = 0de™,
with
0€(,8) and 4§>0.

For this choice, equation (1.1) reads

t
Bmu(t)—i—aanu(t)—i—,BAB,u(t)—i—yAu(t)—Q(S/ e 009 Ad,u(s)ds = 0. 4.1)
0

In the same spirit of [3], taking the sum 9;(4.1) 4+ 6(4.1) we obtain the fourth-order
equation

Ottt +(+08) 0 u~+a o u+B A u+(y+88—08)Adiu+ySAu = 0. “4.2)
Note that
y+6868 —08 >0,
as o < B. Introducing the 4-component space
V=H'xH'xH' x H,
it is known from [5, Theorem 3.1] that (4.2) admits a unique (weak) solution

U = (u, du, dyyut, dysu) € C([0, 00), V),
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for every initial datum Uy € V. Besides, the analysis in [5] provides necessary and
sufficient conditions in order for (4.2) to be (exponentially) stable, depending on two
stability numbers » and @, which in turn depend only on the (positive) structural
constants of the equation. For this particular case, the two stability numbers read

af —y + 08 afs? — y8% — aps?
x=—"""""50 and w= .
a+d y +88 — 08

In particular, if o € (B — g, B) and § is large enough, then
W< —AMXx

where A1 > 0 is the smallest element of the spectrum o (A) of the operator A. In this
regime, the results of [5] predict the existence of solutions growing exponentially fast,
which gives a clear indication that our energy F might blow up exponentially for some
initial data. At the same time, the equivalence between (4.1) and (4.2) is, at this stage,
only formal. The next proposition establishes such an equivalence in a rigorous way.

Proposition 4.1. Letr Uy = (ug, vg, wo) € H!' x H' x H! be an arbitrarily fixed
vector satisfying the further regularity assumption

Bvo + yup € H>.

Then, the projection U = (u, d;u, d;1u) onto the first three components of the solution
U = (u, oiu, 0y, 07411t) to (4.2) with initial datum

(1o, vo, wo, —awp — A(Bvg + yuog)) € V

is the unique solution to (4.1) with initial datum U.

Proof. We introduce the auxiliary variable
¢(t) = 0pu(t) + adyu(t) + BASu(t) + y Au(t).
Since u solves (4.2), the function ¢ fulfills the identity
01 + 8¢ — 06Adu = 0.

A multiplication by e® yields

%[e%(r)] — 08e% Ad,u(t) = 0.

Noting that ¢ (0) = 0, an integration on [0, 7] leads at once to (4.1). O

Still, this is not enough to conclude that F can grow exponentially fast, since one
has to verify that this occurs for a particular trajectory of (4.2), with initial conditions
complying with the assumptions above.



F. DELL’ORO ET AL. J. Evol. Equ.

5. Exponentially growing solutions

In this section, we state and prove the second main result of the paper. Namely,
we produce an example of memory kernel g for which Eq. (1.1) admits solutions
with energy growing exponentially fast. To this end, we consider the exponential
kernel g(s) = p8e ™% of the previous section. For simplicity, we also assume that the
spectrum of the operator A contains at least one eigenvalue A > 0, which is always
the case in concrete situations.

Theorem 5.1. Let o € (8 — £ B) be arbitrarily fixed. Then, for every § > 0 suffi-
ciently large, there exist € > 0, an initial datum Uy € 'H and a sequence t,, — 00 such
that the energy F(t) associated to the solution to (4.1) originating from Uy satisfies
the estimate

F(t,) > ref™, V¥n e N.

Remark 5.2. According to [14], for this particular kernel exponential stability occurs
in the subcritical case, within the following assumption: there exist k € (%, &) and

6 > § such that

o< (p-F)mnfr iy}

The reader will have no difficulties to check that the condition above implies that
0 < B — L, which contradicts ¢ € (8 — £, B) assumed in Theorem 5.1.

In order to prove the theorem, we introduce the fourth-order polynomial in the
complex variable &

PE) = &* + (@ + 8)E> + (a8 + BVE> + A(y + 8B — 08)& + AYS. 5.1

Moreover, for all x > 0, we set

0. (5.2)
o+ 68+ 4x

4x3 + 3(a + 8)x2 + 2(ad + BA)X + A(y + 88 — 09)
q(x) = >
The next algebraic result will be crucial for our purposes.

Lemma 5.3. Leto € (8 — %, B) be arbitrarily fixed. Then, for every § > 0 sufficiently
large, there exists p > 0 such that the complex number

E=p+iq(p)
solves the equation P(S;A‘ ) =0.

Proof. For all x > 0, by direct calculations we find the equalities

IJm[P(x +ig(x))] =0 and Re[P(x +igx))] = f(x),
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where

FE) =x"+ (@ +8)x” + (@8 + BVx* + (v + 8B — 08)Ax + ydr + q(x)*
— (6x% + 3(a 4 8)x + b + BL)g(x)>.

By means of direct computations, with the aid of (5.2) and the assumptionp > 8 — £
it is readily seen that

lim f(x)=

xX——+00
and

F0) = y8r +q(0)* — (@8 + pr)q(0)* ~ SA(y —aB +a0) > 0, asd — +oo.

As a consequence, being f continuous on [0, 00), once § > 0 has been fixed suffi-
ciently large there exists p > 0 such that

0= f(p) =Re[P(p +ig(p)].
The proof is finished. O

Proof of Theorem 5.1. Denoting by w € H the normalized eigenvector of A corre-
sponding to A, we consider the function

u(t) = eP" [rsin(gt) + cos(qt)] w.
Here, p > 0 is given by Lemma 5.3, ¢ = ¢(p) > 0 is given by (5.2) and

P> =3pg® +a(p? — q*) + Brp + yA
g% —3p*q —2apq — Brgq

r=r(p)=

Note that r is well defined, since (1.2) and (5.2) ensure that

—q(8p> + 8ap? +2a2p + 2B8p + 208 + A(aB —
4 = 3p2q — 2apq — prg = qBp” + 8ap” +2a”p +2BAp + 108 + A(ap J/))<0.
a+d8+4p

The function u defined above solves the fourth-order equation (4.2). Indeed, calling
for simplicity

Y (t) = e? [r sin(gt) + cos(qt)]

and recalling that due to Lemma 5.3 the complex number p + ig is a root of the
polynomial P defined in (5.1), we have

Bmtu + (C{ + 8)8[[[14 + 0(38,,14 + ﬁAa”u + (J/ + (Sﬁ — Q(S)Aatu + VaAM
44 33 42
= [SE @St @S a0 L +aysy]u

=0.
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Moreover, being
u(0) = w,
3,14(0) = (p + rq)ws
3u(0) = (p* +2rpq — qH)w,
du(0) = (p* +3rp*q — 3pg”® — rg”)w,

thanks to the choice of r it is true that

—a(p* +2rpqg — q¢Hw — BA(p +rq)w — yrw
—ad,u(0) — BAu(0) — y Au(0).

0y u(0)

Invoking Lemma 4.1, the function u turns out to be the unique solution to (4.1) corre-
sponding to the initial datum

20 = (w, (p+ro)w, (P> +2rpq — ¢*)w).
Finally, setting

2n
tnzn——>+oo and e=2p >0,

we conclude that
F(ta) = llu(t)ll7 = re.

The proof of Theorem 5.1 is finished. 0
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