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Abstract—The steady growth in the number of deployed
Internet of Things (IoT) devices has been paralleled with an equal
growth in the number of malicious software (malware) targeting
those devices. In this work, we build a detection mechanism of
IoT malware utilizing Control Flow Graphs (CFGs). To motivate
for our detection mechanism, we contrast the underlying char-
acteristics of IoT malware to other types of malware—Android
malware, which are also Linux-based—across multiple features.
The preliminary analyses reveal that the Android malware have
high density, strong closeness and betweenness, and a larger
number of nodes. We show that IoT malware samples have a
large number of edges despite a smaller number of nodes, which
demonstrate a richer flow structure and higher complexity. We
utilize those various characterizing features as a modality to
build a highly effective deep learning-based detection model to
detect IoT malware. To test our model, we use CFGs of about
6,000 malware and benign IoT disassembled samples, and show
a detection accuracy of ~99.66%.

Index Terms—Malware; Android; IoT; Graph Analysis; IoT
Detection.

I. INTRODUCTION

HE Internet of Things (IoT) is a new networking

paradigm interconnecting a large number of devices, such
as voice assistants, sensors, and automation tools, with many
promising applications [1]. The persistent interconnection of
IoT devices is destined to augur into a wide spectrum of
implementations, varying from everyday requirements of the
general population to very sophisticated industrial usages.
Moreover, the anticipated rise in the number of IoT devices
over the years and in every industry reflects the prevalence of
interconnected devices and their implications.

The increasingly persistent connection of IoT devices makes
their role lie somewhere on the continuum between advantage
and susceptibility. Each of those devices runs multiple pieces
of software, or applications, which are increasing in complex-
ity, and could have vulnerabilities that could be exploited,
resulting in various security threats and consequences, i.e
DDoS attacks [2]-[5].

One of the prominent threats to these embedded devices,
from the perspective of the software, is malware. IoT software
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is different from well-understood ones on the other platforms,
such as Android applications, Windows binaries, and their
corresponding malware. Most of IoT embedded devices run
on a Linux base that uses small versions of libraries to achieve
Linux-like capabilities. In particular, Busybox is widely used
to achieve the desired functionality; based on a light-weighted
structure, it supports utilities needed for IoT devices.

On the other hand, and due to common structures, the
Linux capabilities of the IoT systems inherit and extend the
potential threats to the Linux system. Executable and Linkable
Format (ELF), a standard format for executable and object
code, is sometimes exploited as an object of malware. The
ELF executable built by the adversary propagates malware
over networks and carries out attacks following the command
preassigned in the binary or from Command & Control server.

Considering their uniqueness of limited computation and
limited power capability compared to their contemporary sys-
tems [6], [7], studying the characteristics of malicious software
is important. More specifically, understanding IoT software
through analysis, abstraction, comparison (with other types of
malware; e.g., Android) and classification (from benign IoT
software; i.e., IoT malware detection) is an essential problem
to mitigate those security threats [1], [8]. In this regard, we
deeply look into the IoT malware samples to understand their
constructs and unique features.

Admittedly, there has been a large body of work on software
analysis in general, and a few attempts on analyzing IoT
software in particular. However, the efforts on IoT software
analysis have been very limited with respect to the samples
analyzed and the approaches attempted. The limited existing
literature on IoT malware, despite malware analysis, classi-
fication, and detection being a focal point of analysts and
researchers [9]-[12], points at the difficulty, compared to other
malware types. Understanding the similarity and differences of
IoT malware compared to other prominent malware types will
help analysts understand the differences and use them to build
detection systems upon those differences.

Starting with a new dataset of IoT malware samples, we
pursue a graph-theoretic approach to malware analysis. In this
approach, each malware sample is abstracted into a Control
Flow Graph (CFG), which could be used to extract represen-
tative static features of the application. As such, graph-related
features from the CFG can be used as a representation of
the software, and classification techniques can be built to tell
whether the software is malicious or benign, or even what
kind of malicious purposes the malware serves (e.g., malware
family-level classification and label extrapolation).



Given that malware analysis is quite a constant topic in
the security research community, it would be intellectually
and technically beneficial to explore how existing and new
approaches would be a useful tool in understanding their
differences with newer types of malware. To figure out how
different the IoT malware is from other types of emerging
malware, such as Android mobile applications, we perform a
comparative study of the graph-theoretic features in both types
of software, which highlights the difference of CFG between
IoT malware and Android malware.

Contributions. We make the following contributions:

1) Using CFGs as our analysis vector, we compare and
contrast the IoT malware with the Android malware
by augmenting various graph-theoretic features, such as
nodes count, edges count, degree centrality, betweenness
centrality, diameter, radius, distribution of shortest path,
etc. Although, both the platforms use Linux as base op-
erating system, our results surprisingly reveal compelling
differences between the two malware categories.

2) Towards analyzing the CFGs, we disassemble a large
number of samples. Namely, we use close to 9,000 sam-
ples in total for our analysis. We use a dataset of 2,962
IoT malware samples and a dataset of 2,891 Android
malware samples collected from different sources. Ad-
ditionally, we assemble a dataset of benign files capable
of running on IoT devices towards effective malware de-
tection. The datasets, for Android malware, IoT malware,
and IoT benign samples, and their associated CFGs, will
be made public to the community for reproducibility.

3) Using the different features as described above, grouped
under seven different groups as a modality for detecting
IoT malware, we design a deep learning-based detection
system that can detect malware with an accuracy of
~ 99.66%. Additionally, the system has the ability to
classify malware into their respective families with an
accuracy of ~ 99.32%.

Organization. The rest of this paper is organized as follows.
In section II we review the related work. In section III, we
introduce the dataset, data representation and augmentation.
The methodology and approach of this paper, including control
flow graph definitions, and graph-theoretic metrics are outlined
in section IV. In section V, we present the malware contrast
results for IoT and Android samples, followed by IoT detec-
tion in section VI, including detection algorithms, evaluation
metrics, the flow of detection system, comparison, discussion,
and evaluation. The concluding remarks are in section VII.

II. RELATED WORK

Graph-based Approach. The limited number of works have
been done on analyzing the differences between Android (or
mobile) and IoT malware, particularly using abstract graph
structures. Hu et al. [13] designed a system, called SMIT,
which searches for the nearest neighbor in malware graphs
to compute the similarity across function using their call
graphs. They focused on finding the graph similarity through
an approximate graph-edit distance rather than approximating
the graph isomorphism since few malware families have the

same subgraphs with others. Shang et al. [11] analyzed code
obfuscation of the malware by computing the similarity of
the function call graph between two malware binaries — used
as a signature — to identify the malware. Christodorescu and
Jha [14] analyzed obfuscation in malware code and proposed
a detection system, called SAFE, that utilizes the control flow
graph through extracting malicious patterns in the executables.
Bruschi et al. [19] detected the self-mutated malware by
comparing the control flow graph of the malware code to
the control flow graphs for other known malware. Moreover,
Tamersoy et al. [17] proposed an algorithm to detect malware
executables by computing the similarity between malware files
and other files appearing with them on the same machine,
by building a graph that captures the relationship between
all files. Yamaguchi er al. [20] introduced the code property
graph which merges and combines different analysis of the
code, such as abstract syntax trees, control flow graphs and
program dependence graphs in the form of joint data structure
to efficiently identify common vulnerabilities. In addition,
Caselden et al. [15] generated a new attack polymorphism
using hybrid information and CFG, called HI-CFG, which
is built from the program binaries, such as a PDF viewer.
The attack collects and combines such information based on
graphs; code and data, as long as the relationships among
them. Moreover, Wiichner et al. [16] proposed a graph-based
detection system that uses a quantitative data flow graphs
generated from the system calls, and use the graph node
properties, i.e. centrality metric, as a feature vector for the
classification between malicious and benign programs. Jang
et al. [18] built a tool to classify malware by families based
on the features generated from graphs.

Android Malware Detection. Gascon et al. [21] detected
Android malware by classifying their function call graphs.
They found reuse of malicious codes across multiple malware
samples showing that malware authors reuse existing codes to
infect the Android applications. Zhang et al. [22] proposed
a detection system for Android malware by constructing
signatures through classifying the API dependency graphs and
used that signature to uncover the similarities of Android
applications behavior. Ham et al. [23] detected Android mal-
ware using the Support Vector Machine (SVM). Milosevic et
al. [24] proposed a dynamic detection system for Android
malware and low-end IoT devices by analyzing a few features
extracted from the memory and CPU usage, and achieved a
classification accuracy of 84% with high precision and recall.
IoT Malware Detection. Pa et al. [25] proposed IoTPOT, an
IoT honeypot and sandbox to analyze and capture IoT telnet-
based attacks targeting IoT environment that run on multiple
CPU architectures. Su et al. [26] proposed an IoT detection
system capable of capturing DDoS attacks on IoT devices by
generating gray-scale images from malware binaries as feature
vectors. Their system achieved an accuracy of 94% using deep
learning. Wei and Qiu [27] analyzed IoT malicious codes and
built a detection system by monitoring the code run-time on
the background of the IoT devices. Moreover, Hossain et al.
[28] proposed an IoT forensic system, named Probe-IoT, that
investigates IoT malicious behaviors using distributed digital
ledger. Shen et al. [29] proposed an intrusion detection system



TABLE I: Summary of the related works. Abbreviations: SVM (Support Vector Machine), CNN (Convolutional Neural

Network), NB (Naive Bayes), LR (Logistic Regression), DT (Decision Tree-based J48), and RF (Random Forest).

Author Platform Dataset Sample size Task Approach
Hu et al. [13] x86 malware 102,391 Analysis Function Call Graph
Shang et al. [11] x86 malware, benign 51 Analysis Function Call Graph
Christodorescu and Jha [14] x86 malware, benign 14 Detection Control Flow Graph
Caselden ez al. [15] x86 benign programs 2 Analysis Information Flow Graph, Control Flow Graph
Wiichner et al. [16] x86 malware, benign 7,501 Detection Quantitative data Flow Graphs
Tamersoy et al. [17] x86 malware, benign 43,353,581 Detection File-Relation Graph
Jang et al. [18] x86 malware, benign 3,768 Classification System Call Graph
Bruschi et al. [19] Linux malware, benign 572 Analysis Control Flow Graph
Yamaguchi et al. [20] Linux vulnerabilities 88 Analysis Code Property Graph
Gascon et al. [21] Android malware, benign 147,950 Detection Function Call Graph/Machine Learning (SVM)
Zhang et al. [22] Android malware, benign 15,700 Detection Weighted Contextual API Dependency Graphs
Ham et al. [23] Android malware, benign 28 Detection Machine Learning (SVM)
Milosevic et al. [24] Android malware, benign 2,199 Detection Classifier (NB, LR, DT)
Pa et al. [25] IoT malware 106 Collection IoT Honeypot
Su et al. [26] IoT malware, benign 865 Detection Deep Learning (CNN)
Wei and Qiu [27] IoT malware, benign 554 Detection Algorithm
Hossain et al. [28] IoT N/A N/A Forensic Digital ledger (Blockchain)
Shen et al. [29] IoT malware N/A Detection Theoretical analysis
Antonakakis et al. [30] IoT malware 1,028 Analysis Static analysis
Kolias et al. [31] IoT malware N/A Analysis Analyze Mirai source code
Donno et al. [32] IoT malware N/A Analysis Analyze Mirai source code
THIS WORK IoT, Android malware 5,853 Analysis Control Flow Graph
THIS WORK IoT malware, benign 5,961 Detection Control Flow Graph/Deep Learning (CNN)

for the low-end IoT networks that run on the cloud and fog
computing to overcome malware propagation and to preserve
multistage signaling privacy on IoT networks.

Other research works have been done for detecting and
analyzing IoT botnets. For examples, Antonakakis et al. [30]
analyzed Mirai botnets which launch DDoS attacks using IoT
devices. Kolias er al. [31] examined the operation and com-
munication life-cycle of Mirai botnets used for launching and
observed traffic signatures that can be used for their detection.
Donno et al. [32] analyzed a taxonomy of DDoS attacks, more
specifically for a Mirai botnet, and classified these attacks into
malware families and found out the relationship between them.

III. DATASET

The goal of this study is to understand the underlying
differences between modern Android and emerging IoT mal-
ware through the lenses of graph analysis. The abstract graph
structure through which we analyze malware is the control
flow graph (CFG), previously used in analyzing malware as
shown above. Unique to this study, however, we look into the
various algorithmic and structural properties of those graphs
to understand code complexity, analysis evasion techniques
(e.g., decoy functions, obfuscation, etc.). Finally, we use the
aforementioned characteristics, the algorithmic and structural
properties of the graphs, to build a system to distinguish
malware from the benign binaries.

Towards this goal, we start by gathering datasets required
to accomplish the end goal of this study. As such, we create
a dataset of binaries and cluster them under three different
categories: Android malware samples, IoT malware samples,
and benign IoT samples. For our IoT malware dataset, we
collected a new and recent IoT malware, up to late January
of 2019, using CyberIOCs [33]. For our Android dataset,
various recent Android malware samples were obtained from
a security analysis vendor [34].

Finally, to test our proposed IoT malware detector, we
manually assembled a dataset of benign samples from source
files on GitHub [35]. For our analysis and detection, we
augment the datasets by reversing the samples to address
various analysis issues. Using an off-the-shelf tool, we then
disassemble the malware samples to obtain the CFG corre-
sponding to each of them. We use the CFG of each sample as
an abstract representation and explore various graph analysis
measures and properties. The rest of this section highlights the
details of the dataset creation and associated analysis.

A. Dataset Creation

Our IoT malware dataset is a set of 2,962 malware samples,
randomly selected from CyberIOCs [33]. Additionally, we
also obtained a dataset of 2,891 Android malware samples
from [34] for contrast. These datasets represent each mal-
ware type. We reverse-engineered the malware datasets using
Radare2 [36], a reverse engineering framework that provides
various analysis capabilities including disassembly. To this
end, we disassemble the IoT binaries, which in the form of
Executable and Linkable Format (ELF) binaries, as well as the
Android Application Packages (APKs) using the same tool,
Radare2. Which is an open source command line framework
that supports a wide variety of malware architecture and has a
Python API, which facilitated the automation of our analysis.
Labeling. To determine if a file is malicious, we uploaded
the samples on VirusTotal [37] and gathered the scan results
corresponding to each of the malware. We observe that each
of the IoT and Android malware is detected by at least one of
the antivirus software scanners listed in VirusTotal, whereas
the Android dataset has a higher rate.

Differences. We notice that the IoT malware have a lower
detection rate compared to the Android malware, which is per-
haps anticipated given the fact that the IoT malware samples
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Fig. 1: Pipeline of analysis and detection using CFGs. Abbreviations: A.I. (Assembly Instructions), AR (Accuracy Rate), FNR
(False Negative Rate), FPR (False Positive Rate), FDR (False Discovery Rate), and FOR (False Omission Rate).

are recent and emerging threats, with fewer signatures popu-
lated in antivirus scanners compared to the well-understood
Android malware, as shown in figure 2. In particular, we
plot the detection ratio (across multiple scanners, where 1
means that the sample is detected by all scanners) against
the frequency of samples with the given detection ratio. We
notice that the Android samples a distribution focused around
0.6-0.7 detection ratio, were the larger number of IoT samples
have detection concentration around the ratio of 0.4-0.5.

To examine the diversity and representation of malware

in our dataset, we label them by their family (class) using
AVClass [38], a tool that ingests the VirusTotal results and
provides a family name for each sample through various
heuristics of label consolidation. We gather a new IoT malware
dataset and a larger Android malware dataset compared to the
ones used in our prior work [39]. Moreover, we ignore [oT
malware families with less than 10 samples. Table II shows
the IoT malware families and top three Android families, with
their share in their corresponding datasets. Overall, we notice
the IoT malware belong only to three families, while the
Android malware belong to 180 unique families.
Processing. In a preprocessing phase, we first manually
analyzed the samples to understand their architectures and
whether they are obfuscated or not, then used Radare2’s
Python API, r2pipe, to automatically extract the CFGs for
all malware samples not obfuscated—in this work we assume
it is possible to obtain the CFG, and addressing obfuscation
is an orthogonal contribution that we defer for future work.
Then, we used an off-the-shelf graph analysis tool, NetworkX,
to compute various graph properties. Using those calculated
properties, we then analyze and compare IoT and Android
malware. Figure 1 shows the analysis workflow we follow
to perform our analysis, as well as the IoT detection flow
system. After disassembling the binaries, we look into the
main function in the assembly instruction and extract the CFG
from that point. Otherwise, we extract the CFG for those
without main from the entry point. Then, we use the extracted
CFGs for further analysis.

IV. METHODOLOGY

We use the CFGs of the different malware samples as
abstract characteristics of programs for their analysis.
Program Formulation. For a program P, we use G = (V, E)
capturing the control flow structure of that program as its

TABLE II: Dataset: Top 3 Android and IoT families.

Android Family  # of samples || IoT Family  # of samples
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Fig. 2: Android and IoT malware detection rate on VirusTotal.

representation. In the graph G, V is the set of nodes, which
correspond to the functions in P, whereas F is the set of edges
which correspond to the call relationship between those func-
tions in P. More specifically, we define V = {v1,vs...,v,}
and E = {e;;} for all 4,j such that e;; € E if there is a
flow from v; to v;. We use |V| = n to denote the size of G,
and |E| = m to denote the number of primitive flows in G
(i.e., flows of length 1). Based on our definition of the CFG,
we note that G is a directed graph. As such, we define the
following centralities in G. We define A = [a;;]"*" as the
adjacency matrix of the graph G such that an entry a;; = 1 if
v; — v; and O otherwise.

A. Graph Algorithmic Properties

Using this abstract structure of the programs, the CFG,
we proceed to perform various analyses of those programs
to understand their differences and similarities. We divide
our analysis into two broader aspects: general characteristics
and graph algorithmic constructs. To evaluate the general
characteristics, we analyze the basic characteristics of the
graphs. In particular, we analyze the number of nodes and
the number of edges, which highlight the structural size of the
program. Additionally, we evaluate the graph components to
analyze patterns between the two malware types. Components
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in graphs highlight unreachable codes, which are the result of
decoys and obfuscation techniques, as can be observed in the
example of Android malware sample in figure 3. This can be
a result of obfuscating the parent node of the branching com-
ponent. Moreover, we assess the graph algorithmic constructs;
in particular, we calculate the theoretic metrics of the graphs,
such as the diameter, radius, average closeness centrality, etc.
We now define the various measures used for our analysis.

Definition 1 (Degree Centrality): For a graph G = (V, E)
as above, the degree centrality is defined as the number
of relations or number of edges of a node. Mathematically,
it is defined as, D* = [df /Y7, dj]"" and D~ =
[d;7 /2%, dy]"*™ for the in- and out-degrees of the graph.

Definition 2 (Density): The density of a graph is defined as
the closeness of an edge to the maximum number of edges.
For a graph G = (V,E), the graph density can be repre-
sented as the average normalized degree; that is, Density =
1/nYy"0  deg(v;)/n —1, where V = {v1,v2,...,05}.

Definition 3 (Shortest Path): For a graph G = (V;, E;), the
shortest path is defined as: v, v*, v, 0%, ... v} such that
length(v¥ — v!) is the shortest path. It finds all shortest paths
from vy — vf, for all vfj , which is arbitrary, except for the
starting node v;. The shortest path is then denoted as: Syz.

Definition 4 (Closeness centrality): For a node v;, the
closeness is calculated as the average shortest path between
that node and all other nodes in the graph G. This is, let
d(v;, v;) be the shortest path between v; and v;, the closeness
is calculated as cc = ) v, ey gy, (Vi v;)/n — 1.

Definition 5 (Betweenness centrality): For a node v; € V,
let A(v;) be the count of shortest paths via v; and connecting
nodes v; and v,., for all j and r where i = j # r. Furthermore,
let A(.) be the total number of shortest paths between such
nodes. The betweenness centrality is defined as A(v;)/A(.).

Definition 6 (Connected components): In graph G, a con-
nected component is a subgraph in which two vertices are
connected to each other, and which is connected to no addi-
tional vertices in the subgraph. The number of components of
G is the cardinality of a set that contains such components.

Definition 7 (Diameter and Radius): The diameter of a
graph G = (V,E) is defined as the maximum length of
shortest path between any two pairs of nodes in GG, while the
radius is the minimum shortest path between any two nodes
in G. This is, let d(v;, v;) be the shortest path length between
two nodes in G, then the diameter is maxy;-; d(v;, v;) while
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Fig. 4: A characterization of the number of nodes and edges
comparing Android to IoT malware samples. Notice that the
x-axis is logarithmic scale.

the radius is minv#j d(’l)i, Uj).

In this work, we use a normalized version of the centrality,
for both the closeness and betweenness, where the value of
each centrality ranges from O to 1.

V. RESULTS
A. General Analysis

Figures 4a and 4b represent the logarithmic scale to show
the skewness to the large values and to show the difference
of percent change between the Android and IoT malware in
terms of two major metrics of evaluation of graphs, namely
the nodes and edges.

Size Analysis: Nodes. The Android and IoT malware samples
have at least 28,691 and 260 nodes, respectively. Figure 4a
represents the CDF logarithmic scale for the number of nodes
in both malware datasets to highlight the percent change
towards large node values of the Android samples. We note
that those numbers are not close to one another, highlighting
a different level of complexity and the flow-level. In addition,
we notice a significant difference in the topological properties
in the two different types of malware at the node count level.
This is, while the Android malware samples seem to have a
variation in the number of nodes per sample, characterized by
the slow growth of the y-axis (CDF) as the x-axis (the number
of nodes) increases. On the other hand, the IoT malware have
less variety in the number of nodes: we also notice that the
dynamic region of the CDF is between around 1 and 60 nodes
(slow curve), corresponding to around [0-0.15] of the CDF
(this is, 60% of the samples have 1 to 60 nodes, which is
a relatively small number). Furthermore, with the Android
malware, we notice that a large majority of the samples (almost
80%) have around 100 nodes in their graph. This characteristic
seems to be unique and distinguishing, as shown in figure 4a.
Size Analysis: Edges. The top 1% of the Android and IoT
malware samples have 33,887 and 439 edges, respectively,
which shows a great difference between them. In particular,
Figure 4b represents the CDF logarithmic scale of the edges
count for both malware datasets. The Android samples have a
large number of edges in every sample that can be shown from
the slow growth on the y-axis. Similar to the node dynamic
region for the IoT, the IoT samples seem to have a smaller
number of edges; the active region of the CDF between around
1 to 90 edges correspond to around [0-0.15] (about 15% of
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Fig. 5: A characterization of the density and the number of
components comparing Android to IoT malware samples.

the samples). Additionally, we notice that the smallest 60% of
the Android samples (with respect to their graph size) have
around 40 edges whereas the percentage of the IoT samples
have around 90 edges.

This combined finding of the number of edges and nodes in
itself is very intriguing: while the number of nodes in the IoT
malware samples is relatively smaller than that in the Android
malware, the number of edges is higher. This is striking, as
it highlights a simplicity at the code base (smaller number of
nodes) yet a higher complexity at the flow-level (more edges),
adding a unique analysis angle to the malware that is only
visible through the CFG structure.

Graph Density Analysis. Figure 5a shows the density of the
datasets, where we notice almost 90% of the [oT samples
have a density around 0.07 whereas the Android samples have
a diverse range of density over around 0.65. By examining
the CDF further, we notice that the density alone is a very
discriminative feature of the two different types of malware:
if we are to use a cut-off value of around 0.08 — 0.09,
for example, we can successfully tell the different types of
malware apart with an accuracy exceeding 90%.

Graph Components Analysis. Figure 5b shows a boxplot
illustration of the number of components in both the IoT and
Android malware’s CFGs. We notice that all IoT samples
(100%) have only one component that represents the whole
control graph for each sample. These samples have a range of
file sizes from 1,100 — 2,300,000 bytes. The Android malware
have a large number of components. We find that 13.83%, or
400 Android samples, have only one component, where their
size ranges from around 4,200 — 9,400,000 bytes. On the other
hand, 2,491 samples (around 86.17%) have more than one
component. We note that the existence of multiple components
in the CFG is indicative of the unreachable code in the cor-
responding program (possible a decoy function to fool static
analysis tools). As such, we consider the largest component
of these samples for further CFG-based analysis. However, we
notice that 298 Android samples have the same node counts
in the first and second largest components. Furthermore, we
find 197 samples that have the same number of node and edge
counts in the first and second largest components. The number
of nodes and edges in these samples ranges from 0 — 18, but
the file sizes range from around 12,000 — 25,700,000 bytes.
Root Causes of Unreachable Code / Components. Figure 5b
shows the boxplot of the number of components for both
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Fig. 6: A characterization of the closeness and betweenness
centralities comparing Android to IoT malware samples.

the Android and IoT malware. The boxplot captures the
median and 1st and 3rd quartile, as well as the outliers. We
notice that the median of the number of components in IoT
samples is 1, whereas the majority of Android malware lies
between 5 and 29, with a median of 13 components. We
notice this issue of unreachable code to be more prevalent
in the Android malware but not in the IoT malware, possibly
for one of the following reasons. 1) The Android platforms
are more powerful, allowing for complex software constructs
that may lead to unreachable codes, whereas [majority of]
the IoT platforms are constrained, limiting the number of
functions (software-based). 2) The Android Operating System
(OS) is advanced and can handle large code bases without
optimization, whereas the IoT OS is a simple environment
that is often time optimized through tools that would discard
unreachable codes before deployment.

B. General Algorithmic Properties and Constructs

The aforementioned analysis represents the general trend
for the graphs, while there are different graph algorithmic
properties towards further analysis for the resulting graph
to uncover deeper characteristics. These algorithmic features
provide more information about the graph constructs, We elab-
orate on further analysis using those features in the following.
Graph Closeness Centrality Analysis. Figure 6a depicts the
CDF for the average closeness centrality for both datasets.
To reach to this plot, we generalize the definition in 4 by
aggregating the average closeness for each malware sample
and obtaining the average. As such, we notice that around 5%
of the IoT and Android have around 0.14 average closeness
centrality. This steady growth in the value continues for the
Android samples as shown in the graph; 80% of the nodes
have a closeness of less than 0.6. On the other hand, the IoT
samples closeness pattern tend to be within the small range:
the same 80% of IoT samples have a closeness of less than
0.29, highlighting that the closeness of 0.3 can also be used
as a distinguishing feature of the two different types of the
malware, but with low detection rate of around 65%.

Graph Betweenness Centrality Analysis. Figure 6b shows
the average betweenness centrality for both datasets. The
average betweenness is defined by extending definition 5 in
a similar way to extending the closeness definition. Similar
to the closeness centrality, 10% of the IoT and Android
samples have almost 0.06 average betweenness centrality,
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Fig. 7: A characterization of the degree centrality and diameter
comparing Android to IoT malware samples.

which continues with a small growth for the Android malware
to reach around 0.26 average betweenness after covering 80%
of the samples. However, we notice a significant increase in the
IoT curve where 80% of the samples have around 0.09 average
betweenness that shows a slight increase when covering a large
portion of the IoT samples. This huge gap noticed in figures 6a
and 6b is quite surprising although explained by correlating
the density of the graph to both the betweenness and the
closeness: Android samples tend to have a higher density, thus
an improved betweenness, which is not the case of IoT.
Graph Degree Centrality Analysis. Figure 7a shows the
average of degree centrality in the largest components. We
notice that 10% of the IoT and Android malware have an
average degree centrality of around 0.03 and 0.09, respectively.
The slow growth continues with Android malware to reach
around 0.42 after covering 80% of the samples. However, there
is a significant increase in the IoT samples; around 0.08 after
covering the same 80% of the samples. This huge gap can also
be used as a feature to detect [oT malware.

Diameter, Radius, and Shortest Paths Analysis. Figure 7b
shows the diameter of the graphs. Almost 10% of the IoT
samples have a diameter of around 8§ that can be noticed from
the slow growth in the CDF, whereas the Android malware
have around 1. After that, there is a rapid increase in the CDF
curve for the diameter in the 80% of both samples, reaching
around 10 and 18 for the Android and IoT, respectively.
Similarly, figure 8a shows the CDF of the radius of the graphs.
We notice that 15% of the Android samples have a radius of
around 1, while the IoT samples have around 4. In addition,
80% of the Android samples have around 4 while the IoT have
around 7. This shows the significant increase for both datasets.
As a result, from these two figures, we can define a feature
vector to detect the Android and IoT samples.

Figure 8b represents the average shortest path for the graphs.
Similar to the other feature vectors, we notice almost 80% of
the IoT malware have an average shortest path greater than 5,
whereas the Android malware have an average of less than 5.

Upon increasing the number of Android malware samples to
be similar to the IoT samples, we notice that the gap between
both datasets can still be noticed, showing the new trend shift
of the IoT malware to accommodate the low-end IoT devices
with less computational resources. This, in turn, can lead to
differentiating between the IoT malware and Android, and
possibly to other malware, such as Windows malware.
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Fig. 8: A characterization of the radius and average shortest
path comparing Android to IoT malware samples.

VI. 10T DETECTION

This section is devoted to the detection of the IoT malware
based on the aforementioned CFGs features. In order to
investigate the robustness of the classifier, we conducted two
experiments that detect the IoT malware samples from the
benign ones; and classify the IoT samples to the correspond-
ing family. In addition, we utilized both traditional Machine
Learning algorithms, such as Linear Regression (LR) classifier,
Support Vector Machine (SVM), and Random Forest (RF)
as well as more advanced deep learning methods, such as
Convolutional Neural Network (CNN) in our experiments. A
brief description of these algorithms is in the following.

A. Detection Algorithms

Logistic Regression (LR). LR is a method borrowed from the
field of statistics for linear classification of data into discrete
outcomes. LR is a popular statistical modeling method where
the probability of dichotomous outcome event is transformed
into a set of explanatory variables as followed:

. P;
logit(Py) = In (1 _1P1>

n
= PBo + Briz1 + ... + Buxn = Bo + Zﬁixw

i=1
where, x1, x2, ..., x, are the variables and 31, (s, ..., B, are
corresponding coefficients and g is the intercept. Maximum
Likelihood Estimation (MLE) method is used to estimate
the value of these coefficients. MLE aims to maximize the
log likelihood in an iterative process. Interested readers are
referred to [40] for more information about logistic regression.
Support Vector Machine (SVM). SVM classifies the data by
finding the best hyper-plane that separates the data from the
two classes. SVM selects a class ¢ by applying:

f(x:) = argmaz((w, x x;) +by),n =1,...,N,

where, f(x;) is the feature vector of sample, n is a binary
classifier, w,, is the weight vector and b,, is the cut-off of
the classifier. Both w,, and b,, master and learn from training.
For training a new classifier to achieve a preferable class, the
training analyses are considered as positive examples, which
are included in the class, while the remaining attempts are
negative examples. To classify a new analysis, the classifier
computes the margin and selects the hyper-plane with the
largest margin between the two classes [41].



Random Forest (RF). RF classifier is a powerful classification
algorithm specifically for nonlinear classification tasks as they
offer good accuracy, low over-fitting, and controlled output
variance [42]. Incorporation of random feature selection with
bagging is used to train 7' decision trees (weaker learners),
which allows a variance reduction in the output of individual
trees [43]. In this study, we set the number of weak learners to
T = 60 as it offers the best performance in our case. Generally,
a T-sized random forest model is grown as followed:

e A bootstrap sample is chosen from the training set to
grow each tree. Usually, two-thirds of samples are used
to grow each tree and the remaining samples are used to
calculate the out-of-bag error.

e n variables out of N variables are randomly selected
in the training process. Generally, n less than /N is
considered as the starting point.

e One variable, out of n selected variables, is used at each
node to conduct the best split.

Convolutional Neural Network (CNN). The general design
of the CNN consists of several layers, including convolution,
activation, pooling, and a dropout followed by a classification
layer. The convolution layer extracts a feature map by applying
a convolutional filter to the input data. The pooling layer
makes features more distinct and reduces the amount of data.
Final discrimination of the input data is conducted in the
classification layer. In this study, the input X of the CNN
model is a one-dimensional (1D) vector containing extracted
features formatted as 1 x 23. The CNN design consists of three
blocks, namely convolutional block 1 (CB1), convolutional
block 2 (CB2), and classification block (CL). The detailed
description of these blocks are as follows:

e CBL1. This block is made up of 1D convolutional layer
with padding and 46 filters F},;’ of size 1 x 3. The filters
convolve over the input data X with a stride of 1. The
output of this layer Cy;’ is a 2D tensor of size 23 x 46.
The output of the first convolutional layer is then fed
into a similar 1D convolutional layer without padding,
resulting in a 2D tensor Cy;” of size 21 x 46. Afterward,
a max pooling with size and stride of 2 and dropout with
probability of 0.25 are applied, which results into a 2D
tensor Spp of size 10 x 46.

Cp1; = X ® Fi}, i=1:46
Cr1i = Ch1; ® Fj, i=1:46
Myy; = maxpool(Cp17,2,2), i=1:46
Sp1; = dropout(Mpy;, 0.25), i=1:46

e CB2. Fed by the output of CB1 Sy, this block is
similar to CB1 except for the number of filters Fpy’ in
the convolutional layers. This block consists of a 1D
convolutional layer with padding and 92 filters of size
1 x 3, convolving over the data with a stride of 1.
The output of this layer is forwarded to a similar 1D
convolutional layer without padding, resulting into a 2D
tensor Cpa” of size 8 x 92. Then, we perform max pooling
with a size and stride of 2, followed by dropout with
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Fig. 9: The internal design of the architecture with a 1D
convolutional neural network of multiple layers followed by a
softmax classifier and used for our the detection task in this
work. Notice that 46@ 1x3, for example, stands for “applying
46 filters, each of size 1x3 on the input data.

probability of 0.25. The output of this block is a tensor
Spo of size 4 x 92.

Chral = Sp1 ® Fpal, i=1:92
Cbg,,; = 051; ® Fbggl, 1=1:92
My; = maxpool(Cya?,2,2), i=1:92

Sp2; = dropout(Mps;, 0.25), 1=1:92

o CL. The generated tensor in CB2 Sy is then fed into this
block, forwarding the tensor to flatten layer, converting
it into 1D tensor of size 368, followed by a dense layer
of size 512 resulting into a fully connected layer feature
map F'CL and a dropout with probability of 0.5 resulting
into Spc. Finally, Spc is fed to the softmax layer as
classification layer. The outputs of the softmax layer will
be evaluated based on various metrics, such as accuracy
rate (AR), false negative rate (FNR), etc. to measure the
performance of the model.

FCL = dense(Flatten(Sp2)), 512))
Src = dropout(FCL,0.5)
output = softmax(Src)

We trained our model using 200 epochs with a batch size
of 100. Each epoch took an average time of 0.7 seconds on a
system comprised of an i5-8500 CPU, 32GB DDR4 RAM, and
NVIDIA GTX980 Ti Graphics Processing Unit (GPU). Note
that all convolutional and fully connected layers use a Rectified
Linear Units (ReLU) activation function. In addition, we used
dropout to prevent model over-fitting. The architecture of the
CNN design is shown in Figure 9. We refer the interested
reader to [44] for more details on CNN internals.

B. Evaluation Metrics

In order to investigate the generalization of the classifier,
the K-fold cross validation method [45] is used. Although
K is an unfixed parameter, K=10 is commonly used in the
literature [46]—[48]. For a 10-fold cross-validation, the dataset



is partitioned into ten different partitions. Then, the model
is trained over nine partitions and tested on the remaining
partition. This process is repeated ten times until all portions
are evaluated as test data, and the average result is reported.
The confusion matrix is used to evaluate the performance of
the classifiers, which are shown in table III and table IV. For
evaluation, we use the following defined metrics. For classes
C1 and C2: True Positive (TP) is all C1 classified correctly,
True Negative (TN) is all C2 classified as C2, False Positive
(FP) is all C2 classified as C1, and False Negative (FN) is
all C1 classified as C2. Moreover, the Accuracy Rate (AR),
False Discovery Rate (FDR), False Positive Rate (FPR), False
Omission Rate (FOR), and False Negative Rate (FNR) are
calculated as follows:

AR

[(TP + TN) /(TP + FP + FN + TN)] x 100
(FP/(FP + TP)) x 100
FPR = (FP/(FP + TN)) x 100
(EP/(EN + TP)) x 100
(EN/(FN + TN)) x 100

C. System Flow

For IoT samples, we extract 23 different features from
general and algorithmic characteristics of the CFGs, and
categorize them into seven groups as shown in figure 1. Five
different features are extracted from each of the four feature
categories of average closeness centrality, average betweenness
centrality, average degree centrality, and average shortest paths
represent minimum, maximum, median, mean, and standard
deviation values for the extracted parameters. Other remaining
features are the nodes count, edges count, and density. These
features are used to train machine/deep learning-based models,
including LR, SVM, RF, and CNN. The performance of these
models is evaluated based on 10-fold cross validation method,
which highlights the generalizability of the trained models.
Furthermore, standard metrics such as AR, FNR, FPR, FDR,
and FOR are used to evaluate the model performance.

D. Comparison, Discussion, and Evaluation

CFG of a program represents the flow of control from a
source to an exit node. A CFG can be exploited by adver-
saries to reveal details pertaining to the nature of programs,
specifically, the flow of control, the flow of functions, the start
and the exit nodes, the functions that force a program to go
into infinite loop, etc. Moreover, it also gives the user a hint
about packing and obfuscation. In this study, we conduct an
empirical study of the CFGs corresponding to 5,853 malware
samples of IoT and Android. We generate the CFGs to analyze
and compare the similarities and differences between the
two highly prevalent malware types using different graph
algorithmic properties to compute various features.
Comparison. Based on the above highlights of the CFGs,
we observe a major difference between the IoT and Android
malware in terms of the nodes and edges count, which are
the main evaluation metric of the graph size. Our results show
that unlike the Android samples, the IoT malware samples are

more likely to contain a lesser number of nodes and edges.
Even though around 4.4% of the IoT malware, or 131 samples,
have less than 20 nodes and 31 edges, we notice they have
various file sizes ranging from around 1,100 to 1,000,000 bytes
per sample. This finding can be interpreted by the use of
different evasion techniques from the malware authors in order
to prevent analyzing the binaries statically.

With a high number of nodes and edges in Android mal-
ware, we observe that the CFGs of 86.16%, or 2,491 Android
samples, have more than one component, marking unreachable
functions, perhaps as a sign of using decoy functions or ob-
fuscation techniques to circumvent static analysis. In addition,
the prevalence of unreachable code indicates the complexity
of the Android malware: these malware samples have a file
size ranging from 12K to 114M bytes, which is quite large in
comparison to the IoT malware (1.1K - 1M bytes).
Discussion. After analyzing different algorithmic graph struc-
tures, we observe a major variation between the IoT and
Android malware graphs. We clearly notice a cut-off value for
the density, average closeness, average betweenness, diameter,
radius, average shortest path, and degree centrality for both
datasets that can be applied to the detection system and reach
an accuracy range of around 65% — 90% based on the feature
vector being applied. For example, the cut-off points for the
closeness centrality can set apart 65% of the malware, while
the density of graphs can differentiate 90% of the IoT malware
and Android malware. We notice that those differences in
properties are a direct result of the difference in the structural
properties of the graphs, and can be used for easily classifying
different types of malware based on their distinctive features.

In most of the characterizations we conducted by tracing
the distribution of the properties of the CFGs of different
malware samples and types, we notice a slow growth in
the distribution curve of the Android dataset, whereas a
drastically increase for the IoT dataset. These characteristics
show that the Android malware samples are diverse in their
characteristics with respect to the measured properties of their
graphs, whereas the [oT malware is less diverse. We anticipate
that due to the emergence of IoT malware, and expect that
characteristic to change over time, as more malware families
are produced. We also observe that the IoT malware samples
are denser than Android malware. As shown in figure 5a, we
observe that 4 Android malware have a density equal to 2.
By examining those samples, we found that they utilize an
analysis circumvention technique resulting in infinite loops.
Moreover, we found 32 Android samples, as in figure 7a, with
a degree centrality greater than one, and CFGs that contain 3 —
32 nodes with file sizes ranging between 29,400 — 3,000,000
byte, where the parent node leads to a child loop operating
in another sign of infinite loop which may be because of
obfuscation of the other functions.

Our analysis shows the power of CFGs in differentiating
Android from IoT malware. It also demonstrates the usefulness
of CFGs as a simple high-level tool before diving into lines of
codes. We correlate the size of malware samples with the size
of the graph as a measure of nodes and edges. We observe
that even with the presence of low node or edge counts, the
size of malware could be very huge, indicative of obfuscation.



Evaluation. While there have been many studies on the usage
of CFGs for malware detection, understanding the uniqueness
and difference of CFGs corresponding to different malware
still unexplored. Sun et al. [49] use component based CFGs to
detect code reuse in Android application with a detection rate
of 96.60% for malware variants. Bruschi et al. [19] propose a
strategy to detect metamorphic malicious codes in a program
by comparing the CFG of the program with that of CFG
of known malware. In this study, to evaluate our detection
system, we extracted the CFGs of 2,999 benign IoT samples
to build a detection system for the IoT environment utilizing a
similar insight: CFGs of benign and malicious samples differ
significantly, and we can base our machine learning algorithms
on those differences for detection.

We implemented four machine learning techniques for: 1)
detection of IoT malware, and 2) classification of malware
families. The main goal of the detection models is to identify
whether a sample is benign or malicious. The goal of the
classification models is to label each sample to one of the
following classes: benign, gafgyt, mirai, or tsunami. Moreover,
we evaluate our classification in terms of several standard
evaluation metrics, e.g., AR, FNR, FPR, etc. (detailed list of
these metrics are provided in figure VI-B).

For our evaluation, we use the 10-fold cross-validation
method to generalize our results. In this method, we partition
the dataset into 10 equal portions, where the model is trained
over nine portions and then tested over the remaining portion.
This process is repeated ten times until all of the portions are
evaluated as test data, and the average result is reported.

The detailed results of our malware detection and classifi-
cation models are listed in table III and table IV, respectively.
We observed that all of the models are able to reach a high
detection accuracy. Specifically, the CNN model detects IoT
malware from benign samples with an accuracy rate of 99.66%
with FNR and FPR of 0.33%. Furthermore, we found that,
in general, all models are able to achieve high classification
metrics. In particular, the CNN model is able to correctly
classify IoT malware families with an accuracy rate of 99.32%
with FNR of 2.93% and FPR of 0.45%.

Feature reduction. Although, there has been substantial
work on feature reduction based on features’ discriminative
power [50], [51], in our study, and due to the limited number
of initial features (only 23) we do not need such feature
reduction. Additionally, although we might be able to score
the deep features extracted by the convolutional layers for
reduction, these features will lack interpretability.

Future Work. Although CFG-based features are shown in this
work to detect [oT malware with high accuracy, these features
are vulnerable to obfuscation. For example, a function-level
obfuscation of the IoT malware might lead to an increase in the
number of components, reduced flow of control and reduced
complexity, which will affect the accuracy of our detection sys-
tem. Certain program-level obfuscations will prevent obtaining
a CFG altogether. Moreover, our approach does not assume ad-
versarial inputs that may attempt to tamper with the guarantees
of the deep learning architecture, as shown in [52]. We notice
that regardless of the static obfuscation, once executed the
malware has to expose its true contents and behavior, loading
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TABLE III: Results of IoT malware detection. Here, FNR,
FPR, FDR, FOR, and AR are percentages.

Model | FNR | FPR | FDR | FOR | AR

LR 3.66 1.35 1.36 3.64 97.47
SVM 3.32 1.35 1.35 3.32 97.65
RF 2.33 0.67 | 0.67 2.33 98.48
CNN 0.33 033 | 0.33 0.33 99.66

TABLE IV: Malware family-level classification of IoT sam-
ples. Here, FNR, FPR, FDR, FOR, and AR are percentages.

Model | FNR | FPR | FDR | FOR | AR

LR 8.88 1.79 12.27 | 2.05 97.22
SVM 10.53 | 1.78 13.09 | 2.01 97.23
RF 5.14 1.03 | 7.35 1.20 98.40
CNN 2.93 045 | 2.17 0.44 99.32

the unobfuscated code in memory. The unobfuscated code can
be then extracted using dynamic analysis for our detector.
Addressing those issues with other static features and using
them for detection, addressing adversarial learning attacks to
harden defenses, and using dynamic analysis in tandem with
static analysis for comprehensive CFGs are our future work.

VII. CONCLUSION

In this paper, we build a detection model to detect IoT
malware by augmenting features generated from Control Flow
Graphs (CFGs). Towards this, we conduct an in-depth graph-
based analysis of three different datasets, namely, Android
malware, IoT malware, and IoT benign samples, to highlight
the similarity and differences between Android and IoT mal-
ware, and to build a detection system for the emerging IoT
malware. Toward this goal, we first extract the CFGs as an
abstract representation to characterize them across different
graph features. We highlight interesting findings by analyzing
the shift in the graph representation from the Android malware
to the IoT malware. We observe decoy functions for circum-
vention. Toward IoT malware detection, we utilize various
features extracted from the CFGs of [oT benign and malware
datasets, such as the closeness, betweenness, and density to
build a deep learning-based detection system. We evaluate
the detection model by leveraging four different classifiers
and achieve an accuracy rate of ~99.66% with 0.33% FNR
and 0.33% FPR using CNN. Moreover, we classify the IoT
malware based on their families and achieve an accuracy of
~99.32% with 2.93% FNR and 0.45% FPR.
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