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Abstract—The steady growth in the number of deployed
Internet of Things (IoT) devices has been paralleled with an equal
growth in the number of malicious software (malware) targeting
those devices. In this work, we build a detection mechanism of
IoT malware utilizing Control Flow Graphs (CFGs). To motivate
for our detection mechanism, we contrast the underlying char-
acteristics of IoT malware to other types of malware—Android
malware, which are also Linux-based—across multiple features.
The preliminary analyses reveal that the Android malware have
high density, strong closeness and betweenness, and a larger
number of nodes. We show that IoT malware samples have a
large number of edges despite a smaller number of nodes, which
demonstrate a richer flow structure and higher complexity. We
utilize those various characterizing features as a modality to
build a highly effective deep learning-based detection model to
detect IoT malware. To test our model, we use CFGs of about
6,000 malware and benign IoT disassembled samples, and show
a detection accuracy of ≈99.66%.

Index Terms—Malware; Android; IoT; Graph Analysis; IoT
Detection.

I. INTRODUCTION

THE Internet of Things (IoT) is a new networking

paradigm interconnecting a large number of devices, such

as voice assistants, sensors, and automation tools, with many

promising applications [1]. The persistent interconnection of

IoT devices is destined to augur into a wide spectrum of

implementations, varying from everyday requirements of the

general population to very sophisticated industrial usages.

Moreover, the anticipated rise in the number of IoT devices

over the years and in every industry reflects the prevalence of

interconnected devices and their implications.

The increasingly persistent connection of IoT devices makes

their role lie somewhere on the continuum between advantage

and susceptibility. Each of those devices runs multiple pieces

of software, or applications, which are increasing in complex-

ity, and could have vulnerabilities that could be exploited,

resulting in various security threats and consequences, i.e

DDoS attacks [2]–[5].

One of the prominent threats to these embedded devices,

from the perspective of the software, is malware. IoT software
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is different from well-understood ones on the other platforms,

such as Android applications, Windows binaries, and their

corresponding malware. Most of IoT embedded devices run

on a Linux base that uses small versions of libraries to achieve

Linux-like capabilities. In particular, Busybox is widely used

to achieve the desired functionality; based on a light-weighted

structure, it supports utilities needed for IoT devices.

On the other hand, and due to common structures, the

Linux capabilities of the IoT systems inherit and extend the

potential threats to the Linux system. Executable and Linkable

Format (ELF), a standard format for executable and object

code, is sometimes exploited as an object of malware. The

ELF executable built by the adversary propagates malware

over networks and carries out attacks following the command

preassigned in the binary or from Command & Control server.

Considering their uniqueness of limited computation and

limited power capability compared to their contemporary sys-

tems [6], [7], studying the characteristics of malicious software

is important. More specifically, understanding IoT software

through analysis, abstraction, comparison (with other types of

malware; e.g., Android) and classification (from benign IoT

software; i.e., IoT malware detection) is an essential problem

to mitigate those security threats [1], [8]. In this regard, we

deeply look into the IoT malware samples to understand their

constructs and unique features.

Admittedly, there has been a large body of work on software

analysis in general, and a few attempts on analyzing IoT

software in particular. However, the efforts on IoT software

analysis have been very limited with respect to the samples

analyzed and the approaches attempted. The limited existing

literature on IoT malware, despite malware analysis, classi-

fication, and detection being a focal point of analysts and

researchers [9]–[12], points at the difficulty, compared to other

malware types. Understanding the similarity and differences of

IoT malware compared to other prominent malware types will

help analysts understand the differences and use them to build

detection systems upon those differences.

Starting with a new dataset of IoT malware samples, we

pursue a graph-theoretic approach to malware analysis. In this

approach, each malware sample is abstracted into a Control

Flow Graph (CFG), which could be used to extract represen-

tative static features of the application. As such, graph-related

features from the CFG can be used as a representation of

the software, and classification techniques can be built to tell

whether the software is malicious or benign, or even what

kind of malicious purposes the malware serves (e.g., malware

family-level classification and label extrapolation).



Given that malware analysis is quite a constant topic in

the security research community, it would be intellectually

and technically beneficial to explore how existing and new

approaches would be a useful tool in understanding their

differences with newer types of malware. To figure out how

different the IoT malware is from other types of emerging

malware, such as Android mobile applications, we perform a

comparative study of the graph-theoretic features in both types

of software, which highlights the difference of CFG between

IoT malware and Android malware.

Contributions. We make the following contributions:

1) Using CFGs as our analysis vector, we compare and

contrast the IoT malware with the Android malware

by augmenting various graph-theoretic features, such as

nodes count, edges count, degree centrality, betweenness

centrality, diameter, radius, distribution of shortest path,

etc. Although, both the platforms use Linux as base op-

erating system, our results surprisingly reveal compelling

differences between the two malware categories.

2) Towards analyzing the CFGs, we disassemble a large

number of samples. Namely, we use close to 9,000 sam-

ples in total for our analysis. We use a dataset of 2,962

IoT malware samples and a dataset of 2,891 Android

malware samples collected from different sources. Ad-

ditionally, we assemble a dataset of benign files capable

of running on IoT devices towards effective malware de-

tection. The datasets, for Android malware, IoT malware,

and IoT benign samples, and their associated CFGs, will

be made public to the community for reproducibility.

3) Using the different features as described above, grouped

under seven different groups as a modality for detecting

IoT malware, we design a deep learning-based detection

system that can detect malware with an accuracy of

≈ 99.66%. Additionally, the system has the ability to

classify malware into their respective families with an

accuracy of ≈ 99.32%.

Organization. The rest of this paper is organized as follows.

In section II we review the related work. In section III, we

introduce the dataset, data representation and augmentation.

The methodology and approach of this paper, including control

flow graph definitions, and graph-theoretic metrics are outlined

in section IV. In section V, we present the malware contrast

results for IoT and Android samples, followed by IoT detec-

tion in section VI, including detection algorithms, evaluation

metrics, the flow of detection system, comparison, discussion,

and evaluation. The concluding remarks are in section VII.

II. RELATED WORK

Graph-based Approach. The limited number of works have

been done on analyzing the differences between Android (or

mobile) and IoT malware, particularly using abstract graph

structures. Hu et al. [13] designed a system, called SMIT,

which searches for the nearest neighbor in malware graphs

to compute the similarity across function using their call

graphs. They focused on finding the graph similarity through

an approximate graph-edit distance rather than approximating

the graph isomorphism since few malware families have the

same subgraphs with others. Shang et al. [11] analyzed code

obfuscation of the malware by computing the similarity of

the function call graph between two malware binaries – used

as a signature – to identify the malware. Christodorescu and

Jha [14] analyzed obfuscation in malware code and proposed

a detection system, called SAFE, that utilizes the control flow

graph through extracting malicious patterns in the executables.

Bruschi et al. [19] detected the self-mutated malware by

comparing the control flow graph of the malware code to

the control flow graphs for other known malware. Moreover,

Tamersoy et al. [17] proposed an algorithm to detect malware

executables by computing the similarity between malware files

and other files appearing with them on the same machine,

by building a graph that captures the relationship between

all files. Yamaguchi et al. [20] introduced the code property

graph which merges and combines different analysis of the

code, such as abstract syntax trees, control flow graphs and

program dependence graphs in the form of joint data structure

to efficiently identify common vulnerabilities. In addition,

Caselden et al. [15] generated a new attack polymorphism

using hybrid information and CFG, called HI-CFG, which

is built from the program binaries, such as a PDF viewer.

The attack collects and combines such information based on

graphs; code and data, as long as the relationships among

them. Moreover, Wüchner et al. [16] proposed a graph-based

detection system that uses a quantitative data flow graphs

generated from the system calls, and use the graph node

properties, i.e. centrality metric, as a feature vector for the

classification between malicious and benign programs. Jang

et al. [18] built a tool to classify malware by families based

on the features generated from graphs.

Android Malware Detection. Gascon et al. [21] detected

Android malware by classifying their function call graphs.

They found reuse of malicious codes across multiple malware

samples showing that malware authors reuse existing codes to

infect the Android applications. Zhang et al. [22] proposed

a detection system for Android malware by constructing

signatures through classifying the API dependency graphs and

used that signature to uncover the similarities of Android

applications behavior. Ham et al. [23] detected Android mal-

ware using the Support Vector Machine (SVM). Milosevic et

al. [24] proposed a dynamic detection system for Android

malware and low-end IoT devices by analyzing a few features

extracted from the memory and CPU usage, and achieved a

classification accuracy of 84% with high precision and recall.

IoT Malware Detection. Pa et al. [25] proposed IoTPOT, an

IoT honeypot and sandbox to analyze and capture IoT telnet-

based attacks targeting IoT environment that run on multiple

CPU architectures. Su et al. [26] proposed an IoT detection

system capable of capturing DDoS attacks on IoT devices by

generating gray-scale images from malware binaries as feature

vectors. Their system achieved an accuracy of 94% using deep

learning. Wei and Qiu [27] analyzed IoT malicious codes and

built a detection system by monitoring the code run-time on

the background of the IoT devices. Moreover, Hossain et al.

[28] proposed an IoT forensic system, named Probe-IoT, that

investigates IoT malicious behaviors using distributed digital

ledger. Shen et al. [29] proposed an intrusion detection system
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TABLE I: Summary of the related works. Abbreviations: SVM (Support Vector Machine), CNN (Convolutional Neural

Network), NB (Naive Bayes), LR (Logistic Regression), DT (Decision Tree-based J48), and RF (Random Forest).

Author Platform Dataset Sample size Task Approach

Hu et al. [13] x86 malware 102,391 Analysis Function Call Graph

Shang et al. [11] x86 malware, benign 51 Analysis Function Call Graph

Christodorescu and Jha [14] x86 malware, benign 14 Detection Control Flow Graph

Caselden et al. [15] x86 benign programs 2 Analysis Information Flow Graph, Control Flow Graph

Wüchner et al. [16] x86 malware, benign 7,501 Detection Quantitative data Flow Graphs

Tamersoy et al. [17] x86 malware, benign 43,353,581 Detection File-Relation Graph

Jang et al. [18] x86 malware, benign 3,768 Classification System Call Graph

Bruschi et al. [19] Linux malware, benign 572 Analysis Control Flow Graph

Yamaguchi et al. [20] Linux vulnerabilities 88 Analysis Code Property Graph

Gascon et al. [21] Android malware, benign 147,950 Detection Function Call Graph/Machine Learning (SVM)

Zhang et al. [22] Android malware, benign 15,700 Detection Weighted Contextual API Dependency Graphs

Ham et al. [23] Android malware, benign 28 Detection Machine Learning (SVM)

Milosevic et al. [24] Android malware, benign 2,199 Detection Classifier (NB, LR, DT)

Pa et al. [25] IoT malware 106 Collection IoT Honeypot

Su et al. [26] IoT malware, benign 865 Detection Deep Learning (CNN)

Wei and Qiu [27] IoT malware, benign 554 Detection Algorithm

Hossain et al. [28] IoT N/A N/A Forensic Digital ledger (Blockchain)

Shen et al. [29] IoT malware N/A Detection Theoretical analysis

Antonakakis et al. [30] IoT malware 1,028 Analysis Static analysis

Kolias et al. [31] IoT malware N/A Analysis Analyze Mirai source code

Donno et al. [32] IoT malware N/A Analysis Analyze Mirai source code

THIS WORK IoT, Android malware 5,853 Analysis Control Flow Graph

THIS WORK IoT malware, benign 5,961 Detection Control Flow Graph/Deep Learning (CNN)

for the low-end IoT networks that run on the cloud and fog

computing to overcome malware propagation and to preserve

multistage signaling privacy on IoT networks.

Other research works have been done for detecting and

analyzing IoT botnets. For examples, Antonakakis et al. [30]

analyzed Mirai botnets which launch DDoS attacks using IoT

devices. Kolias et al. [31] examined the operation and com-

munication life-cycle of Mirai botnets used for launching and

observed traffic signatures that can be used for their detection.

Donno et al. [32] analyzed a taxonomy of DDoS attacks, more

specifically for a Mirai botnet, and classified these attacks into

malware families and found out the relationship between them.

III. DATASET

The goal of this study is to understand the underlying

differences between modern Android and emerging IoT mal-

ware through the lenses of graph analysis. The abstract graph

structure through which we analyze malware is the control

flow graph (CFG), previously used in analyzing malware as

shown above. Unique to this study, however, we look into the

various algorithmic and structural properties of those graphs

to understand code complexity, analysis evasion techniques

(e.g., decoy functions, obfuscation, etc.). Finally, we use the

aforementioned characteristics, the algorithmic and structural

properties of the graphs, to build a system to distinguish

malware from the benign binaries.

Towards this goal, we start by gathering datasets required

to accomplish the end goal of this study. As such, we create

a dataset of binaries and cluster them under three different

categories: Android malware samples, IoT malware samples,

and benign IoT samples. For our IoT malware dataset, we

collected a new and recent IoT malware, up to late January

of 2019, using CyberIOCs [33]. For our Android dataset,

various recent Android malware samples were obtained from

a security analysis vendor [34].

Finally, to test our proposed IoT malware detector, we

manually assembled a dataset of benign samples from source

files on GitHub [35]. For our analysis and detection, we

augment the datasets by reversing the samples to address

various analysis issues. Using an off-the-shelf tool, we then

disassemble the malware samples to obtain the CFG corre-

sponding to each of them. We use the CFG of each sample as

an abstract representation and explore various graph analysis

measures and properties. The rest of this section highlights the

details of the dataset creation and associated analysis.

A. Dataset Creation

Our IoT malware dataset is a set of 2,962 malware samples,

randomly selected from CyberIOCs [33]. Additionally, we

also obtained a dataset of 2,891 Android malware samples

from [34] for contrast. These datasets represent each mal-

ware type. We reverse-engineered the malware datasets using

Radare2 [36], a reverse engineering framework that provides

various analysis capabilities including disassembly. To this

end, we disassemble the IoT binaries, which in the form of

Executable and Linkable Format (ELF) binaries, as well as the

Android Application Packages (APKs) using the same tool,

Radare2. Which is an open source command line framework

that supports a wide variety of malware architecture and has a

Python API, which facilitated the automation of our analysis.

Labeling. To determine if a file is malicious, we uploaded

the samples on VirusTotal [37] and gathered the scan results

corresponding to each of the malware. We observe that each

of the IoT and Android malware is detected by at least one of

the antivirus software scanners listed in VirusTotal, whereas

the Android dataset has a higher rate.

Differences. We notice that the IoT malware have a lower

detection rate compared to the Android malware, which is per-

haps anticipated given the fact that the IoT malware samples
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/ (fcn) fcn.00000000 53
|   fcn.00000000 ();
| 0x00000000      push rax
| 0x00000001      add rax, qword [r12 + r10]
| 0x00000005      invalid

| 0x00000006      or byte [rax], al
| 0x00000008      or byte [rax], al
| 0x0000000a      imul eax, dword [rbx + 0x4722], 0
| 0x00000011      add byte [rax], al
| 0x00000013      add byte [rax], al
| 0x00000015      add byte [rax], al
| 0x00000017      add byte [rax], al
| 0x00000019      add byte [rax + rax], dl
| 0x0000001c      add byte [rax], al
| 0x0000001e      push r12
| 0x00000021      sub eax, 0x2f464e49
| 0x00000027      push r11
| 0x0000002e      push rsp
| 0x0000002f      jne 6

\ 0x00000034      retf

  0x0000b2fd      pop rbx
  0x0000b2fe      push rsp
  0x0000b2ff      cmp ecx, ebp
  0x0000b301      xchg eax, edx

/ (fcn) fcn.0000b338 11
|   fcn.0000b338 ();
| 0x0000b338      jae 0xb2fd

| 0x0000b33a      cdq
| 0x0000b33b      pop rdi
\ 0x0000b33d      retf

Fig. 3: CFG of a malware highlighting unreachable codes,

depicting use of decoy or obfuscation techniques in malware.

in graphs highlight unreachable codes, which are the result of

decoys and obfuscation techniques, as can be observed in the

example of Android malware sample in figure 3. This can be

a result of obfuscating the parent node of the branching com-

ponent. Moreover, we assess the graph algorithmic constructs;

in particular, we calculate the theoretic metrics of the graphs,

such as the diameter, radius, average closeness centrality, etc.

We now define the various measures used for our analysis.

Definition 1 (Degree Centrality): For a graph G = (V,E)
as above, the degree centrality is defined as the number

of relations or number of edges of a node. Mathematically,

it is defined as, D+ = [d+i /
∑n

j=1
d+j ]

1×n and D− =

[d−i /
∑n

j=1
d−j ]

1×n for the in- and out-degrees of the graph.

Definition 2 (Density): The density of a graph is defined as

the closeness of an edge to the maximum number of edges.

For a graph G = (V,E), the graph density can be repre-

sented as the average normalized degree; that is, Density =
1/n

∑n

i=1
deg(vi)/n− 1, where V = {v1, v2, . . . , vn}.

Definition 3 (Shortest Path): For a graph G = (Vi, Ei), the

shortest path is defined as: vxi , v
x1

i , vx2

i , vx3

i , . . . vyi such that

length(vxi → vyi ) is the shortest path. It finds all shortest paths

from vxi → vyi , for all v
xj

i , which is arbitrary, except for the

starting node vi. The shortest path is then denoted as: Svx
i

.

Definition 4 (Closeness centrality): For a node vi, the

closeness is calculated as the average shortest path between

that node and all other nodes in the graph G. This is, let

d(vi, vj) be the shortest path between vi and vj , the closeness

is calculated as cc =
∑

∀vj∈V 6 |vi
d(vi, vj)/n− 1.

Definition 5 (Betweenness centrality): For a node vi ∈ V ,

let ∆(vi) be the count of shortest paths via vi and connecting

nodes vj and vr, for all j and r where i 6= j 6= r. Furthermore,

let ∆(.) be the total number of shortest paths between such

nodes. The betweenness centrality is defined as ∆(vi)/∆(.).

Definition 6 (Connected components): In graph G, a con-

nected component is a subgraph in which two vertices are

connected to each other, and which is connected to no addi-

tional vertices in the subgraph. The number of components of

G is the cardinality of a set that contains such components.

Definition 7 (Diameter and Radius): The diameter of a

graph G = (V,E) is defined as the maximum length of

shortest path between any two pairs of nodes in G, while the

radius is the minimum shortest path between any two nodes

in G. This is, let d(vi, vj) be the shortest path length between

two nodes in G, then the diameter is max∀i 6=j d(vi, vj) while
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Fig. 4: A characterization of the number of nodes and edges

comparing Android to IoT malware samples. Notice that the

x-axis is logarithmic scale.

the radius is min∀i 6=j d(vi, vj).
In this work, we use a normalized version of the centrality,

for both the closeness and betweenness, where the value of

each centrality ranges from 0 to 1.

V. RESULTS

A. General Analysis

Figures 4a and 4b represent the logarithmic scale to show

the skewness to the large values and to show the difference

of percent change between the Android and IoT malware in

terms of two major metrics of evaluation of graphs, namely

the nodes and edges.

Size Analysis: Nodes. The Android and IoT malware samples

have at least 28,691 and 260 nodes, respectively. Figure 4a

represents the CDF logarithmic scale for the number of nodes

in both malware datasets to highlight the percent change

towards large node values of the Android samples. We note

that those numbers are not close to one another, highlighting

a different level of complexity and the flow-level. In addition,

we notice a significant difference in the topological properties

in the two different types of malware at the node count level.

This is, while the Android malware samples seem to have a

variation in the number of nodes per sample, characterized by

the slow growth of the y-axis (CDF) as the x-axis (the number

of nodes) increases. On the other hand, the IoT malware have

less variety in the number of nodes: we also notice that the

dynamic region of the CDF is between around 1 and 60 nodes

(slow curve), corresponding to around [0–0.15] of the CDF

(this is, 60% of the samples have 1 to 60 nodes, which is

a relatively small number). Furthermore, with the Android

malware, we notice that a large majority of the samples (almost

80%) have around 100 nodes in their graph. This characteristic

seems to be unique and distinguishing, as shown in figure 4a.

Size Analysis: Edges. The top 1% of the Android and IoT

malware samples have 33,887 and 439 edges, respectively,

which shows a great difference between them. In particular,

Figure 4b represents the CDF logarithmic scale of the edges

count for both malware datasets. The Android samples have a

large number of edges in every sample that can be shown from

the slow growth on the y-axis. Similar to the node dynamic

region for the IoT, the IoT samples seem to have a smaller

number of edges; the active region of the CDF between around

1 to 90 edges correspond to around [0–0.15] (about 15% of
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Fig. 5: A characterization of the density and the number of

components comparing Android to IoT malware samples.

the samples). Additionally, we notice that the smallest 60% of

the Android samples (with respect to their graph size) have

around 40 edges whereas the percentage of the IoT samples

have around 90 edges.

This combined finding of the number of edges and nodes in

itself is very intriguing: while the number of nodes in the IoT

malware samples is relatively smaller than that in the Android

malware, the number of edges is higher. This is striking, as

it highlights a simplicity at the code base (smaller number of

nodes) yet a higher complexity at the flow-level (more edges),

adding a unique analysis angle to the malware that is only

visible through the CFG structure.

Graph Density Analysis. Figure 5a shows the density of the

datasets, where we notice almost 90% of the IoT samples

have a density around 0.07 whereas the Android samples have

a diverse range of density over around 0.65. By examining

the CDF further, we notice that the density alone is a very

discriminative feature of the two different types of malware:

if we are to use a cut-off value of around 0.08 – 0.09,

for example, we can successfully tell the different types of

malware apart with an accuracy exceeding 90%.

Graph Components Analysis. Figure 5b shows a boxplot

illustration of the number of components in both the IoT and

Android malware’s CFGs. We notice that all IoT samples

(100%) have only one component that represents the whole

control graph for each sample. These samples have a range of

file sizes from 1,100 – 2,300,000 bytes. The Android malware

have a large number of components. We find that 13.83%, or

400 Android samples, have only one component, where their

size ranges from around 4,200 – 9,400,000 bytes. On the other

hand, 2,491 samples (around 86.17%) have more than one

component. We note that the existence of multiple components

in the CFG is indicative of the unreachable code in the cor-

responding program (possible a decoy function to fool static

analysis tools). As such, we consider the largest component

of these samples for further CFG-based analysis. However, we

notice that 298 Android samples have the same node counts

in the first and second largest components. Furthermore, we

find 197 samples that have the same number of node and edge

counts in the first and second largest components. The number

of nodes and edges in these samples ranges from 0 – 18, but

the file sizes range from around 12,000 – 25,700,000 bytes.

Root Causes of Unreachable Code / Components. Figure 5b

shows the boxplot of the number of components for both
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Fig. 6: A characterization of the closeness and betweenness

centralities comparing Android to IoT malware samples.

the Android and IoT malware. The boxplot captures the

median and 1st and 3rd quartile, as well as the outliers. We

notice that the median of the number of components in IoT

samples is 1, whereas the majority of Android malware lies

between 5 and 29, with a median of 13 components. We

notice this issue of unreachable code to be more prevalent

in the Android malware but not in the IoT malware, possibly

for one of the following reasons. 1) The Android platforms

are more powerful, allowing for complex software constructs

that may lead to unreachable codes, whereas [majority of]

the IoT platforms are constrained, limiting the number of

functions (software-based). 2) The Android Operating System

(OS) is advanced and can handle large code bases without

optimization, whereas the IoT OS is a simple environment

that is often time optimized through tools that would discard

unreachable codes before deployment.

B. General Algorithmic Properties and Constructs

The aforementioned analysis represents the general trend

for the graphs, while there are different graph algorithmic

properties towards further analysis for the resulting graph

to uncover deeper characteristics. These algorithmic features

provide more information about the graph constructs, We elab-

orate on further analysis using those features in the following.

Graph Closeness Centrality Analysis. Figure 6a depicts the

CDF for the average closeness centrality for both datasets.

To reach to this plot, we generalize the definition in 4 by

aggregating the average closeness for each malware sample

and obtaining the average. As such, we notice that around 5%

of the IoT and Android have around 0.14 average closeness

centrality. This steady growth in the value continues for the

Android samples as shown in the graph; 80% of the nodes

have a closeness of less than 0.6. On the other hand, the IoT

samples closeness pattern tend to be within the small range:

the same 80% of IoT samples have a closeness of less than

0.29, highlighting that the closeness of 0.3 can also be used

as a distinguishing feature of the two different types of the

malware, but with low detection rate of around 65%.

Graph Betweenness Centrality Analysis. Figure 6b shows

the average betweenness centrality for both datasets. The

average betweenness is defined by extending definition 5 in

a similar way to extending the closeness definition. Similar

to the closeness centrality, 10% of the IoT and Android

samples have almost 0.06 average betweenness centrality,
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Fig. 7: A characterization of the degree centrality and diameter

comparing Android to IoT malware samples.

which continues with a small growth for the Android malware

to reach around 0.26 average betweenness after covering 80%

of the samples. However, we notice a significant increase in the

IoT curve where 80% of the samples have around 0.09 average

betweenness that shows a slight increase when covering a large

portion of the IoT samples. This huge gap noticed in figures 6a

and 6b is quite surprising although explained by correlating

the density of the graph to both the betweenness and the

closeness: Android samples tend to have a higher density, thus

an improved betweenness, which is not the case of IoT.

Graph Degree Centrality Analysis. Figure 7a shows the

average of degree centrality in the largest components. We

notice that 10% of the IoT and Android malware have an

average degree centrality of around 0.03 and 0.09, respectively.

The slow growth continues with Android malware to reach

around 0.42 after covering 80% of the samples. However, there

is a significant increase in the IoT samples; around 0.08 after

covering the same 80% of the samples. This huge gap can also

be used as a feature to detect IoT malware.

Diameter, Radius, and Shortest Paths Analysis. Figure 7b

shows the diameter of the graphs. Almost 10% of the IoT

samples have a diameter of around 8 that can be noticed from

the slow growth in the CDF, whereas the Android malware

have around 1. After that, there is a rapid increase in the CDF

curve for the diameter in the 80% of both samples, reaching

around 10 and 18 for the Android and IoT, respectively.

Similarly, figure 8a shows the CDF of the radius of the graphs.

We notice that 15% of the Android samples have a radius of

around 1, while the IoT samples have around 4. In addition,

80% of the Android samples have around 4 while the IoT have

around 7. This shows the significant increase for both datasets.

As a result, from these two figures, we can define a feature

vector to detect the Android and IoT samples.

Figure 8b represents the average shortest path for the graphs.

Similar to the other feature vectors, we notice almost 80% of

the IoT malware have an average shortest path greater than 5,

whereas the Android malware have an average of less than 5.

Upon increasing the number of Android malware samples to

be similar to the IoT samples, we notice that the gap between

both datasets can still be noticed, showing the new trend shift

of the IoT malware to accommodate the low-end IoT devices

with less computational resources. This, in turn, can lead to

differentiating between the IoT malware and Android, and

possibly to other malware, such as Windows malware.
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Fig. 8: A characterization of the radius and average shortest

path comparing Android to IoT malware samples.

VI. IOT DETECTION

This section is devoted to the detection of the IoT malware

based on the aforementioned CFGs features. In order to

investigate the robustness of the classifier, we conducted two

experiments that detect the IoT malware samples from the

benign ones; and classify the IoT samples to the correspond-

ing family. In addition, we utilized both traditional Machine

Learning algorithms, such as Linear Regression (LR) classifier,

Support Vector Machine (SVM), and Random Forest (RF)

as well as more advanced deep learning methods, such as

Convolutional Neural Network (CNN) in our experiments. A

brief description of these algorithms is in the following.

A. Detection Algorithms

Logistic Regression (LR). LR is a method borrowed from the

field of statistics for linear classification of data into discrete

outcomes. LR is a popular statistical modeling method where

the probability of dichotomous outcome event is transformed

into a set of explanatory variables as followed:

logit(P1) = ln

(

P1

1− P1

)

= β0 + β1x1 + ...+ βnxn = β0 +

n
∑

i=1

βixi,

where, x1, x2, ..., xn are the variables and β1, β2, ..., βn are

corresponding coefficients and β0 is the intercept. Maximum

Likelihood Estimation (MLE) method is used to estimate

the value of these coefficients. MLE aims to maximize the

log likelihood in an iterative process. Interested readers are

referred to [40] for more information about logistic regression.

Support Vector Machine (SVM). SVM classifies the data by

finding the best hyper-plane that separates the data from the

two classes. SVM selects a class t by applying:

f(xt) = argmax
n

[(wn × xt) + bn], n = 1, ..., N,

where, f(xt) is the feature vector of sample, n is a binary

classifier, wn is the weight vector and bn is the cut-off of

the classifier. Both wn and bn master and learn from training.

For training a new classifier to achieve a preferable class, the

training analyses are considered as positive examples, which

are included in the class, while the remaining attempts are

negative examples. To classify a new analysis, the classifier

computes the margin and selects the hyper-plane with the

largest margin between the two classes [41].
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is partitioned into ten different partitions. Then, the model

is trained over nine partitions and tested on the remaining

partition. This process is repeated ten times until all portions

are evaluated as test data, and the average result is reported.

The confusion matrix is used to evaluate the performance of

the classifiers, which are shown in table III and table IV. For

evaluation, we use the following defined metrics. For classes

C1 and C2: True Positive (TP) is all C1 classified correctly,

True Negative (TN) is all C2 classified as C2, False Positive

(FP) is all C2 classified as C1, and False Negative (FN) is

all C1 classified as C2. Moreover, the Accuracy Rate (AR),

False Discovery Rate (FDR), False Positive Rate (FPR), False

Omission Rate (FOR), and False Negative Rate (FNR) are

calculated as follows:

AR = [(TP + TN)/(TP + FP + FN + TN)]× 100

FDR = (FP/(FP + TP))× 100

FPR = (FP/(FP + TN))× 100

FOR = (FP/(FN + TP))× 100

FNR = (FN/(FN + TN))× 100

C. System Flow

For IoT samples, we extract 23 different features from

general and algorithmic characteristics of the CFGs, and

categorize them into seven groups as shown in figure 1. Five

different features are extracted from each of the four feature

categories of average closeness centrality, average betweenness

centrality, average degree centrality, and average shortest paths

represent minimum, maximum, median, mean, and standard

deviation values for the extracted parameters. Other remaining

features are the nodes count, edges count, and density. These

features are used to train machine/deep learning-based models,

including LR, SVM, RF, and CNN. The performance of these

models is evaluated based on 10-fold cross validation method,

which highlights the generalizability of the trained models.

Furthermore, standard metrics such as AR, FNR, FPR, FDR,

and FOR are used to evaluate the model performance.

D. Comparison, Discussion, and Evaluation

CFG of a program represents the flow of control from a

source to an exit node. A CFG can be exploited by adver-

saries to reveal details pertaining to the nature of programs,

specifically, the flow of control, the flow of functions, the start

and the exit nodes, the functions that force a program to go

into infinite loop, etc. Moreover, it also gives the user a hint

about packing and obfuscation. In this study, we conduct an

empirical study of the CFGs corresponding to 5,853 malware

samples of IoT and Android. We generate the CFGs to analyze

and compare the similarities and differences between the

two highly prevalent malware types using different graph

algorithmic properties to compute various features.

Comparison. Based on the above highlights of the CFGs,

we observe a major difference between the IoT and Android

malware in terms of the nodes and edges count, which are

the main evaluation metric of the graph size. Our results show

that unlike the Android samples, the IoT malware samples are

more likely to contain a lesser number of nodes and edges.

Even though around 4.4% of the IoT malware, or 131 samples,

have less than 20 nodes and 31 edges, we notice they have

various file sizes ranging from around 1,100 to 1,000,000 bytes

per sample. This finding can be interpreted by the use of

different evasion techniques from the malware authors in order

to prevent analyzing the binaries statically.

With a high number of nodes and edges in Android mal-

ware, we observe that the CFGs of 86.16%, or 2,491 Android

samples, have more than one component, marking unreachable

functions, perhaps as a sign of using decoy functions or ob-

fuscation techniques to circumvent static analysis. In addition,

the prevalence of unreachable code indicates the complexity

of the Android malware: these malware samples have a file

size ranging from 12K to 114M bytes, which is quite large in

comparison to the IoT malware (1.1K - 1M bytes).

Discussion. After analyzing different algorithmic graph struc-

tures, we observe a major variation between the IoT and

Android malware graphs. We clearly notice a cut-off value for

the density, average closeness, average betweenness, diameter,

radius, average shortest path, and degree centrality for both

datasets that can be applied to the detection system and reach

an accuracy range of around 65% – 90% based on the feature

vector being applied. For example, the cut-off points for the

closeness centrality can set apart 65% of the malware, while

the density of graphs can differentiate 90% of the IoT malware

and Android malware. We notice that those differences in

properties are a direct result of the difference in the structural

properties of the graphs, and can be used for easily classifying

different types of malware based on their distinctive features.

In most of the characterizations we conducted by tracing

the distribution of the properties of the CFGs of different

malware samples and types, we notice a slow growth in

the distribution curve of the Android dataset, whereas a

drastically increase for the IoT dataset. These characteristics

show that the Android malware samples are diverse in their

characteristics with respect to the measured properties of their

graphs, whereas the IoT malware is less diverse. We anticipate

that due to the emergence of IoT malware, and expect that

characteristic to change over time, as more malware families

are produced. We also observe that the IoT malware samples

are denser than Android malware. As shown in figure 5a, we

observe that 4 Android malware have a density equal to 2.

By examining those samples, we found that they utilize an

analysis circumvention technique resulting in infinite loops.

Moreover, we found 32 Android samples, as in figure 7a, with

a degree centrality greater than one, and CFGs that contain 3 –

32 nodes with file sizes ranging between 29,400 – 3,000,000

byte, where the parent node leads to a child loop operating

in another sign of infinite loop which may be because of

obfuscation of the other functions.

Our analysis shows the power of CFGs in differentiating

Android from IoT malware. It also demonstrates the usefulness

of CFGs as a simple high-level tool before diving into lines of

codes. We correlate the size of malware samples with the size

of the graph as a measure of nodes and edges. We observe

that even with the presence of low node or edge counts, the

size of malware could be very huge, indicative of obfuscation.
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Evaluation. While there have been many studies on the usage

of CFGs for malware detection, understanding the uniqueness

and difference of CFGs corresponding to different malware

still unexplored. Sun et al. [49] use component based CFGs to

detect code reuse in Android application with a detection rate

of 96.60% for malware variants. Bruschi et al. [19] propose a

strategy to detect metamorphic malicious codes in a program

by comparing the CFG of the program with that of CFG

of known malware. In this study, to evaluate our detection

system, we extracted the CFGs of 2,999 benign IoT samples

to build a detection system for the IoT environment utilizing a

similar insight: CFGs of benign and malicious samples differ

significantly, and we can base our machine learning algorithms

on those differences for detection.

We implemented four machine learning techniques for: 1)

detection of IoT malware, and 2) classification of malware

families. The main goal of the detection models is to identify

whether a sample is benign or malicious. The goal of the

classification models is to label each sample to one of the

following classes: benign, gafgyt, mirai, or tsunami. Moreover,

we evaluate our classification in terms of several standard

evaluation metrics, e.g., AR, FNR, FPR, etc. (detailed list of

these metrics are provided in figure VI-B).

For our evaluation, we use the 10-fold cross-validation

method to generalize our results. In this method, we partition

the dataset into 10 equal portions, where the model is trained

over nine portions and then tested over the remaining portion.

This process is repeated ten times until all of the portions are

evaluated as test data, and the average result is reported.

The detailed results of our malware detection and classifi-

cation models are listed in table III and table IV, respectively.

We observed that all of the models are able to reach a high

detection accuracy. Specifically, the CNN model detects IoT

malware from benign samples with an accuracy rate of 99.66%

with FNR and FPR of 0.33%. Furthermore, we found that,

in general, all models are able to achieve high classification

metrics. In particular, the CNN model is able to correctly

classify IoT malware families with an accuracy rate of 99.32%

with FNR of 2.93% and FPR of 0.45%.

Feature reduction. Although, there has been substantial

work on feature reduction based on features’ discriminative

power [50], [51], in our study, and due to the limited number

of initial features (only 23) we do not need such feature

reduction. Additionally, although we might be able to score

the deep features extracted by the convolutional layers for

reduction, these features will lack interpretability.

Future Work. Although CFG-based features are shown in this

work to detect IoT malware with high accuracy, these features

are vulnerable to obfuscation. For example, a function-level

obfuscation of the IoT malware might lead to an increase in the

number of components, reduced flow of control and reduced

complexity, which will affect the accuracy of our detection sys-

tem. Certain program-level obfuscations will prevent obtaining

a CFG altogether. Moreover, our approach does not assume ad-

versarial inputs that may attempt to tamper with the guarantees

of the deep learning architecture, as shown in [52]. We notice

that regardless of the static obfuscation, once executed the

malware has to expose its true contents and behavior, loading

TABLE III: Results of IoT malware detection. Here, FNR,

FPR, FDR, FOR, and AR are percentages.

Model FNR FPR FDR FOR AR

LR 3.66 1.35 1.36 3.64 97.47

SVM 3.32 1.35 1.35 3.32 97.65

RF 2.33 0.67 0.67 2.33 98.48

CNN 0.33 0.33 0.33 0.33 99.66

TABLE IV: Malware family-level classification of IoT sam-

ples. Here, FNR, FPR, FDR, FOR, and AR are percentages.

Model FNR FPR FDR FOR AR

LR 8.88 1.79 12.27 2.05 97.22

SVM 10.53 1.78 13.09 2.01 97.23

RF 5.14 1.03 7.35 1.20 98.40

CNN 2.93 0.45 2.17 0.44 99.32

the unobfuscated code in memory. The unobfuscated code can

be then extracted using dynamic analysis for our detector.

Addressing those issues with other static features and using

them for detection, addressing adversarial learning attacks to

harden defenses, and using dynamic analysis in tandem with

static analysis for comprehensive CFGs are our future work.

VII. CONCLUSION

In this paper, we build a detection model to detect IoT

malware by augmenting features generated from Control Flow

Graphs (CFGs). Towards this, we conduct an in-depth graph-

based analysis of three different datasets, namely, Android

malware, IoT malware, and IoT benign samples, to highlight

the similarity and differences between Android and IoT mal-

ware, and to build a detection system for the emerging IoT

malware. Toward this goal, we first extract the CFGs as an

abstract representation to characterize them across different

graph features. We highlight interesting findings by analyzing

the shift in the graph representation from the Android malware

to the IoT malware. We observe decoy functions for circum-

vention. Toward IoT malware detection, we utilize various

features extracted from the CFGs of IoT benign and malware

datasets, such as the closeness, betweenness, and density to

build a deep learning-based detection system. We evaluate

the detection model by leveraging four different classifiers

and achieve an accuracy rate of ≈99.66% with 0.33% FNR

and 0.33% FPR using CNN. Moreover, we classify the IoT

malware based on their families and achieve an accuracy of

≈99.32% with 2.93% FNR and 0.45% FPR.
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[16] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust and effective

malware detection through quantitative data flow graph metrics,” in Pro-

ceedings of the Detection of Intrusions and Malware, and Vulnerability

Assessment Conference, DIMVA, 2015, pp. 98–118.
[17] A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large

scale malware detection by mining file-relation graphs,” in Proceedings

of the the 20th ACM International Conference on Knowledge Discovery

and Data Mining, KDD, 2014, pp. 1524–1533.
[18] J.-w. Jang, J. Woo, A. Mohaisen, J. Yun, and H. K. Kim, “Mal-Netminer:

Malware classification approach based on social network analysis of
system call graph,” arXiv preprint arXiv:1606.01971, 2016.

[19] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating
malware using control-flow graph matching,” in Proceedings of the

Detection of Intrusions and Malware, and Vulnerability Assessment

Conference, DIMVA, 2006, pp. 129–143.
[20] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discov-

ering vulnerabilities with code property graphs,” in Proceedings of the

IEEE Symposium on Security and Privacy, S&P, 2014, pp. 590–604.
[21] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection

of android malware using embedded call graphs,” in Proceedings of the

ACM Workshop on Artificial Intelligence and Security, AISec, 2013, pp.
45–54.

[22] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual API dependency
graphs,” in Proceedings of the ACM Conference on Computer and

Communications Security, CCS, 2014, pp. 1105–1116.
[23] H. Ham, H. Kim, M. Kim, and M. Choi, “Linear SVM-Based android

malware detection for reliable IoT services,” Journal of Applied Math-

ematics, vol. 2014, pp. 594 501:1–594 501:10, 2014.
[24] J. Milosevic, M. Malek, and A. Ferrante, “A friend or a foe? detecting

malware using memory and CPU features,” in Proceedings of the 13th

International Joint Conference on e-Business and Telecommunications,
2016, pp. 73–84.

[25] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” Journal of Information Processing, vol. 24, pp. 522–533, 2016.

[26] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai,
“Lightweight classification of IoT malware based on image recognition,”
arXiv preprint arXiv:1802.03714, 2018.

[27] D. Wei and X. Qiu, “Status-based detection of malicious code in Internet
of Things (IoT) devices,” in Proceedings of the IEEE Conference on

Communications and Network Security, CNS, 2018, pp. 1–7.

[28] M. Hossain, R. Hasan, and S. Zawoad, “Probe-IoT: A public digital
ledger based forensic investigation framework for IoT,” in IEEE Con-

ference on Computer Communications Workshops, INFOCOM, 2018.
[29] S. Shen, L. Huang, H. Zhou, S. Yu, E. Fan, and Q. Cao, “Multistage sig-

naling game-based optimal detection strategies for suppressing malware
diffusion in fog-cloud-based IoT networks,” IEEE Internet of Things

Journal, vol. 5, no. 2, pp. 1043–1054, 2018.
[30] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in 26th USENIX Security Symposium, 2017, pp. 1093–1110.

[31] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas, “DDoS in the
IoT: Mirai and other Botnets,” IEEE Computer, vol. 50, no. 7, pp. 80–84,
2017.

[32] M. D. Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “DDoS-
capable IoT malwares: Comparative analysis and Mirai investigation,”
Security and Communication Networks, vol. 2018, pp. 7 178 164:1–
7 178 164:30, 2018.

[33] Developers. (2019) Cyberiocs. Available at [Online]: https://freeiocs.
cyberiocs.pro/.

[34] F. Shen, J. D. Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek, “Android
malware detection using complex-flows,” in Proceedings of the 37th

IEEE International Conference on Distributed Computing Systems,

ICDCS, 2017, pp. 2430–2437.
[35] Developers. (2019) Github. Available at [Online]: https://github.com/.
[36] ——. (2019) Radare2. Available at [Online]: https://https://rada.re/r/.
[37] ——. (2019) VirusTotal. Available at [Online]: https://www.virustotal.

com.
[38] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVClass: A

tool for massive malware labeling,” in 19th International Symposium

on Research in Attacks, Intrusions, and Defenses, RAID, 2016.
[39] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen,

“Graph-based comparison of IoT and android malware,” in Proceeding

of the 7th International Conference on Computational Data and Social

Networks, CSoNet, 2018, pp. 259–272.
[40] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic

regression, 2013, vol. 398.
[41] A. Khormali and J. Addeh, “A novel approach for recognition of

control chart patterns: Type-2 fuzzy clustering optimized support vector
machine,” ISA transactions, vol. 63, pp. 256–264, 2016.

[42] A. Verikas, A. Gelzinis, and M. Bacauskiene, “Mining data with random
forests: A survey and results of new tests,” Pattern Recognition, vol. 44,
no. 2, pp. 330–349, 2011.

[43] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Advances

in neural information processing systems, 2012, pp. 1097–1105.
[45] R. Kohavi, “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in Proceedings of the Fourteenth

International Joint Conference on Artificial Intelligence, IJCAI, 1995,
pp. 1137–1145.

[46] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding
malicious domains using passive dns analysis.” in Proceedings of

the 18th Annual Network and Distributed System Security Symposium

(NDSS), San Diego, CA, Feb. 2011, pp. 1–17.
[47] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, “Large-scale

and language-oblivious code authorship identification,” in Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS, 2018, pp. 101–114.
[48] S. Lee and J. Kim, “Warningbird: Detecting suspicious urls in twitter

stream,” in Proceedings of the 19th Annual Network and Distributed

System Security Symposium, NDSS, 2012.
[49] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Detecting

code reuse in android applications using component-based control flow
graph,” in ICT Systems Security and Privacy Protection, 2014.

[50] T. Zhu, Z. Qu, H. Xu, J. Zhang, Z. Shao, Y. Chen, S. Prabhakar, and
J. Yang, “Riskcog: Unobtrusive real-time user authentication on mobile
devices in the wild,” IEEE Transactions on Mobile Computing, 2019.

[51] D. Koller and M. Sahami, “Toward optimal feature selection,” Stanford
InfoLab, Tech. Rep., 1996.

[52] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based IoT malware
detection systems,” in Proceedings of the 39th IEEE International

Conference on Distributed Computing Systems, ICDCS, 2019.

11


