
Noname manuscript No.
(will be inserted by the editor)

Adaptive Partitioning and Indexing for
in-situ Query Processing

Matthaios Olma · Manos Karpathiotakis · Ioannis Alagiannis · Manos
Athanassoulis · Anastasia Ailamaki

Received: date / Accepted: date

Abstract The constant flux of data and queries alike
has been pushing the boundaries of data analysis sys-

tems. The increasing size of raw data files has made
data loading an expensive operation that delays the
data-to-insight time. To alleviate the loading cost, in-

situ query processing systems operate directly over raw
data and offer instant access to data. At the same time,
analytical workloads have increasing number of queries.
Typically, each query focuses on a constantly shifting

– yet small – range. As a result, minimizing the work-
load latency, requires the benefits of indexing in in-situ
query processing.

In this paper, we present an online partitioning and
indexing scheme, along with a partitioning and index-
ing tuner tailored for in-situ querying engines. The pro-

posed system design improves query execution time by
taking into account user query patterns, to (i) parti-
tion raw data files logically and (ii) build lightweight
partition-specific indexes for each partition.

We build an in-situ query engine called Slalom to
showcase the impact of our design. Slalom employs adap-
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tive partitioning and builds non-obtrusive indexes in
different partitions on-the-fly based on light-weight query

access pattern monitoring. As a result of its light-weight
nature, Slalom achieves efficient query processing over
raw data with minimal memory consumption. Our ex-

perimentation with both micro-benchmarks and real-
life workloads shows that Slalom outperforms state-of-
the-art in-situ engines, and achieves comparable query

response times with fully indexed DBMS, offering lower
cumulative query execution times for query workloads
with increasing size and unpredictable access patterns.

Keywords Online tuning · Adaptive indexing ·
Logical partitioning

1 Introduction

Data-intensive applications in various domains gener-
ate and collect massive amounts of data at a rapid
pace. New research fields and applications (e.g., net-
work monitoring, sensor data management, clinical stud-
ies, etc.) emerge and require broader data analysis func-
tionality to rapidly gain deeper insights from the avail-
able data. In practice, analyzing such datasets become
costlier as their size grows.

Big Data, Small Queries. The trend of exponential
data growth due to intense data generation and data
collection is expected to persist. However, recent studies
of the data analysis workloads show that typically only
a small subset of the data is relevant and ultimately
used by analytical and/or exploratory workloads [1,17].

In addition, modern business and scientific applications
require interactive data access, which is characterized
by no or little a priori workload knowledge and con-
stant workload shifting both in terms of the attributes
projected and the ranges selected from the dataset.
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Fig. 1: Ideally, in-situ data analysis should be able to
retrieve only the relevant data for each query after the
initial table scan (ideal - dotted line). In practice, in-
situ query processing avoids the costly phase of data
loading (dashed line), however, as the number of the
queries increases, the initial investment for full index
on a DBMS pays off (the dashed line meets the grey
line).

The Cost of Loading, Indexing, and Tuning. Tra-
ditional data management systems (DBMS) require the

costly steps of data loading, physical design decisions,
and then index building in order to offer interactive ac-
cess over large datasets. Given the data sizes involved,
any transformation, copying, and preparation steps over

the data introduces substantial delays before the data
can be utilized, queried, and provide useful insights [2,
36,5]. The lack of a priori knowledge of the workload

makes the physical design decisions virtually impossible
because cost-based advisors rely heavily on past or sam-
ple workload knowledge [3,16,22,29,68]. The workload

shifts observed in the interactive setting of exploratory
workloads can nullify investments towards indexing and
other auxiliary data structures, since frequently, they
depend on the actual data values and the knowledge

generated by the ongoing analysis.

Querying Raw Data Files Is Not Enough. Re-
cent efforts opt to query directly raw files [12,5,31,18,

42,2] to reduce the data-to-insight cost. These in-situ
systems avoid the costly initial data loading step, and
allow the execution of declarative queries over external
files without duplicating or “locking” data in a pro-
prietary database format. Further, they concentrate on
reducing costs associated with raw data accesses (e.g.,
parsing and converting data fields) [5,18,42]. Finally,

although recent scientific data management approaches
index raw data files using file-embedded indexes, they
do it in a workload-oblivious manner, or requiring full
a priori workload knowledge [12,67]. Hence, they bring
back the cost of full index building, in the raw data
querying paradigm, negating part of the benefits of
avoiding data loading.

Figure 1 shows what the ideal in-situ query per-
formance should be (dotted line). After the unavoid-
able first table scan, ideally, in-situ queries need to ac-

cess only data relevant to the currently executed query.
The figure also visualizes the benefits of state-of-the-
art in-situ query processing when compared with a full
DBMS. The y-axis shows the cumulative query latency,
for an increasing number of queries with fixed selectiv-
ity on the x-axis. By avoiding the costly data loading
phase the in-situ query execution system (dashed line)
can start answering queries very quickly. On the other
hand, when a DBMS makes an additional investment
on full DBMS indexing (solid grey line), it initially in-
creases significantly the data-to-query latency, however,
later it pays off as the number of queries issued over
the same (raw) dataset increases. Eventually, the cu-
mulative query latency for an in-situ approach becomes
larger than the latency of a DBMS equipped with in-
dexing. When operating over raw data, ideally, we want
after the initial – unavoidable – table scan to collect
enough metadata to allow future queries to access only
the useful part of the dataset.

Adaptive Partitioning and Fine-Grained Index-

ing. We use the first table scan to generate partition-
ing and lightweight indexing hints which are further
refined by the data accesses of (only a few) subcon-
sequent queries. During this refinement process, the

dataset is partially indexed in a dynamic fashion adapt-
ing to three key workload characteristics: (i) data distri-
bution, (ii) query type (e.g., point query, range query),

and (iii) projected attributes. Workload shifts lead to
varying selected value ranges, selectivity, which dataset
areas are relevant for a query, and projected attributes.

This paper proposes an online partitioning and in-
dexing tuner for in-situ query processing which, when

plugged into a raw data query engine, offers fast queries
over raw data files. The tuner reduces data access cost
by: (i) logically partitioning a raw dataset to break it

into smaller manageable chunks without physical re-
structuring, and (ii) choosing appropriate indexing strate-
gies over each logical partition to provide efficient data
access. The tuner adapts the partitioning and indexing
scheme as a side-effect of executing the query workload.
It continuously collects information regarding the val-
ues and access frequency of queried attributes at run-

time. Based on this information, it uses a randomized
online algorithm to define logical partitions. For each
logical partition, the tuner estimates the cost-benefit
of building partition-local index structures considering
both approximate membership indexing (i.e., Bloom fil-
ters and zonemaps) and full indexing (i.e., bitmaps and
B+ trees). By allowing fine-grained indexing decisions
our proposal defers the decision of the index shape to
the level of each partition rather than the overall rela-
tion. This has two positive side-effects. First, there is no
costly indexing investment that might be unnecessary.
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Second, any indexing effort is tailored to the needs of
data accesses on the corresponding range of the dataset.

Efficient In-Situ Query Processing With Slalom.
We integrate our online partitioning and indexing tuner
to an in-situ query processing prototype system, Slalom,
which combines the tuner with a state-of-the-art raw
data query executor. Slalom is further augmented with
index structures and uses the tuner to decide how to
partition and which index or indexes to build for each
partition. In particular, Slalom logically splits raw data
into partitions and selects which fine-grained index to
build, per-partition based on how “hot” (i.e., frequently
accessed) each partition is, and what types of queries
target each partition. Furthermore, Slalom populates
binary caches (of data converted from raw to binary)
to further boost performance. Slalom adapts to work-
load shifts by adjusting the current partitioning and
indexing scheme using a randomized cost-based deci-
sion algorithm. Overall, the logical partitions and the

indexes that Slalom builds over each partition provide
performance enhancements without requiring expensive
full data indexing nor data file re-organization, all while
adapting to workload changes.

Contributions. This paper makes the following con-
tributions:

– We present a logical partitioning scheme of raw data
files that enables fine-grained indexing decisions at

the level of each partition. As a result, light-weight
per-partition indexing provides near-optimal data ac-
cess.

– The light-weight partitioning allows our approach to
maintain the benefits of in-situ approaches. In ad-
dition, the granular way of indexing (i) brings the
benefit of indexing to in-situ query processing, (ii)
having low index building cost, and (iii) small mem-
ory footprint. These benefits are highlighted as the
partitioning and indexing decisions are refined on-
the-fly using an online randomized algorithm.

– We enable both in-place and append-like updates for
in-situ query processing. We exploit specialized hard-

ware (GPUs and CRC checksum units) to reduce up-
date recognition cost and minimize changes to parti-
tioning and indexing. Overall minimizing the query
execution overhead in the presence of updates.

– We integrate our partitioning and indexing tuner into
our prototype state-of-the-art in-situ query engine
Slalom. We use synthetic and real-life workloads to
compare the query latency of (i) Slalom, (ii) a tra-
ditional DBMS, (iii) a state-of-the-art in-situ query
processing engine, and (iv) adaptive indexing (crack-
ing). Our experiments show that, even when exclud-

ing the data loading cost, Slalom offers the fastest

cumulative query latency. In particular, Slalom out-
performs (a) state-of-the-art disk-based approaches
by one order of magnitude, (b) state-of-the-art in-
memory approaches by 3.7× (with 2.45× smaller mem-
ory footprint), and (c) adaptive indexing by 19%
(having 1.93× smaller memory footprint). Finally,
we examine the performance of Slalom in presence
of both in-place and append-like updates.

To our knowledge, Slalom is the first approach that
proposes the use of a randomized online algorithm to
select which workload-tailored index structures should
be built per partition of the data file. This approach
reduces index building time and provides minimal de-
cision time.

Outline. The remainder of this paper is organized as
follows: Section 2 provides an overview of related work.
Section 3 presents the architecture of Slalom and gives
an overview of its design. Section 4 presents the online
tuner and describes its partitioning and indexing cost
models. Section 4.3 presents the techniques enabling

efficient data updates for in situ query processing. We
experimentally demonstrate the benefits of Slalom in
Section 5, and we conclude in Section 6.

2 Related work

In recent years, many research efforts re-design the tra-
ditional data management architecture to address the
challenges and opportunities associated with dynamic
workloads and interactive data access. In this section,

we discuss research approaches related to Slalom and
highlight how Slalom pushes the state-of-the-art.

Queries over Raw Data. Data loading accounts for
a large fraction of overall workload execution time in
both the DBMS and Hadoop ecosystems [31]. NoDB
treats raw data files as native storage of the DBMS, and
introduces auxiliary data structures (positional maps

and caches) to reduce the expensive parsing and tok-
enization costs of raw data access [5]. ViDa introduces
code-generated access paths and data pipeline to adapt
the query engine to the underlying data formats and
layouts, and to the incoming queries [40–42]. Data
Vaults [36,38] and SDS/Q [12] perform analysis over
scientific array-based file formats. SCANRAW [18] uses
parallelism to mask the increased CPU processing costs
associated with raw data accesses during in-situ data
processing. In-situ DBMS approaches either rely on ac-

cessing the data via full table scans or require a priori
workload knowledge and enough idle time to create the
proper indexes. The mechanisms of Slalom are orthog-
onal to these systems, and can augment their design by
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enabling data skipping and indexed accesses while con-
stantly adapting its indexing and partitioning schemes
to queries.

Hadoop-based systems such as Hive [64] can access
raw data stored in HDFS. While such frameworks inter-
nally translate queries to MapReduce jobs, other sys-
tems follow a more traditional Massive Parallel Process-
ing (MPP) architecture to offer SQL-on-Hadoop func-
tionality [45,49]. Hybrid approaches such as invisible
loading [2] and Polybase [21] propose co-existence of a
DBMS and a Hadoop cluster, transferring data between
the two when needed. SQL Server PDW [24] and As-
terixDB [6] propose indexes for data stored in HDFS
and, in general, for external data. The key techniques
of Slalom can also be applied in a Hadoop-based envi-
ronment. SQL Server PDW and AsterixDB build sec-
ondary indexes over HDFS files. The techniques used by
Slalom, on the other hand, improve system scalability
by reducing the size of the index and building memory
efficient indexes per file-partition.

On the other side of raw data querying, Instant
Loading [51] parallelizes the loading process for main-
memory DBMS, offering bulk loading at near-memory-

bandwidth speed. Similarly to Instant Loading, Slalom
uses data parsing with hardware support for efficient
raw data access. Instead of loading all data, however,

Slalom exploits workload locality to adaptively create
a fine-grained indexing scheme over raw data and grad-
ually reduce I/O and access costs, all while operating

within a modest memory budget.

Database Partitioning. A table can be physically

subdivided into smaller disjoint sets of tuples (parti-
tions), allowing tables to be stored, managed, and ac-
cessed at a finer level of granularity [46].

Offline partitioning approaches [3,27,53,68] present
physical design tools that automatically select the proper
partition configuration for a given workload to improve
performance. Online partitioning [37] monitors and pe-
riodically adapts the database partitions to fit the ob-

served workload. Furtado et al. [23] combine physical
and virtual partitioning to fragment and dynamically
tune partition sizes for flexibility in intra-query paral-
lelism. Shinobi [66] clusters hot data in horizontal par-
titions which it then indexes, while Sun et al. [63] use
a bottom-up clustering framework to offer an approxi-
mate solution for the partition identification problem.

Physical re-organization, however, is not suitable
for data file repositories due to its high cost and the
immutable nature of the files. Slalom presents a non-
intrusive, flexible partitioning scheme that creates logi-
cal horizontal partitions by exploiting data skew. Addi-
tionally, Slalom continuously refines its partitions dur-

ing query processing without requiring a priori work-
load knowledge.

Database Indexing. There is a vast collection of in-
dex structures with different capabilities, performance,
and initialization/maintenance overheads [9,10,35,44].
This paper uses representative index structures from
the two categories (i) value-position and (ii) value-existence
indexes, that offer good indexing for point and range
queries. Value-position indexes include the B+ tree and
hash indexes and their variations [8]. Common value-
existence indexes are Bloom filters [13], Bitmap indexes
[11,52,61], and Zonemaps [50]. They are lightweight
and can provide the information whether a value is
present in a given dataset. Value-existence indexes are
frequently used in scientific workloads [19,62,67]. Slalom
builds main-memory auxiliary structures (i) rapidly, (ii)
with small footprint, and (iii) without a priori workload
knowledge. That way it enables low data-to-insight la-
tency without hurting the performance of long running
workloads, for which indexing is typically more useful.

Online Indexing. Physical design decisions made be-

fore workload execution can also be periodically re-
evaluated. COLT [59] continuously monitors the work-
load and periodically creates new indexes and/or drops
unused ones. COLT adds overhead on query execution

because it obtains cost estimations from the optimizer
at runtime. A “lighter” approach requiring fewer calls
to the optimizer has also been proposed in recent lit-

erature [15]. Slalom also focuses on the problem of se-
lecting an effective set of indexes and builds indexes on
partition granularity. It populates indexes during query
execution in a pipelined fashion instead of triggering a

standalone index building phase. Slalom aims to min-
imize the cost of index construction decisions and the
complexity of the costing algorithm.

Adaptive Indexing. In order to avoid the full cost of
indexing before workload execution, adaptive indexing
incrementally refines indexes during query processing.
In the context of in-memory column-stores, database
cracking approaches [25,32–34,56] create a duplicate of
the indexed column and incrementally sorts it accord-
ing to the incoming workload, thus reducing memory
access. HAIL proposes an adaptive indexing approach
for MapReduce systems [57]. ARF is an adaptive value-

existence index similar to Bloom filters, yet useful for
range queries [7]. Similarly to adaptive indexing, Slalom
does not index data upfront and builds indexes during
query processing and continuously adapts to the work-
load characteristics. However, contrary to adaptive in-
dexing that duplicates the whole indexed attribute up-

front, Slalom’s gradual index building allows its indexes
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Fig. 2: The architecture of Slalom.

to have small memory footprint by indexing both the
targeted value ranges, and the targeted attributes.

3 The SLALOM System

Slalom uses adaptive partitioning and indexing to pro-
vide inexpensive index support for in-situ query pro-
cessing while adapting to workload changes. Slalom ac-

celerates query processing by skipping data and mini-
mizes data access cost when this access is unavoidable.
At the same time, it operates directly on the original
data files without need for physical restructuring (i.e.,

copying, sorting).
Slalom incorporates state-of-the-art in-situ query-

ing techniques and enhances them with logical parti-

tioning and fine-grained indexing, thereby reducing the
amounts of accessed data. To remain effective despite
workload shifts, Slalom introduces an online partition-
ing and indexing tuner, which calibrates and refines
logical partitions and secondary indexes based on data
and query statistics. Slalom treats data files as rela-
tional tables to facilitate the processing of read-only
and append-like workloads. The rest of this section fo-
cuses on the architecture and implementation of Slalom.

3.1 Architecture

Figure 2 presents the architecture of Slalom. Slalom
combines an online partitioning and indexing tuner with
a query executor featuring in-situ querying techniques.
The core components of the tuner are the Partition

Manager, which is responsible for creating logical parti-
tions over the data files and the Index Manager, which
is responsible for creating and maintaining indexes over
partitions. The tuner collects statistics regarding the
data and query access patterns and stores them in the

Data
(partition
i)

mi Mean value

mini Min value

maxi Max value

devi Standard deviation

DVi #distinct values

Data
(global)

Sizepage Physical page size

Sizefile File size

Queries
(partition
i)

Cibuild
Index building cost

Cifullscan
Full scan cost

LAi #queries since last access

AFi Partition access frequency

seli Average selectivity (0.0-1.0)

Table 1: Statistics collected by Slalom per data file dur-
ing query processing and used to decide (i) which log-
ical partitions to create and (ii) select the appropriate
matching indexes.

Statistics Store. Based on those statistics, the Structure

Refiner evaluates the potential benefits of alternative
configurations of partitions and indexes. Furthermore,
Slalom uses in-situ querying techniques to access data.
Specifically, Slalom uses auxiliary structures (i.e., posi-

tional maps and caches) which minimize raw data ac-
cess cost. During query processing, the Query Executor
utilizes the available data access paths and orchestrates

the execution of the other components. Finally, the Up-
date Monitor examines whether a file has been modified
and adjusts the data structures of Slalom accordingly.

Slalom Scope. The techniques of Slalom are applica-

ble to any tabular dataset. Specifically, the scan op-
erator of Slalom uses a different specialized parser for
each underlying data format. This work concentrates on
queries over delimiter-separated textual CSV files, be-

cause CSV is the most popular structured textual file
format. Still, the yellow- and blue-coded components
of Figure 2 are applicable over binary files, which are

the typical backend of databases and are also frequently
used in scientific applications (e.g., high-energy physics,
DNA sequencing, GIS). Regarding query types, Slalom
concentrates on efficient access of different raw data
files and enables queries containing filters on different
attributes. Slalom, in its current format, does not sup-
port arbitrary joins and nested SQL queries. However,
we assume that any query involving nested queries or
joins can be flattened and Slalom can perform filtering
over the resulting underlying data. We discuss further
Slalom’s extensibility in Section 3.4.

Reducing Data Access Cost. Slalom launches queries
directly over the original raw data files, without altering
or duplicating the files by ingesting them in a DBMS.

That way, Slalom avoids the initialization cost induced
by loading and offers instant data access. Similarly to
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state-of-the-art in-situ query processing approaches [5,
18] Slalom mitigates the overheads of parsing and tok-
enizing textual data with positional maps [5] and par-
tial data caching.

PMs are populated on-the-fly and maintain struc-
tural information about an underlying textual file; they
keep the positions of various file attributes. This infor-
mation is used during query processing to “jump” to
the exact position of an attribute or as close as pos-
sible to an attribute, significantly reducing the cost of
tokenizing and parsing when a tuple is accessed. Fur-
thermore, Slalom builds binary caches of fields that are
already converted to binary to reduce parsing and data
type conversion costs of future accesses.

Statistics Store. Slalom collects statistics during query
execution and utilizes them to (i) detect workload shifts
and (ii) enable the tuner to evaluate partitioning and
index configurations. Table 1 summarizes the statistics
about Data and Queries that Slalom gathers per data
file. Data statistics are updated after every partition-

ing action and include the per-partition standard de-
viation (devi) of values, mean (mi), max (maxi) and
min (mini) values. Additionally, Slalom keeps as global

statistics the physical page size (Sizepage) and file size
(Sizefile). Regarding Query statistics, Slalom maintains
the number of queries since the last access (LAi), the
percentage of queries accessing each partition (access

frequency AFi), and the average query selectivity (seli).
Finally, the full scan cost over a partition (Cifullscan

)
and the indexing cost for a partition (Cibuild

) is calcu-

lated by considering the operator’s data accesses.

Partition Manager. The Partition Manager recog-

nizes patterns in the dataset and logically divides the
file into contiguous non-overlapping chunks to enable
fine-grained access and indexing. The Partition Man-
ager specifies a logical partitioning scheme for each at-
tribute in a relation. Each partition is internally rep-
resented by its starting and ending byte within the
original file. The logical partitioning process starts the
first time a query accesses an attribute. The Partition
Manager triggers the Structure Refiner to iteratively
fine-tune the partitioning scheme with every subsequent
query. All partitions progressively reach a state in which
there is no benefit from further partitioning. The effi-
ciency of a partitioning scheme depends highly on the

data distribution and the query workload. Therefore,
the Partition Manager adjusts the partitioning scheme
based on value cardinality (details in Section 4.1).

Index Manager. The Index Manager estimates the
benefit of an index over a partition and suggests the

most promising combination of indexes for a given at-
tribute/partition. For every new index configuration,

the Index Manager invokes the Structure Refiner to
build the selected indexes during the execution of the
next query. Every index corresponds to a specific data
partition. Depending on the access pattern of an at-
tribute and the query selectivity, a single partition may
have multiple indexes. Slalom chooses indexes from two
categories based on their capabilities: (i) value-existence
indexes, which respond whether a value exists in a dataset
and (ii) value-position indexes, which return the po-
sitions of a value within the file. The online nature
of Slalom imposes a significant challenge not only on
which indexes to choose but also on when and how to
build them with low cost. The Index Manager monitors
previous queries to decide which indexes to build and
when to build them; timing is based on an online ran-
domized algorithm which considers (i) statistics on the
cost of full scan (Cifullscan

), (ii) statistics on the cost
of building an index (Cibuild

), and (iii) partition access
frequency (AFi), further explained in Section 4.2.

Update Monitor. The main focus of Slalom is read-
only and append workloads. Still, to provide query re-
sult consistency, the Update Monitor checks the input

files for both appends and in-place updates at real-time.
Slalom enables append-like updates without disturbing
query execution by dynamically adapting its auxiliary

data structures. Specifically, Slalom creates a partition
at the end of the file to accommodate the new data,
and builds binary caches, PMs and indexes over them

during the first post-update query. In-place updates re-
quire special care in terms of positional map and in-
dex maintenance because they can change the internal
file structure. Slalom reacts to in-place updates during

the first post-update query by identifying the updated
partitions, updating the positional map, and recreating
the other corresponding structures. We discuss in detail

how Slalom deals with updates in Section 4.3.

3.2 Implementation

We implement Slalom from scratch in C++. Slalom’s
query engine uses tuple-at-a-time execution based on
the Volcano iterator model [26]. The rest of the compo-
nents are implemented as modules of the query engine.
Specifically, the Partitioning and Indexing managers
as well as the Structure Refiner attach to the Query
Executor. Furthermore, the Statistics Store runs as a
daemon, gathering the data and query statistics and
persisting them in a catalog.

Slalom reduces raw data access cost by using vector-
ized parsers, binary caches, and positional maps (PM).
The CSV parser uses SIMD instructions; it consecu-

tively scans a vector of 256 bytes from the input file and
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applies a mask over it using SIMD execution to iden-
tify delimiters. Slalom populates a PM for each CSV file
accessed. To reduce memory footprint, the PM stores
only delta distances for each tuple and field. Specifi-
cally, to denote the beginning of a tuple, the PM stores
the offset from the preceding tuple. Furthermore, for
each field within a tuple, the PM stores only the offset
from the beginning of the tuple. The Partition Man-
ager maintains a mapping between partitions and their
corresponding PM portions.

Slalom populates binary caches at a partition gran-
ularity. When a query accesses an attribute for the first
time, Slalom consults the positional map to identify the
attribute’s position, and then caches the newly con-
verted values. To improve insertion efficiency, Slalom
stores the converted fields of each tuple as a group of
columns. If Slalom opts to convert an additional field
during a subsequent query, it appends the converted
value to the current column group.

Slalom also populates secondary indexes at a par-
tition granularity; for each attribute, the indexes store

its position in the file and its position in the binary
cache (when applicable). Slalom uses a cache friendly
in-memory B+ tree implementation. It uses nodes of
256 bytes that are kept 60% full. To minimize the size

of inner nodes and make them fit in a processor cache
line, the keys in the nodes are stored as deltas. Fur-
thermore, to minimize tree depth, the B+ tree stores

all appearances of a single value in one record.

The Structure Refiner monitors the construction of
all auxiliary structures and is responsible for memory
management. Slalom works within a memory area of

pre-defined size. The indexes, PMs, and caches are placed
in the memory area. However, maintaining caches of the
entire file and all possible indexes is infeasible. Thus,

the Structure Refiner dynamically decides, on a parti-
tion basis, which structure to drop so Slalom can oper-
ate under limited resources (details in Section 4.2).

3.3 Query Execution

Figure 3 presents an overview of a query sequence exe-
cution over a CSV file. During each query, Slalom ana-
lyzes its current state in combination with the workload
statistics and updates its auxiliary structures. In the
initial state (a), Slalom has no data or query workload
information. The first query accesses the data file with-
out any support from auxiliary structures; Slalom thus
builds a PM, accesses the data requested, and places
them in a cache. During each subsequent query, Slalom

collects statistics regarding the data distribution of the
accessed attributes and the average query selectivity to

Partition N
Partition 2

Partition 1

Cache / 
Pos. Map

...

(a) (b) (c)

...

Partition 1
Partition 2

Idx

Query Sequence

Cache / 
Pos. Map

Idx

...

Stable

Fig. 3: Slalom execution.

decide whether logical partitioning would benefit per-
formance. If a partition has not reached its stable state
(i.e., further splitting will not provide benefit), Slalom
splits the partition into subsets as described in Sec-
tion 4.1. In state (b), Slalom has already executed some
queries and has built a binary cache and a PM on the
accessed attributes. Slalom has decided to logically par-

tition the file into two chunks, of which the first (parti-
tion 1) is declared to be in a stable state. Slalom checks
stable partitions for the existence of indexes; if no in-

dex exists, Slalom uses the randomized algorithm de-
scribed in Section 4.2 to decide whether to build one. In
state (c), Slalom has executed more queries, and based
on the query access pattern it decided index partition

1. In this state, partition 2 of state (b) has been further
split into multiple partitions of which partition 2 was
declared stable and an index was built on it.

3.4 Extensibility of Slalom

To address the increasing data format heterogeneity,
Slalom queries over a variety of data formats by adding
the corresponding parsers and adjusting the online tuner
partitioning algorithm.

The parser transforms all underlying data to a com-
mon representation, which is then passed to the query
engine. In that way, Slalom supports multiple data for-

mats by requiring a parser for each input data format
(e.g., CSV, JSON, binary). Slalom uses as common rep-
resentation binary tuples stored in fixed length slots.
Similarly, irrespective to data format, Slalom’s binary
cache has the same format.

For each new data format, the online tuner applies
the same principled techniques of logical horizontal par-
titioning and indexing, however must be adjusted slightly
depending on the format Specifically, for data formats
that store records sequentially (e.g., CSV, binary, XML
and JSON) Slalom follows the same technique of parti-

tioning and indexing by creating sequential logical par-
titions by keeping the first and last byte of each parti-
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tion within the file. For data formats that store records
in a PAX-like format [4] (e.g., parquet, SAM-BAM) the
partitioning approach must make sure that the parti-
tions complete full mini-pages. Slalom supports execut-
ing queries over CSV, binary and XML files.

4 Continuous partition and index tuning

Slalom provides performance enhancements without re-
quiring expensive full data indexing nor data file re-
organization, all while adapting to workload changes.
Slalom uses an online partitioning and indexing tuner
to minimize the accessed data by (i) logically partition-
ing the raw dataset, and (ii) choosing appropriate in-
dexing strategies over each partition. To enable online
adaptivity, all decisions that the tuner makes must have
minimal computational overhead. The tuner employs a
Partition Manager which makes all decision considering
the partitioning strategy, and an Index Manager which
makes all decisions considering indexing. This section

presents the design of the Partition and Index Managers
as well as the mathematical models they are based on.

4.1 Raw Data Partitioning

The optimal access path may vary across different parts

of a dataset. For example, a filtering predicate may be
highly selective in one part of a file, and thus benefit
from index-based query evaluation, whereas another file

part may be better accessed via a sequential scan. As
such, any optimization applied on the entire file may be
suboptimal for parts of the file. To this end, the Par-
tition Manager of Slalom splits the original data into

more manageable subsets; the minimum partition size
is a physical disk page. the Partition Manager opts for
horizontal logical partitioning as physical partitioning

would require manipulating physical storage – a break-
ing point for many of the use cases that Slalom targets.

Why Logical Partitions. Slalom uses logical parti-
tioning to virtually break a file into more manageable
chunks without physical restructuring. The goal of log-
ical partitioning is twofold: (i) enable partition filter-
ing, i.e., try to group relevant data values together so
that they can be skipped for some queries, and (ii) al-

low for more fine-grained index tuning. The efficiency
of logical partitioning in terms of partition filtering de-
pends mainly on data distribution and performs best
with clustered or sorted data. Still, even in the worst
case of uniformly distributed data, although few parti-
tions will be skippable, the partitioning scheme facili-
tates fine-grained indexing. Instead of populating deep
B+ tree that cover the entire dataset, the B+ tree of

Slalom are smaller and target only “hot” subsets of
the dataset. Thus, Slalom can operate under limited
memory budget, has a minimal memory footprint, and
provides rapid responses.

The Partition Manager performs partitioning as a
by-product of query execution and chooses between two
partitioning strategies depending on the cardinality of
an attribute. For candidate key attributes, where all
tuples have distinct values, the Partition Manager uses
query based partitioning, whereas for other value distri-
butions, it uses homogeneous partitioning. Ideally, the
Partition Manager aims to create partitions such that:
(i) each partition contains uniformly distributed values,
and (ii) partitions are pairwise disjoint (e.g., partition
1 has values 12, 1, 8 and partition 2 has values 19, 13,
30). Uniformly distributed values in a partition enable
efficient index access for all values in a partition and
creating disjoint partitions improves partition skipping.

4.1.1 Homogenous partitioning

Homogeneous partitioning aims to create partitions with

uniformly distributed values and maximize average se-
lectivity within each partition. Increasing query selec-
tivity over partitions implies that for some queries, some

of the newly created partitions will contain a high per-
centage of the final results, whereas other partitions
will contain fewer or zero results and will be skippable.
Computing the optimal set of contiguous uniformly dis-

tributed partitions has exponential complexity, thus is
prohibitive for online execution. Instead, to minimize
the overhead of partitioning, the Partition Manager it-

eratively splits a partition into multiple equi-size parti-
tions. In every iteration, the tuner decides on (i) when
to stop splitting and (ii) into how many subsets to split
a given partition.

The Partition Manager splits incrementally a parti-
tion until it reaches a stable state (i.e., a state where
the tuner estimates no more gains can be achieved from
further splitting). After each partition split, the tuner
relies on two conditions to decide whether a partition
has reached a stable state. The tuner considers whether
(i) the variance of values in the new partition as well as
the excess kurtosis [54] of the value distribution have
become smaller than the variance and kurtosis in the

parent partition, and (ii) the number of distinct values
has decreased. Specifically, as variance and excess kur-
tosis decrease, outliers are removed from the partition
and the data distribution of the partition in question
becomes more uniform. As the number of distinct val-
ues per partition iteratively decreases, the probability
of partition disjointness increases. If any of these met-

rics increases or remains stable by partitioning, then
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the partition is declared stable. We use the combina-
tion of variance and excess kurtosis as a metric for uni-
formity, because their calculation has a constant com-
plexity and can be performed in an incremental fashion
during query execution. An alternative would be using a
histogram or chi square estimators [54], but that would
require building a histogram as well as an additional
pass over the data.

Making Partitioning Decisions. The number of sub-
partitions to which an existing partition is divided, de-
pends on the average selectivity of the past queries ac-
cessing the partition and the size of the partition in
number of tuples. The goal of the tuner is to maxi-
mize selectivity in new partitions, thereby, increasing
the number of prospective skipped partitions. We as-
sume that the rows of the partition that have been part
of query results within the partition are randomly dis-
tributed. We model the partitioning problem as ran-
domly choosing tuples from the partition with the goal
to have at least 50% of the new partitions exhibit higher
selectivity than the original partition. The intuition is

that by decreasing selectivity in a subset of partitions
will enhance partition skipping in the rest. The more
results tuples in some partitions, the better candidates

for skipping are the rest.

We model this problem with the hyper-geometric
distribution. Our goal is to choose m partitions by pick-

ing randomly n tuples and we want each partition to
contain at least k result tuples. The hyper-geometric
distribution is a discrete probability distribution that
describes the probability of k random draws in n draws,

without replacement. Thus, assuming, that N repre-
sents all the tuples in the file, K represents the tuples
appearing in the result, and N−K all other tuples. The
equation describing the CDF of hypergeometric distri-
bution is the following:

P (X ≥ k) ≈
n∑
i=k

(
K
i

)(
N−K
n−i

)(
N
n

) (1)

The calculation of the hypergeometric distribution
requires the calculation of a factorial and has com-
putational complexity O(log(log(nM(nlogn)))), where
M(n) is the complexity of multiplying two n-digit num-

bers [14]. Such a computational complexity is unaccept-
able for Slalom as this operation is executed for each
query for the majority of partition numerous times and
for large partition sizes.

Slalom approximates the hypergeometric distribu-
tion using the binomial distribution. Prior work shows
that when p ≤ 0.1 and N ≥ 60 binomial is a good
approximation of hypergeometric [47], and since the

sizes of partitions are large in comparison to selectiv-
ity (small selectivity ≤ 0.1 and N ≥ 1000) Slalom can
exploit this observation.

P (X ≥ k) =
n∑
i=k

(
n

i

)
pi(1− p)n−i (2)

The binomial distribution requires the calculation
of the binomial coefficient

(
n
i

)
which similarly to the

hypergeometric distribution requires the calculation of
factorial. To overcome this problem, we further approx-
imate the binomial coefficient calculation by using the
following equation [20].(

n

k

)
=

(n/k − 0.5)k · ek√
2 · π · k

(3)

We combine Eq. 2 and Eq. 3, we use p = K/N and
n = N/m, and we solve for m to get the the equation

that the Partition Manager uses to calculate the num-
ber of subpartitions created for every split.

m =
N · (sel + logb (1− sel))

logb
√
2·π·sel·N

2

where b =
e

sel · (1− sel)
(4)

The tuner chooses this set of partitions with the
minimal overhead and number of iterations. The num-
ber of distinct values is calculated during the next query
after each partition split, whereas the variance and the

kurtosis are calculated incrementally, thus the parti-
tioning algorithm creates negligible overheads. To achieve
that Slalom uses a set of one-pass algorithms for calcu-
lating common statistics [48].

4.1.2 Query based partitioning

Query based partitioning targets candidate keys, or at-
tributes that are implicitly clustered (e.g., increasing
timestamps). For such attributes, homogeneous parti-

tioning will lead to increasingly small partitions as the
number of distinct values and variance will be con-
stantly decreasing with smaller partitions. Thus, the
tuner decides upon a static number of partitions to split
the file. Specifically, the number of partitions is decided
based on the selectivity of the first range query using
the same mechanism as in homogeneous partitioning. If
the partition size is smaller than the physical disk page
size, the tuner creates a partition per disk page. By
choosing its partitioning approach based on the data

distribution, Slalom improves the probability of data
skipping and enables fine-grained indexing.
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4.2 Adaptive Indexing in Slalom

The tuner of Slalom employs the Index Manager to cou-
ple logical partitions with appropriate indexes and thus
decrease the amount of accessed data. The Index Man-
ager uses value-existence and value-position indexes; it
takes advantage of the capabilities of each category in
order to reduce execution overhead and memory foot-
print. To achieve these goals, the Index Manager en-
ables each partition to have multiple value-existence
and value-position indexes.

Value-Existence Indexes. Value-existence indexes are
the basis of partition-skipping for Slalom; once a parti-
tion has been set as stable, the Index Manager builds
a value-existence index over it. Value-existence indexes
allow Slalom to avoid accessing some partitions. The
Index Manager uses Bloom filters, Bitmaps, and zone
maps (min-max values) as value-existence indexes. Specif-
ically, the Index Manager uses bitmaps only when in-

dexing boolean attributes, because they require a larger
memory budget than Bloom Filters for other data types.
The Index Manager also uses zone maps on all parti-

tions because they have small memory overhead and
provide sufficient information for value-existence on par-
titions with small value variation. For all other data
types, the Index Manager favors Bloom filters because

of their high performance and small memory footprint.
Specifically, the memory footprint of a Bloom filter has
a constant factor, yet it also depends on the number of

distinct values it will store and the required false pos-
itive probability. To overcome the inherent false posi-
tives that characterize Bloom filters, the Index Manager

adjusts the Bloom filter’s precision by calculating the
number of distinct values to be indexed and the optimal
number of bytes required to model them [13].

Value-Position Indexes. The Index Manager builds
a value-position index (B+ tree) over a partition to offer
fine-grained access to tuples. As value-position indexes
are more expensive to construct compared to value-
existence indexes, both in terms of memory and time,
it is crucial for the index to pay off the building costs
in future query performance. The usefulness and per-
formance of an index depend highly on the type and
selectivity of queries and the distribution of values in
the dataset. Thus, for workloads of shifting locality, the
core challenge is deciding when to build an index.

When to Build a Value-Position Index. The Index
Manager builds a value position index over a partition
if it estimates that there will be enough subsequent
queries accessing that partition to pay off the invest-
ment (in execution time). As the tuner is unaware of

the future workload trends, decisions for building in-
dexes are based on the past query access patterns. To

make these decisions, the Index Manager uses an on-
line randomized algorithm which considers the cost of
indexing the partition (Cibuild

), the cost of full partition
scan (Cifullscan

), and the access frequency on the parti-
tion (AFi). These values depend on the data type and
the size of the partition, so they are updated accord-
ingly in case of a partition split or an append to the file.
The tuner stores the average cost of an access to a file
tuple as well as the average cost of an insertion to every
index for all data types, and uses these metrics to cal-
culate the cost of accessing and building an index over a
partition. In addition, the tuner calculates the cost of an
index scan (Ciindexscan

) based on the cost of a full par-
tition scan and the average selectivity. For each future
access to the partition, the Index Manager uses these
statistics to generate online a probability estimate cal-
culating whether the index will reduce execution time
for the rest of the workload. Given this probability, the
Index Manager decides whether to build the index.

The Index Manager calculates the index building
probability using a randomized algorithm based on the

randomized solution of the snoopy caching problem [39].
In the snoopy caching problem, two or more caches
share the same memory space which is partitioned into

blocks. Each cache writes and reads from the same
memory space. When a cache writes to a block, caches
that share the block spend 1 bus cycle to get updated.
These caches can invalidate the block to avoid the cost

of updating. When a cache decides to invalidate a block
which ends up required shortly after, there is a penalty
of p cycles. The optimization problem lies in finding

when a cache should invalidate and when to update
the block. The solution to the index building problem
in this work involves a similar decision. The indexing
mechanism of the tuner of Slalom decides whether to
pay an additional cost per query (“updating a block”)
or invest in building an index, hoping that the invest-
ment will be covered by future requests (“invalidating
a block”). Specifically, in cases where the cost of using
an index is negligible compared to the cost of full data
scan, deciding on index construction can be directly

mapped to the snoopy caching problem.

The performance measure of randomized algorithms
is the competitive ratio (CR): the ratio between the ex-
pected cost incurred when the online algorithm is used
and that of an optimal offline algorithm that we as-
sume has full knowledge of the future. When index ac-
cess cost is negligible, the randomized algorithm of the

tuner guarantees optimal CR ( e
e−1 ). The tuner uses a

randomized algorithm in order to avoid the high com-
plexity of what-if analysis [59] and to improve the com-
petitive ratio offered by the deterministic solutions [15].
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Cost Model. Assume query workload W. At a given
query q of the workload, a partition is in one of two
states: it either has an index or it does not. A state is
characterized by the pair (Cbuild, Cuse) where Cbuild is
the cost to enter the state (e.g., build the index) and
Cuse the cost to use the state (e.g., use the index). The
initial state is the state with no index (i.e., full scan)
(Cbuild,fs, Cuse,fs) where Cbuild,fs = 0. In the second
state (Cbuild,idx, Cuse,idx), the system has an index . We
assume that the relation between the costs for the two
states is Cbuild,idx > Cbuild,fs and Cuse,idx < Cuse,fs
and Cbuild,idx > Cuse,fs.

Given a partition i, the index building cost over that
partition (Cibuild

), the full partition scan cost (Cifullscan
),

the index partition scan cost (Ciindexscan
) and a se-

quence of queries Q : [q1, . . . , qT ] accessing the parti-
tion. Assume that qT is the last query that accesses
the partition (and is not known). At the arrival time of
qk, k < T , we want to decide whether the Index Man-
ager should build the index or perform full scan over
the partition to answer the query.

To make the decision we need a probability estimate
pi for building the index at moment i based on the costs
of building the index or not. In order to calculate pi we

initially define the overall expected execution cost of the
randomized algorithm that depends on the probability
pi. The expected cost E comprises three parts:

i. the cost of using the index, which corresponds to
the case where the index has already been built.

ii. the cost of queries doing full partition scan, which
corresponds to the case for which the index has
not be built.

iii. the cost of building the index, which corresponds

to the case where the building of the index will take
place at time i. Index construction takes place as
a by-product of query execution and includes the

cost of the current query.

E =
T∑
i=1

( i−1∑
j=1

pj · Cuse,idx+

(
1−

i−1∑
j=1

pj

)
·
(
pi · Cbuild,idx + (1− pi) · Cuse,fs

))

Knowing the expected cost we minimize and we
solve for pi

1.

pi =
Cuse,fs − Cuse,idx
Cbuild,idx − Cuse,fs

· (T − i)−
(

1−
i−1∑
j=1

pj

)
(5)

1 details on how this formula is derived are found in Ap-
pendix A.

Based on our model, performing a full scan over the
complete data file should be always cheaper than an
index access and the amortized extra cost of building
the index (over T queries).

Eviction Policy. The tuner works within a predefined
memory budget to minimize memory overhead. If the
memory budget is fully consumed and the Index Man-
ager attempts to build a new index, then it defers index
construction for the next query and searches indexes to
drop to make the necessary space available. The Index
Manager keeps all value-existence indexes once built,
because their size is minimal and they are the basis
of partition skipping. Furthermore, the Index Manager
prioritizes binary caches over indexes, because (i) us-
ing a cache improves the performance of all queries ac-
cessing a partition, and (ii) accessing the raw data file
is typically more expensive than rebuilding an index
for large partitions. Deciding which indexes from which
partitions to drop is based on index size (Sizeindexi

),
number of queries since last access (LAi), and average

selectivity (seli) in a partition. To compute the set of
indexes to drop, the Index Manager uses a greedy al-
gorithm which gathers the least accessed indexes with
cumulative size (

∑
i Sizeindexi

) equal to the size of the

new index. Specifically, to discover the least accessed
indexes, the Index Manager keeps a bitmap of accesses
for each partition. During a query predicate evaluation

on a partition and depending on whether the current
query touches the partition, the Index Manager shifts
the partition’s bitmap to the left and appends a bit

to it: 1 (yes) or 0 (no). When calculating the candi-
date indexes to drop, the Index Manager uses SIMD
instructions to evaluate the set of least accessed par-
titions. Specifically, each bitmap is an 8-byte unsigned
integer which stores the past 64 queries. In a 256-byte
wide CPU register, the Index Manager uses a bitmask
operation to check the occupancy of 32 partitions simul-
taneously. When all indexes are used with the same fre-
quency, the tuner uses the average selectivity of queries
on each partition as a tie-breaker condition. The less
selective queries are, the smaller the gap between index

and full scan performance, therefore the Index Manager
victimizes partitions touched by non-selective queries.

4.3 Handling File Updates

Slalom supports both append-like and in-place updates

directly over the raw data file and ensures consistent
results. In order to achieve efficient data access and cor-
rect results despite updates, Slalom continuously moni-
tors the queried files for any write operation and stores
summaries of the queried files representing their current
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state. If a file is updated, Slalom compares its existing
summary, with the stored state, identifies the changes
and updates any dependent data structures.

In this section, we describe in detail how Slalom:
(i) monitors its input files for updates at real-time, (ii)
calculates and stores a summary of the most recent con-
sistent state for reference, (iii) identifies the updated file
subsets and (iv) updates its internal data structures.

4.3.1 Monitoring Files

In order to recognize whether an input file has been
updated by another application (e.g., vim), Slalom uses
OS support (i.e., inotify [43]). Specifically, Slalom ini-
tializes a watchdog, over the queried file, which is trig-
gered when the file is written upon and adds a log entry
into a queue. This queue contains all updates that have
not been addressed by Slalom yet. Slalom checks the
queue for new updates both at the beginning of every
query as well as during execution. During a running
query, Slalom checks for any updates that happened in
data that has been already scanned. If such an update

has taken place, Slalom re-executes the query as results
might be invalid if the records processed come from dif-
ferent file versions.

4.3.2 Calculating and Storing State

In order to be able to discover the updated rows in the
file and the type of update (append or in-place), Slalom
exploits its logical partitioning scheme. For each parti-

tion, Slalom stores a checksum encoding the contents
within that partition and the starting and ending posi-
tions of the partition in the file. This information is col-

lected during the first query accessing a partition. The
collected information summarizes the size as well as the
content of the partition, thereby is sufficient to identify

the existence of an update. As the checksum calculation
is part of the critical path of query execution it increases
the query runtime. To alleviate this cost Slalom ex-
ploits specialized hardware, that offers high throughput
in checksum calculation. Furthermore, the performance
and accuracy of checksum algorithms depends highly on
the size of data they summarize, thus Slalom varies the
checksum algorithm depending on partition size. Cur-
rently, Slalom supports two checksum algorithms, (i)
MD5 and (ii) CRC, these algorithms are widely used in
a variety of applications based on their reliability and
performance.

MD5 Algorithm. MD5 [58] is a cryptographic hash
function, and widely used data integrity verification

checksum [65]. Given input of arbitrary size, MD5 al-
gorithm produces a 128-bit output, which is usually

represented in 32 hexadecimal digits. MD5 uses four
non-linear functions and it can deal with data of arbi-
trary length. MD5 serves as a good candidate for de-
tecting file updates, however, its calculations on a CPU
are expensive. Thus, we design a parallelization scheme
for MD5. MD5 is an irreversible transformation trans-
forming a set of data of any length into a hash value of
128-bit length. MD5 is a consecutive processing method
as the original algorithm processes the input data in-
crementally in 512-bit groups and combines them with
the result coming from the processing of prior groups. In
order to parallelize the computation of MD5, we com-
pute in parallel different portions of the checksum. We
divide the input data into small blocks of equal size.
Subsequently, we perform the standard MD5 algorithm
on each data block, in parallel, and we store the calcu-
lated checksums. Finally, the resulting checksums are
combined until the result is 128-bit long. The check-
sum computed by this approach is not identical to the
standard MD5 checksum however has equal encryption
strength [30]. As the algorithm is inherently suitable

for multi-threading, and to further improve the perfor-
mance of MD5 checksum calculation, we implemented
the parallel MD5 over NVIDIA CUDA and calculate
checksums over NVIDIA GPUs.

CRC. Cyclic Redundancy Codes are used to mostly de-
tect errors in network packets [55]. As this operation is
latency-sensitive, modern processors have added CPU
instructions, mm crc32 u64, for calculating 32-bit CRC
code to its SSE4.2 instruction set. To obtain m-bit CRC
code, the n-bit input data is first appended with m ze-

ros. Then it is XORed with a polynomial divisor of the
size of (n+ 1) bit from left to right. The last m bits are
the final resulting code.

Typically a n-bit CRC applied to a data block of
arbitrary length will detect any single error burst not
longer than n bits and will detect a fraction 1

(1−2−n) of
all longer error bursts. As partitions used by Slalom can

be of arbitrary size, Slalom calculates the 32-bit CRC
value for each 1024-byte block in the partition and then
adds up all computed values to give the final verification
code. This code has the same detection ability, namely
detecting changes no longer than 4 bytes and almost all
longer changes.

4.3.3 Recognizing Update Type and Updating Data
Structures

In order to provide efficient data access, Slalom builds
a set of data structures which are built based on the
existing state of the queried file. Updates may change

that state thus making the prior investments obsolete.
Specifically, indexes and PMs are sensitive to the spe-
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cific location of attributes and number of tuples within
the file. Similarly, caches and Bloom filters become ob-
solete with any change in a partition. To overcome this
issue, Slalom updates its data structures accordingly
depending on the update type.

To identify the type of update, Slalom compares
the current state of each partition with the stored one.
Thus, Slalom checks whether the partition beginning
and ending character has changed or if the checksum
has changed. If the state of each partition matches with
the existing one, then the update type is an append.
Otherwise, it is an in-place update.

Append-like updates. Slalom supports updates in
an append-like scenario without disturbing query ex-
ecution and by dynamically extending auxiliary data
structures. In append-like scenarios, Slalom creates a
new partition at the end of the file to accommodate
the new data. Depending on the partitioning approach,
Slalom either accumulates updates to create partitions
of equal size (i.e., query-based partitioning) or dynami-

cally repartitions the fresh data. Once Slalom has orga-
nized the new data in partitions, it treats them similarly
to a first time input. Thus, during the first query after
an update, Slalom builds binary caches and positional

maps over the new data. When the new partitions are
declared stable, Slalom builds indexes on top of them.

In-place updates. In-place updates correspond to ran-
dom changes in the file by another application, such as
updating values of specific fields or adding additional

rows in the middle of the file. In-place updates are more
challenging, especially when considering the case of the
positional map and indexes. A change in a position of
an attribute in the data file might require significant

reorganization in all generated data structures.

Updating Positional Maps: To update the positional
map for a modified partition, Slalom scans character by
character each field to narrow down the updated parts.
Once the updated section has been identified, Slalom
stores the difference in byte offsets between the old and
new fields into a delta list. All new changes are ap-

pended to the list and any possible changes in previous
offset differences are being integrated as well. The delta
list adds additional computational overhead when us-
ing the positional map as for every access Slalom must
access the delta list to check whether the position has
been altered by an update. As the delta list is grow-
ing, the complexity of position computation is growing
as well. Thus to reduce the query cost, the delta list is
incorporated into the original positional map every 10
updates. Specifically, to incorporate the delta list into
the positional map, Slalom scans over the delta list and

adds the offsets to the existing indexes in the positional

map. This way, it does not have to completely recon-
struct the positional map while reducing the delta list.
Updating caches and indexes: In order to keep minimal
memory footprint, Slalom does not store a replica of the
original file to be able retrieve old values for each up-
dated field. Hence, Slalom is unable to update indexes
and caches. Rather, it invalidates and re-builds them.

5 Experimental Evaluation

In this section, we present an analysis of Slalom. We
analyze its partitioning and indexing algorithm, and
compare it against state-of-the-art systems over both
synthetic and real life workloads.

Methodology. We compare Slalom against DBMS-X,
a commercial state-of-the-art in-memory DBMS that
stores records in a row oriented manner and the open-
source DBMS PostgreSQL (version 9.3). We use DBMS-

X and PostgreSQL with two different configurations: (i)
Fully-loaded tables and (ii) Fully-loaded, indexed ta-
bles. We also compare Slalom with the in-situ DBMS

PostgresRaw [5]. PostgresRaw is an implementation of
NoDB [5] over PostgreSQL; PostgresRaw avoids data
loading and executes queries by performing full scans
over CSV files. In addition, PostgresRaw builds posi-

tional maps on-the-fly to reduce parsing and tokeniza-
tion costs. Besides positional maps, PostgresRaw uses
caching structures to hold previously accessed data in

a binary format. Furthermore, to compare Slalom with
other adaptive indexing techniques we integrate into
Slalom two variations of database cracking: (i) standard

cracking [32] and (ii) the MDD1R variant of stochastic
cracking [28]. We chose MDD1R as it showed the best
overall performance in [60]. We integrated the crack-
ing techniques by disabling the Slalom tuner and set-
ting Cracking as the sole access path. Thus, Slalom and
Cracking use the same execution engine and have the
same data access overheads.

Slalom’s query executor pushes predicate evaluation
down to the access path operators for early tuple filter-
ing and results are pipelined to the other operators of

a query (e.g., joins). Thus, in our analysis, we focus on
scan intensive queries. We use select - project - aggre-
gate queries to minimize the number of tuples returned
and avoid any overhead from the result tuple output
that might affect the measured times. Unless other-
wise stated, the queries are of the following template
(OP : {<,>,=}):
SELECT agg(A), agg(B), ..., agg(N) FROM R

WHERE A OP X (AND A OP Y)

Experimental Setup. The experiments are conducted
in a Sandy Bridge server with a dual socket Intel(R)
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query sequence.

Xeon(R) CPU E5-2660 (8 cores per socket @ 2.20 Ghz),
equipped with 64 KB L1 cache and 256 KB L2 cache
per core, 20 MB L3 cache shared, and 128 GB RAM

running Red Hat Enterprise Linux 6.5 (Santiago - 64
bit) with kernel version 2.6.32. The server is equipped
with a RAID-0 of 7 250GB 7500 RPM SATA disks.

5.1 Adapting to Workload Shifts

Slalom adapts efficiently to workload shifts despite (i)
changes in data distribution, (ii) changes in query se-

lectivity, and (iii) changes in query locality - both ver-
tical (i.e., different attributes) and horizontal (i.e., dif-
ferent records). We demonstrate the adaptivity experi-
mentally by executing a dynamic workload with varying
selectivity and access patterns over a synthetic dataset.

Methodology. To emulate the worst possible scenario
for Slalom, we use a relation of 640 million tuples (59GB),
where each tuple comprises 25 unsigned integer attributes
with uniformly distributed values ranging from 0 to
1000. Slalom is unable to find a value clustering in
the file because all values are uniformly distributed,
thus Slalom applies homogeneous partitioning. Slalom,

cracking, and PostgresRaw operate over the CSV data
representation, whereas PostgreSQL and DBMS-X load
the raw data prior to querying. In this experiment we
limit the index memory budget for Slalom to 5GB and
the cache budget to 10GB. All other systems are free
to use all available memory. Specifically, for this exper-
iment DBMS-X required 98GB of RAM to load and
fully build the index.

We execute a sequence of 1000 point and range select-
project-aggregation queries following the template from
Section 5. The selection value is randomly selected from

the domain of the predicate attribute. Point query se-
lectivity is 0.1% and range query selectivity varies from
0.5% to 5%. To emulate workload shifts and examine
system adaptivity, in every 100 queries, queries 1-30

and 61-100 use a predicate on the first attribute of the
relation and queries 31-60 use a predicate on the second
attribute.

The indexed variations of PostgreSQL and DBMS-
X build a clustered index only on the first attribute. It
is possible to build indexes on more columns for Post-
greSQL and DBMS-X, however it requires additional
resources and would increase data-to-query time. In ad-
dition, choosing which attributes to index requires a pri-
ori knowledge of the query workload, which is unavail-
able in the dynamic scenarios that Slalom considers.
Indicatively, building an secondary index on a column

for PostgreSQL for our experiment takes ∼25 minutes.
Thus, by the time PostgreSQL finishes indexing, Slalom
will have finished executing the workload (Figure 6).

Slalom Convergence. Figure 4 shows the response

time of each query of the workload for the different
system configurations. For clarity we present the re-
sults for the first 100 queries. To emulate the state of
DBMS systems immediately after loading, all systems
run from a hot state where data is resting in the OS
caches. Figure 4 plots only query execution time and
does not show data loading or index building for Post-
greSQL and DBMS-X.
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The runtime for the first query of Slalom is 20×
slower than its average query time, because during that
query it builds a positional map and a binary cache.
In subsequent queries (queries 2-7) Slalom iteratively
partitions the dataset and builds B+ tree. After the
initial set of queries (queries 1-6), Slalom has compara-
ble performance to the one of PostgreSQL over fully
indexed data. During the 3rd query, multiple parti-
tions stabilize simultaneously, thus Slalom builds many
B+ tree and Bloom Filter indexes, adding considerable
overhead. When Slalom converges to its final state, its
performance is comparable to indexed DBMS-X. When
the queried attribute changes (query 31), Slalom starts
partitioning and building indexes on the new attribute.
After query 60, when the workload filters data based on
the first attribute again (for which the partitioning is
already stable) Slalom re-uses the pre-existing indexes.

PostgreSQL with no indexes demonstrates a sta-
ble execution time as it has to scan all data pages
of the loaded database regardless of the result size.

Due to the queries being very selective, when an in-
dex is available for PostgreSQL, the response times are
∼9× lower when queries touch the indexed attribute.

DBMS-X keeps all data in memory and uses memory-
friendly data structures, so it performs on average 3×
better than PostgreSQL. The difference in performance

varies with query selectivity. In highly selective queries,
DBMS-X is more efficient in data access whereas for less
selective queries the performance gap is smaller. Fur-
thermore, for very selective queries, indexed DBMS-X

is more efficient than Slalom as its single B+ tree tra-
verses very few results nodes.

During query 1, PostgresRaw builds auxiliary struc-
tures (cache, positional map) and takes 3× more time
(180 sec) than its average query run time. PostgresRaw
becomes faster than the unindexed PostgreSQL varia-

tion as its scan operators use vector-based (SIMD) in-
structions and exploit compact caching structures.

Similarly, during query 1, cracking builds a binary
cache and populates the cracker column it uses for in-
cremental indexing. The runtime of its first query is

4× slower than the average query time for PostgreSQL
without indexes. When it touches a different attribute
(query 31) it also populates a cracker column for the
second attribute. Despite the high initialization cost,
cracking converges efficiently and reaches its final re-
sponse time after the fourth query. The randomness
in the workload benefits cracking as it splits the do-
main into increasingly smaller pieces. After converging,
cracking performance is comparable to the PostgreSQL
with index. Slalom requires more queries to converge
than cracking. However, after it converges, Slalom is

∼2× faster than cracking. This difference stems from
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Fig. 6: Sequence of 1000 queries. Slalom does not incur
loading cost and dynamically builds indexes.

cracking execution overheads. cracking sorts the result-
ing tuples based on their memory location and enforces
sequential memory access. This sorting operation adds
an overhead, especially for less selective queries.

Execution Breakdown. Slalom aims to build efficient
access paths with minimal overhead. Figure 5 presents
the breakdown of query execution for the same exper-

iment as before. For clarity, we present only queries
Q1-15 and Q31-45 as Q16-30 show the same pattern
as Q11-15. Queries Q1-15 have a predicate on the first

attribute and queries Q31-45 have a predicate on the
second attribute.

During the first query, Slalom scans through the
original file and creates the cache. During Q2 and Q3

Slalom is actively partitioning the file and collects data
statistics (i.e., distinct value counts) per partition; Sla-
lom bases the further partitioning and indexing deci-

sions on these statistics. Statistics gathering cost is rep-
resented in Figure 5 as “Insert to Metadata”. During
queries Q2 and Q3, as the partitioning scheme stabi-
lizes, Slalom builds Bloom filters and B+ trees. Q3 is

the last query executed using a full partition scan, and
since it also incurs the cost of index construction there
is a local peak in execution time. During Q4 through

Q8, Slalom increasingly improves performance by build-
ing new indexes. After Q31, the queries use the second
attribute of the relation in the predicate, thus Slalom
repeats the process of partitioning and index construc-
tion. In total, even after workload shifts, Slalom con-
verges into using index-based access paths over con-
verted binary data.

Full Workload: From Raw Data to Results. Fig-
ure 6 presents the full workload of 1000 queries, this
time starting with cold OS caches and no loaded data
to include the cost of the first access to raw data files for
all systems. We plot the aggregate execution time for
all approaches described earlier, including the loading
and indexing costs for PostgreSQL and DBMS-X.

PostgresRaw, Slalom, and cracking incur no loading
and indexing cost, and start answering queries before

the other DBMS load data and before the indexed ap-
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Fig. 7: Memory consumption of Slalom vs. a single fully-
built B+ Tree for PostgreSQL and DBMS-X. Slalom
uses less memory because its indexes only target specific
areas of a raw file.

proaches finish index building. Unindexed PostgreSQL
incurs data loading cost as well as a total query aggre-
gate greater than PostgresRaw. Indexed PostgreSQL
incurs both indexing and data loading cost, and due to
some queries touching a non-indexed attribute, its ag-
gregate query time is greater than the one of Slalom.
Unindexed DBMS-X incurs loading cost; however, thanks
to its main memory-friendly data structures and exe-

cution engine, it is faster than the disk-based engine of
PostgreSQL.

After adaptively building the necessary indexes, Sla-
lom has comparable performance with a conventional
DBMS which uses indexes. cracking converges quickly
and adapts to the workload efficiently. However, creat-

ing the cracker columns incurs a significant cost. Over-
all, cracking and Slalom offer comparable raw-data-to-
results response time for this workload while, Slalom

requires 0.5× memory. We compare in detail cracking
and Slalom in Section 5.3.

Memory Consumption. Figure 7 plots the memory
consumption of (i) the fully built indexes used for DBMS-
X and PostgreSQL, (ii) the cracker columns for crack-
ing, and (iii) the indexes of Slalom. Figure 7 excludes
the size of the caches used by Slalom and cracking or
the space required by DBMS-X after loading. The tradi-
tional DBMS require significantly more space for their
indexes. Orthogonally to the index memory budget,

DBMS-X required 98GB of memory in total, whereas
the cache of Slalom required 9.7GB. cracking builds its
cracker columns immediately when accessing a new at-
tribute. The cracker column requires storing the origi-
nal column values as well as pointers to the data, thus it
has a large memory footprint even for low value cardi-
nality. Regarding the indexes of Slalom, when the focus
shifts to another filtering attribute (Q31), Slalom in-
creases its memory consumption, as during Q31-34 it
creates logical partitions and builds Bloom filters and

B+ tree indexes on the newly accessed attribute. By
building and keeping only the necessary indexes for a
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query sequence, Slalom strikes a balance between query
performance and memory utilization.

Minimizing Data Access. The performance gains of
Slalom are a combination of data skipping based on par-

titioning, value-existence indexes, and value-position in-
dexes, all of which minimize the number of tuples Slalom
has to access. Figure 8 presents the number of tuples

that Slalom accesses for each query in this experiment.
We observe that as the partitioning and indexing schemes
of Slalom converge, the number of excess tuples ac-
cessed is reduced. Since the attribute participating in

the filtering predicate of queries Q31-60 has been cached,
Slalom accesses the raw data file only during the first
query. Slalom serves the rest of the queries utilizing

only the binary cache and indexes. For the majority of
queries, Slalom responds using an index scan. However
there are queries where it responds using a combination
of partition scan and index scan.

Figure 9 presents how the minimized data access
translates to reduced response time and the efficiency of
data skipping and indexing for different data distribu-
tion and different query types. Specifically, it presents
the effect of Zonemaps, Bloom filters and B+ trees on
query performance for point queries and range queries
with 5% selectivity over uniform and clustered datasets.
The clustered dataset contains mutually disjointed par-
titions (i.e., subsets of the file contain values which do
not appear in the rest of the file). The workload used
is the same used for Figure 4. Zone maps are used for
both range and point queries and are most effective
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Fig. 11: Slalom memory allocation (12GB memory bud-
get).

when used over clustered data. Specifically, they offer
a ∼9× better performance than full cache scan. Bloom
filters are useful only for point queries. As the datasets

have values in the domain [1,1000], point queries have
low selectivity making Bloom filters ineffective. Finally,
B+ trees improve performance for both range and point
queries. The effect of B+ tree is seen mostly for uniform

data where partition skipping is less effective. Slalom
stores all indexes in-memory, thus by skipping a par-
tition, Slalom avoids full access of the partition and

reduces memory access or disk I/O if the partition is
cached or not respectively.

Summary. We compare Slalom against (i) a state-of-
the-art in-situ querying approach, (ii) a state-of-the-art
adaptive indexing technique, (iii) a traditional DBMS,

and (iv) a state-of-the-art in-memory DBMS. Slalom
gracefully adapts to workload shifts using an adaptive
algorithm with negligible execution overhead. Slalom
offers performance comparable with a DBMS which uses
indexes, while also being more conservative in memory
space utilization.

5.2 Working Under Memory Constraints

As described in Section 4.2, Slalom efficiently uses the
available memory budget to keep the most beneficial
auxiliary structures. We show this experimentally by
executing the same workload under various memory
utilization constraints. We run the 20 first queries – a
mix of point and range queries. We consider three mem-
ory budget configurations with 10GB, 12GB, and 14GB

of available memory, respectively. The budget includes
both indexes and caches.

Figure 10 presents the query execution times for
the workload given the three different memory bud-
gets. The three memory configurations build a binary
cache and create the same logical partitioning. Slalom
requires 13.5GB in total for this experiment; given an
14GB memory budget, it can build all necessary in-
dexes, leading to the best performance for the work-
load. For the 10GB and 12GB memory budgets, there
is insufficient space to build all necessary indexes, thus
these configurations experience a performance drop. We
observe that configurations with 10GB and 12GB mem-
ory budgets outperform the configuration with 14GB of
memory budget for individual queries (i.e., Q3 and Q5).
The reason is that the memory-limited configurations
build fewer B+-Trees during these queries than the con-
figuration with 14GB of available memory. However,
future queries benefit from additional B+-Trees, amor-

tizing the extra overhead over a sequence of queries.

Figure 11 presents the breakdown of memory al-
location for the same query sequence when Slalom is
given a 12GB memory budget. We consider the space

required for storing caches, B+-Trees and Bloom filters.
The footprint of the statistics and metadata Slalom col-
lects for the cost model and zone maps is negligible,
thus we exclude them from the breakdown. Slalom ini-

tially builds the binary cache, and logically partitions
the data until some partitions become stable (Q1, Q2).
At queries Q3, Q4, and Q5 Slalom starts building B+-

Trees, and it converges to a stable state at query Q7
where all required indexes are built. Thus, from Q7-Q10
Slalom stabilizes performance. Overall, this experiment
shows that Slalom can operate under limited memory
budget gracefully managing the available resources to
improve query execution performance.

5.3 Adaptivity Efficiency

Slalom adapts to query workloads as efficiently as state-
of-the-art adaptive indexing techniques while working
with less memory. Furthermore, it exploits any poten-

tial data clustering to further improve its performance.
We demonstrate this by executing a variety of work-
loads. We use datasets of 480M tuples (55GB on disk);
each tuple comprises 25 unsigned integer attributes whose
values belong to the domain [1, 10000]. Queries in all
workloads have equal selectivity to alleviate the noise
from data access; all queries have 0.1% selectivity, i.e.,
select 10 consecutive values.
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Fig. 12: Comparing cracking techniques with Slalom.

Methodology. Motivated by related work [60], we com-
pare Slalom against cracking and stochastic cracking in
three cases.

Random workload over Uniform dataset. We exe-
cute a sequence of range queries which access random
ranges throughout the domain to emulate the best case
scenario for cracking. As subsequent queries filter on
random values and the data is uniformly distributed in

the file, cracking converges and minimizes data access.

“Zoom In Alternate” over Uniform dataset. To em-
ulate the effect of patterned accesses, we execute a se-

quence of queries that access either part of the do-
main in alternate, i.e., first query: [1,10], second query:
[9991,10000], third query: [11,20], etc. This access pat-

tern is one of the scenarios where the original cracking
algorithm underperforms [28]. Splits are only query-
driven, and every query splits data into a small piece
and the rest of the file. Thus, the improvements in per-

formance with subsequent queries are minimal. stochas-
tic cracking alleviates the effect of patterned accesses by
splitting in more pieces apart from the ones based on

queries.

Random workload over Clustered dataset. This setup
examines how adaptive indexing techniques perform on

datasets where certain data values are clustered to-
gether, for example, data clustered on timestamp or
sorted data. The clustered dataset we use in the exper-

iment contains mutually disjoint partitions, i.e., subsets
of the file contain specific values which appear solely in
those locations and do not appear in the rest of the file.

Figure 12a demonstrates the cumulative execution
time for cracking, stochastic cracking and Slalom for
the random workload over uniform data. All approaches
start from a cold state, thus during the first query
they parse the raw data file and build a binary cache.
stochastic cracking and cracking incur an additional
cost of cracker column initialization during the first
query, but reduce execution time with every subsequent
query. During the first three queries, Slalom creates its
partitions; during the following 6 queries, Slalom builds

the required indexes, and finally converges to a stable
state at query 10. Due to its fine-grained indexing and

local memory accesses, Slalom provides ∼8× lower re-
sponse time than cracking and their cumulative execu-
tion time is equalized during query 113. Furthermore,
Figure 12d demonstrates the memory consumption of
the cracking approaches and Slalom for the same exper-
iment. The cracking approaches have the same memory
footprint; they both duplicate the full indexed column
along with pointers to the original data. On the other
hand, the cache-conscious B+-Trees of Slalom stores

only the distinct values along with the positions of each
value, thus reducing the memory footprint. In addition,
Slalom allocates space for its indexes gradually, offering
efficient query execution even with limited resources.

Figure 12b shows the cumulative execution time for
cracking, stochastic cracking, and Slalom for the “Zoom
In Alternate” workload over uniform data. cracking needs

more queries to converge to its final state as it is crack-
ing only based on query-driven values. stochastic crack-
ing converges faster because it cracks based on more
values except the ones found in queries. Slalom uses a

combination of data and query driven optimizations.
Slalom requires an increased investment during the ini-
tial queries to create its partitioning scheme and in-
dex the partitions, but ends up providing 7× lower re-
sponse time, and equalizes cumulative execution time
with cracking at query 53 and stochastic cracking at

query 128.

Figure 12c presents the cumulative execution time
of cracking, stochastic cracking and Slalom for the ran-
dom workload over implicitly clustered data. In this sit-
uation, Slalom exploits the clustering of the underlying
data early on (from the second query) and skips the
majority of data. For the accessed partitions, Slalom

builds indexes to further reduce access time. Similarly
to Figure 12a, the cracking approaches crack only based
on the queries and are agnostic to the physical organi-
zation of the dataset.

Summary. Slalom converges comparably to the best
cracking variation when querying uniform data over
both random and “Zoom In Alternate” workloads. Fur-
thermore, when Slalom operates over clustered data,

it exploits the physical data organization and provides
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Table 2: Cost of each phase of a smart-meter workload.

System Loading Index Build Queries Total

Slalom 0 sec 0 sec 4301 sec 4301 sec

Cracking 0 sec 0 sec 6370 sec 6370 sec

PostgresRaw 0 sec 0 sec 10077 sec 10077 sec

PostgresSQL (with index) 2559 sec 1449 sec 9058 sec 13066 sec

PostgreSQL (no index) 2559 sec 0 sec 15379 sec 17938 sec

DBMS-X (with index) 6540 sec 1207 sec 3881 sec 11628 sec

DBMS-X (no index) 6540 sec 0 sec 5243 sec 11783 sec

minimal data-to-query time. Finally, as Slalom builds
indexes gradually and judiciously, it requires less mem-
ory than the cracking approaches, and it can operate
under a strict memory budget.

5.4 Slalom Over Real Data

In this experiment, we demonstrate how Slalom serves a
real-life workload. We use a smart home dataset (SHD)
taken from an electricity monitoring company. The data-
set contains timestamped information about sensor mea-

surements such as energy consumption and tempera-
ture, as well as a sensor ID for geographical tracking.
The timestamps are in increasing order. The total size
of the dataset is 55 GB in CSV format. We run a typical

workload of an SHD analytics application. Initially, we
ask a sequence of range queries with variable selectivity,
filtering data based on the timestamp attribute (Q1-

29). Subsequently, we ask a sequence of range queries
which filter data based on energy consumption mea-
surements to identify a possible failure in the system

(Q30-59). We then ask iterations of queries that filter
results based on the timestamp attribute (Q60-79, Q92-
94), the energy consumption (Q80-84, Q95-100), and
the sensor id (Q85-91) respectively. Selectivity varies

from 0.1% to 30%. Queries focusing on energy consump-
tion are the least selective.

Figure 13 shows the response time of the different

approaches for the SHD workload. All systems run from
a hot state, with data resting in the OS caches. The in-
dexed versions of PostgreSQL and DBMS-X build a B+-
Tree on the timestamp attribute. The figure plots only
query execution time and does not show the time for
loading or indexing for PostgreSQL and DBMS-X. For
other other systems, where building auxiliary structures
takes place during query execution, execution time con-
tains the total cost.

PostgreSQL and DBMS-X without indexes perform

full table scans for each query. Q30-60 are more expen-
sive because they are not selective. For queries filtering
on the timestamp, indexed PostgreSQL exhibits 10×
better performance than PostgreSQL full table scan.
Similarly, indexed DBMS-X exhibits 17× better per-

formance compared to DBMS-X full table scan. As the
queries using the index become more selective, response
time is reduced. For the queries that do not filter data
based on the indexed field, the optimizer of DBMS-X
chooses to use the index despite the predicate involving
a different attribute. This choice leads to response time
slower than the DBMS-X full scan.

PostgresRaw is slightly faster than PostgreSQL with-
out indexes. The runtime of the first query that builds
the auxiliary structures (cache, positional map) is 8×
slower (374 sec) than the average query runtime. For the
rest of the queries PostgresRaw behaves similar to Post-
greSQL and performs a full table scan for each query.

After the first query, Slalom identifies that the val-
ues of the timestamp attribute are unique. Thus, it
chooses to statically partition the data following the
cost model for query-based partitioning (Section 4.1)
and creates 1080 partitions. Slalom creates the logi-
cal partitions during the second query and calculates
statistics for each partition. Thus, the performance of

Slalom is similar to that of PostgresRaw for the first two
queries. During the third query, Slalom takes advantage
of the implicit clustering of the file to skip the major-

ity of the partitions, and decides whether to build an
index for each of the partitions. After Q5, when Slalom
has stabilized partitions and already built a number of
indexes over them, the performance is better than that

of the indexed PostgreSQL variation.

Queries Q2-Q30 represent a best-case scenario for
DBMS-X: data resides in memory and its single index
can be used, therefore, DBMS-X is faster than Slalom.

After Q29, when queries filter on a different attribute,
the performance of Slalom becomes equal to that of
PostgresRaw until Slalom builds indexes. Because the
energy consumption attribute has multiple appearances
of the same value, Slalom decided to use homogeneous
partitioning. Q30 to Q59 are not selective, thus execu-
tion times increase for all systems.

Table 2 shows the costs for loading and indexing as
well as the aggregate query costs for the same query
workload of 100 queries, for all the systems. Due to
the queries being non-selective, the indexed and non-
indexed approaches of DBMS-X have similar perfor-
mance, thus in total Slalom exploits its adaptive ap-
proach to offer competitive performance to the fully
indexed competitors.

Summary. Slalom serves a real-world workload which
involves fluctuations in the areas of interest, and queries

of great variety in selectivity. Slalom serves the work-
load efficiently due to its low memory consumption and
its adaptivity mechanisms which gradually lower query
response times despite workload shifts.
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5.5 Slalom Handling File Updates

In this section, we demonstrate Slalom’s update effi-
ciency for append-like and in-place updates.

5.5.1 Append-like Updates

Slalom monitors changes in the queried files and dy-
namically adapts its data structures. In this experi-
ment, we execute a sequence of 20 point queries follow-
ing the template from Section 5 with selectivity 0.1%.
Q1 to Q10 run on the original relation of 18 million tu-
ples (22GB). Between queries Q10 and Q11 we append
to the CSV dataset 6GB of additional uniformly dis-
tributed data. Slalom detects the change in the struc-
ture of the file and iteratively creates new logical par-
titions for the new tuples, and creates Bloom filters

and B+-Trees during Q11, Q12, and Q13. Between Q16
and Q17, we append again 6GB of data to the end
of the CSV dataset. Slalom again dynamically parti-
tions and builds indexes. Figure 14 shows the execution
time for each of the queries in the sequence. Q11 and
Q17 execute immediately after the appends, thus we see
higher execution time because Slalom (i) accesses raw
data, and (ii) builds auxiliary structures – positional
maps and binary caches – over them. After this update-
triggered spike in execution time, Slalom’s partitioning

and indexing schemes converge and the execution time
becomes lower and stabilizes.
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Fig. 15: Slalom executing workload with in-place up-

dates.
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Fig. 16: Time break-down of query executiong with in-

place updates.

5.5.2 In-place Updates

We now show that Slalom handles in-place updates.
We execute a sequence of 15 point queries following the
template from Section 5 with selectivity 0.01%, run on
a 25 million tuple relation (27GB). We query on a can-

didate key field to make Slalom use the query-based
partitioning strategy and observe solely the effect of
updates on a partition. To evaluate update efficiency,
we develop a random update generator which updates
fields and rows within a file in random places. Before
query Q5, the update generator updates 8 random rows,

and before query Q10, it updates 3 random rows. Fig-
ure 15 shows the execution time for each of the queries
in the sequence. During Q1, Slalom creates 345 parti-
tions and builds the positional map and indexes. Dur-
ing Q5 and Q10, the Update Monitor detects that the
file has been updated. Slalom compares the state of
all partitions to identify the updated partitions, per-
forms the required corrections to the positional map,
and re-builds the indexes. Figure 16 shows this process
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Fig. 17: Checksum calculation using different accelera-
tors with different partition sizes.

and presents the breakdown of query execution for Q1,
Q5, and Q10. During Q1, along with query execution,
Slalom calculates the MD5 codes for all partitions. The
update before Q5 touched more partitions than the sec-
ond update at Q10. Thus, Q5 has more partition data
structures to fix. As the query execution progresses, the
increasing number of partitions increases the number of
checksum calculations.

5.5.3 Speed-up Checksum Calculation

This experiment examines the effect of using GPU and
CRC accelerators for the calculation of the partition
checksums. We execute 3 point queries following the

template from Section 5 with selectivity 0.01%, over a
25 million tuple relation (27GB). To examine the effi-
ciency of GPU and CRC checksum calculation we vary

the number of partitions created by Slalom. The first
query breaks the file into 100 equally-sized partitions,
the second query into 1000 partitions, and the third

into 10000 partitions. Before each query, we make a
random update in the file to activate the re-calculation
of checksums. Figure 17 shows the checksum calcula-
tion cost for the three queries using the three different
appraches. When using the CPU (either the dedicated
CRC instructions or MD5 calculation) the cost of calcu-
lation remains constant. On the other hand, when using

the GPU, the checksum calculation is slower when the
number of partitions is increasing. The best approach
for calculating checksums is using the CRC. However,
as CRC is able to compute checksums over input of 1024
byte blocks, it generates a large number of checksums
for each partition. Thus, making checksum comparison
more time-consuming.

5.6 Additional Data Formats: Binary Data

This section shows that, besides CSV data, Slalom can
also operate efficiently over binary datasets. To accom-
modate binary data, Slalom employs the same tech-
niques as when running over CSV files, with two excep-
tions. It tunes the cost model to reduce the access cost
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Fig. 18: Sequence of 40 queries over a binary file.
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Fig. 19: Cumulative execution time of 40 queries over a
binary file.

System Loading Index Build Queries Total

Slalom 0 sec 0 sec 1352 sec 1352 sec

PostgresSQL (with index) 325 sec 165 sec 1264 sec 1754 sec

PostgreSQL (no index) 325 sec 0 sec 1677 sec 2002 sec

Table 3: Cost of each phase of the 40 query sequence
on binary file.

equations previously associated with text-based data
accesses, and does not have to build a positional map.
Figure 18 compares the execution time of Slalom and

PostgreSQL with and without indexes. We use a bi-
nary flat file with 100 million uniformly distributed tu-
ples, each having 30 columns (12GB) and we run range
queries with selectivity 1%. For Slalom the initial data
access is faster than that in the case of CSV data be-
cause (i) no parsing is involved and (ii) the binary rep-
resentation is more compact than the CSV one. During

the first 9 queries, Slalom fine-tunes its partitioning.
During Q3, multiple partitions happened to stabilize,
thus triggering the construction of multiple indexes and
leading to increased execution overhead. Both Post-
greSQL configurations have stable execution times as
the selectivity remains stable. Eventually, Slalom and

indexed PostgreSQL converge and have similar perfor-
mance. Figure 19 presents the cumulative execution
time for loading, index building, and query execution
for the three systems over binary files. PostgreSQL us-
ing indexes requires more pre-processing time due to in-
dex building and it takes 13 queries to pay-off the cost
of building the index. Slalom requires 7 queries to start
outperforming PostgreSQL and after 10 queries it offers
comparable performance to PostgreSQL with indexes.
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Table 3 presents separately the time required for load-
ing, index building, and query execution for the three
systems. The additional file adapters enable Slalom to
efficiently and transparently operate on top of addi-
tional data formats.

6 Conclusion

In-situ data analysis over large and, crucially, growing
data sets faces performance challenges as more queries
are issued. State-of-the-art in-situ query execution re-
duces the data-to-insight time. However, as the num-
ber of issued queries is increasing and, more frequently,
queries are changing access patterns (having variable
selectivity, projectivity and are of interest in the dataset),
in-situ query execution cumulative latency increases.

To address this, we bring the benefits of indexing to
in-situ query processing. We present Slalom, a system
that combines an in-situ query executor with an online
partitioning and indexing tuner. Slalom takes into ac-

count user query patterns to reduce query time over
raw data by partitioning raw data files logically and
building for each partition lightweight partition-specific
indexes when needed. The tuner further adapts its de-

cisions on-the-fly to follow any workload changes and
maintains a balance between the potential performance
gains, the effort needed to construct an index, and the

overall memory consumption of the indexes built.
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A Derivation of index construction probability
formula

This section provides detailed description of how we derive
the probability function for deciding to build an index over
a logical partition. We expect this section to be be useful for
achieving a deeper understanding of the tuning decisions of
Slalom. The derivation begins with the expected cost formula.

E =
T∑

i=1

( i−1∑
j=1

pj · Cuse,idx+

(
1 −

i−1∑
j=1

pj

)
·
(
pi · Cbuild,idx + (1 − pi) · Cuse,fs

))

We exchange Cbuild,idx with Cuse,fs + δ as building the
index will cost at least as much as a full scan.

E = T · Cuse,fs −
(
Cuse,fs − Cuse,idx

)
·
( T∑

i=1

i−1∑
j=1

pj

)
+

δ ·
( T∑

i=1

pi −
T∑

i=1

pi ·
i−1∑
j=1

pj

)
(6)

We take the first partial derivative of this formula for pi.

∂E

∂pi
= −

(
Cuse,fs − Cuse,idx

)
·
∂

(∑T
i=1

∑i−1
j=1 pj

)
∂pi

+

δ ·
(
∂
∑T

i=1 pi

∂pi
−
∂

(∑T
i=1 pi ·

∑i−1
j=1 pj

)
∂pi

)
(7)

We calculate that:

∂

(∑T
i=1

∑i−1
j=1 pj

)
∂pi

= (T − i) (8)

and

∂

(∑T
i=1 pi ·

∑i−1
j=1 pj

)
∂pi

=
T−1∑
j=1

pj − pi (9)

Thus, the final derivative becomes:

∂E

∂pi
= −

(
Cuse,fs−Cuse,idx

)
·
(
T−i

)
+δ ·

(
1−

T−1∑
j=1

pj−pi
)
(10)

To minimize the Expected cost we solve the equation and
we solve for pi.

∂E

∂pi
= 0 =>

pi =
Cuse,fs − Cuse,idx

δ
· (T − i) −

(
1 −

T−1∑
j=1

pj

)
(11)
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