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Abstract—IoT malware detection using control flow graph
(CFG)-based features and deep learning networks are widely
explored. The main goal of this study is to investigate the
robustness of such models against adversarial learning. We
designed two approaches to craft adversarial IoT software: off-
the-shelf methods and Graph Embedding and Augmentation
(GEA) method. In the off-the-shelf adversarial learning attack
methods, we examine eight different adversarial learning methods
to force the model to misclassification. The GEA approach aims
to preserve the functionality and practicality of the generated
adversarial sample through a careful embedding of a benign
sample to a malicious one. Intensive experiments are conducted
to evaluate the performance of the proposed method, showing
that off-the-shelf adversarial attack methods are able to achieve
a misclassification rate of 100%. In addition, we observed that the
GEA approach is able to misclassify all IoT malware samples as
benign. The findings of this work highlight the essential need
for more robust detection tools against adversarial learning,
including features that are not easy to manipulate, unlike CFG-
based features. The implications of the study are quite broad,
since the approach challenged in this work is widely used for
other applications using graphs.

Keywords-Adversarial Learning, Deep Learning, Graph Anal-
ysis, Internet of Things, Malware Detection

I. INTRODUCTION

The Internet of Things (IoT) is a novel networking prototype

that interconnects a large number of devices, with many differ-

ent applications, such as sensors, voice assistants, automation

tools, etc. [1]. Multiple pieces of software or applications are

installed in each of those devices to function. At the same time,

those applications can be exploited through vulnerabilities,

leading to a wide variety of security threats and impacts,

such as Distributed Denial of Service (DDoS) attacks launched

by Mirai botnet [2]. Thus, it is essential to understand IoT

software to address those security issues through analysis,

abstraction, and classification [1], [3]. To do so, there has been

a large body of research work on the problem of software

analysis in general, and a few attempts on analyzing IoT

software in particular. It should be noted that the research

work on IoT software analysis has been very limited not

only in the size of the analyzed samples, but also the utilized

approaches [4], [5]. A promising direction leverages a graph-

theoretic approach in security [6], particularly, to analyze IoT

malware. Representative static characteristics can be extracted

from a graph [7], [8], such as, Control Flow Graph (CFG),

which is abstracted from IoT malware samples. As IoT soft-

ware can be represented using graph-based features from CFG,

those features can be utilized to build an automatic detection

system to identify whether a given software is malicious or

benign [9]. Moreover, the type of the malicious software can

be identified through malware family-level classification and

label extrapolation, a concept widely applied [10].

Machine learning algorithms, specifically deep learning net-

works, are actively used in the process of detecting/classifying

malicious software from benign ones [10], [11]. Generally,

machine/deep learning networks, thanks to their high perfor-

mance, are widely used in a wide range of applications, such as

health-care [12], finance [13], industry [14], [15], computer-

vision [16], and cyber-security [17], [18]. For instance, ma-

chine learning theory is leveraged into the process of software

graph analysis to build more powerful analysis tools [19]. One

such application is exploring IoT malware using both graph

analysis and machine learning [9]. These models not only

can learn the representative characteristics of the graph, but

also can be utilized to build automatic detection system to

predict the label of the unseen software. However, the rise

in the utilization of deep learning models in security-related

domains creates incentives for adversaries to manipulate the

underlying model to produce their desired outputs. It has been

shown that the machine/deep learning networks are prone to

vulnerabilities. For example, an adversary can force the model

to produce his desired output, e.g., misclassification, through

crafting the adversarial examples (AEs) [20], [21].

Machine and deep learning models learn the inherent pattern

of the input dataset. Therefore, the model output is highly

dependent on the input dataset. At the same time, the AEs

are being crafted through applying small perturbation to the

input dataset. Note that the crafted samples are very similar

to the original ones, and are not necessarily outside of the

training data manifold. Recently, researchers presented sev-

eral algorithms for generating adversarial examples, such as

the fast gradient sign method [22], DeepFool method [21],

the Jacobin-based saliency map method [20], etc.. Although

it is an active research area in the security and machine

learning communities, there is very little research work done

on understanding the impact of adversarial learning on deep

learning-based IoT malware detection system and practical

implications [23], particularly those that utilize CFG features.

It is worth noting that labeling a malicious IoT software as

benign may lead to disastrous results in practice, particularly

in sensitive applications and domains, highlighting the impor-

tance of the issue to be explored in more detail.

Goal of this study. Motivated by the aforementioned issues,

our main goal is generating adversarial IoT software samples



that (1) fool the classifier and (2) function as intended.

Approach. To tackle the above objectives, first we conducted

an in-depth analysis of malware binaries through constructing

abstract structures using CFG, which are analyzed from multi-

ple aspects, such as the number of nodes and edges, as well as

graph algorithmic constructs, including average shortest path,

betweenness, closeness, density, etc. Then we designed two

approaches to craft AEs, including off-the-shelf adversarial

learning approach and GEA approach, while applying small

changes to the graph features. The off-the-shelf adversarial

attack approach incorporates eight well-known adversarial

learning methods to force the model to misclassification.

Whereas, the GEA approach aims to preserve the functionality

and practicality of the generated adversarial sample through a

careful connection of benign graph to a malicious one.

Findings. Extensive experiments are conducted to evaluate the

performance of our work. The results demonstrate that off-

the-shelf adversarial attack methods are able to achieve a high

misclassification rate of 100%, while the GEA approach is able

to misclassify all malware samples as benign. The findings

highlight the need for more robust detection tools against

adversarial learning, such as more sophisticated features that

are not easy to manipulate, unlike CFG-based features.

Summary of contributions. Our contributions are as fol-

lows: First, we examined the robustness of CFG-based deep

learning IoT malware detection system using two different

approaches, including off-the-shelf adversarial learning algo-

rithms and graph embedding and augmentation. The pro-

posed GEA approach that generates adversarial IoT software,

through embedding representative target sample to the original

software, while maintains the practicality and functionality of

the attacked sample. Second, we evaluated the performance of

the proposed method via intensive experiments showing the

effectiveness of the proposed approach in producing successful

AEs. We found that although off-the-shelf adversarial learning

algorithms can generate AEs with high misclassification rate of

100%, they do not guarantee the practicality and functionality

of the crafted AEs. Whereas, the proposed graph embedding

and augmentation approach maintains the practicality of the

generated adversarial IoT software examples, which can mis-

classify all malicious IoT software as benign.

Organization. In section II, a brief background is provided.

The presented practical approach for generating practical ad-

versarial IoT software is described in section III. The perfor-

mance of the proposed approach, evaluated through intensive

experiments, is in section IV. Related work has been discussed

in section V. Finally, limitations and future work are discussed

in section VI, followed by the conclusion in section VII.

II. PRELIMINARIES

We incorporate adversarial learning techniques into CFG-

based deep learning IoT malware detection systems in an

attempt to understand the robustness of such models against

adversarial learning attacks as a result of AEs.

We provide a required preliminary knowledge for under-

standing those techniques and approaches required for mal-

ware analysis to extract graph structures and to automate their

labeling using machine learning. In particular, we provide

general knowledge about the malware analysis approaches

in §II-A. The CFG-based analysis for IoT malware detection is

described in §II-B. Finally, we describe background knowledge

about the concept of adversarial machine learning and its

effects on machine/deep learning models in §II-C.

A. Malware Analysis

Malware analysis is widely used to understand the function-

ality and the behavior of malware. It helps us to understand the

capabilities and the intent of the malware and malware authors.

The results of the analyses are often used to build detectors and

design defenses to protect against future malware campaigns.

There are two approaches utilized for analyzing malicious

software: (i) static and (ii) dynamic analysis. Static analysis

approaches analyze malware binaries without running them.

Given the malicious nature of the malware, static analysis is

utilized as a precursor to the dynamic analysis. The malware

binary can then be executed in a sandboxed environment with a

much reduced focus to observe the patterns, like the behavioral

artifacts – in what is called the dynamic analysis.

Static Analysis. Static analysis approaches employ various

techniques to extract indicators to determine whether the

software is malicious or benign [24]. The various analysis

points, such as strings, functions, disassembly etc. hint at the

possible execution pattern of the software. For example, the

traces of user name and password list, along with shell based

login attempt, hints at possible usage of dictionary attack being

utilized by the software. These inferential results are drawn

from static analysis leverage the analysts to emphasize and

scrutinize on specific patterns. Additionally, traces can also be

used by analysts to address issues during dynamic analysis,

e.g., virtual machine obfuscation, ptrace obfuscation etc..

Among the first steps towards static analysis of a software

is understanding its composition. Reverse engineering can be

used to understand a software’s composition, architecture, and

design. Off-the-shelf tools help analysts achieve the above

goal. In addition to the aforementioned goals, reverse engi-

neering can also help disassembling the software to generate

its high-level representation, including CFGs and Data Flow

Graphs (DFGs). The CFG of a program is the graphical

representation of the flow of control during the execution of

that program. while the DFG represents the system events to

understand the possible execution of the system behaviors. It

explains the flow of the data that passes from one node to

another. Although static analysis is quite powerful and popular,

it sometimes stops short of achieving its end goals due to

multiple evasion techniques. For example, malware authors

use evasion techniques to prevent their malware from being

analyzed. Some of the techniques utilized include packing

(UPX [25]), obfuscation (function-, string- obfuscation), etc..

Dynamic Analysis. Unlike static analysis, dynamic analysis

executes the application in a simulated and monitored en-

vironment to observe its behavior and understand its func-

tionality [26]. This approach unearths different behavioral

patterns of a software. In particular, it unravels a program’s

network patterns, such as communication with the Command



and Control (C&C) server. Since the malicious nature of

software can affect the status of the machine it is executed on,

the following measures are adopted: 1) comparing the system

state before and after the execution of the application, or 2)

monitoring the application’s actions during the execution.

In line with the static analysis, software authors adopt means

to prevent their software from getting reversed. To do so,

they employ conditions such that the software exits or crashes

upon encountering virtual machines, debugging tools and/or

network monitoring tools. Additionally, dynamic analysis is

time consuming.

B. Graph Analysis

Graph Analysis. The CFG is a graph representation of the

program which shows the all paths that can be reached during

the execution as in Figure 2. In a CFG, the set of nodes means

the basic blocks where each block is a straight-line instructions

without any jump or jump target, while the set of directed

edges corresponds to the jump which traverses from the block

to the other block at the branch (if), loop (while, for), and

the end of the function (return). Once the first instruction of

the basic block is executed, the rest of the instructions in the

same block are necessarily executed in order unless terminated

by the external interference. In general, CFG is used for

the structural analysis of the program. For example, from

the perspective of optimization, the CFG is used to analyze

the reachability of each block. By constructing the CFG and

evaluating the reachability, the flaws of the program (infinite

loop or unreachable codes) can be found and addressed.

CFG-based Analysis. In graph theory, there are various

concepts that express the characteristics of a graph. Given

G = (V,E), for example, the number of vertices (|V |) means

the order of G, while the number of edges (|E|) corresponds

to the size of G. The density of the graph can be defined as

D = |E|/(|V | ∗ (|V | − 1)) for directed simple graph, which

means the ratio of the number of edges in G to the maximal

number of edges in the complete graph. The centrality is mea-

sured for the each node v ∈ V , which shows how important a

specific node is. In detail, there are several different kinds of

centrality, such as closeness centrality, betweenness centrality,

Eigenvector centrality, etc..

These indicators (and further concepts not described above)

can be considered the features of the graph G. Moreover,

the combination of those metrics can be a more deterministic

characteristic of the graph. Considering that a CFG is a kind

of graph, it is true that each binary has not only its unique

graph representation but also the associated values, such as the

order, size, and density of CFG, and centrality for each vertex

in CFG. On the other hands, the graph-based analysis can

provide the possibility for identifying the malware. Because it

is highly likely that the binaries in the same ”family” share

the structural similarity (even if there is a little difference),

the CFG-based features can be combined with the state-of-the-

art machine learning technique to determine whether a given

binary is malicious or not.

C. Threat Model

In adversarial deep learning, the goal is to generate AE

that forces the classifier f to misclassify the input sample x
to the desired output. Such attack applies small perturbation

to the original sample to craft the AE [20]. Attacks on deep

learning network can be classified from different perspectives,

including attack’s target type into targeted or untargeted, and

the knowledge of the adversary about the model to black-box,

or white-box attacks [27], [28]. In this study, we assume that

the adversary has full knowledge regarding the structure,

link weights, etc. of the model. We also assume that the

adversary tries to conduct both targeted and untargeted

misclassification attacks.

A brief description of these adversarial attack categories

assumed in our threat model is provided below.

Targeted attacks. The focus of this attack is to generate AE x′

that forces the classifier f to misclassify into a specific target

class t. For instance, the adversary generates a set of malicious

IoT software samples, which are classified as benign. That is:

x′ : [f (x′) = t] ∧ [∆ (x, x′) ≤ ǫ], where f(.) represents the

classifiers output, ∆(x, x′) denotes the difference between x
and the crafted AE x′, whereas ǫ is a distortion threshold.

Untargeted attacks. The focus of untargeted attack is to

generate an AE that forces the classifier f to misclassify to any

class other than the original class f(x), where x is the original

input. That is: x′ : [f (x′) 6= f (x)] ∧ [∆ (x, x′) ≤ ǫ], where

f(.) shows the classifier’s output, ∆(x, x′) represents the

difference between x and x′, and ǫ is the distortion threshold.

III. GENERATING ADVERSARIAL EXAMPLES

Deep learning-based classifiers have been widely used for

IoT malware detection. Recent studies highlighted the vulner-

ability of deep learning models against adversarial machine

learning attacks. Therefore, the key goal of this study is to

investigate the robustness of deep learning-based IoT malware

detection systems that are trained over CFG-based features. In

addition, we try to generate realistic AEs that preserve the

functionality and practicality of the original samples. To do

so, we design two approaches: generic adversarial machine

learning attacks and GEA. The first approach generates AEs

using generic adversarial methods to conduct attacks on the

deep learning-based IoT malware detection systems, causing

misclassification. While the first approach may not generate

practical AEs, due to applying changes to the feature space,

which can be hard or unrealistic to be reflected to the CFG of

the original sample, the GEA approach generates AEs that are

realistic. More information regarding the proposed approaches

are presented in §III-A and §III-B.

A. Off-the-Shelf Adversarial Attacks

This approach incorporates well-established adversarial ma-

chine learning attack methods into IoT malware detection.

These methods apply small perturbation into the feature space

to generate AEs that lead to misclassification. The general

flow graph of the AE’s generation process is demonstrated

in Figure 1. We trained a convolutional neural network (CNN)

model with four convolutional layers based on the extracted











TABLE III
EVALUATION USING GENERIC METHODS. MR=MISCLASSIFICATION RATE,
AVG.FG=AVERAGE NUMBER OF FEATURES CHANGED TO GENERATE AE,

AND CT=CRAFTING TIME IN MILLISECONDS PER SAMPLE.

Attack Method MR (%) Avg.FG CT (ms)

C&W 100 12.60 25.30
DeepFool 86.39 14.90 2.56
ElasticNet 100 5.42 114.18

FGSM 25.84 23 0.37
JSMA 99.80 4.00 0.78
MIM 100 20.60 0.90
PGD 100 22.56 2.40
VAM 28.80 16.64 16.58

TABLE IV
GEA: MALWARE TO BENIGN MISCLASSIFICATION RATE. MR REFERS TO

MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE CRAFTING

TIME IN MILLISECOND PER SAMPLE.

Size # Nodes MR (%) CT (ms)

Minimum 2 7.67 33.69
Median 24 95.48 37.79

Maximum 455 100 1,123.12

improvement in the performance. Whereas, JSMA achieves

a misclassification rate of 99.80% with manipulating four

features, which include the number of nodes and edges. JSMA

requires the least amount of changes to the graph topology to

achieve the modifications on the feature space. Nonetheless,

the generated new graph does not necessarily preserve the

practicality and functionality of the original sample.

3) GEA: This approach is designed to generate a practical

AE that fools the classifier, while preserving the functionality

and practicality of the original sample. Here, we discuss the

inherent overhead of the GEA approach. We investigate the

impact of the size of the graph, determined by the number

of the nodes in a graph, and graph density, determined by the

number of edges in a graph while the number of nodes is fixed.

Note that all generated samples maintain the practicality and

the functionality of the original sample. The obtained results

are discussed in more detail in the following.

Graph Size Impact. We selected three graphs, as targets,

from each of the benign and malicious IoT software, and

connected each of these target graphs with a graph of the

other class. The target graphs consist of a minimum, median

and maximum graph size, and the goal was to understand the

impact of size on misclassification with GEA. The results are

shown in Table IV and Table V. As it can be seen in Table IV,

three benign samples were selected, whereas in Table V three

malicious samples were selected. One of the key findings

we observed is that the misclassification rate increases when

the number of nodes increases, which is perhaps natural. In

addition, the time needed to craft the AE is proportional to the

size of the selected sample. We achieved a malware to benign

misclassification rate of as high as 100%, and a benign to

malware misclassification rate of 88.04%, while insuring that

the original samples are executed as intended, a property not

guaranteed with the eight off-the-shelf approaches above.

Graph Density Impact. We fixed the number of nodes and

selected graphs with different number of edges. Afterwards,

TABLE V
GEA: BENIGN TO MALWARE MISCLASSIFICATION RATE. MR REFERS TO

MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE CRAFTING

TIME IN MILLISECOND PER SAMPLE.

Size # Nodes MR (%) CT (ms)

Minimum 1 30.65 40.65
Median 64 57.60 69.23

Maximum 367 88.04 473.91

TABLE VI
GEA: MALWARE TO BENIGN MISCLASSIFICATION RATE WITH FIXED

NUMBER OF NODES. MR REFERS TO MISCLASSIFICATION RATE,
WHEREAS, CT REFERS TO THE CRAFTING TIME IN MILLISECOND PER

SAMPLE.

# Nodes # Edges MR (%) CT (ms)

8
7 13.72 33.84
9 13.10 34.09

10 13.10 34.17

33
46 94.78 40.17
50 57.47 42.43
53 95.74 40.79

63
91 11.48 49.39
93 22.84 56.31
95 8.37 63.30

we generated the AEs using GEA approach. Detailed results

can be found in Table VI and Table VII. Note that we could not

observe any meaningful relationship between the number of

edges and the misclassification rate. Rather we observed that

the misclassification rate is highly dependent on the confidence

of the classifier in classifying the selected sample.

V. RELATED WORK

Alasmary et al. [9] conducted an in-depth CFG-based com-

parative study for the Android and IoT malware. Pa et al. [37]

established the first IoT honeypot and sandbox system, called

IoTPOT, that run over eight CPU architectures to capture

the IoT attacks running over Telnet protocol. Caselden et

al. [38] built an algorithm that generates an attack from the

representation of the hybrid information and CFG applied to

the program binaries. Alam et al. [39] proposed a metamorphic

malware analysis and detection system that uses two different

techniques that match the CFGs of small malware and then

address the change in the opcodes frequencies. Moreover,

Tamersoy et al. [40] proposed a malware detection algorithm

that identifies the executable files of the malware and then

computes the similarities between them to partial dataset files

from the Norton Community Watch. Then, they construct

graphs based on the measurement of inter-relationship between

these files. In addition, Wuchner et al. [41] proposed a graph-

based detection system that uses a quantitative data flow

graphs generated from the system calls, and use the graph

node properties, i.e. centrality metric, as a feature vector for

the classification between malicious and benign programs.

Some work has been done toward analysis and detection of

the Android applications from the lens of CFG. For example,

ManXu et al. [42] proposed a CNN-based malware detection

system for the Android application from the semantic repre-

sentation of the graph, the CFG and DFG. In addition, Yang et



TABLE VII
GEA: BENIGN TO MALWARE MISCLASSIFICATION WITH FIXED NODES.

MR REFERS TO MISCLASSIFICATION RATE, WHEREAS, CT REFERS TO THE

CRAFTING TIME IN MILLISECOND PER SAMPLE.

# Nodes # Edges MR (%) CT (ms)

15
16 67.02 40.03
18 41.66 40.97
20 40.21 41.16

57
74 86.59 47.31
84 56.52 61.34
91 55.79 57.31

71
96 75.00 54.02

100 63.04 69.71
110 49.27 65.75

al. [43] identified and detect Android malicious behaviors

throughout generating two level behavioral representations

built from the CFG graph and call graphs of the program.

Allix et al. [44] designed multiple machine learning classifiers

to detect the Android malware using different textual repre-

sentation extracted from the applications’ CFGs.

A. Adversarial Machine Learning

Machine/deep learning networks are widely used in

security-related tasks, including malware detection [9]–[11],

[19]. However, it has been shown that deep learning-based

models are vulnerable against adversarial attacks [20], [33].

Given that, it should be noted that such a behavior can be

a critical issue in malware detection systems, where mis-

classifying a malware as benign may result in disastrous

consequence [45]. Various adversarial machine learning attack

methods have been introduced to generate AEs. For example,

Goodfellow et al. [22] introduced FGSM, a family of fast

method attacks to generate AEs that forces the model to

misclassification. In addition, Carlini et al. [29] proposed three

L-norm-based adversarial attacks, known as C&W adversarial

attacks, to investigate the robustness of neural networks and

existing adversarial defenses. Similarly, Moosavi et al. [21]

proposed DeepFool, an L2 distance-based adversarial iterative

method to generate AEs with minimal perturbation. Moreover,

Madry et al. [32] presented PGD-based adversarial method

that forces the model to misclassification by increasing the

L2 distance between the original and generated sample. Fur-

thermore, Dong et al. [31] proposed MIM, a momentum-based

algorithm to generate white-box and black-box AEs. Likewise,

Chen et al. [30] introduced ElasticNet, an L1 distance-based

adversarial method to generate AEs.

VI. LIMITATION AND FUTURE WORK

In this study, we implemented two approaches to generate

AEs. Off-the-shelf attack methods apply perturbation directly

to the feature space. In order to analyze the practicality and

functionality of the generated sample, perturbation should be

reflected to the CFG of the original sample. Meanwhile, GEA

solves this issue by applying the perturbation to the CFG

directly, by carefully connecting the original graph with a

selected sample while preserving the practicality and func-

tionality of the original sample. Nonetheless, generating AE

using GEA will increase the size of the original sample. Our

findings indicate that the accuracy of the GEA approach highly

correlates with the size of selected sample.

Malware authors often use different packing techniques,

e.g., Ultimate Packer for Executables (UPX), to obfuscate

different parts of the malware code base, such as functions and

strings. In obfuscated functions, the CFG would differ from

the actual unpacked malware. Although, the packed malware

samples give an attacker a success rate of 100%, it would

be interesting to examine the behavior of unpacked malware

samples exposed to similar attacks. For future work, we would

investigate this attack scenario. Additionally, we would also

investigate more effective methods to minimize the size of the

generated AEs, while preserving the main characteristics, such

as fooling the classifier and preserving the functionality and

practicality as original software, etc.

VII. CONCLUSION

This work studies the robustness of graph-based deep learn-

ing models against adversarial machine learning attacks. To set

out, first an in-depth analysis of malware binaries is conducted

through constructing abstract structures using CFG, which are

analyzed from multiple aspects, such as number of nodes and

edges, as well as graph algorithmic constructs, such as average

shortest path, betweenness, closeness, density, etc. Then two

different approaches are designed to generate AEs, including

off-the-shelf adversarial attack methods and GEA approach,

while applying small perturbation to the graph features. We

examined eight different well-established adversarial learning

techniques to force the model to misclassification. Although,

this approach achieves high misclassification rate, it does not

guarantee the practicality and functionality of the crafted AEs.

Whereas, GEA approach not only preserves the functionality

and practicality of the original sample, but also achieves

high misclassification rate. The performance of the proposed

method is validated through intensive experiments. We were

able to generate AEs that lead to 100% misclassification rate

using generic adversarial learning approach. In addition, we

observed that GEA is able to misclassify all malware samples

as benign ones, highlighting the need for more robust IoT

malware detection tools against adversarial learning.
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