
Examining the Robustness of Learning-Based

DDoS Detection in Software Defined Networks

Ahmed Abusnaina†⋆, Aminollah Khormali†⋆, DaeHun Nyang‡, Murat Yuksel†, Aziz Mohaisen†

†University of Central Florida ‡Inha University ⋆Contributed equally (ordered alphabetically)

Abstract—With the rapid development of Software-Defined
Networking (SDN) advocating a centralized view of networks, ef-
ficient and reliable Distributed Denial of Service (DDoS) defenses
are necessary to protect the centralized SDN controller. Recently,
an amalgamation of work has realized such defenses using Deep
Learning (DL) based algorithms. Although DL-based algorithms
are generally prone to adversarial learning attacks, the extent to
which those attacks are applicable to DDoS defenses in SDN is
unexamined. In this work, we explore the robustness of DL-based
DDoS defenses in SDN against adversarial learning attacks. First,
we investigate generic off-the-shelf adversarial attacks to test the
robustness of DDoS defenses in SDN, and demonstrate that while
they lead to misclassification, these attacks do not preserve the
characteristics of flows. As a result, we propose Flow-Merge
for realistic adversarial flows while achieving a high evasion
rate, with both targeted and untargeted misclassification attacks.
The proposed Flow-Merge is able to force the DL-based DDoS
defenses to misclassify 100% of benign flows as malicious, while
preserving original characteristics of flows. Using state-of-the-
art defenses, we show that the adversarial flows generated using
Flow-Merge are difficult to detect, with only 49.31% detection
rate when using adversarial training.

Keywords-Intrusion Detection Systems; Deep Learning; Adver-
sarial Machine Learning; Software Defined Networking

I. INTRODUCTION

Software Defined Networking (SDN) overcomes scalability

challenges in network management by a centralized view of a

network with many components. A programmable controller

in SDN can see all switches and endpoints in a network and

manage flows between them, providing a better and easier

network monitoring and enhancing security compared to tra-

ditional networks [1], [2]. On the other hand, it has been shown

that SDNs are vulnerable to Distributed Denial of Service

(DDoS) attacks, which target the centralized controller [3],

[4]. Those attacks flood services with malicious or undesirable

traffic, disallowing them from processing legitimate requests

To address those attacks, several studies develop anomaly

detectors for SDN using Machine Learning (ML) techniques,

including Deep Learning (DL). Niyaz et al. [5] proposed a DL-

based DDoS detection system for SDN. Abubaker et al. [6]

introduced a flow-based IDS for SDN using machine learning.

Tang et al. [7] proposed a gated recurrent unit RNN-based

IDS over SDN-based networks. Ahmed et al. [8] introduced

SDN-based networks as a solution for mitigating DDoS attacks

using deep packet inspection at a centralized controller. Wu et

al. [9] studied IDS methods over massive networked systems

that require real-time operation. Although these DL defenses

offer high accuracy [10], their robustness is untested, and while

plausible that they are vulnerable to adversarial attacks [11],

the practicality of such attacks on them is unclear.

The increasing use of DL incentivizes manipulation attacks,

where the DL output is an adversary’s desired output. The

adversary achieves this goal by applying small perturbations

to the input, resulting in adversarial examples [12], [13]. The

crafted adversarial examples are very similar to the original

ones, and are not necessarily outside of the training data

manifold, making them hard to distinguish from legitimate

ones. In the context of IDSs in SDN, the failure of the anomaly

detector may result in disastrous consequences, such as the

failure of the entire network since a successful DDoS on the

centralized controller effectively brings all the switches down.

Goal. The main goal of this study is to investigate the

robustness of DL-based IDS in SDN against adversarial learn-

ing attacks. First, we incorporate generic adversarial attack

methods into the anomaly detection systems. Through our

analysis, we found that such adversarial learning algorithms

are not applicable to the SDN, as their output adversarial

flows are not realistic. Therefore, we propose Flow-Merge, an

approach that is specifically designed to force DL-based IDSs

in SDN to both targeted and untargeted misclassification while

maintaining practical flows with malicious effects (payload).

Flow-Merge combines the features of the original and a mask

flow by either: accumulating or averaging.

Contributions. We make the following contributions. 1) We

investigated applying generic adversarial learning methods

on DL-based IDS in SDN. Our experiments demonstrate

that although these methods can achieve high evasion rate,

the generated adversarial flows are not realistic, precluding

the applicability of generic approaches to DL-based IDSs in

SDN. 2) We propose Flow-Merge, an approach specifically

designed to fool DL-based IDSs in SDN, while maintaining

the characteristics of original flows. Flow-Merge is able to

achieve both targeted and untargeted attacks.

Organization. In Section II, we provide a brief background on

SDN and adversarial learning. The proposed approach for gen-

erating practical adversarial flows is described in Section III.

The performance of the proposed approach, evaluated through

intensive experiments and defenses, is in Section IV. Finally,

concluding remarks and future work are in Section V.

II. PRELIMINARIES

A. Software-Defined Networking

SDN separates the control plane from data plane in network

devices, which are referred to as “switches.” This architecture

enables the network to implement policies from a single point,

i.e., the SDN controller, thus improving security, management,

and decision making, as the controller has a global view of

the network. SDN administrators have the capability to run

applications inside the controller’s platform, which in turn

enables them to program switches for specific purposes [14].

The general SDN architecture and its basic traffic flow are

shown in Figure 1(a) and Figure 1(b), respectively.

A typical SDN setup consists of a controller and one or more

switches. Each switch is connected to a number of hosts and

other switches. The controller communicates with the switches

using a standard application program interface (southbound

interface). The most common southbound interface is the

OpenFlow (OF) protocol [15]. SDN applications communicate

with the controller using the northbound interface (which is

typically an HTTP-based interface such as REST or NET-

CONF), whereas a controller may communicate with another

controller using the east-westbound interface, which has not

been standardized yet. The controller and switches exchange

various types of messages using OpenFlow. Each switch has

flow tables defining flow entries of matching policy and actions

to handle traffic flows within the network. Such flow tables are

limited in size and populated by the controllers.

Switches take actions once an incoming packet matches a

flow entry in their flow table. When a match does not exist, the

packet header is directed to the controller to analyze and make

a global decision, e.g., adding a new entry into the flow table.

When a packet goes to the controller, this typically means

the packet belongs to a flow that either was aged out or not

seen before, and the controller must add an entry so that more

packets from that flow do not arrive at the controller. If the

packet belonged to a benign flow, the delay should be avoided,

and an entry needs to be added to the flow table so that

subsequent packets of the flow are properly forwarded. If the

packet belongs to a malicious or disallowed flow, a flow table

entry should be also added to drop subsequent packets at the

switch before they get forwarded to the controller. Handling

data packets at the switch and reducing the number of packets

sent to the controller is key to ensuring the controller is not

overloaded. Yet, merely responding to new malicious flows

and adding new flow table entries is a suboptimal strategy.

Since it has a global view of the network, the controller

can swiftly block attacks, specifically DDoS attacks, utilizing

anomaly detection systems. On the other hand, the failure

of such centralized anomaly detection systems may have

disastrous consequences, e.g., the failure of an SDN controller

may take down an entire network. For instance, if an adversary

can forge a malicious packet that looks like a normal one, the

packet will be directed to the controller and may cause the

generation of a new flow entry in the flow table. Repeating

that may overwhelm the southbound interface, thus affecting

the entire network and not only the targeted service.

B. Adversarial Learning

Fooling a classifier is achieved by introducing a small

perturbation δ into the input domain [12]. Adversarial attacks

(a) General architecture (b) Basic traffic flow

Fig. 1. A general architecture of the SDN (1(a)) and its basic traffic flow
(1(b)). Here, S1:3 denotes OpenFlow Switch 1:3, C1:3 shows controller 1:3,
and H1:3 represents end host 1:3.

on classifiers can be categorized from multiple perspectives,

such as adversary’s goals and capabilities to achieve them [12].

Adversarial Goals. The adversary’s main goal can be char-

acterized based on the inherent nature of the incorrectness

into three main groups, including confidence reduction, non-

targeted misclassification, and targeted misclassification.

• Confidence reduction: The adversary’s goal is to reduce

the confidence of the model such that the prediction’s

ambiguity increases. It should be noted that the model

output does not necessarily need to be incorrect.

• Non-targeted misclassification: The adversary’s goal is

to generate Adversarial Examples (AEs) x′ by applying

small perturbations to the input domain x, such that

the model’s output f(.) yields any class other than the

original one (f(x′) 6= f(x)). Note that generated AEs

are similar to the original sample.

• Targeted misclassification: The adversary’s goal is to

craft AEs x′ that force the model f(.) to generate the

adversary’s desired output f(x′) = t. Note that this type

of attack is more complex than the other two.

Adversarial Capabilities. Attacks can be categorized based

on the adversary’s capabilities at the test time into two

categories: white-box and black-box attacks. Other attacks are

characterized by information accessed by the adversary:

• Model and training data: The adversary has full access

to the training dataset and the model, including the model

architecture, link weights, activation functions, etc.

• Oracle: The adversary has no prior knowledge about the

structure of the model, but he has an oracle access to the

model allowing him to conduct queries to the model to

infer the relationship between input and output instances.

• Sample: The adversary can collect inputs/outputs pairs of

an unknown model, but cannot infer the input’s impact

on the model’s output. Note that this attack is practical

only when there is a sufficient number of samples.

Threat Model. We assume an adversary with full knowledge

about the baseline model, which is a convolutional neural net-

work. Moreover, we assume the adversary’s goal is to conduct

both targeted and non-targeted misclassification attacks.

III. APPROACH

Several DL-based approaches are proposed for IDSs in

SDN [5], [6]. While it has been shown that DL models are

prone to adversarial attacks, a comprehensive exploration on

the impact of adversarial attacks on DL-based IDSs is lacking.

Challenges. Launching adversarial attacks on flow-based IDSs

in SDN is challenging because 1) the generated adversarial

flows should be realistic, can be observed by an actual

packets flow, and 2) the flow-based features are highly inter-

dependent. Existing generic adversarial attacks are applicable

into domains where features are independent, e.g., images,

necessitating adversarial attack methods designed specifically

for flow-based IDSs in SDN, as the perturbation generated by

generic attacks is applied directly into the feature space.

Approach. We use two approaches: generic and Flow-Merge.

The first approach uses generic off-the-shelf adversarial attack

methods to generate AEs. We design the Flow-Merge approach

to generate adversarial flows in SDN that are more realistic.

For both approaches, two configurations are used: misdetection

and misclassification. The first configuration does not consider

the DDoS attack type, unlike the second configuration.

A. Generic Adversarial Attacks

Generic adversarial attacks were developed for image mis-

classification by small perturbation to the input, leading to

incorrect model output. In this study, we utilized five ad-

versarial attack algorithms: Carlini & Wanger (C&W) [16],

ElasticNet [17], DeepFool [18], Momentum Iterative Method

(MIM) [19], and Projected Gradient Decent (PGD) [20].

Carlini & Wagner (C&W) Method. The C&W method [16]

is a gradient-based adversarial attack that optimizes the penalty

and three distance metrics: L∞, L2, and L0 norms. The AE

generation in C&W is expressed as:

min ||δ||2p: g (x+ δ) = y′ , x+ δ ∈ X,

where x is the input, y′ is the targeted class, δ is a perturbation

parameter, and g(.) is the objective function. Based on C&W,

the added perturbation needs to be small, and a non-targeted

misclassification attack can be launched using:

min ||δ||2p: g (x+ δ) 6= y , x+ δ ∈ X.

Smaller L2 corresponds to a smaller perturbation to the input,

so we utilize the L2-based C&W attack to generate AEs, and

the perturbation δ is defined as δ = 1/2 (tanh (w) + 1) − x,

where tanh(.) and w are the hyperbolic tangent function and

an auxiliary variable. The value of w is optimized using:

min
w

||1/2 (tanh (w) + 1) ||2+c · g (1/2 (tanh (w) + 1)) ,

where c is a constant. The goal of C&W is to increase

the generated adversarial example and the original sample

similarity by minimizing the Lp norm distance between them.

DeepFool Method. DeepFool is an iterative non-targeted

adversarial attack, introduced by Moosavi-Dezfooli et al. In

DeepFool, the neural network is a linear model. In the AE

generation process, the distance between the input and the

corresponding class increases every iteration, and the class k
with the highest probability is considered as the output of the

objective function fk(x), defined as k̂(x) = argmaxkfk(x).

For classifier f(x) = WTx + b, the required perturbation

to misclassify input x can be computed using:

argmax
r

||r||2: ∃k : wT
k (x0 + r) + bk ≥ wT

k̂(x0)
(x0 + r) + b

k̂(x0)
,

where wk is mapped to the k-th column of W . DeepFool can

be generalized to multi-class non-linear structure using

l̂ (x0) = argmin
k 6=k̂(x0)

(|fk (x0)− f
k̂(x0)

(x0) |)/||wk − w
k̂(x0)

||2,

where the output is the next closest class to x0. Once the

minimum perturbation value δ is found using

δ (x0) =
|f

l̂(x0)
(x0)− f

k̂(x0)
(x0) |

||w
l̂(x0)

− w
k̂(x0)

||22

(

w
l̂(x0)

− w
k̂(x0)

)

,

the adversarial example can be crafted as x′ = x+ δ.

ElasticNet Method. Inspired by C&W, ElasticNet [17]

launches L1 distance-based non-targeted attacks. ElasticNet

benefits from the same objective function as C&W, and the

AE generation process is expressed as:

f (x) = max{[logit (x)]y0
−max

j 6=y0

[Logit (x)]j ,−k},

where f is the loss function, y0 is the original sample x0’s la-

bel, j is the current sample’s label, and logit(x) = log(x/(1−
x)). In ElasticNet, the model’s output is manipulated using

two regularization factors, β ≥ 0 and c, corresponding to

perturbation δ = x− x0 and loss function f :

min
δ

c.f (x, y) + β||δ||1+||δ||22.

Momentum Iterative Method (MIM). MIM [19] is inspired

by the Fast Gradient Sign Method (FGSM) [21], where the

goal is to preserve the performance over black-box models.

MIM applies momentum gradients in every iteration as:

argmax
x′

J (x′, y) , s.t. ||x′ − x||∞≤ ǫ

where J is a loss function and ǫ is a maximum distortion

control. The momentum gradient (Mg) is calculated as:

Mgt+1
= µMgt +

∇xJθ (x
′
t, l)

||∇xJθ (x′
t, l) ||

,

where ∇ and µ are gradient function and a decay factor,

respectively. In MIM, x′ is updated at each iteration using:

x′
t+1 = x′

t + ǫ · sign (Mgt + 1) .

Once it reaches its termination criteria, MIM returns x′
t+1 as

the AE for input x. The initial values of x′
0 and Mg0 are

considered as the original input and 0, respectively.

Projected Gradient Descent (PGD) Method. PGD [20]

benefits from an Empirical Risk Minimization (ERM) method

to craft AEs while reducing the empirical risk with a trade-

off of high performance using E(x,y)∼D[L (x, y, θ)], where

L is the loss function and y is the label corresponding to

the original input x. In PGD, the adversary is able to apply

perturbation of scalar value S to the input x, and we can

update the representation of the ERM to:

min
θ

ρ (θ) : ρ (θ) = E(x,y)∼D[max
δ∈S

L (x+ δ, y, θ)],

where δ denotes the added perturbation and ρ (θ) is the

objective function. We note that PDG is an iterative method,

where x′ is updated in each iteration.

Practicality Limitations. Although the aforementioned meth-

ods excel on images, they were not designed to consider fea-

ture dependencies. For instance, manipulating a feature derived

from a set of features independently may cause practicality

issue as the generated feature space may not be possible to

observe (due to lost dependency). Moreover, these methods

focus on misclassification, regardless of the functionality, i.e.,

a malicious adversarial flow may be misclassified as benign

with a feature space representing zero packets, resulting in

functionality preserving issues.

B. Flow-Merge

Approaches discussed so far for generating AEs consider

features independent of one another, and attempt to alter

them in a way that would result in a misclassification. In

reality, however, those features are very highly dependent

on one another. For example, changing the count of TCP

packets as a feature would immediately alter the ratio-based

features related to TCP. As such, we need a mechanism for

changing the features by altering the associated flows in a

consistent manner, which we achieve by Flow-Merge. Flow-

Merge crafts adversarial flows that fool the DL-based DDoS

defense while preserving characteristics of realistic flows.

Flow-Merge modifies a flow with a representative mask flow

from a selected target class. As a result of Flow-Merge, the

features of the original and the mask flows are combined using

one of two approaches: accumulating or averaging. The count-

based features, such as the number of incoming/outgoing

TCP flows, are accumulated, while the ratio-based features,

such as the fraction of TCP flows over the total number of

incoming/outgoing flows, are averaged in a weighted form.

The weights for each ratio-based feature are protocol-

specific. For instance, the number of incoming TCP flows

determine the weight of the fraction of TCP flows with the

SYN flag set. At the feature level, let X = {x1, . . . , xk} be

the features of the original flow, and Y = {y1, . . . , yk} be the

features of the mask flow. A feature vector of the masked flow

(modified one) is then calculated as Z = {z1, . . . , zk} such

that zi = [n/(n + m)]xi + [m/(n + m)]yi, where n is the

number of packets associated with the studied protocol in the

first flow, and m is the number of packets associated with the

same protocol in the second flow. The count-based features

are simply accumulated (i.e., zi = xi + yi). Flow-Merge’s

design is shown in Figure 2. Z can be targeted and non-

targeted; while the former requires the classifier’s output to

be a desired targeted class the latter only requires an incorrect

Fig. 2. A general architecture of Flow-Merge. Here, n and m are number
of the TCP packets in original flow X and mask flow Y , respectively. In this
figure, W1 = (n/(n+m)) and W2 = (m/(n+m)), while α2 and α4 are
the ratio-based features of X and Y , respectively.

output (i.e., an output other than the true class). Flow-Merge

simulates the actual merge of two flows’ packets, preserving

the functionality and practicality of each flow.

IV. EVALUATION AND DISCUSSION

A. Dataset

For benchmarking, we use the dataset in [5] to evaluate

the performance of the methods in this study. To collect the

dataset, traffic traces of various online activities, including web

browsing, audio/video streaming, real-time messengers, and

online gaming were collected using tcpdump [22] on a Linux

system and using port mirroring on a Wi-Fi access point for

72 hours. The first 48 hours were used as normal flows and

the rest were mixed with attack traffic. To collect the attack

traffic, a private network consisting of 10 DDoS attackers

and 5 victim hosts in a segregated laboratory environment

using VMWare ESXi host has been created. The different

kinds of DDoS attacks with different packet frequencies and

sizes were launched using hping3 [23]. An SDN testbed on

the same ESXi host was created. The testbed consists of an

SDN controller, an OF switch, and a network host using the

Ubuntu Linux systems. POX [24] is used as the controller,

while OpenvSwitch [25] is used as the switch. The traffic

traces for normal and attack traffic were replayed, mixing the

last 24 hours of normal flow with the attack traffic, one at

a time, in the host system using tcpreplay [26]. The data is

saved using intervals of 60 seconds and divided into training

and test sets. The distribution of the dataset across different

classes is shown in Table IV and more information on the

data and its collection can be found in [5]. In total, a set of 68

statistical features, divided into TCP related features (Table I),

UDP related features (Table II), and ICMP related features

(Table III), were extracted for each record.

B. Experimental Setup

Evaluation system. All experiments were conducted using

Python 3.6 running on a Ubuntu 16.04 system with i5-8500

CPU (3.00GHz), 32GB DDR4 RAM, 512GB SSD storage,

and NVIDIA GTX980 Ti GPU for DL processing.

TABLE I
FEATURES EXTRACTED FROM TCP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO

RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

1 C # TCP flows (i) 18 R src port entropy (i)
2 R TCP flows over total (i) 19 C # distinct dst ports (i)
3 C # TCP flows (o) 20 R dst ports entropy (i)
4 R TCP flows over total (o) 21 R dst ports ≤ 1024 (i)
5 R symmetric flows (i) 22 R dst port > 1024 (i)
6 R Asymmetric flows (i) 23 R Flows (i), SYN set
7 C # distinct src IP (i) 24 R Flows (o), SYN set
8 R src IP entropy (i) 25 R Flows (i), ACK set
9 R Bytes per flows (i) 26 R Flows (o), ACK set
10 R Bytes per flows (O) 27 R Flows (i), URG set
11 R # packets per flows (i) 28 R Flows (o), URG set
12 R # packets per flows (o) 29 R Flows (i), FIN set
13 C # distinct window size (i) 30 R Flows (o), FIN set
14 R Entropy of window size (i) 31 R Flows (i), RST set
15 C # distinct TTL values (i) 32 R Flows (o), RST set
16 R Entropy of TTL values (i) 33 R Flows (i), PUSH set
17 C # distinct src ports (i) 34 R Flows (o), PUSH set

TABLE II
FEATURES EXTRACTED FROM UDP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO

RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

35 C # UDP flows (i) 45 R # packets per flows (i)
36 R UDP flows over total (i) 46 R # packets per flows (o)
37 C # UDP flows (o) 47 C # distinct src ports (i)
38 R UDP flows over total (o) 48 R src ports entropy (i)
39 R Symmetric UDP flows (i) 49 C # of distinct dst ports (i)
40 R Asymmetric UDP flows (i) 50 R dst ports entropy (i)
41 C # distinct src IP (i) 51 R dst ports ≤ 1024 (i)
42 R Entropy of src IP (i) 52 R dst port > 1024 (i)
43 R Bytes per flows (i) 53 C # distinct TTL values (i)
44 R Bytes per flows (i) 54 R TTL values entropy (i)

Intrusion Detection System. We trained two models for

detection and classification. The detection model is a two-

class classifier, while the classification model consists of eight

classes: one normal class, and seven DDoS attack types.

The models are based on CNNs, each of which consists of

multiple layers, including convolutional, activation, pooling,

and dropout. Our tested IDS consists of three main blocks:

convolutional block 1 (CB1), convolutional block 2 (CB2),

and classification block (CL). CB1 and CB2 are responsible

for deep feature extraction, while CL does the classification.

More detailed description of these blocks is in the following.

CB1: The input (X) convolves with 68 filters F1
′ of size 1×3

in C1 layer with padding, resulting in a 2D tensor of size

68×68. The tensor is fed into C2, which is 1D convolutional

layer without padding and 68 filters of size 1×3, resulting in

a 2D tensor C2
′′ of size 66×68. A max pooling with size

and stride of 2 and dropout with probability of 0.25 are then

applied, resulting in a 2D tensor S1 of size 33×68.

CB2: This block is similar to CB1 except that the number of

filters in the convolutional layers is doubled. The output of

CB1 Sb1 is fed into a 1D convolutional layer with padding

and 136 filters of size 1×3, convolving over the data with

a stride of 1, resulting in a 2D tensor C3
′′ of size 33×136.

The tensor is fed into C4, which is a 1D convolutional layer

TABLE III
FEATURES EXTRACTED FROM ICMP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO

RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

55 C # ICMP flows (i) 62 R src IP entropy (i)
56 R ICMP flows over total (i) 63 R Bytes per flows (i)
57 C # ICMP flows (o) 64 R Bytes per flows (o)
58 R ICMP flows over total (o) 65 R # packets per flows (i)
59 R Symmetric ICMP flows (i) 66 R # packets per flows (o)
60 R Asymmetric ICMP flows (i) 67 C # distinct TTL values (i)
61 C # of distinct src IP (i) 68 R TTL values entropy (i)

TABLE IV
PER-CLASS FLOW RECORDS DISTRIBUTION.

Class types
of records

Train Test

Normal 49,179 21,076

DDoS attacks

TCP 5,471 2,344
UDP 5,273 2,260
ICMP 1,602 686
TCP & UDP 4,694 2,011
TCP & ICMP 4,739 2,031
UDP & ICMP 4,437 1,902
All (TCP & UDP & ICMP) 5,615 2,407

Total 81,010 34,717

without padding and 136 filters of size 1×3, resulting in a

2D tensor C4
′′ of size 31×136. A max pooling with size and

stride of 2 and dropout with probability of 0.25 are applied,

resulting in a 2D tensor S2 of size 15×136.

CL: The output of CB2 is fed into a classification block,

flattened and fed into a dense layer of size 512, resulting into

a fully connected feature map layer FCL. FCL is fed into

a dropout with a probability of 0.5 followed by a softmax

classifier. The output of the softmax is evaluated based on

standard evaluation metrics, e.g., accuracy rate (AR), false

negative rate (FNR), and false positive rate (FPR).

We used Rectified Linear Units (ReLU) activation function

for both the convolutional and fully-connected layers. To

prevent model over-fitting, we used dropout. The general

design of our baseline DL-based IDS is depicted in Figure 3.

More information regarding CNNs can be found in [27].

Adversarial Attacks Configuration. The goal of the attacks

is to fool the DL-based IDS by crafted AEs, while maintaining

their practicality: (1) preserving the functionality of the flow

and (2) can be extracted from a designed flow. The following

are configurations of the attacks we used in our evaluation.

All of the attacks are implemented using Cleverhans [28].

C&W: We use the L2 distance iterative method by setting the

number of iterations and learning rate to 200 and 0.1.

ElasticNet: AEs are generated based on L1 distance and using

the same loss function of the C&W. To generate AEs, we set

the iterations number to 250 with 0.1 learning rate.

DeepFool: We set the number of iterations and overshooting

value to 250 and 0.02.

MIM: We set the number of iterations to 250 with ǫ of 0.3.

PGD: To generate AEs using PGD, we set the number of

iterations and distortion (ǫ) rate to 250 and 0.3, respectively.

Fig. 3. The internal design of our DL-based IDS, which consists of multiple
convolutional layers followed by a softmax classifier. Here, number of filters
(A) and their size (BxC) are shown as A@BxC.

C. Results and Discussion

We present our results: the DL-based IDS (baseline), the

generic adversarial attacks, and our Flow-Merge attack.

DL-based IDS. We designed two configurations: the anomaly

detection and the anomaly classification. The detection model

distinguishes malicious flows from normal flows, regardless

of the attack type, while the misclassification model classifies

flows as normal traffic or one of the seven types of network

attacks (TCP, UDP, ICMP, or their combinations). The models

are trained over 68 statistical features extracted from traffic

flows directed to the SDN controller. In the detection model,

we achieved an accuracy rate of 99.83% with FNR of 0.05%

and FPR of 0.34%. Our classification model achieved an

accuracy rate of 96.05% with FNR of 8.18% and FPR of

0.54%. Note that the classification accuracy is slightly less

than the detection accuracy, because different attack types

share similar patterns, making them difficult to differentiate.

Generic Adversarial Attack. We implemented five generic

adversarial learning methods. Using those methods, we were

able to generate AEs that erroneously classify malicious flows

as benign flows and vice versa. Our evaluations demonstrate

that we can achieve a misdetection rate as high as 99.84%

using the ElasticNet method and as low as 62.78% using the

DeepFool adversarial learning method. Moreover, the achieved

misclassification rate varies between 99.26% and 47.14%,

using both PGD and DeepFool, respectively.

Except with DeepFool, all other attack methods achieve high

misclassification rates, showing the vulnerability of DL-based

IDSs in SDN. The lower misclassification rate of DeepFool is

explained by its attempt to minimize the distance between the

crafted AE and the original samples through minimizing the

perturbation size. The higher performance of other algorithms,

such as MIM and PGD, is due to their intrinsic characteristics.

MIM, for example, is an iterative method that adds small

perturbations in each iteration until it reaches misclassification

or the maximum iterations. PGD, on the other hand, tries

to craft AEs under minimized empirical risk with a trade-

TABLE V
MISCLASSIFICATION RATE OF EACH MODEL AGAINST ADVERSARIAL

ATTACKS. ACC REFERS TO THE ACCURACY OF THE BASELINE MODEL, EN
REFERS TO ELASTICNET METHOD, D. CONF. REFERS TO THE DETECTION

MODEL., AND C. CONF. REFERS TO THE CLASSIFICATION MODEL.

Model
Baseline Model(%) Attack Misclassification Rate (%)

Acc FNR FPR C&W EN DF MIM PGD

D. Conf. 99.83 0.05 0.34 98.92 99.84 62.78 93.65 99.76

C. Conf. 96.05 8.18 0.54 95.24 97.13 47.14 88.57 99.26

TABLE VI
MISCLASSIFICATION RATE OF THE MODEL OVER EACH ATTACK CLASS.

HERE, All∗ CONTAINS ALL TCP, UDP, AND ICMP FEATURES.

Method
Attack Misclassification Rate (%)

TCP UDP ICMP TCP/UDP TCP/ICMP UDP/ICMP All
∗

C&W 98.76 99.29 99.27 82.39 84.24 96.84 88.57
ElasticNet 98.40 99.24 99.27 83.40 84.83 97.10 90.19
DeepFool 86.05 90.48 70.26 72.55 79.03 78.97 82.09

MIM 99.83 100 100 99.40 97.30 99.94 99.58
PGD 99.70 100 100 96.42 96.65 100 95.93

off of high performance cost. The detailed distribution of the

misclassification rate of the classification approach over each

class for each attack method is shown in Table VI.

Flow-Merge. Given the main objective of Flow-Merge, we

focus on a targeted misclassification attack by masking classes

using a target class. The masks are selected based on the

dominance of the flows as either TCP, UDP, or ICMP pro-

tocols. The experiments are carried out for both detection

and classification. For detection, the goal is to misclassify the

malicious flow into benign and vice versa, this is done by

merging the features of the original flow with the selected flow

from the targeted class using Flow-Merge. Table VII shows

the detailed results of misdetection rates using Flow-Merge for

each dominant flow. The results show that while the adversary

can easily forge a malicious flow classified as a benign flow

for all three dominant flows, the adversary can only forge a

TCP dominant benign flow classified as malicious. The reason

for this outcome is that the number of TCP dominant flows

(65.81%) is far more than the number of UDP (20.45%) and

ICMP (13.72%) dominant flows. It should be noted that the

larger number of TCP dominant flows may result in better

learning of the DL-based IDSs, while perturbation of such

flows increases the chance of the adversary to achieve higher

misclassification rate, as our findings clearly demonstrate.

For misclassification, we observed that it is difficult to force

the model to yield specific outputs. For example, forcing the

model to label a TCP attack record as a UDP attack record is

almost impossible (misclassification rate of 0%). The reason

behind this performance is the nature of the TCP attack, which

is different from the UDP attack, in aspects concerning, among

others, packet header flags, demonstrated by the associated

group of features. We also observed a misclassification rate

of 100% in other cases, i.e., misclassifying all attack classes

to benign or All∗ attack. The reason behind this behavior is

that both classes contain all protocols (TCP, UDP, and ICMP)

within their flows, which leads to a higher success rate of

misclassifying a single or multiple protocol attacks to these

TABLE VII
MISDETECTION USING FLOW-MERGE FOR EACH DOMINANT FLOW.

COLUMNS ARE ORIGINAL LABELS, AND ROWS ARE PREDICTED CLASSES.

Flow type Benign Malicious

TCP
Benign 0.003 0.986

Malicious 0.997 0.014

UDP
Benign 0.888 0.818

Malicious 0.112 0.182

ICMP
Benign 0.892 0.939

Malicious 0.108 0.061

TABLE VIII
MISCLASSIFICATION TO BENIGN USING TCP, UDP, AND ICMP

DOMINANT FLOWS. COLUMNS REFER TO THE ORIGINAL LABEL AND ROWS

REFER TO THE PREDICTED CLASSES. C0 REPRESENTS A NORMAL FLOW,
WHILE C1-C7 REPRESENT THE DDOS ATTACKS IN TABLE IV.

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP
C0 1 1 1 1 1 1 1 1

C1–C7 0 0 0 0 0 0 0 0

UDP

C0 1 1 1 1 0.989 0.996 1 0.999
C1 0 0 0 0 0 0 0 0
C2 0 0 0 0 0.004 0 0 0.001
C3 0 0 0 0 0.004 0 0 0

C4–C5 0 0 0 0 0 0 0 0
C6 0 0 0 0 0.001 0.004 0 0
C7 0 0 0 0 0.002 0 0 0

ICMP
C0 1 1 1 1 0.999 1 1 1

C1–C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.001 0 0 0

classes. The detailed results of misclassification rates using

Flow-Merge are shown in Table VIII, Table IX, and Table X,

where the columns and rows represent the actual and predicted

labels, respectively. In these tables, C0 represents a normal

flow, while C1-C7 represent the DDoS attacks in Table IV.

D. Defense via Adversarial Training

To investigate how the generated AEs through Flow-Merge

are able to evade detection, we implemented a defense config-

uration. The main goal of the defense configuration is to im-

prove the robustness of the IDSs against adversarial examples,

even those crafted by Flow-Merge. There are several defensive

methods in the literature, including defensive distillation [29]

and adversarial training [21], [30], [31]. In this work, we used

adversarial training, which is one of the most successful robust

methods by far [32], to investigate the robustness of our IDS

against attacks. The idea of adversarial training is to inject

AEs into the model’s training phase to increase its robustness

against those AEs [32]. The goal of the adversarial training is

to solve the following adversarial empirical risk minimization:

min
θ

E(x,y)∼D̃
[maxδǫS L(x+ δ, y; θ)] ,

where x is the input, y is the model output, θ is the model

parameters, and δ is a small perturbation. In our analysis, we

considered two different assumptions: 1) where the defender

knows the characteristics of the mask (a more realistic as-

sumption), and 2) where the defender does not know anything

about the mask. We conducted our analysis considering both

single class and all classes in adversarial training.

TABLE IX
MISCLASSIFICATION TO All ATTACK USING A TCP, UDP, AND ICMP
DOMINANT FLOWS (ABBREVIATIONS ARE SIMILAR TO TABLE VIII).

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP

C0 0.007 0 0 0 0 0 0 0
C1–C4 0 0 0 0 0 0 0 0

C5 0.002 0 0 0 0 0 0 0
C6 0 0 0 0 0 0 0 0
C7 0.99 1 1 1 1 1 1 1

UDP
C0 0.006 0 0 0 0.001 0.001 0 0

C1–C6 0 0 0 0 0 0 0 0
C7 0.993 1 1 1 0.999 0.999 1 1

ICMP

C0 0.023 0 0 0 0 0 0 0
C1–C3 0 0 0 0 0 0 0 0

C4 0 0 0 0 0 0.001 0 0
C5–C6 0 0 0 0 0 0 0 0

C7 0.977 1 1 1 0 0.999 1 1

TABLE X
MISCLASSIFICATION TO TCP ATTACK USING A TCP, UDP, AND ICMP

DOMINANT FLOWS (ABBREVIATIONS ARE SIMILAR TO TABLE VIII).

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP

C0 0.207 0 0.648 0.209 0.292 0.261 0.841 0.645
C1 0.793 1 0.267 0.041 0.581 0.321 0 0.152
C2 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0.001 0 0
C4 0 0 0 0.372 0.032 0.116 0.005 0.046
C5 0 0 0.006 0.119 0.003 0.177 0.002 0.016
C6 0 0 0 0.026 0 0.033 0 0.002
C7 0 0 0.079 0.232 0.091 0.091 0.152 0.139

UDP

C0 0.993 0.033 1 1 0.365 0.356 0.999 0.402
C1 0.007 0.967 0 0 0.024 0.008 0 0
C2 0 0 0 0 0.001 0 0 0
C3 0 0 0 0 0.003 0.001 0 0
C4 0 0 0 0 0.523 0.014 0 0
C5 0 0 0 0 0.051 0.427 0 0.013
C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.034 0.194 0.001 0.585

ICMP

C0 0.993 0.033 1 1 0.365 0.356 0.999 0.402
C1 0.007 0.967 0 0 0.024 0.008 0 0
C2 0 0 0 0 0.001 0 0 0
C3 0 0 0 0 0.003 0.001 0 0
C4 0 0 0 0 0.523 0.014 0 0
C5 0 0 0 0 0.051 0.427 0 0.013
C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.034 0.194 0.001 0.585

Our results are shown in Table XI, where it is evident that

the adversarial training approach is able to improve the robust-

ness of the model only for those types of AEs considered in the

adversarial training. For example, when retraining the model

with AEs of class C0, the model is able to detect 89.90%

of the AEs of the same class. The model, however, fails to

detect AEs of other classes (15.05%). Moreover, changing

the mask would decrease the robustness of the model, i.e.,

training on AEs generated by a specific mask, and classifying

AEs generated by another mask from the same class. The

overall performance of the adversarial training approach once

all types of AEs (C0 to C7) are considered in the adversarial

training are not promising (63.01% and 49.31% for known and

unknown masks, respectively), highlighting the effectiveness

of the generated AEs of our proposed Flow-Merge approach,

and leaving customized defenses as a potential future work.

V. CONCLUSION

We investigated the robustness of DL-based DDoS defenses

in SDN against adversarial attacks, whereby an adversary

TABLE XI
RESULTS OF ADVERSARIAL TRAINING APPROACH. THE FLOW-MERGE IS ABLE TO REMAIN UNDETECTED OVER ADVERSARIAL TRAINING APPROACH.

Mask Crafted AEs C0 C1 C2 C3 C4 C5 C6 C7 C0-C7

Known
Same class 89.90 81.58 61.83 75.89 87.39 93.09 85.77 98.01

63.01
Other classes 15.05 40.43 44.88 45.18 37.07 34.17 42.09 34.24

Unknown
Same class 67.57 81.60 39.38 47.60 85.48 89.30 52.44 95.07

49.31
Other classes 19.38 21.95 27.97 29.20 22.13 20.25 28.11 18.89

attempts to force the DL model into misclassification by

introducing small perturbations. Because generic AE gen-

eration algorithms are shown to produce unrealistic flows,

Flow-Merge was proposed. Flow-Merge utilizes a weighted

merging technique over ratio-based features to craft adversarial

inputs. The evaluation results show a high misclassification

rate of 99.84% using generic adversarial attacks for untargeted

misclassification. Moreover, Flow-Merge produces realistic

adversarial flows for targeted misclassification with a success

rate of 100%. Adversarial training, a widely used defense

mechanism against AEs, is shown effective on generic attacks,

although limited against Flow-Merge. In the future, we will

explore effective defense mechanisms against Flow-Merge.

Acknowledgement. This work is supported in part by NRF-

2016K1A1A2912757 and NVIDIA GPU Grant, and NSF

awards 1647189, 1814086, and 1643207.

REFERENCES

[1] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? revisiting
security aspects of software-defined networking,” in Proceedings of the

Network and Service Management, 2014, pp. 382–387.

[2] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (sdn),” in International Conference

on Computer Communication and Networks, 2016, pp. 1–9.

[3] K. Kalkan, G. Gur, and F. Alagoz, “Defense mechanisms against ddos
attacks in sdn environment,” IEEE Communications Magazine, vol. 55,
no. 9, pp. 175–179, September 2017.

[4] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 602–622,
Firstquarter 2016.

[5] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos detec-
tion system in software-defined networking (SDN),” ICST Transactions

on Security and Safety, 2017.

[6] A. Abubakar and B. Pranggono, “Machine learning based intrusion
detection system for software defined networks,” in Proceedings of the

Seventh International Conference on Emerging Security Technologies

(EST), 2017, pp. 138–143.

[7] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep recurrent neural network for intrusion detection in sdn-based
networks,” in Proceedings of the 4th IEEE Conference on Network

Softwarization and Workshops (NetSoft), 2018, pp. 202–206.

[8] M. E. Ahmed, H. Kim, and M. Park, “Mitigating dns query-based
ddos attacks with machine learning on software-defined networking,”
in Proceedings of Military Communications Conference, 2017.

[9] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for
a massive network using convolutional neural networks,” IEEE Access,
2018.

[10] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and Detecting
Emerging Internet of Things Malware: A Graph-based Approach,” IEEE

Internet of Things Journal, 2019.

[11] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based iot malware
detection systems,” in Proceedings of the 39th IEEE International

Conference on Distributed Computing Systems, ICDCS, 2019.

[12] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proceedings of the IEEE European Symposium on Security and Privacy,
2016, pp. 372–387.

[13] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2574–2582.

[14] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in Proceedings of the IEEE Symposium on Security

and Privacy, 2017, pp. 39–57.
[17] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh, “EAD: elastic-

net attacks to deep neural networks via adversarial examples,” in
Proceedings of Conference on Artificial Intelligence, 2018, pp. 10–17.

[18] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2574–2582.

[19] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193.
[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” in Proceedings of

the 2018 International Conference on Learning Representations., 2018.
[21] C. S. Ian J. Goodfellow, Jonathon Shlens, “Explaining and harnessing

adversarial examples,” in Proceedings of International Conference on

Learning Representations., 2015.
[22] Tcpdump, “Tcpdump/libpcap public repository,” Sep 2010. [Online].

Available: http://www.tcpdump.org/
[23] “Home – hping network security tool.” [Online]. Available: http:

//wiki.hping.org/
[24] [Online]. Available: https://openflow.stanford.edu/display/ONL/

POXWiki
[25] “Production quality, multilayer open virtual switch.” [Online]. Available:

http://www.openvswitch.org/
[26] [Online]. Available: http://tcpreplay.appneta.com/
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proceedings of Advances

in neural information processing systems, 2012, pp. 1097–1105.
[28] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,

A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley
et al., “cleverhans v2. 0.0: an adversarial machine learning library,” arXiv

preprint arXiv:1610.00768, 2016.
[29] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation

as a defense to adversarial perturbations against deep neural networks,”
in Proceedings of IEEE Symposium on Security and Privacy, SP, 2016,
pp. 582–597.

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proceedings

of International Conference on Learning Representations., 2014.
[31] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and

A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, 2017, pp. 506–519.
[32] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There

is no free lunch in adversarial robustness (but there are unexpected
benefits),” arXiv preprint arXiv:1805.12152, 2018.

