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In rapidly adapting asexual populations, including many microbial pathogens and viruses,
numerous mutant lineages often compete for dominance within the population'®. These
complex evolutionary dynamics determine the outcomes of adaptation, but have been difficult
to observe directly. While earlier studies used whole-genome sequencing to follow molecular
adaptation®?, these methods have limited resolution in microbial populations. Here, we
introduce a novel renewable barcoding system to observe evolutionary dynamics at high
resolution in laboratory budding yeast. We find nested patterns of interference and hitchhiking
even at low frequencies. These events are driven by the continuous appearance of new
mutations that modify the fates of existing lineages before they reach substantial frequencies.
We observe how the distribution of fitness within the population changes over time, finding a
“traveling wave” of adaptation that has been predicted by theory'!-'”. We show that clonal
competition creates a dynamical rich-get-richer effect: fithess advantages acquired early in
evolution drive clonal expansions, which increase the chances of acquiring future mutations.
However, less-fit lineages also routinely leapfrog over strains of higher fitness. Our results
demonstrate that this combination of factors, which is not accounted for in any existing model
of evolutionary dynamics, is critical in determining the rate, predictability, and molecular basis
of adaptation.

Rapidly adapting populations have complex evolutionary dynamics. In these systems, adaptation is not
mutation-limited'®. Instead, numerous beneficial mutations arise simultaneously and drive competing
clonal expansions’®, often accompanied by neutral and deleterious hitchhikers®'®. Recent work has
shown that this is the dominant mode of adaptation in many bacterial and viral pathogens?°-??, and in
the somatic evolution of cancer? and immune repertoires?*. In these contexts, clonal interference and
hitchhiking have important consequences for the pace, outcomes and repeatability of evolution.

This mode of rapid adaptation cannot be described by classical evolutionary theory, because the fate of
each mutation cannot be modeled in isolation'!252, Instead, selection acts on physically linked
combinations of alleles, leading to complex co-dependency between the fates of different mutations.
This limits the efficiency of selection and renders evolution less predictable: strongly beneficial
mutations can be outcompeted while deleterious mutations in good genetic backgrounds can spread
through the population® 1327,
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Recently, numerous studies have used whole-genome sequencing to investigate these effects in
laboratory microbial populations®'°, This work has shown that clonal interference and hitchhiking are
widespread. However, limitations on sequencing depth make it impractical to achieve a frequency
resolution of better than a few percent, and recent barcoding-based methods®2¢%° that offer better
resolution are limited to short timescales. These are critical limitations in large microbial populations,
where theory suggests that the fates of mutations are often determined over long timescales by
competition and hitchhiking among rare high-fitness lineages, and that the vast majority of driver
mutations never reach detectable frequencies"".

Here, we develop a renewable barcoding approach to observe evolutionary dynamics at high resolution
on long timescales, by periodically adding new barcodes to split each tracked lineage into labelled
“sublineages” (Fig. 1a). Our approach uses three orthogonal Lox sites: Cre-mediated recombination
occurs between sites of the same type, but not between orthogonal types. Each site can be inactivated
by two specific arm disruptions (one in each of the two Cre binding regions), but retains high activity
with only one disruption. We used this system to design barcoded plasmid libraries with complementary
Cre/Lox architecture, which we use to integrate barcodes at a designated genomic “landing pad” locus
(Fig. 1b, Sl section 1). At each barcode addition, Cre-mediated recombination combines arm
disruptions to inactivate an old Lox site, and adds a new orthogonal Lox site with a single arm
disruption to be used for the next barcode addition with a complementary plasmid library (Sl section 1).
Each plasmid also contains an inactive drug marker lacking a start codon; correct integration activates
this marker by combining it with a start codon in the landing pad, separated by an artificial intron.

This system integrates new DNA barcodes immediately downstream of existing barcodes. Each
individual thus acquires a string of barcodes encoding its ancestry, which can be read by sequencing.
We read four barcodes per 150bp paired-end lllumina read; when the barcode locus exceeds this
length, we exploit overlapping fragments to assemble the complete locus, after using high barcode
diversity to correct sequencing errors (Fig. 1c, Sl sections 1.5, 2). This allows us to track the
frequencies of all lineages and sublineages and hence trace the ancestry of the entire population.

We used this system to evolve two diploid yeast populations founded from identical clonal ancestors,
each labelled with ~50,000 diverse barcodes. We maintained both populations in batch culture, with a
1:1024 dilution every 24h (10 generations per day with a bottleneck of ~500,000 cells, an effective size
Ne~5x10°). An aliquot was frozen daily for analysis (S| section 1.4). One population was maintained in
rich media (YPD) and the other in rich media with acetic acid at 0.3% (YPA), which leads to intracellular
acidification that pilot studies suggested result in stronger selection pressures®’. Our goal in studying
these populations is to identify generic features of the dynamics rather than details of differences
between conditions; our choice of environments maintains consistency with previous work, which
suggests these conditions lead to rapid adaptation involving rich dynamics that have been impossible to
observe using earlier approaches®?2.

We re-barcoded each population every 100 generations with an additional ~50,000 unique barcodes.
This diversity was chosen to ensure that barcoding does not introduce a significant bottleneck: at 10%
of the daily bottleneck every 10 days, it does not change the scale of genetic drift or the effective
population size (S| section 4.4). It also ensures that we can detect relevant selection pressures acting
on lineages once those lineages become large enough that their dynamics are not dominated by drift
(Sl section 4.4). However, we note that although our barcoding procedure is designed to be minimally
perturbative, it does involve propagation and selection steps. Thus strictly speaking we are studying
evolution in a fluctuating environment that alternates between “evolution” and “barcoding” conditions,
though as we see below these fluctuations play a minor role.
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After 1000 generations of evolution (ten 100-generation “epochs”), we sequenced the barcode locus at
a depth of ~10° in every frozen timepoint. This yielded 110 sequenced timepoints per population (11
timepoints per epoch, at 10-generation intervals, though we excluded the final epoch of the YPD
population due to barcoding failure, see Sl section 1.4). We use this data to infer which lineages
contain mutations beneficial in either evolution or barcoding conditions; we exploit phylogeny to infer in
which epoch each mutation established (i.e. within 100-generation resolution; Fig. 1d, S| section 5).
This allows us to group barcodes into “clones”, each founded by a new mutation. We then jointly infer
the fitness effects of all mutations in evolution and barcoding conditions. Since we barcode frequently,
the dynamics are determined by the average fitness across the two conditions (Sl section 6.2). We
therefore use this average fitness for the analysis below (though simply neglecting the barcoding
environment leads to qualitatively similar conclusions, see Sl section 6).

Our ability to detect mutations is limited primarily by genetic drift; we cannot identify mutations until they
are common enough that their fitness effects lead to frequency changes larger than this stochastic
force (this typically corresponds to lineages at frequencies >10*). Because our fitness inference
requires sufficient timecourse information, we are also unable to detect most mutations arising in the
final 100-200 generations of the experiment (Sl section 5.3). Thus our analysis only identifies a subset
of beneficial mutations, and our “clones” are clonal only with respect to these.

We find that in both populations, many beneficial mutations arise early in the experiment, founding
clones that compete for dominance (Fig. 2a,b). Some of these clones diversify through further
beneficial mutations, and a handful obtain multiple mutations, which interfere with one another within
the parent clone (Fig. 2c-d). In some cases we observe multiple nested interference events (e.g. Fig.
2c, upper left and 2d, lower left). All but the largest of these events are undetectable by metagenomic
sequencing (at ~25x depth, corresponding to approximately the same total number of sequencing
reads as our barcode data, Extended Data Figure 1a,b).

We can also visualize how the fitness composition of the population changes over time (Fig. 3). The
population initially diversifies as numerous beneficial mutations arise on the ancestral background,
creating a distribution of fitness within the population (Fig. 3a,b). As these clones expand, the mean
fitness of the population increases (Fig. 3, Extended Data Figure 2), causing less-fit lineages to fall
behind and begin to die out. However, diversity is maintained by new beneficial mutations, which
continuously create clones of even higher fitness (Fig. 3c,d). This maintenance of diversity in the face
of strong selection is an expected feature of rapid adaptation that has been predicted by theory''” but
not previously observed directly.

These dynamics lead to a complex picture of the determinants of success of individual lineages. In the
absence of further mutations, the fitness of a lineage should be the only predictor of its success. Yet we
find that the initial fithess of a mutant lineage is only a modest predictor of its fate (Fig. 4a). Another key
factor is whether a lineage acquires further beneficial mutations (Fig. 4b). While this is influenced by
fithess (see below), even high-fitness lineages that do not acquire further beneficial mutations are
readily outcompeted, and lower-fitness lineages that acquire multiple mutations can succeed (Extended
Data Figure 3). The likelihood a lineage acquires further beneficial mutations is in turn affected by two
main factors (Fig. 4c). First, larger lineages have more opportunities to acquire beneficial mutations.
Second, the fitness of a lineage plays a critical role: mutations arising in a highly fit and hence rapidly
expanding lineage will be less likely to be lost to genetic drift. Thus highly fit backgrounds can
accumulate both strong and weak-effect beneficial mutations, while only rare strong mutations can
establish on lower-fitness backgrounds. Consistent with this, Fig. 4d,e show that high-fitness
backgrounds acquire both weakly and strongly beneficial mutations, while low-fitness backgrounds only
acquire the latter. This means that more-fit backgrounds have access to a larger number of beneficial
mutations, creating a rich-get-richer effect that can lead to bursts of mutations at the expanding front of
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the fithess wave. These bursts arise due to dynamical considerations, and are not in themselves
evidence of historical contingency due to mutator phenotypes or other modifiers of adaptability (Sl
section 6.5).

These results are qualitatively consistent with recent theory suggesting that rapidly evolving populations
can be described by “traveling wave” models'"-"". In this picture, mutations continuously generate
variation in fithess while selection destroys it by eliminating less-fit genotypes, leading to a broad
distribution of fitness around an increasing mean (a “fitness wave”). However, these models have only
been analyzed in parameter regimes where the future common ancestor of a population is always one
of the fittest lineages (though see Ref.""). Instead, clonal competition in our experiment is characterized
by routine “leapfrogging” events, where lineages of initially low relative fithess acquire strong beneficial
mutations that pull them to prominence, causing dramatic reversals of fate. For example, in the YPD
population (Fig. 3c) the initially fittest green lineage is leapfrogged by the orange, blue, and purple
backgrounds; the blue lineage then falls behind only to later leapfrog all others. Similarly, in the YPA
population (Fig. 3d), the brown lineage appears to outcompete the turquoise, red, and yellow lineages,
only to be leapfrogged by two strongly beneficial mutations in an initially much less fit red lineage
(replay experiments validate this event, see Sl section 6.3).

Leapfrogging events not only alter fates of individual lineages, but also cause fluctuations in the fitness
distribution and modulate the pace of adaptation. Both within-population fithess and genetic variation
increase during initial diversification before reaching a plateau as a traveling wave is established
(Figure 3, Extended Data Figure 4). However, leapfrogging can cause fluctuations in this traveling
wave: the creation of an anomalously high-fitness lineage can lead to an initial reduction in diversity,
but at the same time enable rapid further diversification within this lineage which later re-establishes
variation (Figure 3c,d, Extended Data Figure 4). These fluctuations thus affect the success of any
individual mutation and the dynamics of the traveling wave, and hence play a major role in determining
the outcomes of evolution.

Previous theory has assumed that the effects of leapfrogging and fluctuations are occasional
perturbations that can be largely neglected'"”. Our results suggest that they instead play a central
role. Although our system involves modestly sized microbial populations, the importance of these
effects is expected to depend only weakly on population size and mutation rate (because relevant
timescales only depend logarithmically on these quantities; see e.g. Ref. '” and Appendix D of Ref. '?).
Thus our results suggest that leapfrogging and fluctuations may be routine in the evolution of a wide
range of microbes and viruses. A new theoretical framework is essential to develop accurate models of
evolution in these systems. The renewable barcoding approach we have introduced here offers the
potential to test these models, and to observe evolutionary dynamics in a variety of contexts at
sufficient resolution to explore the role of other factors such as frequency dependent selection or
mutations that alter the adaptability of individual lineages.
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FIGURE CAPTIONS

Figure 1. Renewable barcoding system and lineage dynamics. a, Experimental design. Diverse
DNA barcodes are introduced into an initially clonal population; each barcode labels a small lineage.
Every 100 generations, we introduce new diverse barcodes immediately adjacent to existing barcodes,
subdividing each lineage into sublineages. b, Renewable barcoding system, using a novel Cre-Lox
system consisting of three orthogonal Lox sites (colored triangles), each of which can be modified with
two arm disruptions (red shading) that are individually tolerated but jointly inactivating (S| section 1). At
each barcode addition, we combine arm disruptions to inactivate the old Lox site, while adding a new
orthogonal active Lox site; alternating Lox orientations further limit undesired recombination. Drug
markers contain an intron 3’ splice accepting site and must correctly integrate at the landing pad
containing the 5’ splice donor to be functional. ¢, When the barcode locus exceeds the length of an
lllumina read, we use custom priming sites to sequence overlapping sets of four consecutive barcodes.
After exploiting barcode diversity to identify and correct sequencing errors, we use these overlaps to
unambiguously reconstruct the full barcode locus (Sl section 2). d, Inference pipeline. At left, raw
barcode frequencies over time (left to right, colors chosen at random). For legibility, we only show
lineages or sublineages whose frequency exceeds 0.1% in at least one timepoint; combined
frequencies of lineages that do not individually reach 0.1% are shown as white space (or the color of
the parent when that parent exceeds 0.1% frequency). Center panel summarizes model for identifying
selected lineages. Briefly, we use the data to construct a parametric model for the strength of noise
from genetic drift and sequencing and discard trajectories explained by noise alone. We then jointly
infer fitnesses of all remaining lineages, and group lineages of indistinguishable fithess into clones.

Figure 2. Inferred clonal dynamics. a, b, Muller diagrams showing dynamics of inferred beneficial
mutations in YPD (a) and YPA (b) populations. Time is denoted by epoch and generation (e.g. 4.100
refers to the generation 100 of epoch 4). Stars denote establishment epoch of each new benéeficial
mutation (Sl section 5). Color opacity denotes fitness of the corresponding lineage; mutant lineages
that did not acquire additional beneficial mutations are grey. Grey bars denote barcoding intervals. ¢, d,
Muller diagrams showing within-lineage dynamics in select lineages in the YPD (c¢) and YPA (d)
populations; colors are consistent with corresponding lineages in (a,b). White space indicates periods
during which the select lineage was not observed.

Figure 3. Travelling wave dynamics. a, b Inferred distribution of fithess within the population through
time. All fitnesses refer to average across evolution and barcoding conditions (Sl section 6.2). Each
colored bar denotes the frequency and fitness of a corresponding lineage in Fig. 2. White bar
corresponds to the ancestor. Black line denotes inferred population mean fitness. ¢, d, Genealogical
relationships among lineages show frequent leapfrogging events. Each clonal lineage is shown at its
corresponding fitness; color opacity indicates lineage frequency. Colors of highlighted lineages shown
in Fig. 2¢, d are consistent with that figure; all other lineages are grey. Mutational events within
highlighted lineages are shown as arrows; each event arises in one clonal lineage and founds a new
lineage at a new fitness.

Figure 4. Traveling wave dynamics and factors determining the success of mutant lineages. a,
Relationship between initial within-population fitness rank of a mutation arising in the ancestral
background and its maximum frequency in the latter half of the experiment (using latter half avoids
confounding axes in b; n=35 and n=47 unique lineages in YPD and YPA respectively). Dots represent
the mean, and lines show range of maximum frequencies in each founding fitness quantile. b,
Relationship between the number of subsequent beneficial mutations landing on the founding clonal
background of a lineage (in the first half of the experiment) to its eventual maximum frequency (in the
second half of the experiment). ¢, Effect of lineage frequency and fitness on the likelihood of acquiring
additional beneficial mutations. Each point represents the mean frequency and fitness of a lineage in a
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given 100-generation interval; symbol size denotes how many further beneficial mutations that lineage
acquired (numbers indicate lineages that acquire >4). d, Histograms of effect sizes of all inferred
mutations. e, Effect sizes of mutations arising on parental backgrounds as a function of mean parental
relative fitness in the epoch each mutation arose. Region below grey line corresponds to mutations that
would create lineages less fit than the current mean fitness.
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DATA AND CODE AVAILABILITY STATEMENT

Raw sequencing reads have been deposited in the NCBI BioProject database under accession number
PRJNA559526. All associated metadata, as well as the source code for the sequencing pipeline,
downstream analyses, and figure generation, are available at GitHub (https://github.
com/icvijovic/lineage-tracking).

EXTENDED DATA CAPTIONS

Extended Data Figure 1: Allele frequency trajectories in the two populations, as detected from
metagenomic sequencing. In both the YPD (a) and the YPA population (b), full lines denote missense
and nonsense mutations, and dotted lines denote synonymous mutations and those falling in intergenic
regions. Lines are colored according to the peak time of the trajectory. Note that a frequency of 50%
(dotted line) corresponds to a mutation fixing as a heterozygote.

Extended Data Figure 2: Comparison of inferred and measured population mean fitness
trajectories. All fitness measurements and inferences refer to the evolution environment only.
Trajectories have been offset to agree with the fitness assay at timepoint 3.100. Dots denote barcoding
intervals. Shaded regions around the trajectories denote estimates of confidence intervals for the
inferred mean fitness trajectory, which often does not exceed the width of lines (Sl section 6.1). In the
case of the YPA population, lighter colors denote mean fithess trajectories over the last two epochs,
offset to agree with fitness assays in the last timepoint (see Sl section 6.6 for a discussion of potential
reasons for these discrepancies).

Extended Data Figure 3: Predictors of the success of lineages. Size of each dot denotes the
number of later beneficial mutations that occur in the founding clonal background of a lineage (in the
first half of the experiment).

Extended Data Figure 4: Genetic variation through time. a, Total number of lineages above a
threshold frequency (0.01%) through time; bars denote number of new lineages arising in each 100-
generation interval. b, Genetic diversity within each population over time, as measured by entropy (Sl
section 6.4). ¢, Variance in fitness through time. d, Fitness diversity within each population over time,
as measured by fitness entropy. Fitness entropy quantifies how fitness variance is distributed among
lineages (Sl section 6.4)

List of Supplementary Files

Extended Data. Extended Data Figures 1-4.

Supplementary Information. Supplementary Appendix, Data Availability statement, Supplementary
Figures S$S1-S18, Supplementary Tables 1-7, and Supplementary References — see contents page for
more details.
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1 Design of the renewable barcoding system

Several requirements must be met when designing a renewable barcoding system for tracking mi-
crobial lineages. In this section, we outline considerations which were important in motivating our
design choices for this study. Briefly, they include an appropriate choice of organism/strain, use of
high efficiency genetic modification systems, and minimal perturbation during barcoding.

One important requirement in any renewable barcoding system is to maintain the barcode
locus at a single copy per cell, which requires a stable ploidy. Although in principle it would
be possible to track cells with a varying number of barcode loci, this would not allow faithful
lineage tracking with re-barcoding. This requirement makes it challenging to work in any bacterial
model system. Instead, we chose to work in the budding yeast Saccharomyces cerevisiae, a fast-
growing model microbe that has a more stable ploidy. However, because diploids are more fit
than haploids in many common laboratory environments, experimental evolution in haploid S.
cerevisiae often results in autodiploidization or other types of aneuploidies [I]. For this reason,
we chose to work in diploid lines. Despite studies showing that tetraploids can evolve faster than
diploids [?], preliminary experiments indicated that these aneuploids do not provide a strong fitness
advantage over diploids, and do not routinely invade diploid populations. Despite this preliminary
work, we did find that over the course of long-term evolution, tetraploids do indeed appear in some
populations, and these must be discarded from our lineage tracking analysis.

Working in diploid lines limits the technological choices for barcode introduction: high-efficiency
CRISPR or endonuclease-based approaches [3] are no longer possible due to the high frequency of
homology-mediated repair that occurs through homologous chromosomes. We instead take ad-
vantage of recombinase-based technologies to selectively introduce barcodes into the desired locus.
Our approach is inspired by earlier gene stacking methodologies, which typically use at least two
enzymes [3—8]. One enzyme is unidirectional and introduces a plasmid carrying the desired frag-
ment into a target genomic site. The other enzyme removes the extraneous plasmid sequences and
recycles the resistance marker. The enzyme that is unidirectional typically requires two orthogonal
sites (i.e. sites that do not react with each other). The general schemes are similar to Figure 1b,
with particulars differing for the enzymes of choice (see Supplementary Table 1 for a summary).

These earlier gene stacking methods use sequential enzyme activation (they first integrate the
plasmid, and then excise and recycle extraneous plasmid sequence). This reduces their efficiency to
the product of transformation and integration efficiency, which is typically ~ 107> or less. For our
purposes, this would lead to large population size bottlenecks which would interfere with experi-
mental evolution. To avoid this problem, our approach decouples transformation and integration.
We first transform (with efficiency ~ 1072) and then allow the transformed population to grow,
after which we perform a single integration and recycling step (also with efficiency ~ 1073). Be-
cause of the intermediate growth step, the population is never bottlenecked by a factor larger than
~1073.

To perform our single integration and recycling step, we must rely on a single enzyme. We
developed a method to do so using the Cre recombinase and three orthogonal Lox sites. Several
orthogonal Lox sites have previously been identified [9] and the molecular basis for orthogonality
is well understood: each Lox site contains a spacer sequence that determines the specificity of Cre-
mediated recombination, and two Lox sites that differ by both a mutation in position 2-5 and a
mutation in position 6-7 will be orthogonal. In addition to this simple rule, several other orthogonal
spacer sequences that differ in other ways have been described [10]. We tested the efficiency of Cre-
mediated recombination in yeast at several of these sites, and found that LoxP (ATGTATGC) had the
highest efficiency, several had ~ 50% lower efficiency (Lox5171 (ATGTgTaC), Lox2272 (AaGTATcC),
Lox4361 (ATGgAcGC), and Lox5261 (ATGTtcGC)), and six others very low efficiency (< 25% compared



Reference Integration Recycling Notes
Enzyme Enzyme
Nandy et. al. Cre (Transient I-Scel, ZFN Transient Cre expression integrates
(2015) [1] Expression) the plasmid. Double-strand break

inducing enzymes promote excision
of the plasmid via NHEJ or homol-
ogous recombination.

Lin et. al. (2013) | Cre (Transient | I-Scel, PI-Scel | Idem.
5] Expression)
Lee et. al. (2014) | Cre (Transient PiggyBac PiggyBac is a transposase, which
[6] Expression) can mediate unidirectional excision
of the integrated plasmid.
Hou et. al. Bxbl Cre Bxbl is an integrase, which medi-
(2014) [7] ates unidirectional integration of the
plasmid.
Chen and Ow phiC31 Cre phiC31 is an integrase, which medi-
(2016) [9] ates unidirectional integration of the
plasmid.
Wingler and I-Scel, HO — Yeast homologous recombination is

Cornish (2011)
[4]

exploited in this method to mediate
unidirectional integration and recy-

cling via alternating double-strand
break inducing enzymes.

Supplementary Table 1: Earlier gene stacking methods. Brief summary of enzymes used in
previous gene stacking methods.

to LoxP). Based on these results, we chose to work with LoxP, Lox5171, and Lox 2272, since these
were the most well studied of the high-efficiency sites. However, we note that Lox5171 and LoxP
have been shown to react at low frequency; this can lead to the excision of integrated fragments if
the Lox sites are oriented in the same sense direction and are far enough apart. To mitigate this,
our system ensures that the Lox5171 and LoxP sites are always anti-sense and close to each other.

Using this Cre-Lox system for gene stacking required us to develop a method to make the
Lox sites unidirectional. This is critical for renewable barcoding approaches: if it is not correctly
performed, Lox sites will react in subsequent barcoding reactions and the desired constructs will
not be obtained. Unfortunately, Cre-Lox recombination is reversible. To make unidirectional Lox
sites, we must shift the equilibrium of this reaction to the desired product. To do so, we take
advantage of the fact that Cre binding to its Lox site is cooperative. The Lox sites contain two
palindromic “arms” (flanking the internal spacer) that bind to Cre. Earlier work has argued that
the presence of certain mutations in only one of the two arms only slightly diminishes Cre binding,
while mutations in both arms strongly reduce it [11]. The most well-known arm mutants with this
property are the Lox66 left arm mutation (taccgTTCGTATA-spacer-TATACGAAGTTAT) and Lox71
right arm mutation (ATAACTTCGTATA-spacer-TATACGAAcggta). Recombination between two of
these sites leads to Lox72 with mutations in both arms (taccgTTCGTATA-spacer-TATACGAAcggta).
In principle, this could be used to shift the equilibrium: Lox66 and Lox71 sites recombine to produce
Lox72 sites in a unidirectional fashion.

However, despite the assumptions of some earlier work [12], we found that the doubly-mutated



Lox72 has only slightly lower reactivity than LoxP (this is consistent with the original description
of the arm mutants, which showed only a 7-fold shift in reaction equilibrium when the mutations
are in cis versus in trans [11]). Thus these Lox66 and Lox71 mutations do not result in strongly
unidirectional sites. We therefore sought to identify arm mutations that would maintain similar
Cre efficiency when the mutated arms are in trans, while completely abolishing its activity when
in cis. To do so, we systematically screened a small set of potential arm mutants using an in vitro
LacZ excision assay. These mutations were either described in the literature to be more resistant
to recombination than Lox72 when in cis (LoxKR3 [13], Lox66/71 [11], LoxJT5 [14], LoxJT21 [14],
LoxJT510 [11], and LoxJTZ17 [11]), or had been shown to retain comparable Cre activity when in
trans (Lox2 [15]). We screened these seven arm mutations and all of their pairwise combinations,
finding a single arm mutant (Lox2 [15]) that reduced Cre activity by at least six orders of magnitude
when combined with itself in cis, while having no detectable reduction in efficiency compared to
wild-type (LoxP) when in trans. We confirmed these results in vivo in budding yeast using a Ura3
excision system.

Motivated by these results, we used Lox2 arm mutants as the basis for our unidirectional Lox
sites. We chose to make LoxP and Lox5171 the unidirectional sites, which flank the barcodes,
because this allows us to keep these sites close together and hence further mitigate cross-reactivity.
We use Lox2272 as the recycling site downstream of the resistance marker. We note that the Lox2
arm mutants represent a significant improvement to the Cre site-specific recombinase technology
which may be useful for other applications using Cre (e.g. Brainbow [1(]). However, some Cre
reactions that work on wild-type LoxP sites do not work on Lox2 arm mutants even in trans; these
are not relevant for our applications here but may be relevant in other studies.

1.1 Strains

Strains in this study are derived from the BY4742 strain background [17] (S288C: MAT«a, his3d1,
ura3d0, leu2d0, lys2d0) with several modifications. We chose to work in the S288C background due
to its high transformation efficiency. The RME1pr::ins-308A mutation identified in a previous study
to increase sporulation efficiency [18] was introduced by Delitto Perfetto [19], yielding YAN404. A
MATa version of this strain was obtained using HO endonuclease mediated mating type switching,
yielding YAN407. This MATa strain was then marked at HO with the NAT marker [20] (resistance
to nourseothricin) driven by the TEF promoter from Lachancea waltii, and terminated with tSynth7
[21] (HO::Lwp TEF-NatMX-tSynth7), creating strain YAN499. The MAT « version of the strain was
marked at HO using the construct HO::Gall/10pr-Cre-tCycl::LoxP2L::HygIN::Lox2272::Agp TEF,
creating strain YAN504 (note we use R and L in Lox site notations to indicate the location of
the mutated palindromic arms with respect to the middle spacer). This construct forms the initial
“landing pad” into which barcodes will be inserted (Supplementary Figure 1); it contains the Cre re-
combinase under the control of the galactose promoter and the hygromycin resistance marker driven
by the TEF promoter from Ashbya gossypii, with an artificial intron containing the Lox2272 site
[9] following the initial methionine (described in more detail in the next section). The CANI locus
was then replaced with mating type reporters [22] (canl::Ste2pr_SpHIS5::Ste3pr_.LEU2), forming
strain YAN508. These final MATa and MATa strains YAN499 and YAN508 were then mated to
form the strain YAN517, which we used as the ancestor in the evolution experiment.

1.2 Construction of barcoding plasmids

Our barcoding system makes use of two alternating landing pads, and therefore two types of bar-
coding plasmids were constructed (one for each landing pad). We used a centromeric plasmid



500 1,000 1,500 2,000 2,500 3,000 3,500..., 4,000

(GALL/10pr > | Cre > > < HphMX V') «pTER
LoxP-L Lox2272

Supplementary Figure 1: Landing pad locus.

(pAN316a) containing the URA3 gene (with Bsal restriction endonuclease site removed) as the
backbone of these barcoding plasmids. The first type of barcoding plasmid had the configuration
pAN316a-LoxPR-KanPX-ccdB-Lox5171L-KanIN-Lox2272, while the second type had the configu-
ration pAN316a-Lox5171R~ccdB-HygPX-LoxPL-HygIN-Lox2272 (Supplementary Figure 2). Here
KanIN and HygIN are geneticin and hygromycin B resistance markers respectively, with modifica-
tions. First, the initial methionine was replaced with an artificial intron containing the Lox2272
recombination site. Second, the methionine at position 17 in the geneticin resistance marker was
mutated to a leucine. In this way, these resistance markers are non-functional on the plasmid, but
become functional when recombined into the landing pad. This strategy is similar to the promoter
trap often used in mammalian cell line genetic engineering, with the added stringency from the
necessity of correct splicing. We constructed six different versions of each of these two types of
barcoding plasmids, each containing a different priming site (KanPX or HygPX, where X ranges
from 1 to 6).

We next introduced a diverse barcode library into each version of each type of plasmid using a
Golden Gate reaction [23], exploiting the fact that the ccdB gene (with Bsal site removed) is flanked
by two Bsal restriction endonuclease sites (see Supplementary Fig. 3a for a schematic illustration).
Barcodes were ordered as single-stranded oligos from IDT (Integrated DNA Technologies) with de-
generate bases selected as “hand-mixed”. The following oligo was used: P_BC=CTAGTTATTGCTCAGCGGAG
GTCTCAtactNNN TANNNNNATNNNNNTANNNcgctAGAGACCGT CATAGCTGTTTCCTG. This contains 16 degen-
erate bases, separated by bases that prevent Bsal restriction enzyme sites from being randomly
formed, and is flanked by two Bsal sites that leave TACT and CGCT as overhangs. Another oligo
was purchased corresponding to the M13 reverse (-27), which is complementary to the 3’ end of
the barcoding oligo. To convert the single-stranded oligo into double-stranded DNA, the two oligos
were mixed at a 1:2 molar ratio (two times more of the M13 reverse (-27) primer), using about
1pg of the barcoding oligo, 5pLli of NEBbuffer 2.1 (New England Biolabs), topped to 50pL in a
thermocycler using the following cycling conditions: 95°C for 2 minutes, with a reduction of 1°C
every 30 seconds until room temperature. To the annealed oligos, dANTPs were added to 0.5mM.
The PCR tube was cooled down to 0°C, and 1.5U of T4 DNA polymerase (New England Biolabs)
was added, quickly mixed and cycled: 5 minutes at 0°C, 5 minutes at 22°C, 30 minutes at 37°C,
and then held at 0°C. As soon as the reaction terminated, EDTA was added to 10mM to stop the
reaction, and purified with PCR cleanup kits.

Following conversion to dsDNA, the plasmids were barcoded using Golden Gate reaction (New
England Biolabs) using about 200ng of entry vector and 1pL of the purified dsDNA barcoding oligo,
purified and electroporated into Escherichia coli DH10b cells (Invitrogen). To maintain library
diversity, for each library the cells were recovered in 800mL of molten LB (0.5% yeast extract, 1%
Tryptone) containing 100ng/mL carbenicillin (GoldBio) containing 0.3% SeaPrep agarose (Lonza)
spread into a thin layer (about 1 cm). After mixing to homogenize, the cells were left in an ice bath
for an hour to gel the agarose and then moved to a 37°C incubator for one day. This procedure
allowed dispersed growth of colonies in 3D, and we routinely obtained over a million transformants.
After clear colony growth, the soft-agar gel was shaken in baffled flasks to homogenize, and the
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Supplementary Figure 2: Barcoding plasmids. The first type (left) has configuration pANS316a-
LoxPR-KanPX-ccdB-Lox5171L-KanIN-Lox2272, while the second type (right) has configuration
pANS816a-Lox5171R-ccdB-HygPX-LoxPL-HygIN-Lox2272. The ccdB gene is later replaced by di-
verse barcode libraries, as described in the text.

media was centrifuged to collect the cells. About 10mL of cells was kept as frozen stock in 10%
Glycerol/3% DMSO, and the rest were midi-prepped using standard procedures to obtain the
plasmid library used to transform yeast cells.

1.3 Barcoding procedure

In this section, we describe the barcoding procedure (see Supplementary Fig. 3b for a schematic
illustration of the protocol). First, yeast populations were transformed with libraries of barcoding
plasmids using standard procedures with a few modifications. Briefly, after heat-shock, the cells
were recovered in 100ml of molten SD-Ura (6.71g/L Yeast Nitrogen Base (Difco) with complete
amino acid supplements [21] but lacking uracil, 2% dextrose) containing 0.3% SeaPrep agarose
spread into a thin layer (about 1 cm). After mixing to homogenize, the cells were left in an ice
bath for an hour to gel the agarose, and then moved back to 30°C for two days to allow growth of
transformants. This procedure allowed dispersed growth of colonies in 3D.

When colonies were clearly visible, the “soft-agar” was shaken in baffled flasks to homogenize
the gel, and 1mL of cells was passaged into 31mL of SG-Ura (6.71g/L Yeast Nitrogen Base with
complete amino acid supplements but lacking uracil, 2% galactose) to induce Cre recombinase
expression. This passage was performed once more for a total of 10 generations of Cre induc-
tion, and then recombinants were selected by passaging 10mL of cells into 90mL of YPD (1%
Difco yeast extract, 2% Bacto-peptone, 2% dextrose) plus either 200pg/mL G418 (GoldBio) or
300pg/mL Hygromycin B (GoldBio), depending on the barcoding plasmid. Following growth of
recombinants, 156nL were passaged into 5mL of S/MSG (1.71g/L Yeast Nitrogen Base without am-
monium sulfate, 1g/L monosodium glutamate, complete amino acid supplement) plus either 1g/L
5-Fluoroorotic acid and 200pg/mL G418 or 300pg/mL Hygromycin B to counter-select the plasmid.
This counter-selection was performed twice, after which cells were diluted 1:219 into their respective
environment. Although monitoring of the process hinted at over 10° transformants and recombi-



nants, we frequently observe that about 50 000 new barcodes are introduced into the population
at the end of the process using this procedure (Supplementary Figure 4). This loss in diversity
is presumably due to drift or selection during the barcoding process; we quantify these effects in
detail in later sections below, and show that they lead to a similar scale of genetic drift as in the
rest of our experiment and hence do not significantly affect the long-term effective population size.

We note that our barcoding process attempts to minimize potential mutagenic effects of yeast
transformation: our strategy does not involve any host protein, such that DNA damage repair
pathways that are typically used during homologous recombination transformation techniques are
not exploited. While we cannot exclude the possibility that some mutagenic effects remain, because
barcoding happens at frequent intervals these should simply lead to an overall elevation of the
mutation rate in our experiment, which would not affect our analysis. Given the total number of
mutations we observe, which are broadly consistent with earlier evolution experiments that did not
involve barcoding, any such effects are likely to be small.

1.4 Evolution experiment

To allow detection of cross-contamination during the experiment, we first barcoded the ancestor as
described above and founded two populations from single colonies carrying unique barcodes. These
founding populations were then re-barcoded to begin the evolution with high barcode diversity.
We propagated these lines at 30°C in 15mL glass culture tubes on a roller drum in 5mL of media
(either YPD or YPD+50mM Acetic Acid (referred to as YPA), containing 10pg/mL nourseothricin
(GoldBio) and either 300pg/mL hygromycin B or 200pg/mL G418 (GoldBio)). We diluted these
populations by 1:210 daily by passaging 4.88 pL into fresh media. Whole population pellets were
stored daily at -20°C for later sequencing. At 30 generation intervals, we mixed an aliquot with
5% glycerol and froze at -80°C for long-term storage. As previously described [25], this protocol
results in about ten generations per day, with a daily bottleneck size of about 10 in YPD and
about 5 x 10° in YPA, corresponding to an effective population size of 107 in YPD and 5 x 108
in YPA. After each 100 generations of growth, we re-barcoded the population using the previously
described procedure. We refer to each 100-generation interval as an “epoch”.

We evolved both YPD and YPA populations for a total of 10 epochs. After each barcoding
procedure, we verified the integrity of the barcode locus by whole-population PCR and Sanger se-
quencing. This initial verification provides a gross assessment of barcode diversity and can diagnose
general failures of the barcoding process. In addition, we isolated 32 clones from each population
90 generations after barcoding, conducted PCR of the barcode locus in each clone, and used gel
electrophoresis to confirm that each clone contains a barcode locus of the correct configuration.
These checks confirmed correct barcoding in all cases (including correct locus length in at least 27
of 32 clones), with one exception: after the tenth and final barcoding of the YPD population, we
found that 23 of 32 clones lacked any detectable PCR product corresponding to the final barcode
addition. This apparent failure could reflect leakage of unbarcoded cells through the barcoding
process due to tetraploidization, inappropriate retention of the barcoding plasmid from the previ-
ous barcoding step, or some other mechanism. For this epoch, barcoding failure is also reflected
in FACS-based fitness assays showing a dramatic decline in fitness of the YPD population at this
timepoint. We therefore excluded this final epoch of the YPD population from all further analysis,
leaving us with a total of 900 generations of evolution (9 epochs) in the YPD population and 1000
generations of evolution (10 epochs) in the YPA population.
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Supplementary Figure 3: Detailed schematic of the barcoding procedure. a. Generating the
barcode plasmid library. 1) Oligonucleotides containing random nucleotides are flanked by Bsal
restriction endonuclease sites, converted to dsDNA and cloned into a recipient plasmid using a
Golden Gate reaction. The recipient plasmid contains a ccdB gene, which is toxic to sensitive FE.
coli strains, to eliminate unbarcoded plasmids from the library. 2) After purification, the plasmid
is electroporated into E. coli, and 3) the cells are recovered in a thin layer of media containing
soft agar. After growth, the soft agar is shaken to homogenize the culture and the plasmid is
extracted and purified. b. Barcoding the landing pad strain. 1) Yeast cells containing a landing
pad are grown and transformed with the plasmid library to initialize the barcoding process. Cells
are recovered on selective media containing soft agar. After growth, the culture is homogenized,
and 2) passaged to galactose-containing media to induce Cre. Barcoding takes place by double
recombination between orthogonal Lox sites, which inserts barcodes into the genome and swaps
selectable drug markers. The plasmid, no longer containing a barcode, is removed by 5-FOA
selection, and 3) cells are transferred into the evolution environment. After 100 generations in
the evolution environment, this process of: 4) transformation, and 5) Cre/lox recombination, is
repeated to introduce additional barcodes. After each subsequent evolution interval, the barcoding
procedure is repeated (alternating between the even and odd protocols).
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Supplementary Figure 4: Statistics of barcoded lineages immediately after barcoding. In
the top panel, dots denote mean numbers of reads per barcoded lineage immediately after barcoding,
and error bars denote 95% confidence intervals (n = number of unique new lineages, which is
shown in the bottom panel using a separate bar for each barcoding procedure and population).
All confidence intervals include 0 reads (i.e. lineages not seen in the first time-point, but seen in a
subsequent timepoint), which cannot be shown on the logarithmic axis. In the bottom panel, bars
represent the total number of new barcoded lineages seen in the epoch.

1.5 Barcode sequencing

Genomic DNA from cell pellets was extracted using zymolyase mediated cell lysis (5mg/mL Zy-
molyase 20T (Nacalai Tesque), 1M Sorbitol, 100mM Sodium Phosphate pH 7.4, 10mM EDTA,
0.5% 3-(N,N-Dimethylmyristylammonio)propanesulfonate (Sigma, T7763), 200png/mL RNAse A,
and 20mM DTT), and binding on silica mini-preparative columns (IBI scientific, IB47207) with
guanidine thiocyanate (4 volume of 100mM MES pH 5, 4.125M Guanidine Thiocyanate, 25% iso-
propanol, and 10mM EDTA). 3mL of cells eluted into 100uL of elution buffer (10mM Tris pH 8.5)
routinely provided about 3ug of total DNA.

PCR of the barcodes was performed using a two-stage procedure previously described to attach
unique-molecular identifiers to PCR fragments [20]. To avoid any loss of resolution from this pro-
cess, we aimed to “tag” at least ~ 10° genomes with this PCR, corresponding to our daily dilution
bottleneck size. We found that modestly sized primers are routinely carried over in PCR clean-up
kits, which would prevent the first-round primers from acting as unique molecular identifiers. To
avoid this problem, we used AMPure beads (Beckman Coulter) in place of silica-based cleanup kits;
we found the former to be multiple orders of magnitude more efficient at removing primers. To
obtain the necessary molecular counts, we found that Q5 polymerase (New England Biolabs) is the
most sensitive polymerase (when compared to Phusion (Thermo Scientific), OneTaq (New England
Biolabs), Phire (Thermo Scientific), Kapa HiFi (KXAPA Biosystems) and SuperFi (Thermo Scien-
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tific)) and that a carrier is necessary to achieve maximum performance with the AMPure beads.
We used pure E. coli ribosomal RNA for this purpose at a final concentration of about 50ng/pL of
RNA in the AMPure bead cleanup reaction, which significantly increases the yield of the desired
fragment.

Primers used in the first stage PCR contained a priming sequence, a multiplexing index, 8
random nucleotides as unique molecular identifiers (UMIs), and an overhang that matched the Tn5
transposomes used in the standard Nextera (Illumina) sequencing kits. Following recommenda-
tions when sequencing amplicons [27], we used multiplexing indexes of different length (7 to 12bp),
which generates base diversity for next-generation sequencing. The two primers had the con-
figurations: P1=TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNXXXXXXXYYYYYYYYYYYYYYYYYYYY
and P2=GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNXXXXXXXYYYYYYYYYYYYYYYYYYYY. Here
N corresponds to degenerate bases used as unique molecular identifiers, X corresponds to multiplex-
ing indexes, and Y to the annealing sequence.

The barcode locus increases in size with each barcode addition, quickly outgrowing the typical
length of reads in next-generation sequencing. However, we take advantage of the fact that it is
not necessary to sequence the complete locus because barcodes corresponding to previous epochs
are uniquely associated with their descendant barcodes. Since we can sequence the previous epochs
directly, the genealogy can be recursively reconstructed. Because barcodes are inserted adjacent
to each other (separated by Lox sites), we can sequence up to four barcodes in each paired-end
sequencing read. Using the custom primers introduced in the barcoding plasmids (KanP1 to KanP6,
HygP1 to HygP6), the barcode of the current epoch is sequenced along with two or three of its
ancestral barcodes (except for the first epoch, where only one ancestral barcode, corresponding to
the population specific barcode, is sequenced in addition to the epoch barcode). Due to the high
barcode diversity in the experiment, these ancestral barcodes allow unambiguous assignment of the
current barcodes to the complete genealogy of the lineage (see below for details).

We describe here the final optimized procedure. Briefly, about 300ng of genomic DNA (about
107 genomes) was used in 20pL PCR reactions using Q5 polymerase. Only two cycles were
performed to decrease any potential PCR bias during subsequent counting procedures. In all
cases, we use an annealing temperature of 50°C (about 5°C lower than the suggested Tm) to
ensure that all priming sites are saturated. The products of this first-stage PCR were then sup-
plemented with 2pg  of purified ribosomal RNA from E. coli as precipitation carrier (20pL of
100ng/nL. was added directly to the first reaction product), purified using AMPure beads at
1.25%, and eluted into 33pL of water. The elution was used directly as template for the sec-
ond stage PCR using KAPA HiFi polymerase with 35 amplification cycles and primers that
contained multiplexing indexes and adapters that anneal to the Illumina flowcells. The two
primers here had configurations: P5=AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC
and P7=CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG. These final PCR products were
then purified using AMPure beads at 0.85x. We found that this procedure amplifies at least 10°
unique templates.

After quantification, PCR products were pooled to equimolar concentration and bead purified
once more using AMPure beads at 0.85x to remove all traces of primer dimers. The PCR products
were then sequenced using a NextSeq 500 high-output v.2 (Illumina) without further modifications.
We sequenced to an average depth of approximately 5 x 10° reads per timepoint.
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2 Read parsing, error correction, UMI removal, assembly, and chimera
removal

We first processed our raw sequencing reads to identify and extract the barcode sequences, dis-
carding Lox sites and other extraneous sequence. To do so, we developed custom Python scripts
using the approximate regular expression library regex, which allowed us to handle complications
in identifying the barcodes that arise from the irregular lengths of the indices and from sequencing
errors. We used the following mismatch tolerances: 2 mismatches in the multiplexing index, 4
mismatches in the priming site, 1 mismatch in the barcode overhangs, 1 mismatch in the barcode
spacers and 4 mismatches in the Lox sites.

This initial processing results in a set of putative barcodes. However, these putative barcodes
do not all correspond to true barcodes within the evolving population. Instead, each true barcode
will result in many exact reads but also many artifactual barcodes that are close to the true barcode
but contain some sequencing errors. Ideally, we wish to “merge” barcode sequences that represent
sequencing errors of a single true barcode, while at the same time avoid erroneously merging two
true barcodes. To achieve this, we can exploit the diversity of the barcode library and the fact
that we expect sequencing errors to be rare. By taking advantage of the ~ 107 sequencing reads
we obtained that correspond to the known population-specific barcodes, we found that about 0.1%
contain a single mismatch while 0.01% contained two mismatches. Hence we expect that allowing
two mismatches should capture ~99.9% of reads corresponding to a true barcode while removing
the vast majority of artifactual barcodes. Based on the diversity of our barcode library, the chance
that two true barcodes randomly picked from our library differ by two or fewer mismatches is 0.2%.
This represents an upper bound on the erroneous merging introduced at this threshold distance;
in practice we can reduce this by exploiting frequency information and requiring that putative
artifactual barcodes are rare compared to the true ones. In addition, because our identification of
lineages based on genealogical assembly using ancestral overlapping barcodes uses the information
of at least two previous epochs (see below), erroneous merging of true barcodes will not affect
any further analysis unless these barcodes also share these ancestral barcodes, which is extremely
unlikely.

Motivated by this, we developed an algorithm that deterministically builds consensus sequences
using read counts; we refer to this as “error correction”. Candidate barcode sequences are sorted
and processed by descending read counts. Barcode sequences within two Levenshtein distance units
from a previously seen barcode are merged with that barcode if they were found at much lower
frequency (here set to 1/32). Finally, barcodes that could not be error corrected but that were
present in fewer than 10 reads in the whole epoch were discarded. This error correction procedure
was performed independently for each epoch. We note that this method is often conservative in
merging barcodes; we often found barcodes at similar frequencies that differ by a single mismatch,
where one is clearly derived from a sequencing error due to the presence of the same parent barcodes.
We merge these cases in a later step using population genetics inference procedures (see below).

We next calculated the frequency of each error-corrected true barcode. To avoid double counting
reads, we took advantage of the unique molecular identifiers, and removed any duplicate reads.
Overall, our duplicate read rate was low (about 10%), indicating high coverage of the population.
We then removed signatures of chimeric PCR, by requiring lineages to have a read in at least two
time-points, or to have at least ten reads in the epoch. Although this does not remove all chimeras,
any remaining chimeras are likely to be present at very low frequencies and would be considered
as effectively neutral in our population genetics analyses. These modest thresholds for removing
chimeras can in principle also remove real lineages, and therefore may affect calculated frequencies.
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However, we found that although removing chimeras removes about 90% of all lineages, these
lineages collectively only account for a small fraction of all reads (about 10%) and are therefore
unlikely to affect the overall inference of the evolutionary dynamics.

As explained previously, we can only sequence four barcodes in a single paired-end Illumina
read. However, larger barcode loci can be assembled from the shorter reads by taking advantage
of the high barcode diversity. In practice, we only sequence the four most recently added barcodes
and reconstruct the complete lineage history by “aligning” the older two barcodes to previously
identified lineages. For example, given a pair of reads with barcodes A-B in the first read and C-D
in the second read (the paired-end read is thus A-B-C-D), we assemble the paired-end read using a
perfect A-B match to the previously assembled barcode genotypes (ending in A-B). Sometimes the
B barcode does not appear in the previously assembled lineages, presumably due to being at low
frequency at that time. In this case, only the A barcode is used. Any read that does not have a
perfect match to A is discarded regardless of whether we can identify a matching B barcode; these
reads are very rare and typically correspond to cross-indexing from other populations. Additionally,
in rare cases, two different previously identified lineages will end with A-B, presumably by obtaining
barcodes A and B in parallel. In these cases, the parent of A-B-C-D is ambiguous and we assign it
to the A-B lineage with the highest frequency.

Following this procedure, we obtained on average 3.6 x 10° barcoded lineage counts per time-
point. This effective depth of sequencing was chosen to be roughly equivalent to the size of the
population at each transfer bottleneck, which we estimate to be about 10° individuals, and is
sufficient to resolve any lineage large enough that its dynamics are potentially affected by natural
selection (as opposed to being dominated by genetic drift; note that this assumes that selection
pressures are typically of order a few percent or less, as we observe, see Section 4.3).

3 Fitness measurements using fluorescent labels

The fitness of populations during the evolution was measured using competitive fitness assays rela-
tive to reference strain YAN518, a fluorescent unbarcoded ancestor (marked with cani::RPL39pr_ym
GFP::Ste2pr_SpHIS5::Ste3pr_LEU2 instead), using the protocol described in previous work [28]. To
confirm that the addition of barcodes does not affect fitness, we barcoded this ancestor 11 times,
bottlenecking to three clones at each barcoding step. We found no detectable fitness difference
between the ancestor and the final three clones that have 11 barcodes each.

4 Construction of a model for barcode count trajectories

The obtained trajectories of read counts of all barcoded lineages reflect the effects of selection on
the lineages, as well as both the noise that is inherent in the growth and transfer cycle, and the noise
arising from sample preparation and sequencing. In this section, we introduce a minimal model of
this process, which we use to distinguish these stochastic effects from the effects of selection, and
to infer the fitnesses and times of mutational events from barcode sequence data.

Suppose that immediately following a transfer after generation ¢, the population consists of IV
individuals, which carry m unique barcode arrays, and that n;; individuals carry barcode array ¢,
which we will refer to as lineage i. Over the course of the following growth cycle, the population
will grow in size as the individuals in the population reproduce, reaching a final size of about
28t N, = 210 . Ny when a subset of Nj cells will be randomly sampled and transferred into fresh
media. Thus, the average individual transferred at the beginning of the day will have left behind
210 offspring by the end of the day. However, mutations arising over the course of evolution will
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lead to selective differences that result in some individuals contributing more offspring than others.
We denote the average absolute competitive fitness of lineage i by x;, defined so that immediately
before the next transfer the expected number of individuals in the lineage n;t +A¢ 18 equal to

<”§,t+At> = At 2At”i,t- (1)

Of course, if lineage 7 is not genetically homogeneous, x; will change over time, but for small enough
lineages and on short enough timescales, it can be considered a convenient effective parameter. In
addition, noise in the growth cycle (e.g. in the duration of lag times at the beginning of the
transfer) may lead to variance in n},, A, (see Ref. [12]), which we can also model explicitly. During
the transfer, the probability that an individual from lineage ¢ is sampled is proportional to the
frequency of lineage i, and so the distribution of the sizes of the lineages immediately after the
transfer, n; +a¢, follows a multinomial distribution
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The frequencies of all of the lineages are resampled multiple times as the DNA is extracted, PCR
amplified and sequenced. In principle, we can model each of these steps explicitly as a multinomial
sampling step analogous to the one in Equation 2, with N, replaced with an appropriate bottleneck
size for the sampling step. By integrating over all of the hidden variables (the numbers of individuals
or reads at each sampling step), it would in principle be possible to calculate the likelihood of all
of the observed read trajectories conditioned on the x; and the bottleneck sizes, and therefore
to infer the fitnesses of all of the lineages. However, because this likelihood does not have an
analytic form, this is a computationally demanding problem even in the simplest case of a single
biallelic marker (i.e. two lineages) and a single source of binomial sampling noise. This has inspired
a large number of authors to look for computationally efficient approaches to inferring selection
coefficients and population sizes that often rely on the use of dynamic programming algorithms
and application-dependent approximations [29—10].

In our case, computational efficiency is essential since we need to jointly infer the fitnesses of
hundreds of thousands of barcoded lineages. However, our task is greatly simplified by the fact
that the majority of our barcoded lineages are present in the population at very small frequencies,
which makes it possible to treat the fluctuations in the sizes of different lineages introduced in
the multinomial sampling steps as independent. Thus, we can treat the lineage trajectories as
independent branching processes that interact only via the mean fitness, Z(¢). In the next section,
we describe how the noise in the growth/transfer and sequencing steps combines to determine the
parameters of this branching process. This derivation closely resembles the approach of Ref. [12].
We restate the assumptions and necessary intuition briefly for completeness. We then proceed to
describe how the parameters of the branching process can be inferred from the data itself. Finally,
we describe our approach to jointly inferring the fitnesses of all the barcoded lineages, and therefore
also the mean fitness of the population over time.

4.1 Branching process model for the lineage read count trajectory

In the limit that the frequency of a lineage is small, each of these sampling steps can be modeled by a
branching process. Under relatively mild assumptions, this branching process is well-characterized
by the mean and variance in the numbers of offspring per individual, independent of the actual
distribution of offspring per individual. These assumptions essentially require that fitness differences
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in the population are smaller than O(100%), and that the distribution of offspring per individual
has a tail with a finite second moment, which are satisfied by our experimental system.

Suppose for concreteness that each individual in a lineage 7 of n; ; individuals is expected to yield
on average a; descendants at the beginning of the next transfer cycle, with a variance of 2a;b(=~ 2b)
individuals. The parameter b therefore characterizes the overall noise in the transfer cycle. If this
noise is dominated by the stochasticity of resampling, we expect that b = 0.5, corresponding to a
Poisson process, but any noise occurring during the lag, growth or saturation phases will tend to
increase b and lead to over-dispersion in the allele frequency trajectory. Given these assumptions,
standard methods can be used to derive the probability distribution of the number of individuals in
the lineage after the transfer, n; ;1 as (see, e.g., Supplementary Information of Ref. [12] for a context-
specific review). As long as n;;4a: is not too small, its probability density is well approximated
by
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Suppose that the population from generation ¢+ At is then sequenced, so that an overall number
of reads R;a¢ are recovered, and that the DNA extraction, PCR and sequencing process adds an
additional variance of 23 for every sequenced read in the lineage. We can model this measurement
step using an analogous branching process. The expected number of reads mapping to this lineage
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var (Ti,t+At\nz‘,t+At) =20 <Ti,t+At’ni,t+At> ) (5)

with the overall distribution given by
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as long as r; 4+A¢ is not too small. Expressions analogous to Equation 4, Equation 5 and Equa-

tion 6 characterize the distribution of reads at the previous time-step, p[r:|n;;]. By combining
these expressions, we can calculate the probability of observing 7; ;1A reads at generation t + At,
conditioned on having observed r;; reads in the previous sequencing time-point:

. o A\1/2 - _ \/71 2
(Titrat|rit) exp [_ (\/Tz,t—l—At (Titratlr t)) ] ’ (7)

Rt

b [Ti,t+At|7”i,t; Ri,tJrAty Rt] =

4 3
TRET; 1 At

where we have defined
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Thus, we have found that the distribution of read counts of a lineage in consecutive timepoints
is characterized by two parameters: a single parameter, x;, that captures the total noise in the
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process, and a parameter, a;, that quantifies the effect of selection. We will refer to this noise as
“drift”, as is customary in the population genetics literature. Note that even if the parameters
that characterize the amount of noise present in the growth and transfer cycle (b) and sample
preparation () are constant over the course of experiment, O(1) variation in read depth from
time-point to time-point will lead to variation in k.

As we explain in the previous section, a; is related to the fitnesses of all of the lineages x;
according to

emiAt
- Zj ijtexjAt’
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where f;; = N denotes the frequency of lineage j at time ¢, which we estimate as f;; ~ fj’t =

a;

(10)

%’tt. Note that when the fitness differences between lineages lead to small per-interval increments
((x; — z5)At < 1), Equation 10 can be rearranged to yield
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where we have used Z(t) to denote the mean fitness of the population at time ¢. We will see that this
is a good approximation for the majority of intervals during the experiment, and we will explain
its use below in some steps in which we aim only to obtain rough estimates of the fitnesses of the
lineages relative to the mean, x; —Z(t), though we will use the unapproximated form in Equation 10
when obtaining our final estimates of the fitnesses of all of the lineages.

4.2 Modeling drift and selection during the barcoding procedure

Thus far we have described our model with explicit reference to the experimental evolution pro-
tocol. However, as described in Section 1.3 above, the barcoding procedure involves a number of
intermediate growth and dilution steps during which the population is resampled in a number of
different environments. This means that each barcoding also involves effects of natural selection
and genetic drift. Thus the populations experience what is, strictly speaking, an environment that
fluctuates between an “evolution” condition and a “barcoding” condition. It is not clear a prior:
what effect these fluctuations will have on the overall evolutionary dynamics. To assess this, we
need to quantify in detail the effects of drift and selection during each barcoding; we will later use
these results in Section 6.2 to show that the effect of barcoding is relatively modest and we can
consider the evolution as occurring in an “average” environment.

To quantify the effects of barcoding, we use an analogous model to that described above. Just
like growth/transfer and sequencing in the evolution environment, each intermediate step in the
barcoding procedure can be modeled as a branching process in which each lineage has a fitness which
quantifies its tendency to increase or decrease in size compared to other lineages in the population,
and a parameter that quantifies the variance in the distribution of offspring that lineages leave
at the end of that step. Finally, for small lineages and as long as the effect of selection during
barcoding is not too strong, the net effect of selection and drift during this procedure can also be
quantified using an effective branching process.

Though it is not possible to sequence the population during these intermediate steps, we can
quantify the cumulative effect of drift and selection during the barcoding procedure. In analogy
to the quantities k; and z; defined for the evolution period above, we denote the parameter char-

acterizing the overall amount of drift during barcoding interval following timepoint ¢ as Hgbc), and

the overall per-cycle “barcoding fitness” of lineage i as a:z(.bc). Thus a:,gbc) is analogous to the prod-
uct of the “evolution” fitness and the number of generations that elapse between two sequencing
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timepoints, x;At. Note that this product, rather than the per-generation fitness, is also the only
observed quantity in the evolution condition. However, because the number of doublings per indi-
vidual is precisely known during the evolution condition, we divide the observed per-cycle fitness
with this number of doublings to report a per-generation fitness, as is conventional. Given the
complexity of the growth during the barcoding procedure, we do no not attempt to quantify the
number of generations that elapse during barcoding.

Before we explain our approach to inferring the parameters of the branching process, x; and
Hgbc), and the fitnesses of the barcoded lineages, {z;} and {xﬁbc)}, we begin in the next section
by outlining some key intuition about the relative importance of drift and selection on the read
trajectory of a lineage. We will return to this intuition repeatedly in later sections when describing
our inference procedure.

4.3 The relative importance of drift and selection

An important property of branching processes of the form we are considering here is that at suf-
ficiently low counts, trajectories are almost entirely dominated by drift. The minimal size that a
lineage needs to reach to be impacted by the effect of selection can be calculated by considering
the timescales on which drift and selection can substantially impact the allele frequency trajectory.
This can done formally by analyzing how the distribution of lineage counts changes over multiple
sampling steps starting from Equation 3. However, since this is a standard result [11, 12], we do
not reproduce the proof here, but only quote the result that the effects of drift are expected to
dominate over the effects of selection in lineage 7 on timescales of %:z generations (or

-1
Tz

barcoding procedures) whenever the lineage consists of fewer than (96:—272)&5 individuals at the bot-
tleneck. As in the section above, b parametrizes the amount of noise in the growth and transfer

cycle and excludes the sequencing noise. Note that even when the lineage exceeds a size of ﬁ

individuals, the effects of drift may dominate on timescales shorter than xz%j generations.
The threshold of % individuals at the bottleneck corresponds to a threshold number of
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reads mapping to a lineage equal to Ny mis)AE N a0y reads in the barcod-
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ing condition). Thus, lineages not exceeding 2?\,}? . m

. . . 1 . 1
dominated by drift on timescales of 7,7 generations (or a9

counts have trajectories that will be

barcoding procedures). On

shorter timescales, this threshold is conservative, both because drift can have a stronger effect than
selection on shorter timescales, and because sequencing contributes an additional source of noise.

We will see in the following section that in both populations we typically have %}ft 2 1 and
2b(bc)
Npe
or less in both the YPD and the YPA evolution condition and (¢¢)? < 0.5 (see Supplementary
Fig. 14), this means that the majority of lineages in our experiments that are present at less
than a few multiples of 25’\,}? . ﬁ = 10 counts will have trajectories dominated by drift. Note that
because new barcodes appear at average read depths of about 10 counts per lineage (Supplementary
Fig. 4), this has important consequences. First, it means that it is in principle impossible to infer
the fitnesses of very low-frequency lineages before they reach higher frequencies. However, it also
makes it possible to use these low-frequency barcodes to infer the parameters of the branching
process k; and /{Ebc) at frequencies where drift is the dominant force. We also note that this result
implies that given the strength of selection observed in our experiments, our barcoding sequencing
depth of on average 3.6 x 10° per timepoint is adequate to resolve any lineage whose dynamics are

dominated by selection rather than drift.

- Ry > 10. Because the variance in fitness in our populations is on the order of ¢ = 1074
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4.4 Inference of the parameters of the branching process model

To infer the parameter ; for each pair of consecutive time-points in both the evolution and barcod-
ing condition, we compile pairs of counts (r; ¢, 7 ++a¢) of all lineages 4 for which ;¢ is in the range
(Pmin, Tmax) = (40 — 2 - \/ZTO, 40 + 2 - \/47)) Thus, we simultaneously exclude very low counts for
which the distribution in Equation 7 is inaccurate, and also counts over ~ 50, because this ensures
that the overwhelming majority of included data points are not significantly impacted by selection.
We fit x; to this observed distribution of pairs of read counts, by finding the x; that maximizes the
likelihood of the pairs of counts under the model given by Equation 7, with ¢ = 1, and estimate
the error in the estimate of k; from the curvature of the second derivative of the likelihood. This
likelihood can be analytically maximized, yielding:

> (VFiea: — \/m)z 0 (rit — min) 0 (Pmax — Tit)
220 (rit — Tmin) 0 (Tmax — i) ’
2
>0 (rig — rmin) 0 (Tmax — Tit)
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where 6(z) denotes the Helmholtz theta function and the summation runs over all lineages. We
take 95% confidence intervals for the k; to be (ki — 2AkK¢, Kkt + 2AKy).

Supplementary Figure 5 shows a comparison between the observed distribution and the distribu-
tion predicted using our maximum likelihood x;. As can be seen in the left panel of Supplementary
Fig. 6, though k; varies over the course of the experiment, there are no strong systematic trends.
Using these estimates of the k¢, we can fit the model in Equation 8 and obtain estimates for the
variance per individual that are introduced during the growth and transfer cycle (2b) and during
DNA extraction and sequencing (2/3), assuming that these are constant throughout the experiment.
We fit these parameters separately for each population and condition (evolution and barcoding),
and summarize the best-fit parameters and confidence intervals Supplementary Table 2.

The model in Equation 8 provides a reasonable fit (see right panel of Supplementary Fig. 6).
The estimates of ]%,—i in the evolution conditions are consistent with our intuition that the variance
per individual introduced during the growth-transfer cycle, 2b, is of order 1 and that the size of
the population at the bottleneck is roughly 10° in the YPD population and slightly smaller in the
YPA population. .

In the barcoding environment, the estimates of 2 N are consistent with an effective bottleneck
that is 50-fold lower than the daily transfer bottleneck in the YPD evolution condition, and slightly
less than 10-fold lower than the daily transfer bottleneck in the YPA condition. Note that these
bottlenecks are broadly consistent with what we expect them to be from the barcoding protocol;
they lead to an overall scale of genetic drift which is comparable to the combined effects of the ten
daily transfers during each evolution epoch.

Finally, the best-fit parameters are consistent with the noise added during DNA extraction
and sequencing having slightly larger than Poisson variance, and are in rough agreement with one
another given the precision of the estimates, with the exception of the YPA barcoding condition,
which appears slightly larger. There are multiple possible reasons for this discrepancy. For instance,
the model for x; in Equation 8 is clearly simplistic in assuming that all sequencing runs are equiv-
alent. However, DNA extraction and sequencing are a composite procedure, consisting of multiple
steps including a PCR reaction during which a variable number of molecules may be recovered for
different timepoints, introducing a variable PCR bottleneck. This would lead to additional vari-
ability in the parameter § that is not captured by our model. However, these discrepancies are not
relevant for our purposes here since we are not interested in characterizing the details of the origins
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Supplementary Figure 5: Comparison of observed and best-fit theoretical distributions
of read counts. Each panel shows the distribution of read counts R;ya¢ at timepoint ¢ + At
of lineages that were observed to have between 40 — 21/40 and 40 4 2v/40 reads at timepoint ¢.
Lines represent the model prediction based on Equation 7 with the maximum likelihood ;. Blue
points and lines correspond to the YPD population, and orange corresponds to YPA, consistent
with Figure 4 of the Main Text.
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Supplementary Figure 6: Inferred parameters of the branching process. (Left) Best estimates
of k¢ over the course of the experiment. Error bars show 95% confidence intervals (calculated as
described in Equation 12 and the text immediately below). The top left panel shows the total
sample size used to estimate x; in each population and timepoint, which is equal to the number
of lineages of the appropriate size. (Right) Variation in these estimates of k; is partly explained
by the variation in read depth over the course of the experiment. Estimates of B and Nib were
obtained by weighted-least squares regression. The weights for data point were estimated from the
uncertainty in the best fit k¢, Axy.

of the drift and sequencing noise during the experiment. Instead, we are primarily interested in
quantifying its net effect using a single parameter, x¢, which we can use to distinguish its effects
from the effect of selection.

5 Inference of lineage fitness and the arising times of new mutations
from barcode count trajectories

Having established a model for the trajectory of a lineage, we are now in a position to infer the
fitnesses of all the barcoded lineages in a population in the evolution and in the barcoding condition.
Note that this is still a challenging problem because at any point during the experiment, a majority
of the recently barcoded lineages are segregating at such low frequencies that their trajectories are
primarily impacted by drift. Thus, if we were to subdivide the population at the finest possible
level (using all the available barcode information), we would not be able to infer the fitnesses of
the majority of lineages in the population. This would lead to an underestimation in the fitness
variance and, consequently, the mean fitness of the population Z(t). Since the expected trajectory of
a lineage only depends on its fitness relative to the mean, this would also lead to the underestimation
of the fitnesses of the lineages that are large enough to feel the effect of selection.

Fortunately, because lineages retain all barcodes that they receive over the course of evolution,
we have abundant genealogical information that we can use to group sublineages according to their
earlier barcodes. Because barcodes are inserted into the population at a rate that is far higher than
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condition J%f% 23
YPD evolution | 2.3 x 107% (2.16,2.43) x 107° | 1.69 (1.66,1.72)
YPD barcoding | 1.16 x 10~* (1.06,1.27) x 10-* | 1.79 (0.61,2.97)
YPA evolution | 6.37 x 107% (6.05,6.69) x 107° | 1.48 (1.41,1.54)
YPA barcoding | 4.48 x 107> (3.32,5.64) x 107° | 12.48 (9.58,14.3)

Supplementary Table 2: Inferred parameters of the branching process. The best-fit param-
eters of the model in Equation 8, as obtained by weighted least squares regression. Confidence
intervals for each of the parameters are provided in parentheses.

we expect beneficial mutations to establish (10° barcodes every 100 generations), the majority
of barcoded lineages will not obtain a new beneficial mutation between consecutive barcoding
“epochs”. This means that by grouping sublineages according to earlier (“parental”) barcodes, we
will largely recover sub-populations that carry the same beneficial mutations, and are therefore
homogeneous in fitness. This allows us to average over the drift impacting the trajectories of
individual sublineages, and obtain more accurate estimates of fitness.

However, a small fraction of lineages will receive new beneficial mutations between barcoding
periods. Once established, these beneficial mutations will cause the “child” sublineage in which they
established to have a different fitness than the parental lineage. Thus differences in the fitnesses of
parental and child lineages are indicative of new beneficial mutations. Thus by looking for lineages
that have fitness larger than their parents, but whose relative benefits compared to the parents
are shared by all their children, we can narrow the establishment time of a mutation to within a
barcoding epoch (100 generations). This will leave us with a set of all of the beneficial mutations
that established in the population.

Note that by using the phylogenetic information encoded in the barcode locus to narrow the
establishment time of a mutation, we deviate from previous methods that inferred the establishment
time by extrapolating backwards the long-term trajectory to find the effective time when the lineage
size exceeds roughly (157@ individuals [12]. We make this choice for a number of reasons. First, given
that typical differences between the fitnesses of lineages in our experiment are of order z — Z ~ 1%,
and that the establishment of a lineage is not a discrete event, but rather an extended period of time
of duration of order Flf ~ 100 generations during which the impact of genetic drift becomes less
important than the impact of selection [12, 43], the accuracy of single 100-generation-long barcoding
epoch is sufficient for describing this process. Second, given that our population is subjected to
a sequence of two environments (the evolution and the barcoding environment), it is not obvious
what principled approach could be taken to extrapolate backwards the long-term trajectory, and
it is also not clear how meaningful any finer resolution of the establishment time that could be
achieved in this way would be.

To accomplish these goals of inferring the beneficial mutations and their approximate estab-
lishment times, we must first obtain estimates of the fitnesses of all the lineages in the population.
We start by identifying all lineages whose trajectories are not primarily impacted by drift at least
in some portion of the experiment in either the evolution or the barcoding condition (i.e. those for
which there is evidence for selection). We then jointly infer the relative fitnesses of these lineages,
and compile a list of those that are positively selected in at least some portion of the experiment
in at least one of the conditions (evolution or barcoding). These lineages are all likely to contain
some beneficial mutations, but multiple of them will reflect the effects of the same co-inherited
mutation. We then proceed to identify which of these lineages appear to have acquired a new
beneficial mutation that was not present in the parental background. Finally, with this information
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we can split the population into “clonal” lineages that do not differ by any beneficial mutations
that we can detect. We then jointly infer the fitnesses of these clones with respect to the ancestor
independently for the evolution and for the barcoding condition, and therefore the effects of all of
the detected mutations in both of the conditions. We describe these steps in detail in the following
sections.

5.1 Identification of selected lineages

We begin by first identifying a set of lineages for which we can reliably estimate fitness. To do this,
we first split all trajectories into segments ( “epochs”) corresponding to the 100-generation evolution
periods (between barcoding intervals) and the barcoding intervals (during which we can measure
changes in the sizes of the already existing barcoded lineages). We will refer to the evolution period
during which each individual carries a total of E barcodes as “epoch E”, and the barcoding interval
during which the (1 + E)* barcode is added as “barcoding interval E”. As in the Main Text, we
denote generation x of epoch E with “E.2”, so that 1.90 represents generation 90 of the first epoch.

Because the changes in the frequency of a lineage between consecutive measurements are inde-
pendent (conditioned on the fitnesses of all of the lineages in the population), the likelihood of a
segment of the trajectory of lineage ¢ in epoch E under the hypothesis that its fitness is equal to
x;(t), conditioned on the fitnesses of all of the other lineages being equal to z;(t) is

E.90

Li g ({ris}|ke, ai(t)) = H P (Teadlre, ke, Revar, Resai(t)) (13)
t=E.0

where p (reyat|re, ke, Regpa, Re; ai(t)) is given by Equation 7 with a;(t) given by Equation 10. The
likelihood of a segment of a trajectory during barcoding interval £ has an equivalent form to
Equation 7, with the only difference being that it consists of a single interval, as opposed to the 10
intervals observed during the evolution epoch. In both cases, the likelihood of the segment of the
trajectory under the null hypothesis that it is primarily affected by drift can be obtained by setting
a = 1 in Equation 13. Because Equation 7 is valid only when both {r;} and all hidden variables
are not too small, we exclude from further analysis lineage segments that fall below 20 counts in
any of the timepoints. Note that this does not exclude the entire lineage, but only those segments
that contain extremely low counts.

As mentioned in our discussion above, both the absolute fitness of lineage i, z;(t), and the
absolute mean fitness of the population, Z(t), will change over time, as new beneficial mutations
establish in the lineage and population, respectively, and increase in frequency. Thus, a;(t) will
also change over time. We are interested in modeling these changes explicitly, but we must first
identify the subset of these lineages for which fitness (and, therefore, changes in the fitness) can be
meaningfully inferred.

To do this, we construct the log-likelihood ratio test statistic, T, for the segment of lineage ¢ in
epoch F, defined by
ﬁi,E ({T’in}‘Ht, a = &)
Lig({rig}lk,a=1)]"

where @ represents the (constant) parameter a for which the likelihood of the segment of the
trajectory in epoch E (or barcoding interval E) is maximized. We obtain a by evaluating the
likelihood on a grid of 2001 points between e~> and e°, evenly spaced in log-space and then picking
the value which maximizes the likelihood. We repeat this procedure and all subsequent steps
independently in each epoch E and each barcoding interval FE.

T =2log

(14)
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Note that if a lineage does not consist of multiple sublineages of different fitnesses and the
mean fitness of the population does not change too rapidly (which will be the case for the majority
of lineages and epochs), the assumption that a is constant over the course of an epoch is a good
approximation for what we believe is the true model for the lineage trajectory. However, even
if these criteria are not met, segments that are strongly impacted by the effects of selection will
have large T statistics. Therefore, given an expectation for the distribution of 7" under the null
hypothesis and the observed empirical distribution of 7', we can identify selected lineages at a
specified false discovery rate (FDR) [14].

We construct an empirical null distribution for the evolution condition from the distribution
of T-statistics for all the lineages in the first 100 generations of evolution (i.e. in the first epoch)
for each population separately, and the empirical null distribution for frequency changes in the
barcoding condition from the distribution T-statistics of all the lineages observed over the course
of the first barcoding period. These timepoints represent a good proxy for neutral evolution in our
system: because the ancestral population is clonal, only new mutations that have already estab-
lished should have trajectories that are significantly impacted by selection. Given the population
sizes (N ~ 10°%), mutation rates (U, ~ 107°), and selection coefficients (s, ~ 1072) relevant for
our populations, these events are extremely rare: though on the order of 10 mutations occurring
within these first 100 generations are likely to establish, they are extremely unlikely to do so in
significantly less than i ~ 100 generations [12].

Thus, for each of the populations separately, we compile the likelihood ratio statistics {1} p=1}
of all the trajectory segments of all the lineages k present at the outset of the experiment whose
read counts do not fall below a threshold of 20 counts during this epoch. Using these data, we
assign P-values for all lineage segments from this population under this empirical null distribution
according to

P g =Pr[Typ—1 > TiEl, (15)

independently for all subsequent barcoding periods and evolution epochs. In the next step of the
analysis, we need to obtain joint estimates of the fitnesses of all lineage segments that we designate
as “selected” based on these P-values.

Because assigning non-negative fitness to a large number of drifting lineages would bias upwards
both the mean fitness of the population as well as the fitness estimates of truly selected lineages,
we need to limit the total proportion of lineages falsely labeled as selected in order to remain
conservative in our detection of new mutations (see also next section). Since the distribution of P-
values of lineage segments can be different in different epochs and barcoding intervals, we separately
assign (J-values to each of these lineage segments according to

Q!
>0 (Q—Prp)

Qip = min , (16)

Q>P; E

where 6 represents the Heaviside step function. We reject all lineage segments with Q; g > 5%.
This threshold is intentionally set to be permissive, since candidate lineages identified in this step
undergo substantial further filtering.

5.2 Joint estimation of fitnesses of selected lineages

After identifying lineage trajectory segments that appear to be influenced by selection, we jointly
estimate their fitnesses. At this point, the purpose of this estimation is not to obtain accurate
measures of the relative fitness of all lineages, but rather to:
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1. Conservatively discard lineages whose relative fitnesses are never positive in either the bar-
coding or the evolution condition. These lineages are unlikely to carry any new mutations,
and their trajectories are likely primarily affected by drift, and possibly by negative selection
once they fall substantially behind the population mean fitness. They have been picked up
in the previous step only because they spent a portion of their trajectory rapidly declining in
frequency.

2. Compare estimates of parent and child lineage fitness, which we will then use to infer when
mutations arose.

Note that before we are able to correctly partition the population into lineages of the same
fitness, we expect to systematically underestimate the fitness variance in the population: as we
mentioned above, partitioning the population too finely leads to limited power to infer the fitnesses
of small lineages, leading to a large fraction of the population being classified as neutral. On the
other hand, partitioning too coarsely and grouping multiple lineages of different fitness into a single
genotype directly leads to the underestimation of the variance in fitness within that lineage, and
therefore within the entire population. Thus our estimates of the relative fitness of all lineages
are likely to be conservative. In order to avoid missing a large number of truly positively selected
lineages at the next filtering step, in which we require relative fitness of a lineage to be positive in
at least one segment, we aim to be as permissive as possible, while still maintaining simplicity of
the procedure.

To infer the fitnesses of all the segments of all trajectories that have not been rejected as neutral
in the previous step, we use the following procedure. In all steps, we approximate Equation 10 with
the form given in Equation 11, which allows us to quantify the effect of competition between the
lineages in the population over the course of an epoch or barcoding period using a baseline common
to all (parent and child) lineages, the population mean fitness relative to the beginning of the epoch.
This comes at the cost that changes in the mean fitness of the population are poorly approximated
during intervals in which there are lineages for which (z;(t) — Z(t))At 2 1, but as we will see, this
only affects a handful of barcoding intervals (see Supplementary Fig. 14). Moreover, this level of
accuracy is consistent with the overall goals of the procedure. We describe the steps with reference
to an evolution epoch FE, but we apply an entirely equivalent procedure for all barcoding intervals.

1. Initialize the mean fitness of the population to Z(t) = 0 over the entire course of the epoch.

2. Start by grouping the lineages according to their first barcode only, discarding information
about any further barcodes. This represents the coarsest possible way to subdivide the
population. Estimate the relative fitness of each lineage i(!) labeled by this first barcode
(BC1) by finding the ;) p that maximizes the likelihood of the segment of the trajectory
of lineage i) in epoch E, conditioned on the current estimate of the mean fitness of the
population Z(t) in that epoch (see below). We ignore changes in fitness in the lineage over
the course of the epoch and consider the absolute fitness ;1) (t) of the lineage constant for
the duration of the epoch, but allow for it to change between epochs.

3. Estimate the mean fitness of the population in this epoch according to

(1 (T (t=FE.Q
V()= [Tz(ll%t( ) _ ”“ét_m ) Ty g, for E.0 <t < E.100, (17)

T.(1)

with x;01) p = 0 if the segment of this lineage was rejected as drifting in the previous step
of the analysis. Because the likelihoods of the trajectories are invariant to the addition of a
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constant factor to all of the x;1) p, we make the arbitrary choice to set the mean fitness at
the beginning of the epoch to zero Z(t = E.0) = 0. Thus, all relative fitnesses of all lineages
are measured with respect to the mean fitness at the beginning of the epoch.

4. If the lineages contain more than 1 barcode in this epoch, repeat this process by grouping the
lineages according to their first and second barcodes (BC2) . Estimate the relative fitness of
each of these lineages i(?), T, g, conditioning on the current estimate of the mean fitness of
the population, Z(t).

5. Re-estimate the mean fitness of the population z(?) (t) using the two-barcode fitness estimates
and Equation 17.

6. If the mean fitness at the end of the epoch based on this estimate is larger than the previous
Z®)(t = F.100) > z()(t = FE.100)], this means that we have captured more variation in
fitness in the last step than in a previous iteration. In this case, we wish to update the
estimate of mean fitness Z(t) to be equal to Z()(t). Though #?(t) is still likely to be a
conservative estimate of the mean fitness, it is less conservative than our previous estimate,
and will lead to less conservative estimates of the fitnesses of lineage segments.

7. Repeat steps (4-6) using any other barcodes (BC3-BCE, if E > 3).

8. If the mean fitness has been updated since step (2), repeat steps (2-7) until there are no
further updates. This ensures that the fitnesses of all lineages were measured relative to the
same baseline mean, allowing for comparisons between child and parent lineage fitness.

To estimate the best-fit fitness of lineage ¢, #; g and its uncertainty, we use two different ap-
proaches depending on whether or not the frequency of the lineage is small. If the frequency of
a segment of a trajectory does not exceed 10% in a given epoch (i.e. if ”T(tt) < 0.1 for the entire
duration of the epoch), we estimate z; g by solving for the z; p that maximizes the likelihood

d _
0= L (rit K, = S[xivE_x(t)]At) , (18)
dxi,E ’ T E=%i E
with the uncertainty Az; g given by
1
Ax; g =
\/_ 7oL <7’i,t’/€ta a= e[wﬂE‘f(t)]At) ) (19)
Equations 18 and 19 admit analytical solutions, which are given by
2 — 24 1
T = Elog ( p+ W) and Ax;p= © (20)
@
2\/<1 —£) (-8+ VB~ 1)
where we have defined
rie POAL Ry ny \/ - Riiae 1
= = — - (t)At d = — —.
o Zt: o R, ., B Zt: rie TirAt py and 7y Zt: 1 (21)

On the other hand, if T}g) exceeds 10%, we find that convergence is improved if we slightly

modify the way the expectation of the trajectory conditioned on z; g is calculated according to

(1) = ryge"o (10l 2O (22)
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where ¢y corresponds to the beginning of the epoch (ty = E.0). This change forces better agreement
with earlier time-points in the epoch, and comparisons with simulations show that this helps avoid
the iterative scheme freezing in a local maximum with smaller overall variance in fitness. Since
this likelihood can no longer be maximized analytically, we find Z; g by evaluating the likelihood
on a grid of 2001 linearly spaced points spanning the interval [—0.5,0.5] in the evolution condition
(and 2001 linearly spaced points between [—5,5] in the barcoding condition), and taking &; g to
be the point at which the likelihood is the largest. The uncertainty in Z; p was estimated from the
95% confidence interval, which was taken to be the equal to the range of z; p within which the
log-likelihood fell by no more than T0'2°25 compared to the peak, where Tj g25 denotes the smallest
value of the log-likelihood ratio statistic that is exceeded by no more than 2.5% of the empirical
null distribution.

5.3 Identification of barcodes that carry new mutations

At this point, we use barcode frequency trajectories and fitness estimates to identify barcodes that
carry new beneficial mutations that were not present in their parental genotype. As explained in
the previous section, we begin by excluding from further analysis all lineages for which the best
estimate of the relative fitness is not positive in any of the segments of their trajectories. This
eliminates the majority of previously called lineages in the YPD and YPA environments, leaving
us with a subset of a few hundred lineages in each population which all have at least one segment
in either the evolution or the barcoding condition during which the lineage has a positive fitness
relative to the mean.

We interpret the fact that these lineages have above average fitness at some point as evidence of
a beneficial mutation establishing at some time prior to that point. Note that, because all barcodes
inserted in the population are retained by the individuals, a new beneficial mutation will cause all
barcodes carried by that lineage to increase in frequency (i.e. a beneficial mutation establishing in
epoch 3, will cause BC1, BC2 and BC3 of that lineage to increase in frequency). Furthermore, be-
cause the population reproduces asexually and all mutations carried by an individual are passed on
to all of its offspring, a beneficial mutations arising on parental backgrounds may also cause further
barcodes to increase in frequency (e.g. BC4, BC5 and later barcodes arising on the background of
BC3 may continue to increase in frequency until the lineage is outcompeted by the advancing mean
of the population). Thus, there are several possibilities for when the beneficial mutation may have
established:

1. The mutation established on the background of a parental barcode, prior to the addition of
the last barcode in the identified lineage. The fitness benefit reflects a mutation established
in the parent, and is shared by sibling barcodes.

2. The mutation established on the background of this barcode, prior to the addition of the next
set of barcodes. This is a new mutation, its benefits are not shared by sibling barcodes.

3. The mutation established on the background of a child lineage, causing all of its earlier
barcodes to increase in frequency.

In all cases, we wish to reject all lineages except the one in which the mutation established, grouping
all descendant lineages that have the same fitness into a single “clone”. Occasionally, some of these
descendant lineages will carry an additional mutation, causing them to increase in frequency faster
(or decrease slower) than their parent. In this case, we must also find the lineage the mutation
established in, and discard all intermediate and downstream lineages that were affected by it.
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To infer the timing of a beneficial mutation, we validate each of the called lineages by hand, by
starting from the root of the genealogy of all called lineages, and working down to the tips of the
genealogy. We assign each lineage a flag according to the following criteria:

A Mutation established on the background of this barcode, conferring a benefit in the evolution
condition, and founding a new “clone” labeled by the barcode array identifying the lineage.

To be assigned this flag, a lineage must have a fitness advantage over the parental background
over multiple evolution epochs, increase in frequency relative to the parent consistently while
the relative fitness of the parental background is positive, until it either fixes, is outcompeted
by another sibling lineage or drifts to extinction as the parental lineage drifts to extinction.
In addition, we require that its direct descendants share the same benefit.

B This flag is equivalent to flag A, but denotes a mutation conferring a benefit in the barcoding
condition only.

P Fitness of this lineage in both evolution and barcoding condition is indistinguishable from
parent. This is the most common case. These lineages were excluded from further analysis.

C Fitness difference of this lineage with respect to its parent results from a new mutation within
a child lineage. These lineages were excluded from further analysis.

In about 5% of cases in each population, lineages were assigned one of these additional flags:
R(X)  Unclear/marginal call. X denotes the alternative flag(s) considered.
R(N)  Trajectory appears neutral.

+ Apparent new mutation within one of the child lineages not detected by pipeline.

Note that we sometimes find, especially when considering small lineages, that only a single
child lineage is called as selected, despite apparently similar trajectories of the called lineage and
its siblings. In this case, since we cannot both estimate the fitness of the segments of these sibling
trajectories and maintain the same FDR, we use a heuristic to determine whether or not these
direct descendants share the same benefit as the parent, motivated by the fact that genetic drift
is unlikely to perturb allele frequency trajectories in exponentially expanding populations. If the
relative frequencies of the sibling trajectories appear constant over multiple epochs after the parental
lineage establishes and while it is expanding, we interpret this as evidence that the sibling lineages
share the same benefit as the parent. If however the relative frequency of a called child lineage
increases over multiple epochs by O(f), we interpret this as evidence that this lineage or one of its
descendants carries a new mutation, since this event is unlikely to be driven by drift.

Finally, we note that the power to detect a new mutation decreases with the length of the
available time-course for that lineage: early segments of lineages, during which their frequencies
are low, are more strongly affected by drift, and therefore better explained by the null hypothesis.
We can obtain an estimate of the length of time-course needed to detect a lineage from our data from
the sequence of barcode fitness measurements of accepted lineages. As we show in Supplementary
Figure 7, the majority of lineages that were determined to carry a new mutation would be rejected
at the FDR of 5% if only their first epoch was considered. However, almost all of them are called
within the next two epochs. Thus we conclude that we have limited power to detect mutations
establishing in the last 1-2 epochs of the experiments.
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Supplementary Figure 7: Number of epochs needed to detect a positively selected lineage.
Distribution of times until a segment of a lineage carrying a new beneficial mutation is inferred to
have nonzero fitness in either the evolution or the barcoding condition.

6 Analysis of clone fitness, fate, and overall population dynamics

6.1 Joint inference of clone fithesses

Having identified barcodes that label new beneficial mutations, we split the population into clones
that do not differ by any beneficial mutations that we can detect by merging all sibling lineages
that have been called as equivalent in fitness. We then use these clone frequency trajectories
to jointly infer clone fitnesses relative to the ancestor in both the evolution and the barcoding
conditions (:Ui,xl(bc)). As can be seen in Figures 2-4 of the Main Text, the population remains
diverse throughout the experiment, with only a handful of clones reaching frequencies of order 10%
or more. Thus for the vast majority of clones and times, our branching process model will represent
a good approximation. For a handful of lineages that approach frequencies larger than 10%, the
branching process model will overestimate the noise in the change in the number of reads mapping
to a clone from time-point to time-point. However, since during these periods this (overestimated)
noise is already subdominant compared to the deterministic trends caused by selection, this will
have limited effect on our estimates. Thus, we consider the branching process model a reasonable
approximation for all clone frequency trajectories.

We jointly infer the fitnesses of all clones in the evolution and in the barcoding conditions using
cyclic coordinate descent to maximize the overall likelihood of the data with respect to the fitnesses
of the clones in the two conditions. In each of the conditions independently, we begin by initializing
all of the fitnesses of all clones to be equal to the fitness of the ancestor. We then cycle through each
clone 7, and maximize the log-likelihood of the data with respect to the fitness of that clone holding
the fitnesses of all other clones constant, by performing a search for x; on a grid of 2001 points
linearly spaced between Z—i’ and % for the evolution condition, and —5 and 5 for the barcoding
condition:

2 argirilax log £ [datal arg:rcrilax zj: log £ ({rj}{z;}) . (23)
Here, the log-likelihood of each trajectory log £ ({r;}|{z;}) is calculated by summing the log-
likelihoods of each of the segments of that trajectory in the relevant environment (evolution, or
barcoding), which are given by Equation 13, where we use the full form for a; from Equation 10,
relaxing all approximations we made in Section 5.2. As previously, in both the evolution and
barcoding environment, we exclude all segments in which the clone read count falls below 20 counts.
The 95% confidence interval for the estimate x; is designated to be equal to the range on the grid
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over which the overall likelihood of the data £ [data] does not fall more than 2 log-likelihood units.
We iterate this procedure by cycling through all the lineages until the total log-likelihood of the
data changes over consecutive cycles by no more than 0.001.

We estimate a conservative confidence interval for the mean fitness trajectory according to

r;(t)
J

Clone barcode arrays, fitnesses relative to the ancestor and their confidence intervals in the
evolution and in the barcoding environment, as well as the colors used to display them in Figures
2 and 3 of the Main Text are shown in Supplementary Table 3 and Supplementary Table 4.

6.2 Impact of the barcoding procedure on the evolutionary dynamics

As we explained in Section 4.2, the evolutionary dynamics during the 100-generation evolution
epochs and during barcoding represent qualitatively equivalent evolutionary processes in different
environmental conditions. In each condition, the population undergoes a process of growth and
selection, and experiences a bottleneck.

In Section 4.4 we quantified the effective strength of the bottlenecks during each evolution
and barcoding epoch, and showed that the effective bottleneck that the population experiences in
the barcoding procedure is somewhat narrower than the bottleneck experienced during the daily
transfer. However, there are 10 bottlenecks per evolution epoch and only one per barcoding period.
Thus the net amount of drift that the population experiences over the course of each evolution
epoch is roughly comparable to the amount of drift during each barcoding procedure in the YPA
environment, and smaller by a factor of about 5 in the YPD environment (due to the slightly larger
size that this population reaches during evolution).

This means that if the fitnesses of the lineages in the two conditions were equal, we could think
of the barcoding procedure as being equivalent to a 100-generation evolutionary epoch during which
the dynamics are not observed at intermediate intervals. However, our fitness inferences show that
in general the effects of mutations on fitness in the evolutionary condition and in the barcoding
condition are not well correlated in either the YPD or in the YPA population (see Supplementary
Fig. 8). Thus, both populations evolve in what is, strictly speaking, a fluctuating environment.
However, the time spent in any given condition before the environment changes is short enough
that the fluctuations themselves have only a weak impact on the clone frequency trajectories.
Specifically, in both the evolution and barcoding condition, the changes in the logarithms of the
frequencies over the course of a single evolutionary epoch or a single barcoding period are typically
small compared to 1 (see Supplementary Fig. 9).

Formally, this means that on long timescales the evolutionary dynamics can only be influenced
by the average fitness between the two conditions [15]. Therefore, in all of the analysis we describe
in the Main Text, we use the average fitness of a clone between the two conditions. To calculate
this average, we scale the evolution fitness by the number of generations spent in the evolution
environment, and report it in units of percent:

(be)
.’E(avg) B 100z; + x; . (25)

' 200

Of course, we exploit shorter-timescale information to more reliably group lineages into clones,
in that lineages with the same average fitness but different fitnesses in one of the two conditions
experienced in over the course of the experiment are never grouped in the same clone.
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Evolution Barcoding
Clone Barcodes Fitness ( ge?:/; Slle) Fitness (92:{;?]'0 Color

(percent) per cy (percent) P
CCTGGAGCAGTCTAAT 0.75 (0.50,0.95) |0.23 (-0.04,0.46)
CCTGGAGCAGTCTAAT_CTGTGTCCAGCCTCGT 1.45 (1.40,1.50) | 1.06 (0.99,1.13)
ACGAGGCGTGTAATCA -0.10 (-0.30,0.05) | 1.13 (0.96,1.29)
GTGCCTAGACCAACTT 0.00 (-0.20,0.20) | 1.09 (0.90,1.27)
AGCTATACCCCAACAA 0.65 (0.55,0.75) | 0.46 (0.32,0.58)
AGCTATACCCCAACAA_CTGATTTCTGAGACTG_TACCTACAGACAATCT 1.20 (1.00,1.40) | 0.77 (0.58,0.95)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG 1.10 (1.05,1.15) | 0.85 (0.80,0.91)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_CGGTTTGGGCTCACCT_ACCGGGTAGTCGATAA 1.10 (0.85,1.30) | 1.10 (0.88,1.31)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC 2.45 (2.45,2.50) | 1.42 (1.39,1.44)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_TCAGGGGAGGTTCGTC
_CGGACCTAGGAGAACG - - - 2.90 (2.80,3.00) | 1.62 (1.49,1.73)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_TCAGGGGAGGTTCGTC |, 4, (345,5.15) | 2.19 (0.32,3.15)
_CGGACCTAGGAGAACG_TGGGGGTATGAATTCG_GCTTGTAATACGTGAG ) s . e
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_TGGTAACCGGGTCCTT |, 4x (230,2.55) | 1.65 (1.51,1.77)
_CTATGCGCTCGGGAAA - e : T
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_ACCTCTCGCATCCAAC | 540 (2954.25) | 257 (1.483.27)
_ACCAGAAATACATCTG_ACTGCGGTAACTTGTT_AAGAGGCTTGCTGGGG ) T } s
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_AGAGTCAGCTAGTATT |, (2.35260) | 1.7 (1.62,1.91)
_CAACCACAACCTAAAC s e ) e
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_AGATAAACTGATTGCT
_ACCTCAATCATCCTCA - - = 3.45 (3.30,3.60) | 1.44 (1.20,1.65)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_TGGTAACCGGGTCCTT
TCCGCCAGTGTACTTA ! ! - 3.30 (3.15,3.40) | 2.00 (1.85,2.14)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_CTAGCTATGTTCACCC
 COGOOAACCTTCTGGA ! ! — 2.10 (2.00,2.25) |2.23 (2.11,2.34)
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATTACATATGCACGCC_ATTTCGGGGACGCGCC_CTAGCTATGTTCACCC |, (140,2.55) | 2.98 (2.47,3.40)
_CGGCCAACCTTCTGGA _AAAAGGCTCGTGGTGC_TTGACGGGGTATGAAA . e - T
TACAGGGGATGAAGCT_GTTGATTGGACGGATG_ATGTGTGCATAGAGTG_ACTTTGGGCCACAGCA 1.25 (1.00,1.55) | 0.97 (0.69,1.22)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG 1.00 (0.95,1.00) | 1.02 (0.99,1.05)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_TAGCAATAAACACGCT_TGACCGATGACCCGAC 0.80 (0.35,1.25) | 1.56 (1.23,1.84)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_TGTCGGTAAATCTAGT_ACGGGTAAAGAGTTCG 0.75 (0.50,1.00) | 1.57 (1.38,1.74)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_CAACCACCCGCATTCA_TGAGGGAACCCCTTGA_ACGGTTATGTAACCGG 2.95 (2.90,3.05) | 222 (2.14,2.29)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_TCCGATGGCTTCGAGT 1.00 (0.90,1.10) | 1.67 (1.56,1.75)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_TCCGATGGCTTCGAGT_TAGATGGGTTCTGAGC_CGGCCGATCTCGACTT 1.25 (0.90,1.60) | 1.92 (1.66,2.13)
TTTGGCAACCTGGGTG_TATTGCAGTTATGCAG_TGTTAATCAGGGGGAG 1.45 (1.45,1.50) | 1.29 (1.24,1.33)
GCATCGTACACCGGAT_GATCCACAGCCTGTAT 1.15 (1.15,1.20) | 0.97 (0.92,1.03)
GCATCGTACACCGGAT_GATCCACAGCCTGTAT_ATCAGTAAACTTTCAA_GTGGTAATCGCTCTGA 2.45 (2.40,2.45) | 1.38 (1.33,1.42)
GCATCGTACACCGGAT_GATCCACAGCCTGTAT_ATCAGTAAACTTTCAA_GTGGTAATCGCTCTGA_TGCCGCTTCCCCGCAC 2.00 (1.50,2.50) | 2.33 (.77.2.77)
_ATTAGCGCCTCCCGAT_CTGTGACATAGGCAGT . e } e
GCATCGTACACCGGAT_GATCCACAGCCTGTAT_ATCAGTAAACTTTCAA_GTGGTAATCGCTCTGA_TGCCGCTTCCCCGCAC 4.00 (3.254.70) | 0.89 (-0.75,1.80)
_CACATAAGCATGCAGA_GTCACTGTGCCGCTAT ) e ) e
CATCCGTTCCTGTAGA_AGGTCGAATCCCTCTT 1.15 (1.05,1.20) | 0.55 (0.45,0.65)
TGCTCCACACGAGTCC_CCTTTGGGGTGAGACC 1.00 (0.95,1.05) | 0.91 (0.84,0.97)
ATAATGAGTGCACCTT_CAAGCATACTTATATG 1.95 (1.90,1.95) | 0.77 (0.73,0.82)
ATAATGAGTGCACCTT_CAAGCATACTTATATG_CTGACAGCCGAGCCCT_TTCCTGAGAAGATTGC_GACCCTCAACACATCG
GGGTCCAAAGGTAAAT — - — 3.00 (2.90,3.15) | 1.89 (1.71,2.04)
GTCTTGGCTCCGATTG_TAAAGCAGAGCACATG 0.45 (0.35,0.55) | 0.61 (0.48,0.74)
TAGTTCGCCGGAGCCA_TCTCTAAAAGCGCTAA 0.85 (0.40,1.30) | 0.11 (-0.49,0.57)
AGGGCGTCTCCAGAAT_CAGTGAGCGCCCGTCT 0.90 (0.75,1.00) | 0.41 (0.26,0.54)
ATCGTTGAATACACGC_CTTGCGCTCGAATGAT 1.50 (1.35,1.65) | 0.33 (0.15,0.50)
ATCGTTGAATACACGC_CTTGCGCTCGAATGAT_AATTAGGGTTAGCCCC_TTAACTGCGGCAGCTT 1.95 (1.80,2.05) | 0.59 (0.43,0.74)
GCCGGCCCTATACGAA_TCCTCGTGTGGTCAAT 1.45 (1.05,1.85) | -1.09 (-1.95,-0.49)
TCTAAGCGTATTGGTC_ATCCAGCGCTTGGACG 1.25 (1.20,1.30) | 0.11 (0.02,0.20)
TCTAAGCGTATTGGTC_ATCCAGCGCTTGGACG_TCTCCGCTACGCGAGT_ATTGCCCGACTTTAGC 2.80 (2.65,2.90) | 0.42 (0.25,0.57)

(continued on next page)
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Glone Barcodes Finess || 950l | i’ ool
(percent) (percent)

TCTAAGCGTATTGGTC_ATCCAGCGCTTGGACG_TCTCCGCTACGCGAGT_ATTGCCCGACTTTAGC_TTGAATTCGCATTGGA 3.10 (2.75,3.40) | 0.47 (0.04,0.83)
TgTAAGCGTA'I'I'GGTC?ATCCAGCGCTTGGACGfTCTCCGCTACGCGAGT?ATTGCCCGACTI'I’AGCﬁAAGCCGAGGCTATTI’C 4.60 4.504.75) | 157 (1.31,1.79)
_GACTAGTGGTGTGTAG_CTGGGGATTGTGGTAT

TCTAAGCGTATTGGTC_ATCCAGCGCTTGGACG_AGATGAACCGGCCCAT 245 (2.40,2.50) | 0.40 (0.33,0.47)
TCTAAGCGTATTGGTC_ATCCAGCGCTTGGACG_AGATGAACCGGCCCAT_GGTCTCCAAAAGCGGT_TGGCGTCGGCGCAGCC 3.40 (3.10,3.75) | 1.68 (1.19,2.07)
_TTGGCCGCGGGCGCAA_TTAAAAGACATCGGTA

AATAGTTCTGGGGACC_AAGACCCGGAAATCAG 0.90 (0.75,1.05) | 0.58 (0.40,0.75)
TAGTGACTTAGACCTG_CTTATCAACGGTGCTA 2.05 (2.05,2.10) | 0.34 (0.29,0.39)
TAGTGACTTAGACCTG_CTTATCAACGGTGCTA_CAACCTGTAATTCTGC_CCCGTAAGGTAGCTCC_TGCTATAGCAAACCCG 2.80 (2.25,3.30) | 0.54 (-0.13,1.04)
iég;ﬁ?f\:gg?gﬁ\_?g GGTJC:TTATCAACGGTGCTA?CAACCTGTAATTCTGCfGGCAGGTAGACC1'I'CA?GAGAAGAATGGAATGA 3.00 (2.45,3.50) | 1.96 (1.41,2.40)
TAGTGACTTAGACCTG_CTTATCAACGGTGCTA_AAGATTCAGCGTATAA_TACCGTCTGATCTGTA_TGCACAGCTCCCGGAC 245 (2.25,2.60) | 1.45 (1.25,1.63)
TAGTGACTTAGACCTG_CTTATCAACGGTGCTA_TGCCTCGAAGGCCTAT_CAGCAACCGCGTTACA_CCTGCCCGTGCGAGAA 2.00 (1.85,2.20) | 1.65 (1.49,1.80)
TAGTGACTTAGACCTG_CTTATCAACGGTGCTA_AAGATTCAGCGTATAA_TACCGTCTGATCTGTA_CTGAGTAAAAGGGACT 2.55 (2.35,2.70) | 1.67 (1.48,1.85)
GCCGTGCCAAAGTAGG_TTGGAGATCACAAGCA 0.85 (0.45,1.20) | 0.21 (-0.31,0.62)
ACTGTACCTGCGGGTT_TGCGCCTTGTGATGTA 1.10 (1.00,1.20) | 0.20 (0.04,0.35)
GCATAGGGGGGAGCAC_CCTGCCTGTACTGTTG 0.90 (0.40,1.40) | -0.58 (-1.49,0.06)
GGCGAGAACTTAATGG_GTGCTCGCAACTTTAC 1.00 (0.80,1.15) | 0.01 (-0.24,0.24)
ATGGGGATGGCTGGCC_CCCCACTAGGTACTAT 0.75 (0.55,0.95) | 0.18 (-0.08,0.42)
TACCTAGTTTACAGAC_AAAGATAGGGTCTCTA 0.75 (0.55,0.95) | 0.79 (0.58,0.97)
TACCTAGTTTACAGAC_AAAGATAGGGTCTCTA_AGTGCGGTCCCATTTC_AGAGGTAACACTCTTT 0.85 (0.55,1.10) | 1.49 (1.26,1.70)
GGTGGCCTCATAGTAC_CATTAAGGGAGCGCTC 0.85 (0.70,1.00) | 0.18 (0.01,0.35)
ACTCGATCTCGCCGCC_CGGGGAAATTGCAAAC 0.95 (0.80,1.10) | 1.01 (0.84,1.16)
TACGGAGCGAACAGTT_TCTTCCGAAGTTGGAC 1.15 (0.95,1.30) | 0.45 (0.26,0.63)
GGGGAAGTGTCCGGCA_TTTGTCAACCAGTAGT 0.70 (0.45,1.00) | 0.25 (-0.08,0.54)
TACTTTGCGTCGTCAA_GCTTCTGGGGAAGTAT 1.40 (1.35,1.50) | 0.27 (0.18,0.35)
TACTTTGCGTCGTCAA_GCTTCTGGGGAAGTAT_AAAAACCCACTTCTCC 1.20 (1.00,1.40) | 0.91 (0.72,1.06)
AGACCTATATCGCAAT_CGCGTCAGGGTGCTAG 0.85 (0.50,1.20) | 0.29 (-0.12,0.63)
ATAGAATGGCTAAAAA_AGACCAGCTTATCAGT_CCAGCTCCCTTTCCGT 1.85 (1.55,2.20) | 0.38 (0.01,0.69)
ACGCCACGCGTCTCAG_CAGGCGTCGTGGGTCA_AGATACCACGTCGCTG 1.10 (0.90,1.30) | 1.03 (0.85,1.21)
TAGCACTCTGTGTCTA_CTCATGAGGACGAGGC_AGGAACTCATACGTGA 1.35 (0.90,1.75) | 0.23 (-0.34,0.67)
CAGGACTAACTCTCCG_GCCTTCGGTCAAGCCA_GAAAGACGCAGGATGC 0.95 (0.75,1.20) | 0.77 (0.54,0.97)
AACCGCGATTGCATAG_GTTACAGTGGTCGTCG_TTTGAGTTAGGTGCGG 1.30 (0.75,1.85) | 0.15 (-0.58,0.68)

Supplementary Table 3: Clone fitness estimates in the YPD population. Clones are identified
by the array of barcodes that label the founding mutation. The likelihood-based confidence intervals
for the quoted best-estimates of their fitnesses in the two environments are calculated as explained
in Section 6.1. The colors used to display each clone in Figures 2 and 3 of the Main Text are

provided for convenience.
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Evolution Barcoding
Clone Barcodes Fitness ( ge?:/:" Slle) Fitness (92:{;?]'0 Color

(percent) per cy (percent) P
AGTAAGACCTCGGGCC 125 (1.15,1.30) | 0.56 (0.48,0.62) -
CCACGCGCGGTACGTC 1.70 (1.65,1.75) | 0.21 (0.15,0.28)
CCACGCGCGGTACGTC_TGCCACACACGACGAT_TTCACTACCAATCTCC 2.50 (2.25,2.80) | 0.51 (0.29,0.71)
CCACGCGCGGTACGTC_TGCCACACACGACGAT_TATGTAGATCCAATGG 2.30 (2.15,2.40) | 0.74 (0.65,0.84)
CCACGCGCGGTACGTC_TGCCACACACGACGAT_TATGTAGATCCAATGG_AGACACATGACATCCA_CTGCTTAGACCGGTCG | 4 o5 (3.95,4.50) | 1.1 (0.77,1.41)
_AAGACTTGCCACATTC ) U ) T
CCACGCGCGGTACGTC_TGCCACACACGACGAT_ATACGCAACTCGGTTT_ATGGCTTTAACAGCCA 2.35 (1.80,2.90) | 0.46 (0.01,0.83)
AAACTTATGCACTCAC 0.40 (0.10,0.65) | 0.52 (0.28,0.73)
TACCCGATGGCGAAGC 1.10 (0.85,1.35) | 0.79 (0.61,0.96)
TCCATTGAGAACAACT 1.70 (1.65,1.75) | 0.30 (0.25,0.36)
TCCATTGAGAACAACT_TGCACACCCATGAGTA_CGGTCCCAGTTGTATG_CCAATCGCCGAGGCTT 2.80 (2.40,3.20) | 0.55 (0.19,0.86)
TCCATTGAGAACAACT_TGCACACCCATGAGTA_CACGACATGGTAATGT 225 (2.00,2.45) | 0.59 (0.40,0.78)
TCCATTGAGAACAACT_ACCTAGGTCGTGGGAG_AACGTTAAGTGTTCAT_GTCATTCTAAGGCCGG 2.40 (2.30,2.55) | 1.03 (0.94,1.14)
TCCATTGAGAACAACT_TGCACACCCATGAGTA_GGTTGCAAGCATAGAA_GCTGTCGCGTTTCGTT_TTGCGAGGCCCGGAAT
_GACTGCTGCACGTTGA - - - 4.00 (3.70,4.25) | 0.84 (0.58,1.08)
TCCATTGAGAACAACT_TGCACACCCATGAGTA_GGTTGCAAGCATAGAA_GCTGTCGCGTTTCGTT_TTGCGAGGCCCGGAAT 785 (7.80,7.90) | 3.33 (3.28,3.36)
_GACTGCTGCACGTTGA_TATCGCCCGAATGATT ) T ) S
TCCATTGAGAACAACT_TGCACACCCATGAGTA_GGTTGCAAGCATAGAA_GCTGTCGCGTTTCGTT_TTGCGAGGCCCGGAAT 8.40 (7.40,9.30) | 3.05 (1.90,3.78)
_GACTGCTGCACGTTGA_TATCGCCCGAATGATT_CTCTGAAGTGTCGGTA_AGTTTCCCGACGGCAA ) ST ) T
TCCATTGAGAACAACT_TGCACACCCATGAGTA_GGTTGCAAGCATAGAA_GCTGTCGCGTTTCGTT_TTGCGAGGCCCGGAAT 8.65 (7.859.40) | 3.07 (2.04,3.75)
_GACTGCTGCACGTTGA_TATCGCCCGAATGATT_CTCTGAAGTGTCGGTA_CAACCCTCGCGTGTAC . T ) T
TCCATTGAGAACAACT_TGCACACCCATGAGTA_GGTTGCAAGCATAGAA_GCTGTCGCGTTTCGTT_TTGCGAGGCCCGGAAT 750 (6.70,8.25) | 4.76 (4.05,5.00)
_GACTGCTGCACGTTGA_TATCGCCCGAATGATT_CTCGAAGCATAAGGCA_GTTGCACGACGAACAT ) s ) T
TCCATTGAGAACAACT_ACCTAGGTCGTGGGAG_TTGTCCCTAGTTGTGT 2.60 (2.45,2.70) | 0.41 (0.29,0.52)
GCGTACAGTGGACCTT 0.00 (-0.45,0.40) | 0.81 (0.47,1.10)
GCAACCCTGCAACTTC 1.70 (1.60,1.80) | 0.20 (0.12,0.28)
GCAACCCTGCAACTTC_CAAGGAGGGTACTTCG_ACAGCGATGTCCATCC 225 (2.00,2.45) | 0.60 (0.42,0.78)
TCTAGCGCGGCCGAAT 1.35 (1.20,1.55) |-0.15 (-0.35,0.03)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA 3.60 (3.60,3.60) | -0.43 (-0.46,-0.41)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_TGAAGCTAGTTAGCGA_CGAGGACTAGAGTCAC 4.55 (4.25,4.85) | -0.29 (-0.67,0.03)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CAGGCACTCACGTTAC_GTCAGAATTCGGAAAA 4.20 (4.05,4.35) | -0.17 (-0.34,0.00)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_ACTGTCGTTCGTCCTG_GAGTTAGATCCTAGAC
_GAATGCTGCTTTCGAC - - - 4.75 (4.20,5.30) | -0.56 (-1.56,0.11)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_GCATGATCACCCAGCC 3.75 (3.60,3.85) | -0.08 (-0.22,0.05)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GATAGATATAGTAAGT_CCCGTGAAGGACATTT_TGAGACTGGCGCGGCA 4.20 (4.05,4.40) | 0.49 (0.29,0.68)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_TAAGTGCGTAAGTGAG_TCAGGTCAAAAGCCAT_AGACGTCCGATCTATG 5.20 (5.05,5.30) |-0.13 (-0.31,0.03)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CAGTGCTGCACACGAC_TGCTTTCCAAAGTGTT_TCTGGCCCGGGATTAT
_CAGCCGGGTCGTTTTC - - - 5.15 (4.90,5.40) | -0.53 (-0.96,-0.17)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GAAGGCGGTTTGGCAT_TGCTGCATTGTGGGAG_TCCAGTAGTGCGTCCG | 4.50 (3.90,5.05) | -0.42 (-1.07,0.07)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GTACAGACTGCATGCT_CTATAACAATTGCGGA 4.20 (4.10,4.25) | -0.61 (-0.71,-0.51)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GTACAGACTGCATGCT_CTATAACAATTGCGGA_CTCGCCTGTCGTTTTT 8.80 (840,9.20) | -2.19 (-3.43,-1.42)
_CTTTAACGCCCAAAGG_TGATAGAAAGGATCCG ) s . e
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_CGAACGCGGGTGGCAT_AACAGAGATTTGTGCC 4.30 (3.85,4.75) | -0.45 (-0.97,-0.03)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_TTAAGAGTAAGAGAGT_ACCATCAATGCTGCGA_TTGGTTTAATCGAGTC 5.10 (4.55,5.60) | -0.86 (-1.45,-0.40)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GATAGATATAGTAAGT_ATTCGGCTCATAAGGG_ATTCTGGTGGCTAAAC 5.80 (5.70,5.90) | -0.45 (-0.61,-0.30)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC 4.00 (4.00,4.05) | -0.48 (-0.51,-0.45)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CGCTGCTGGACTGTCT_CGGGGTGTAAGCATAT
TGATACCATAAGOTGA™ - — - 6.60 (6.30,6.95) | -1.62 (-2.37,-1.07)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGGCCGACGGTACC | 5.20 (5.15,5.20) | -0.19 (-0.26,-0.12)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGGCCGACGGTACC | ¢ 5, (6.10,6.90) | -0.20 (-0.71,0.21)
_ACTCTATGTGGGATGC_CTCTCCCGTCGGGACA ) T ) O
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGGCCGACGGTACC | ; 5, (6.40,8.20) | -0.80 (-2.81,0.17)
_ACTCTATGTGGGATGC_ACAAATTGAGACGATA_AAGACAATAGCAGATA ) s ) T
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGGCCGACGGTACC | ¢ 4o (5.80,6.40) | 1.08 (0.70,1.41)

_GCATGAAGCCGGGAAC_TAGTCCGGCCTGAGAA

(continued on next page)
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TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGGCCGACGGTACC | ¢ ¢ (5.60,7.70) | -025 (-2.28,0.76)
_ACCATAAATCACACCT_CAAGGCTGCGGTGCCT_ACGAGACAAGATACAC : T ) e
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_AGGGTTCCGCAACGTC | 4.80 (4.60,4.95) | -0.16 (-0.38,0.06)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_GGCGTCGGGTTAGTGT_GAGAATGCTTAAATAG 4.55 (4.25,4.85) |0.21 (-0.13,0.51)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_TCGAGTAAAGGAAACG 5.35 (5.30,5.45) | -0.36 (-0.49,-0.24)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_AGGTCCCCGACTTTAA_AGCTACAGTCTGTCGC | 4 4, (4.40,6.15) | 0.03 (-1.67,0.96)
_CGCGACGTTTATATGT_GCTCCAAATTCTCTTA R -40,6. . .67,0.
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CTAATGGGCTGATCTG_TAGTTAAATTGATGGC 4.40 (4.05,4.70) | -0.60 (-1.02,-0.26)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_CCGGAAAGAGTACGAC_CCAACGAAGTGATTCT_GAGGGTTCTCTTAATT
_ACTGTCCTATCCTAGG - - - 1.90 (1.40,2.40) | 1.72 (1.43,1.98)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GATAGATATAGTAAGT_CCCGTGAAGGACATTT_CCTGCCGAACCTACCT 5.30 (4206.35) | 0.89 (-0.68,1.76)
_GTATCCTGCCTGGTGC_CACAGTCGTGGTATGC ) s ) T
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_GTAATCGTCGAATAAA_ATACTCACACTGCTAC 4.65 (4.35,4.95) | -0.08 (-0.43,0.23)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_CCGGCAACCAGCTGCC_AGAATAGGTCAGGGTT | 5.00 (4.70,5.30) | -0.88 (-1.27,-0.55)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GAAGGCGGTTTGGCAT_AAAATGGGATAGGTCC_GCCCTAGTCCTTGAGC 4.15 (3.55,4.65) | -0.22 (-0.84,0.25)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_TTAAGAGTAAGAGAGT_ATCAGTGTAAAGCCCA_ACTGTATGCAGCGATC 4.50 (4.20,4.80) | -0.30 (-0.66,-0.00)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_ATCGGTGTGCCCGCGC_TCGCAAAAGAGCCCAG | 4.00 (3.70,4.35) | 0.31 (-0.02,0.59)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GAAGGCGGTTTGGCAT_TGCTGCATTGTGGGAG_ACGGGTAGATCGACCA
 GTGGGGAGOAAAATTS - - ! 5.20 (4.85,5.55) | 0.16 (-0.30,0.54)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_GAGTACAAGGCGAAGT_GCAGTCCGCTGGCCCT | 4.95 (4.85,5.05) | -0.47 (-0.62,-0.33)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_GAGTACAAGGCGAAGT_GCAGTCCGCTGGCCCT
TCCTCTGCCGGGTCAS - — B 5.40 (5.00,5.80) | 0.28 (-0.30,0.72)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GCCTACGAATACAACC_CGAACGCGGGTGGCAT_GGTAGTAATGGGTGTA | 4.60 (4.10,5.10) | -0.36 (-1.07,0.17)
TCTAGCGCGGCCGAAT_CTATGAGGTAGAAACA_GATAGATATAGTAAGT_CAACGAAAAATGCGAT_GGCGAGCGACTTAGAC
_TAGAGAGCTCGTGATA - - - 2.00 (0.90,3.10) | 1.45 (0.70,2.00)
TAAGGTTCAAAACTCC 1.55 (1.25,1.85) | -0.29 (-0.64,0.01)
TAAGGTTCAAAACTCC_TAGACCTTGCCAACAT_CCTCGTGCTCCGATGG 1.95 (1.60,2.25) | 0.08 (-0.24,0.34)
TTGTCCGTCTTCGAAC 1.60 (1.45,1.75) | -0.03 (-0.18,0.12)
TTGACAACTCCGCCGT 1.35 (1.20,1.50) | 0.26 (0.12,0.39)
AAGTAAGCCACTCACC 155 (1.35,1.75) | 0.29 (0.11,0.47)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT 1.90 (1.90,1.90) | 0.59 (0.56,0.61)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_TCTACGAACGAGTAGC_ATGAAGGTCTACGTTC_AAGCACCAGCGGGTTT
_TCGGACTGGGAGCTTG - - = 4.25 (4.00,4.45) | 0.88 (0.59,1.12)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_ACGGTCGGTCAGGTTT_TCAGGCAACAGGGAGT_CCAAGTAGTGAGCCCG | 1.75 (0.60,2.80) | 1.86 (1.21,2.36)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_GGCCCATAGGTCATCT_GACGGGATGCTGGTAA_AGCCTACTCAATGAGG | 3.15 (2.80,3.55) | 1.25 (0.94,1.52)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_TGCCGCTCCACCGCTA_GGACTTAAATCACTCG_CGTGAACATGAAATTT 3.35 (3.10,3.65) | 0.71 (0.47,0.93)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_TGCCGCTCCACCGCTA_ATCGACTTCCTGTGCG_CTCAAATTGCACCGAT
“TTAGGCTATGO, N - - — 2.40 (1.30,3.40) | 1.76 (0.92,2.36)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_TGTACCGCAATTATAC_GTTGTGTGCGCTCTCC_TGGCCGCTTGCGTGTT 275 (2.40,3.15) | 1.11 (0.78,1.40)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC 4.05 (4.05,4.05) | 0.89 (0.85,0.92)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT AACGATGATACGTGGT_AGTATTATGCGACGCC_TGCCAGTCATGGTGTC | 4 o (470,6.00) | 076 (-0.12,1.38)
_ACCGTGAGGCAAGGTC_TGAAATCCTGTTGGTT ) s ) e
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC_GCACAAAAAGGAATAG | g o (455650) | 0.95 (1.23,1.98)
_AGCGAACATTGCTGGG_CTACGCACCGTTGACT_CATGTCTGCATGGGCA ) s ) e
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC_AAACGACCTCGGCATT | ;¢ (470635 | 073 (-0.66,1.55)
_CTGCATAGGTGTAGGT_GTACCAGGTATGTCGC ) s ) T
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC_CGGCGCGGAACTGACA | 4 o5 (4.355.60) | 0.84 (-0.06,1.47)
_TCGTCTTCAGAAAGCG_CTGTTGGCCAAAGACC ) s ) T
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC_TGCCAGTCATGGTGTC | 45 (3.856.50) | 1.85 (0.86,2.52)
_TAACCGGACGAGTTCC_AGGTTCGGTTTCGACC_CTCCCAGACGGCACTT ) T ) e
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_AACGATGATACGTGGT_AGTATTATGCGACGCC_TGCCAGTCATGGTGTC | 4 ¢ (5.20,7.85) | -0.15 (-2.60,0.92)
_CTCTTAACCGCTTGAT_CTAGATTGGAATCCAC_TCCAATCATGACGGAC ) e ) T
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_CCGTGTTAGACAAAAC_AACTCTCACACACAAC 2.30 (1.95,2.65) | 0.53 (0.27,0.74)
CGCGGTGGAACGGAGG_CGCAACATGTAAACTT_CCCACTAGGATTTCTC_ACGTATTGGCGCAGGC_CACAGCATTTTGGGAG
_CTACGCACTGTCGTGG - - - 3.55 (3.00,4.10) | 0.59 (0.15,0.96)
ACAATCCGAATGAAGG_CTTGGAACTGCGTTGA 2.05 (1.95,2.15) | 0.57 (0.49,0.64)
CGAAGCGATGCGTGTA_CGTGTAACCCTCGCAA 1.75 (1.65,1.90) | 0.51 (0.40,0.60)
CGAAGCGATGCGTGTA_CGTGTAACCCTCGCAA_TCTGTGAGATGGAGTC 1.95 (1.75,2.20) | 0.66 (0.50,0.80)

(continued on next page)
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(percent) (per cycle) (percent) (percent)
CGAAGCGATGCGTGTA_CGTGTAACCCTCGCAA_TCTGTGAGATGGAGTC_CGGAAGCGTTTACCTA_AGGCACAATTTCACAA 3.60 (3.20,3.95) | 0.97 (0.62,1.27)
CGAAGCGATGCGTGTA_CGTGTAACCCTCGCAA_TCTGTGAGATGGAGTC_AAGACTACACACGCTC_CGAACCGACTTACTTA 235 (1.75,2.90) | 1.09 (0.77,1.37)
TGCGGCATAGTCCTCG_GTAGGTTATGCGGAAG 1.85 (1.70,1.95) | 0.40 (0.30,0.48)
GTGCGGACCCCGTGAT_ATCCAAAATCTGTGAC 2.20 (2.05,2.35) | 0.33 (0.21,0.45)
GTGCGGACCCCGTGAT_ATCCAAAATCTGTGAC_TAGATTCATAGCTGGC 2.30 (2.10,2.50) | 0.67 (0.53,0.81)
CCGAGTCTTCCAACTT_GAAACGTCTCCCACCC -0.50 (-1.10,0.05) | 1.03 (0.57,1.41)
TCGACTTGGTTCAAGG_GTCGGCGAGCCAAGGA -0.05 (-0.65,0.50) | 1.10 (0.61,1.49)
CCCGCAGAAAAGTAGC_CGCACCGAATTCCATC -0.45 (-0.90,-0.05) | 0.91 (0.55,1.22)
CCCGCAGAAAAGTAGC_CGCACCGAATTCCATC_GGCGAAAACTTGTTGT -0.80 (-1.55,-0.05) | 1.47 (0.77,1.99)
CCTTGACCTCCGACTA_AAATCTTCCTACGCAA 210 (1.95,2.25) | 0.54 (0.41,0.66)
TGACGGGGCCCCGGTA_CAGGGTGAAGCGCTCG 0.10 (-0.40,0.55) | 0.71 (0.28,1.07)
ACCCAACAGGTTCAAT_ACCAGAGGAGCGTATT 1.05 (0.75,1.35) | 0.68 (0.45,0.90)
TGCTAAAAAGATCTAG_TGTGTTCAGGGGGCTG 2.35 (2.30,2.40) | 0.49 (0.45,0.54)
TGCTAAAAAGATCTAG_TGTGTTCAGGGGGCTG_TTATCGGACAGCGTGC_CCAGCTGGTCCGCCAG_CATTGGAATCCGGGTG | 3.60 (3.30,3.90) | 0.81 (0.53,1.04)
TGCTAAAAAGATCTAG_TGTGTTCAGGGGGCTG_TGAGGGGGCCGGTTTG_ATTGTCATGCGCTAAC 3.50 (3.15,3.80) | 0.36 (0.11,0.59)
GAAGCGGTACGGGATT_ACGGCGAGGCGCAGAG 0.20 (-0.20,0.60) | 0.66 (0.32,0.95)
GAATAACGCTTCTTGT_AAAGCATCCACGCGGG 125 (1.00,1.45) | 0.35 (0.17,0.51)
AACGAGGCAGCGTTTT_CTCCTGGACACGTCTG 2.95 (2.80,3.15) | -2.38 (-2.82,-2.02)
GAGAAAACCTAGTGTG_AGCTACCAATTAAGCA 0.80 (0.35,1.25) | -0.97 (-1.79,-0.39)
GAAAAGAGTGACGTTT_CATTGGCTCACACAAG 1.40 (1.20,1.65) | 0.21 (0.01,0.40)
AACTTGAATAACCATG_GTATTAGGGGCACAAT 1.45 (0.90,1.95) | -1.40 (-2.62,-0.62)
AACCGATGTTGCCCAA_TTCTCGAAGCACGTAG 1.70 (1.40,2.00) | 0.30 (0.06,0.52)
GTTAACGGCCAGTCAC_CCGTGTACACGGCCAT 1.60 (1.25,1.90) | -0.08 (-0.39,0.18)
TCAGGCCACGTAAGAG_CTGCGAATACGGTGTG 155 (1.40,1.65) | 0.29 (0.16,0.41)
GTTTGGCAAGACAGCA_TGGAGAGGGACTGAGT 3.15 (2.80,3.50) | -2.00 (-2.77,-1.44)
TAGTGGCCTCCCAGAA_CCTCTATCAATAGTTA 1.70 (1.45,1.95) | 0.18 (-0.04,0.38)
TCTGAGCCATAAATAA_TAAGCAGCCACTGATC 1.10 (0.85,1.35) | -0.08 (-0.37,0.16)
GTACCAAAGAGAGCAG_CGGGAGCGCTTGGGTT 1.75 (1.70,1.85) | 0.14 (0.06,0.21)
CAATGGTCTGATCTAT_CAGTATTGTGACGCAT 1.70 (1.40,2.00) | 0.09 (-0.17,0.33)
TTGTCATCAGCGGTAA_CACGACTGGCACTTTT 1.85 (1.60,2.15) | 0.40 (0.17,0.60)
GTTTAATTTAATCGTG_TCCACTGCTTTAAGTG_TAACGAACACGTACGC 3.15 (3.05,3.25) | 0.35 (0.25,0.43)
GTTTAATTTAATCGTG_TCCACTGCTTTAAGTG_TAACGAACACGTACGC_TAGCCTGAGACTGTAT_CCGGTAGGTGGGACCT 4.60 (4.50,4.65) | 0.57 (0.47,0.67)
?gx¥é¢'gl;;¢g‘;%%‘r§( gCCACTGCTI’TAAGTG?TAAC GAACACGTACGC_TAGCCTGAGACTGTAT_CCGGTAGGTGGGACCT 4.95 (4.75,5.10) | 1.26 (1.11,1.41)
CGTATGAAACCTGGGG_GGCAGGTTTTGCGCGA_ATATTCCTAGAAATTC 225 (1.90,2.55) | 0.39 (0.15,0.60)
TTATAAACACCCTTCC_CCTGGCGTGTCGAATC_GCAAACCACGATACAT 1.95 (1.65,2.25) | 0.33 (0.10,0.54)
ACTTCGGGTGTCGTAG_GAACAGTCGAAGAGTA_TGGACATAATGATAGT_ACGGGCTTATCCGGAC 4.60 (4.45,4.75) | -0.27 (-0.46,-0.11)
ACCCCAGAAAGACGCG_CGATCCGAACTACCTA_ACCCCTTATCGAGCGG_CCGTCAGCCCACAAGG 1.55 (0.90,2.15) | 0.88 (0.44,1.24)
CTAGAGACACGTCTAC_ATGGTATATCAATGGC_CCACTTAGTCATGACT_CTGAGAGCGCGTTTGG 1.75 (1.20,2.30) | 1.12 (0.69,1.47)
TTGCAGGGCAAGGCGC_ACGGACACCACTATAT_TTAGCTAACGAGTACC_GGGGAACAAATTGAGC 1.95 (0.55,3.25) | -0.62 (-2.75,0.42)
TAAATCTTGTCAGTCA_TCTGGACCCGGTAGAG_AATAAGCAAAGTCAGT_AAGGACATACTGTCCC 4.35 (4.05,4.60) | -0.30 (-0.62,-0.03)

Supplementary Table 4: Clone fitness estimates in the YPA population. Clones are identified
by the array of barcodes that label the founding mutation. The likelihood-based confidence intervals
for the quoted best-estimates of their fitnesses in the two environments are calculated as explained
in Section 6.1. The colors used to display each clone in Figures 2 and 3 of the Main Text are
provided for convenience.
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Supplementary Figure 8: Comparison of the effect sizes of individual mutations on fitness
in the evolutionary and barcoding conditions Each point represents a mutation founding a
called clonal lineage. Its effect on fitness in the two conditions was calculated by subtracting the
fitness of the clone from the fitness of the clonal background on which it arose.

We note that the overall effect of selection in the evolutionary environment is several-fold
stronger than the overall effect of selection in the barcoding environment (Supplementary Fig. 8),
so the average fitness in each population is more strongly influenced by the evolution environ-
ment than the barcoding environment (Supplementary Fig. 10). As a result, the traveling-wave
fitness distributions in both environments (and the patterns of jumps within them) are qualita-
tively similar regardless of whether we use the average fitness of each clone, or simply use the
evolution-environment fitness and neglect the barcoding fitness effects (see Supplementary Fig. 11
and Supplementary Fig. 12).

6.3 Replication of dynamics without barcoding

One particularly striking aspect of the evolutionary dynamics we observe is the rapid expansion
of a single clonal lineage (denoted in red) in the YPA population, which represents a significant
leapfrogging event. Our analysis of the barcode frequency trajectories of this lineage prior to the
large expansion observed during the 8% barcoding interval suggests that this lineage acquired a
large-effect mutation in epoch 7, two epochs prior to the point at which the large expansion is seen
in the barcoding interval. The inference of fitness from the barcode frequency data finds that this
lineage acquired mutations that provide a significant selective advantage in both the evolution and
barcoding conditions (see e.g. Supplementary Fig. 10). To verify these inferences, we re-evolved
twelve replicates of the YPA population for 150 generations starting at timepoint 8.90, just prior
to the barcoding process, but with no further re-barcoding.

After 150 generations, we found that all twelve populations had indistinguishable Sanger se-
quencing traces of the barcode locus, that all suggested a dramatic expansion of the same clonal
lineage. To confirm this, we conducted Illumina sequencing of the barcode locus for two of these
re-evolved populations (Supplementary Fig. 13). In both cases, we observed nearly identical lin-
eage dynamics. In addition, in both replicate populations the sublineages of the red lineage show
large and consistent increases in frequency over the course of the 150-generation period, confirming
our prediction that the beneficial mutation arose and established prior to the addition of the 8th
barcode. Thus these replay experiments confirm that the expansion of this red lineage is not an
artifact of our barcoding procedure.
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Supplementary Figure 9: Changes in the log-frequencies of each called clone over the
course of (top) a single barcoding interval or (bottom) a single evolution epoch. (Left)
Each point represents a clonal lineage. Lineages that appear in multiple epochs (or multiple bar-
coding intervals) are represented using multiple points, each corresponding to the change in a single
epoch (or barcoding interval). To avoid taking the logarithm of a null quantity, the frequency at
both the beginning and end of an epoch (or interval) have been increased by a small quantity,
e = 10~%. Colors are consistent with Main Text Figure 2 and Supplementary Table 3 and Supple-
mentary Table 4. Clones are ranked by the epoch in which they establish, with random ordering
of clones establishing in the same epoch. (Right) Histograms of the log-frequency changes in the
panels on the left.

6.4 Genetic and fitness diversity

As can be seen in Figure 3 of the Main Text, the populations contain a large number of diverse
genotypes over the entirety of the experiment. An evolutionarily important measure of this diversity
is the variance in fitness in a population, which we denote o?(¢). This quantity controls the rate of

adaptation, %, which in the absence of recombination obeys
dz(t
"0 _ 20+ i), (26)

where (s) denotes the average effect size of new mutations and p denotes the per-generation per-
individual mutation rate. In the absence of the mutation term, u (s), Equation 26 is known as R.
A. Fisher’s “fundamental theorem of natural selection” [16]. We will see that in our case, o%(t) is
of order 10™*, while p (s) ~ 1075-1072 ~ 107, making this term subdominant in our populations.
We calculate o2(t) directly from our clone frequency trajectories directly according to

(1) = 3 i~ 07, @)

i
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Supplementary Figure 10: Average fitness compared to the evolution environment fitness
for each called clone. Each point represents a called clonal lineage, and the error bars denote
95% confidence intervals. The likelihood-based confidence intervals for the quoted best-estimates
of their fitnesses in the two environments are calculated as explained in Section 6.1. The ancestor
is shown in black. On the black line, the per epoch average fitness equals the per-epoch evolution
fitness (expected if barcoding fitness equals evolution fitness), and on the gray line the per-epoch
average fitness is equal to half the per-epoch evolution fitness (expected if there are no barcoding
fitness effects). Note the strong positive correlation between the average fitness and the evolution
fitness in both populations, indicating that selection during barcoding is a small perturbation.
Colors are consistent with Main Text Figure 2 and Supplementary Table 3 and Supplementary
Table 4.

Similarly, we can obtain the rate of adaptation according to

dz(t) _ [z(t) — 3(t — At)] (28)
dt At '

In the evolution condition only, we further convolve the instantaneous rate of adaptation with a
Gaussian smoother with a kernel of At = 10 generations before plotting on Supplementary Fig. 14.
To quantify how the diversity in the population is distributed among the lineages, we use the

Shannon entropy,
A (t
S(t) = <— log 7”1§t>> p (29)

where the expectation is taken over all clones ¢ including the ancestor. In analogy to this measure
for the diversity of lineage frequencies, we also define “fitness entropy” according to

%(t) = (—logqi(t)); » (30)

M ANSA . 2
where ¢;(t) = MW denotes the proportion of the fitness variance contributed by lineage 7.
We expect the fitness entropy to be low whenever there is a large outlier in the fitness distribution,
but then to rapidly recover as further mutations establish on its background.
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Supplementary Figure 11: Traveling wave dynamics in the evolution environment. This is
a replot of Main Text Figure 3, but with each lineage shown at its evolution fitness.

6.5 Probability of acquiring further established beneficial mutations

As we discuss in the Main Text, whether or not a lineage acquires further beneficial mutations is a
major factor in determining its long-term success. In this section, we consider two simple models
of the probability of acquiring further beneficial mutations, and test to what extent these models
explain the variability in the numbers of mutations detected in each epoch and clone.

The simplest null hypothesis is that, on average, each lineage acquires a fraction of all the
beneficial mutations that arise in the experiment that is proportional to the integral of its frequency
over time. To calculate the expected distribution of mutations among the lineages and epochs under
this model, we redistributed the mutations observed in the experiment among the different clonal
lineages. This was done by resampling the background of each mutation, so that the probability
that each mutation established on the background of clone i in epoch E is equal to

t=FE.100
t=FE.0 fz (t)

t=E7.100 ,
> 2w e Ji(t)

where f;(t) denotes the frequency of clone ¢ at time ¢, the summation in the denominator runs over

Di.E = (31)
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Supplementary Figure 12: Traveling wave dynamics in the barcoding environment. This

is a replot of Main Text Figure 3, but with each lineage shown at its barcoding condition fitness.

all lineages j, and all epochs E’ between which mutations are being permuted.

We exclude from this resampling procedure the last epoch of the experiment in each population,
because mutations establishing in this epoch are unlikely to be detected by our inference pipeline
(see Supplementary Fig. 7). Indeed, in both populations, all detected mutations established prior
to this epoch (see Main Text Figure 2). We also exclude from this procedure the first two epochs of
the experiment in each population, for reasons we describe in our description of the second model
below. In each of 10* redistributions of all the mutations that were detected in other epochs (3-8
in YPD, 3-9 in YPA), we recorded the total number of mutations m; g yia1 that established on the
background of clone ¢ during epoch E. We calculated a P-value for each clone i and epoch F under
this model according to,

P; g = Pr[m; g model > Mi,E,exp)s (32)

as well as a P-value for the overall number of mutations acquired by each clone as

K—-1 K-1
P, =Pr Z My, B model = Z M Bexp | > (33)
E=1 E=1
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where m; g exp denotes the total number of mutations establishing on the background of 7 in epoch
F in the experiment.

We also constructed a second model in which the probability that a mutation established on
the background of a clone was modulated by its own average fitness effect and the relative fitness
of the background. As we explain in the Main Text, in a rapidly adapting population, variation in
fitness between clones in the population creates variation in the probability that beneficial mutations
establish once they arise. To establish, a lineage must escape the effects of drift, and the probability
of this event increases with the difference between its fitness and the mean fitness of the population.
To account for this, for each mutation k, we calculated the probability that it establishes on the
background of clone i in epoch F according to

R it (29 + 5™, 58 (1), )

55 S Sp® fiOpes (209 + 50 e (0), 1)
where x(avg) is the average fitness of clone i (Equation 25), ,(Cavg) is the average fitness effect of
mutation k, 7(2V8)(t) is the mean average fitness of the population, and peg;(z, Z(t),t) denotes the
establishment probability of a mutation with fitness x, conditioned on the average fitness of a
mutation of the population being Z(t).

In rapidly adapting populations, the general form of pest (2, Z(t), t) is not known, and we expect it
to subtly depend on the mean fitness of the population, Z(t), the fitness of the created mutant x, and
also to depend explicitly on time [17]. This is because establishment is an extended process, and the
chance of a mutation escaping drift depends not only on its relative fitness at the time of founding,
but also on how its relative fitness changes over the course of establishment as the population
adapts further, and also explicitly on time. Specifically, in a population with an approximately
constant Z(t) ~ Z, a lineage at relative fitness x — Z should take about ﬁ generations to establish,
which is why we do not expect many lineages to establish during the first epoch.

However, our main purpose here is not to precisely quantify the establishment probability at
every timepoint and for every background, but rather to estimate whether or not any of the “bursts”
in the numbers of mutations observed in an epoch are larger than we would expect based on the
frequency of the mutation, and to see whether conservatively accounting for the fitnesses in the
experiment changes our expectations. To do this, we use an approximate form for the establishment
probability:

biE = ) (34)

0, if 2028 4 58 _zave(1)) < X,

mgavg) + s,(cavg) — (z*8(t)), otherwise,

pest(xz(avg) + Slszavg)v TE(t),t) = {

(35)
where <:E(a"g) (t)> = denotes the mean average fitness of the population in the relevant epoch. In
both populations, we choose X, = 5-107°, which is on the order of the strength of genetic drift,
N With this choice, Equation 35 is expected to be accurate for sufficiently high relative fitnesses
and sufficiently low relative fitnesses, and to slightly overestimate the establishment probabilities
on backgrounds of intermediate relative fitness [17]. This means that our choice represents a
conservative favoring of backgrounds of higher fitness that is consistent with the effects of genetic
drift. Note Equation 35 still does not account for the amount of time it takes for a mutation to
establish, leading to an overestimation of the expected number of established mutations in the first
epoch, which is why we exclude that epoch from consideration. It also does not account for the
changing rate of adaptation in the experiment (see Supplementary Fig. 14), which leads to the
underestimation of the establishment probability in the second epoch relative to the establishment
probabilities in other epochs. For that reason, we also exclude this epoch from consideration.
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By repeating a procedure analogous to the one that we described with reference to the frequency-
only null model, we can obtain a P-value for each clone and epoch under this updated model. As
we can see from the P-values for the observed number of mutations for each clone and epoch under
the frequency-only model (Supplementary Fig. 15), a small number of epochs are found to have a
significant excess of mutations in the experiment under the frequency only model, corresponding
to the “bursts” visible on Main Text Figures 2 and 3. However, under the model that also takes
fitness into account, the majority of these segments are assigned substantially higher P-values,
and only a single segment in the YPA population remains marginally significant at an FDR of 5%
(Supplementary Fig. 16). Thus, the apparent “bursts” identified assuming a frequency-only model
are no longer significant under a model that conservatively takes into account fitness differences
between the backgrounds, and are therefore not strong evidence of mutator phenotypes.

This lack of evidence for mutator phenotypes is further underscored by the P-values for the
overall number of mutations observed for each clone. If a burst was the result of a mutator
phenotype, we would expect that a clone acquires more mutations than expected by chance over
multiple epochs. However, as we can see on Supplementary Fig. 17, there is limited evidence that
any clone is accumulating more mutations than expected by chance. Under both models, no clones
have a significant enough P-value to be detected at an FDR of 5%. Furthermore, we see that when
mutations are aggregated over many epochs, the P-values calculated under the two models are
roughly concordant.

6.6 Comparison with fitness measurements using competitive fitness assays

As described in Section 3, we use competitive fitness assays to obtain independent measurements
of the population mean fitness in the evolution condition, which we can compare to the inferred
mean fitness trajectory Z(¢) in the same condition. As can be seen in Extended Data Figure 2,
the inferred mean fitness trajectory reproduces the measured trajectory of the population mean
fitness in both shape and magnitude, suggesting that we have detected the majority of established
beneficial mutations. However, we note that there are aspects of the inferred mean fitness trajectory
that are inconsistent with the results of our competitive fitness assays. For instance, in the YPA
population, the ~ 3% increase in fitness of the population over the course of Epoch 3 is not
consistent with our barcode sequence data. In addition to this, we infer a ~ 2% increase in fitness
over the course of the barcoding period during which the 9" barcode is inserted that is not seen in
fitness assays. Similar effects can be seen in the YPD population, where we find that the measured
mean fitness declines systematically during population barcoding.

These inconsistencies could arise either from inaccuracies in our inferences or from errors in
our competitive fitness assays. While it is likely that there is some contribution from both effects,
the discrete nature of the inconsistencies (which are concentrated in a few epochs) and the fact
that these are not reflected in barcoding data from these timepoints suggest that the dominant
contribution is due to errors in competitive fitness assays. These could arise from factors such
as intransitive effects (in which case our inferred fitnesses are a better description of the relevant
instantaneous within-population selective differences), or from technical issues such as unfreezing
artifacts or other complications due to measuring fitness immediately after barcoding interval re-
covery steps. The fact that the inferred rate of change in mean fitness is well explained by the
inferred variance in fitness (Supplementary Fig. 14), as expected from the fundamental theorem of
natural selection, provides further evidence in support of the accuracy of our inferred fitnesses.
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7 Metagenomic sequencing and sequence data analysis

Genomic DNA was sequenced at the end of each epoch using previously described methods with
no modifications [18]. We trimmed the raw sequencing reads using trimmomatic v0.35 [19] and
then used breseq v0.27.1b [50] to align the reads to the reference BY4742 genome. The sequence
of BY4742 was obtained from SGD. Since this SGD reference was generated using short-read
sequencing, three genes were modified to better agree with recent Pacbio sequence data [51]: FLOY,
FLO1, and YMRS317W. The WHI2 gene in the Toronto reference sequence contains a nonsense
mutation, but sequencing of our strain revealed no mutation when compared with S288C. Finally,
a small section of the gene YDR5/4C was also changed to agree with the sequence of our strain.
We found that these changes prevent mapping errors that sometimes show up when the coverage
is low. The changes in FLO1 and FLOY are particularly important because they are in repeat
regions.

Candidate SNVs and small indels were identified from the breseq output using the breseq-lite
scripts built to identify these variants in metagenomic sequence time-series data in E. coli [52]. This
pipeline merges all alternate alleles at a site at which an indel was detected into a single alternative
read, but distinguishes between different SNVs at the same site. Following Ref. [52], we keep for
further analysis only candidate variants that satisfy the basic quality standard of having at least
two time-points in which the number of alternative reads exceeds 2, and require that at least at
one of those time-points the overall read depth at that site is at least 10 and that the frequency of
the alternate variant is at least 5%. We also exclude all variants occurring at sites within 100bp of
repetitive regions based on the BY4742 reference genome annotation.

To distinguish between true mutations and errors, we use a similar approach to Ref. [52], where
we require the trajectory to have a strong autocorrelation, start with low frequency and have a large
area under the curve compared to a null model based on a permutation of the observed trajectory.
However, we impose more stringent quality controls on individual time-courses and time-points. In
addition to the basic quality criterion above, we exclude time-points for which the median depth
was lower than 10, and require for each individual trajectory

1. There are at least two time-points in which the alternative allele is supported by 5 reads, the
overall read depth is at least 10, and the frequency of the alternative allele is at least 5%.

2. The alternative allele frequency in the first time-point does not exceed 5%, and its combined
frequency in the first two time-points does not exceed 20%.

3. The difference between the maximum frequency and the capped average, f* = min { f, 0.5},
is at least 0.1.

Furthermore, due to the limited length of our time-course, we do not attempt to model changes in
the depth of the trajectory to infer insertion and deletion events.

For each trajectory, we calculate the composite P-value, based on the autocorrelation, derived
allele sojourn weight and average frequency relaxation time statistics compared to a permutation-
based null model as in Ref. [52], with small modifications to the average frequency relaxation time
statistic, which we calculate according to

s Apm
T:maX{T:Ztﬁpt<o5ZtApmt

Ztgt' met - Zt met
Here Ay and Dy refer to the alternative read count and the overall sequencing depth of locus

m in population p at time t. We reject all trajectories with composite P > 0.05. Trajectories with
P < 0.05 are shown in Extended Data Figure 1.

v ogt’gT}. (36)
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We note that several of the mutations called in our metagenomic sequencing data have been
identified in previous studies or have known functional effects relevant to our experimental condi-
tions. For example, among mutations observed in our YPD population, HST/ is SIR2 homolog,
which is a frequent target of selection in earlier experiments [53], and CCR/ has been hypothesized
as a target of selection in low glucose [54]. Among mutations observed in our YPA population,
BNAS is known to increase acetic acid tolerance [55], ASG1 and ASC1 are previously observed
targets of selection for acetic acid tolerance [56, 57], and the role of OAF1 in acetic acid tolerance
has been previously implicated in Ref [58].

7.1 Consistency between metagenomic and barcode sequencing data

The number of mutations called in each of the populations from metagenomic sequence data is vastly
lower than the number of lineages observed during evolution. Note however that these two datasets
are broadly consistent when the difference in resolution between the two is taken into account.
To demonstrate this, we simulated the process of whole genome sequencing and mutation calling
from metagenomic data. Specifically, we treated the clone frequency trajectories called from the
barcode sequencing data as the true frequencies of clones segregating in the population and assigned
each of these clones a unique “driver” mutation and a number of unique “passenger” mutations
relative to the background that it arose on. All driver and passenger mutations are inherited by
all children of a given clone. For each clone, the number of passenger mutations was sampled from
a Poisson distribution with a mean of 5. This mean was chosen to produce rough agreement with
the cohort sizes observed in Ref [25], by doubling the mean cohort size observed in the haploid
populations sequenced in that study. Note that this may still represent an underestimate of the
typical number of passenger mutations, because Ref [25] also employed a conservative method for
distinguishing true mutations from sequencing errors, though we emphasize that the frequency
resolution of metagenomic sequencing of that study is about an order of magnitude higher than
the frequency resolution of our study.

To simulate the allele frequency trajectories of all of these alleles, we simulated the sequencing
separately at each of the driver and passenger loci, m. At each timepoint ¢, we first sampled the
overall sequencing depth, Dy,,; at the locus of the mutation from a Poisson distribution with a
mean equal to the median sequencing depth at that timepoint, (Dpme),,. To account for the fact
that our asexually reproducing population is diploid, we randomly apportioned the reads to the
chromosome carrying the mutation and to the wild type sister chromosome by sampling from a
binomial distribution with p = 0.5 and n = Dy, denoting the number that map to the sister
chromosome with d,,,¢. At each locus, we also allowed for gene conversion shortly after a mutation
arose, with an overall probability of 0.01, which would lead to the mutation being present on both
alleles. Finally, we sampled the number of reads that map to the alternate allele from a binomial
distribution with p = fpm: and n = (Dpme — dpmt) + Zeonversion@pmt, Where Zeonversion denotes a
gene conversion event. Finally, all of the mutational frequency trajectories generated in this way
were subjected to the same filters as the data. In Supplementary Figure 18, we show 4 simulated
datasets generated using this procedure. The colors of these mutational trajectories are consistent
with the colors of the clonal backgrounds they founded, as shown in Main Text Figures 2 and
3. The number of mutations observed in these simulated datasets is broadly consistent with the
number of mutations called from our metagenomic sequencing data.
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Supplementary Figure 13: Replication of evolutionary dynamics in the YPA population.
Top panel shows the clonal dynamics in our original evolved population. Bottom two panels show
the corresponding lineage dynamics in the two Illumina sequenced replicate populations in which
evolution is conducted without barcoding. Note that during the replay portion of these experiments,
from timepoint 8.0 onwards, we do not group barcoded lineages into clones, but instead show all
sublineages that exceed frequency of 0.1%. The colors of the sublineages are chosen to be consistent
between the two replicates.
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Supplementary Figure 14: Variance in fitness through time Thick lines show direct measure-
ments of fitness variance based on the inferred fitness and frequency of each clonal lineage in (a)
the evolution environment and (b) the barcoding environment. Thin lines show the rate of change
in the mean fitness; note the good agreement between this rate of change and the variance in fitness
in the current environment, as expected from the fundamental theorem of natural selection.
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Supplementary Figure 15: Probabilities of accumulating an equal or larger number of
mutations in each epoch based on a clone’s frequency. Each clonal lineage is represented
by a separate point for each epoch in which it is observed. The P-values were calculated from 10*
redistributions of all mutations detected in epochs 3-8 for the YPD population, or epochs 3-9 for
the YPA population under the frequency-only null model. This null model is described in detail
in Section 6.5 and is defined by Equation 31. The ancestor is colored black, and all other colors
are consistent with Main Text Figure 2 and Supplementary Table 3 and Supplementary Table 4.
Clones are ranked by the epoch in which they establish, with random ordering of clones establishing

in the same epoch.
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Supplementary Figure 16: Probabilities of accumulating an equal or larger number of
mutations in each epoch based on a clone’s frequency and fitness. Each clonal lineage
is represented by a separate point for each epoch in which it is observed. The P-values were
calculated from 10* redistributions of all mutations detected in epochs 3-8 for the YPD population,
or epochs 3-9 for the YPA population under the frequency plus fitness null model. This null model
is described in detail in Section 6.5 and is defined by Equation 34 and Equation 35.The ancestor
is colored black, and all other colors are consistent with Main Text Figure 2 and Supplementary
Table 3 and Supplementary Table 4. Clones are ranked by the epoch in which they establish, with
random ordering of clones establishing in the same epoch. Note that no line appears in the YPD
panel, because no segments are significant at an FDR of 5%.
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Supplementary Figure 17: Probabilities of accumulating an equal or larger number of
mutations over the course of the experiment. Each clonal lineage is represented by two
points: small points denote P-values under the frequency-only mode (defined by Equation 31)
and circles denote P-values under the frequency plus fitness model (defined by Equation 34 and
Equation 35). For each of the null models, the P-values were calculated from 10 redistributions
of all the mutations detected in epochs 3-8 for the YPD population, or epochs 3-9 for the YPA
population. The ancestor is colored black, and all other colors are consistent with Main Text Figure
2 and Supplementary Table 3 and Supplementary Table 4. Clones are ranked by the epoch in which
they establish, with random ordering of clones establishing in the same epoch. Note that in either
population, no clones accumulate a significant number of mutations at an FDR of 5%.
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Supplementary Figure 18: Simulated metagenom

sents an independent simulated metagenomic sequencing dataset. In each panel, lines represent

the colors of the clonal backgrounds that these mutations correspond to, as used in Main Text

frequency trajectories of individual mutations. The colors of these trajectories are consistent with
Figures 2 and 3.
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Supplementary Data Tables

Supplementary Table 5: List of all barcoded lineages and their frequencies in each se-
quencing time-point. The table contains the population barcode and all other lineage-specific
barcodes for each lineage that passed basic quality filters outlined in Section 2, along with the
time-course of the fraction of reads mapping to that lineage in each sequencing time-point.

Supplementary Table 6: List of total lineage read counts in each sequencing time-point.
The table contains the generation marker for each sequencing time-point, as well as the total number
of reads recovered after error correction.

Supplementary Table 7: List of all mutations called from metagenomic sequence data.
The table contains the genomic position and identity of each mutation that had a trajectory with
composite P < 0.05, along with its alternate allele read trajectory, overall depth trajectory, auto-
correlation, and P-value.
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