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Abstract

Different languages might have different word
orders. In this paper, we investigate cross-
lingual transfer and posit that an order-
agnostic model will perform better when trans-
ferring to distant foreign languages. To test our
hypothesis, we train dependency parsers on an
English corpus and evaluate their transfer per-
formance on 30 other languages. Specifically,
we compare encoders and decoders based on
Recurrent Neural Networks (RNNs) and mod-
ified self-attentive architectures. The former
relies on sequential information while the lat-
ter is more flexible at modeling word order.
Rigorous experiments and detailed analysis
shows that RNN-based architectures transfer
well to languages that are close to English,
while self-attentive models have better overall
cross-lingual transferability and perform espe-
cially well on distant languages.

1 Introduction

Cross-lingual transfer, which transfers models
across languages, has tremendous practical value.
It reduces the requirement of annotated data for a
target language and is especially useful when the
target language is lack of resources. Recently, this
technique has been applied to many NLP tasks
such as text categorization (Zhou et al., 2016a),
tagging (Kim et al., 2017), dependency parsing
(Guo et al., 2015, 2016) and machine translation
(Zoph et al., 2016). Despite the preliminary suc-
cess, transferring across languages is challenging
as it requires understanding and handling differ-
ences between languages at levels of morphology,
syntax, and semantics. It is especially difficult to
learn invariant features that can robustly transfer
to distant languages.

*Equal contribution. Listed by alphabetical order.
t Corresponding author.

Prior work on cross-lingual transfer mainly fo-
cused on sharing word-level information by lever-
aging multi-lingual word embeddings (Xiao and
Guo, 2014; Guo et al., 2016; Sil et al., 2018).
However, words are not independent in sentences;
their combinations form larger linguistic units,
known as context. Encoding context information
is vital for many NLP tasks, and a variety of ap-
proaches (e.g., convolutional neural networks and
recurrent neural networks) have been proposed to
encode context as a high-level feature for down-
stream tasks. In this paper, we study how to
transfer generic contextual information across lan-
guages.

For cross-language transfer, one of the key chal-
lenges is the variation in word order among differ-
ent languages. For example, the Verb-Object pat-
tern in English can hardly be found in Japanese.
This challenge should be taken into considera-
tion in model design. RNN is a prevalent family
of models for many NLP tasks and has demon-
strated compelling performances (Mikolov et al.,
2010; Sutskever et al., 2014; Peters et al., 2018).
However, its sequential nature makes it heavily re-
liant on word order information, which exposes
to the risk of encoding language-specific order in-
formation that cannot generalize across languages.
We characterize this as the “order-sensitive” prop-
erty. Another family of models known as “Trans-
former” uses self-attention mechanisms to capture
context and was shown to be effective in various
NLP tasks (Vaswani et al., 2017; Liu et al., 2018;
Kitaev and Klein, 2018). With modification in
position representations, the self-attention mecha-
nism can be more robust than RNNs to the change
of word order. We refer to this as the “order-free”
property.

In this work, we posit that order-free mod-
els have better transferability than order-sensitive
models because they less suffer from overfitting
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Language Languages
Families
Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)
IE.Baltic Latvian (Iv)
IE.Germanic | Danish (da), Dutch (nl), English (en),
German (de), Norwegian (no),
Swedish (sv)
IE.Indic Hindi (hi)
1E.Latin Latin (la)
IE.Romance Catalan (ca), French (fr), Italian (it),
Portuguese (pt), Romanian (ro),
Spanish (es)
IE.Slavic Bulgarian (bg), Croatian (hr), Czech
(cs), Polish (pl), Russian (ru), Slovak
(sk), Slovenian (sl), Ukrainian (uk)
Japanese Japanese (ja)
Korean Korean (ko)
Sino-Tibetan Chinese (zh)
Uralic Estonian (et), Finnish (fi)

Table 1: The selected languages grouped by language
families. “IE” is the abbreviation of Indo-European.

language-specific word order features. To test
our hypothesis, we first quantify language dis-
tance in terms of word order typology, and then
systematically study the transferability of order-
sensitive and order-free neural architectures on
cross-lingual dependency parsing.

We use dependency parsing as a test bed pri-
marily because of the availability of unified an-
notations across a broad spectrum of languages
(Nivre et al., 2018). Besides, word order typology
is found to influence dependency parsing (Naseem
et al., 2012; Téackstrom et al., 2013; Zhang and
Barzilay, 2015; Ammar et al., 2016; Aufrant et al.,
2016). Moreover, parsing is a low-level NLP task
(Hashimoto et al., 2017) that can benefit many
downstream applications (McClosky et al., 2011;
Gamallo et al., 2012; Jie et al., 2017).

We conduct evaluations on 31 languages across
a broad spectrum of language families, as shown
in Table 1. Our empirical results show that order-
free encoding and decoding models generally per-
form better than the order-sensitive ones for cross-
lingual transfer, especially when the source and
target languages are distant.

2 Quantifying Language Distance

We first verify that we can measure “language dis-
tance” base on word order since it is a signifi-
cant distinctive feature to differentiate languages
(Dryer, 2007). The World Atlas of Language
Structures (WALS) (Dryer and Haspelmath, 2013)
provides a great reference for word order typology
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Figure 1: Hierarchical clustering (with the Nearest
Point Algorithm) dendrogram of the languages by their
word-ordering vectors.

and can be used to construct feature vectors for
languages (Littell et al., 2017). But since we al-
ready have the universal dependency annotations,
we take an empirical way and directly extract word
order features using directed dependency relations
(Liu, 2010).

We conduct our study using the Universal De-
pendencies (UD) Treebanks (v2.2) (Nivre et al.,
2018). We select 31 languages for evaluation and
analysis, with the selection criterion being that the
total token number in the treebanks of that lan-
guage is over 100K. We group these languages by
their language families in Table 1. Detailed sta-
tistical information of the selected languages and
treebanks can be found in Appendix A'.

We look at finer-grained dependency types than
the 37 universal dependency labels’ in UD v2
by augmenting the dependency labels with the
universal part-of-speech (POS) tags of the head
and modifier’ nodes. Specifically, we use triples
“(ModifierPOS, HeadPOS, DependencyLabel)” as
the augmented dependency types. With this, we
can investigate language differences in a fine-
grained way by defining directions on these triples
(i.e. modifier before head or modifier after head).

We conduct feature selection by filtering out
rare types as they can be unstable. We defer the
results in 52 selected types and more details to Ap-
pendix C. For each dependency type, we collect
the statistics of directionality (Liu, 2010; Wang
and Eisner, 2017). Since there can be only two
directions for an edge, for each dependency type,

"Please refer to the supplementary materials for all the
appendices of this paper.

Zhttp://universaldependencies.org/u/dep/index.html

3In this paper, we use the term of “modifier”, which can
also be described as “dependent” or “child” node.
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we use the relative frequency of the left-direction
(modifier before head) as the directional feature.
By concatenating the directional features of all se-
lected triples, we obtain a word-ordering feature
vector for each language. We calculate the word-
ordering distance using these vectors. In this
work, we simply use Manhattan distance, which
works well as shown in our analysis (Section 4.3).

We perform hierarchical clustering based on the
word-ordering vectors for the selected languages,
following Ostling (2015). As shown in Figure 1,
the grouping of the ground truth language fami-
lies is almost recovered. The two outliers, Ger-
man (de) and Dutch (nl), are indeed different from
English. For instance, German and Dutch adopt
a larger portion of Object-Verb order in embedded
clauses. The above analysis shows that word order
is an important feature to characterize differences
between languages. Therefore, it should be taken
into consideration in the model design.

3 Models

Our primary goal is to conduct cross-lingual trans-
fer of syntactic dependencies without providing
any annotation in the target languages. The over-
all architecture of models that are studied in this
research is described as follows. The first layer
is an input embedding layer, for which we simply
concatenate word and POS embeddings. The POS
embeddings are trained from scratch, while the
word embeddings are fixed and initialized with the
multilingual embeddings by Smith et al. (2017).
These inputs are fed to the encoder to get contex-
tual representations, which is further used by the
decoder for predicting parse trees.

For the cross-lingual transfer, we hypothesize
that the models capturing less language-specific
information of the source language will have bet-
ter transferability. We focus on the word order in-
formation, and explore different encoders and de-
coders that are considered as order-sensitive and
order-free, respectively.

3.1 Contextual Encoders

Considering the sequential nature of languages,
RNN is a natural choice for the encoder. However,
modeling sentences word by word in the sequence
inevitably encodes word order information, which
may be specific to the source language. To allevi-
ate this problem, we adopt the self-attention based
encoder (Vaswani et al., 2017) for cross-lingual

parsing. It can be less sensitive to word order but
not necessarily less potent at capturing contextual
information, which makes it suitable for our study.

RNNs Encoder Following prior work (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017), we employ k-layer bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997) on top of the
input vectors to obtain contextual representations.
Since it explicitly depends on word order, we will
refer it as an order-sensitive encoder.

Self-Attention Encoder The original self-
attention encoder (Transformer) takes absolute
positional embeddings as inputs, which capture
much order information. To mitigate this, we
utilize relative position representations (Shaw
et al.,, 2018), with further simple modification
to make it order-agnostic: the original relative
position representations discriminate left and right
contexts by adding signs to distances, while we
discard the directional information.

We directly base our descriptions on those in
(Shaw et al., 2018). For the relative positional self-
attention encoder, each layer calculates multiple
attention heads. In each head, the input sequence
of vectors x = (x1,...,x,) are transformed into
the output sequence of vectors z = (z1,..., 2p),
based on the self-attention mechanism:

n

z; = Z Oéij(l'jWV + az‘g)

j=1
B exXp eij

22:1 exXp €ik

;WO (WK + ai[]{.)T
eij = N
Here, a}? and afj(- are relative positional represen-
tations for the two position 7 and 7. Similarly, we
clip the distance with a maximum threshold of k
(which is empirically set to 10), but we do not
discriminate positive and negative values. Instead,
since we do not want the model to be aware of di-
rectional information, we use the absolute values
of the position differences:

Oéij

K _ | K v _ Vv
@ij = Welip(|j—ilk)  %ij = Welip(|j—il.k)

clip(z, k) = min(|z|, k)
Therefore, the learnable relative postion represen-
tations have k41 types rather than 2k+1: we have
wl = (wlf,...,wl), and w" = (wf, ..., wy).
With this, the model knows only what words are
surrounding but cannot tell the directions. Since
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self-attention encoder is less sensitive to word or-
der, we refer to it as an order-free encoder.

3.2 Structured Decoders

With the contextual representations from the en-
coder, the decoder predicts the output tree struc-
tures. We also investigate two types of decoders
with different sensitivity to ordering information.

Stack-Pointer Decoder Recently, Ma et al.
(2018) proposed a top-down transition-based de-
coder and obtained state-of-the-art results. Thus,
we select it as our transition-based decoder. To
be noted, in this Stack-Pointer decoder, RNN is
utilized to record the decoding trajectory and also
can be sensitive to word order. Therefore, we will
refer to it as an order-sensitive decoder.

Graph-based Decoder Graph-based decoders
assume simple factorization and can search glob-
ally for the best structure. Recently, with a deep
biaffine attentional scorer, Dozat and Manning
(2017) obtained state-of-the-art results with sim-
ple first-order factorization (Eisner, 1996; Mc-
Donald et al., 2005). This method resembles the
self-attention encoder and can be regarded as a
self-attention output layer. Since it does not de-
pend on ordering information, we refer to it as an
order-free decoder.

4 Experiments and Analysis

In this section, we compare four architectures
for cross-lingual transfer dependency parsing with
a different combination of order-free and order-
sensitive encoder and decoder. We conduct sev-
eral detailed analyses showing the pros and cons
of both types of models.

4.1 Setup

Settings In our main experiments* (those ex-
cept Section 4.3.5), we take English as the source
language and 30 other languages as target lan-
guages. We only use the source language for
both training and hyper-parameter tuning. Dur-
ing testing, we directly apply the trained model to
target languages with the inputs from target lan-
guages passed through pretrained multilingual em-
beddings that are projected into a common space
as the source language. The projection is done
by the offline transformation method (Smith et al.,

*Our implementation is publicly available at:
https://github.com/uclanlp/CrossLingualDepParser

2017) with pre-trained 300d monolingual embed-
dings from FastText (Bojanowski et al., 2017). We
freeze word embeddings since fine-tuning on them
may disturb the multi-lingual alignments. We also
adopt gold UPOS tags for the inputs.

For other hyper-parameters, we adopted similar
ones as in the Biaffine Graph Parser (Dozat and
Manning, 2017) and the Stack-Pointer Parser (Ma
et al., 2018). Detailed hyper-parameter settings
can be found in Appendix B. Throughout our ex-
periments, we adopted the language-independent
UD labels and a sentence length threshold of
140. The evaluation metrics are Unlabeled attach-
ment score (UAS) and labeled attachment score
(LAS) with punctuations excluded®. We trained
our cross-lingual models five times with different
initializations and reported average scores.

Systems As described before, we have an
order-free (Self-Attention) and an order-sensitive
(BILSTM-RNN) encoder, as well as an order-free
(Biaffine Attention Graph-based) and an order-
sensitive (Stack-Pointer) decoder. The combina-
tion gives us four different models, named in the
format of “Encoder” plus “Decoder”. For clar-
ity, we also mark each model with their encoder-
decoder order sensitivity characteristics. For ex-
ample, “SelfAtt-Graph (OF-OF)” refers to the
model with self-attention order-free encoder and
graph-based order-free decoder. We benchmark
our models with a baseline shift-reduce transition-
based parser, which gave previous state-of-the-
art results for single-source zero-resource cross-
lingual parsing (Guo et al., 2015). Since they
used older datasets, we re-trained the model on our
datasets with their implementation®. We also list
the supervised learning results using the “RNN-
Graph” model on each language as a reference of
the upper-line for cross-lingual parsing.

4.2 Results

The results on the test sets are shown in Table 2.
The languages are ordered by their order typology
distance to English. In preliminary experiments,
we found our lexicalized models performed poorly

°In our evaluations, we exclude tokens whose POS tags
are “PUNCT” or “SYM”. This setting is different from the
one adopted in the CoNLL shared task (Zeman et al., 2018).
However, the patterns are similar as shown in Appendix D
where we report the punctuation-included test evaluations.

Shttps://github.com/jiangfeng1124/acl15-clnndep. ~ We
also evaluated our models on the older dataset and compared
with their results, as shown in Appendix F.
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Lang Dist.A to| SelfAtt-Graph| RNN-Graph | SelfAtt-Stack| RNN-Stack Baseline Supervised
English (OF-OF) (OS-OF) (OF-0S) (0S-05) (Guo et al., 2015) || (RNN-Graph)

en 0.00 90.35/88.40 90.44/88.31 | 90.18/88.06 | 91.827/89.897 87.25/85.04 90.44/88.31
no 0.06 80.80/72.81 80.67/72.83 | 80.25/72.07 | 81.757/73.30 74.76/65.16 94.52/92.88
sV 0.07 80.98/73.17 81.23/73.49 | 80.56/72.77 | 82.577/74.25" 71.84/63.52 89.79/86.60
fr 0.09 77.87/72.78 | 78.351/73.46" | 76.79/71.77 | 75.46/70.49 73.02/64.67 91.90/89.14
pt 0.09 76.611/67.75 | 76.46/67.98 | 75.39/66.67 | 74.64/66.11 70.36/60.11 93.14/90.82
da 0.10 76.64/67.87 77.36/68.81 | 76.39/67.48 | 78.227/68.83 71.34/61.45 87.16/84.23
es 0.12 74.49/66.44 | 74.927/66.917| 73.15/65.14 | 73.11/64.81 68.75/59.59 93.17/90.80
it 0.12 80.80/75.82 | 81.10/76.23" | 79.13/74.16 | 80.35/75.32 75.06/67.37 94.21/92.38
hr 0.13 | 61.911/52.86" | 60.09/50.67 | 60.58/51.07 | 60.80/51.12 52.92/42.19 89.66/83.81
ca 0.13 73.83/65.13 | 74.247/65.577 | 72.39/63.72 | 72.03/63.02 68.23/58.15 93.98/91.64
pl 0.13 | 74.561/62.23" | 71.89/58.59 | 73.46/60.49 | 72.09/59.75 66.74/53.40 94.96/90.68
uk 0.13 60.05/52.28" | 58.49/51.14 | 57.43/49.66 | 59.67/51.85 54.10/45.26 85.98/82.21
sl 0.13 | 68.211/56.54" | 66.27/54.57 | 66.55/54.58 | 67.76/55.68 60.86/48.06 86.79/82.76
nl 0.14 68.55/60.26 67.88/60.11 | 67.88/59.46 | 69.557/61.55" 63.31/53.79 90.59/87.52
bg 0.14 | 79.401/68.217 | 78.05/66.68 | 78.16/66.95 | 78.83/67.57 73.08/61.23 93.74/89.61
ru 0.14 60.63/51.63 59.99/50.81 | 59.36/50.25 | 60.87/51.96 55.03/45.09 94.11/92.56
de 0.14 | 71.341/61.62" | 69.49/59.31 | 69.94/60.09 | 69.58/59.64 65.14/54.13 88.58/83.68
he 0.14 | 55.29/48.007 | 54.55/46.93 | 53.23/45.69 | 54.89/40.95 46.03/26.57 89.34/84.49
cs 0.14 | 63.107/53.80T | 61.88/52.80 | 61.26/51.86 | 62.26/52.32 56.15/44.77 94.03/91.87
1o 0.15 | 65.057/54.10" | 63.23/52.11 | 62.54/51.46 | 60.98/49.79 56.01/44.04 90.07/84.50
sk 0.17 66.65/58.157 | 65.41/56.98 | 65.34/56.68 | 66.56/57.48 57.75/47.73 90.19/86.38
id 0.17 | 49.201/43.52" | 47.05/42.09 | 47.32/41.770 | 46.77/41.28 40.84/33.67 87.19/82.60
lv 0.18 70.78/49.30 | 71.437/49.59 | 69.04/47.80 | 70.56/48.53 62.33/41.42 83.67/78.13
fi 0.20 66.27/48.69 66.36/48.74 | 64.82/47.50 | 66.25/48.28 58.51/38.65 88.04/85.04
et 020 | 65.721/44.87"| 65.25/44.40 | 64.12/43.26 | 64.30/43.50 56.13/34.86 86.76/83.28
zh* 0.23 | 42.481/25.107 | 41.53/24.32 | 40.56/23.32 | 40.92/23.45 40.03/20.97 73.62/67.67
ar 0.26 | 38.121/28.04" | 32.97/25.48 | 32.56/23.70 | 32.85/24.99 32.69/22.68 86.17/81.83
la 0.28 | 47.961/35.21%| 45.96/33.91 | 45.49/33.19 | 43.85/31.25 39.08/26.17 81.05/76.33
ko 0.33 | 34.487/16.40T | 33.66/15.40 | 32.75/15.04 | 33.11/14.25 31.39/12.70 85.05/80.76
hi 0.40 | 35.501/26.527 | 29.32/21.41 | 31.38/23.09 | 25.91/18.07 25.74/16.77 95.63/92.93
ja* 0.49 | 28.181/20.917| 18.41/11.99 | 20.72/13.19 15.16/9.32 15.39/08.41 89.06/78.74
Average| 0.17 | 64.067/53.827| 62.71/52.63 | 62.22/52.00 | 62.37/51.89 57.09/45.41 89.44/85.62

Table 2: Results (UAS%/LAS%, excluding punctuation) on the test sets. Languages are sorted by the word-
ordering distance to English, as shown in the second column. ‘*’ refers to results of delexicalized models, ‘}’
means that the best transfer model is statistically significantly better (by paired bootstrap test, p < 0.05) than all
other transfer models. Models are marked with their encoder and decoder order sensitivity, OF denotes order-free

and OS denotes order-sensitive.

on Chinese (zh) and Japanese (ja). We found the
main reason was that their embeddings were not
well aligned to English. Therefore, we use delex-
icalized models, where only POS tags are used as
inputs. The delexicalized results’ for Chinese and
Japanese are listed in the rows marked with “*”.
Overall, the “SelfAtt-Graph” model performs
the best in over half of the languages and beats the
runner-up “RNN-Graph” by around 1.3 in UAS
and 1.2 in LAS on average. When compared
with “RNN-Stack™ and “SelfAtt-Stack”, the av-
erage difference is larger than 1.5 points. This
shows that models capture less word order infor-

"We found delexicalized models to be better only at zh
and ja, for about 5 and 10 points respectively. For other lan-
guages, they performed worse for about 2 to 5 points. We
also tried models without POS, and found them worse for
about 10 points on average. We leave further investigation of
input representations to future work.

mation generally perform better at cross-lingual
parsing. Compared with the baseline, our supe-
rior results show the importance of the contextual
encoder. Compared with the supervised models,
the cross-lingual results are still lower by a large
gap, indicating space for improvements.

After taking a closer look, we find an interest-
ing pattern in the results: while the model per-
formances on the source language (English) are
similar, RNN-based models perform better on lan-
guages that are closer to English (upper rows in
the table), whereas for languages that are “distant”
from English, the “SelfAtt-Graph” performs much
better. Such patterns correspond well with our hy-
pothesis, that is, the design of models considering
word order information is crucial in cross-lingual
transfer. We conduct more thorough analysis in
the next subsection.
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Model UAS% | LAS%
SelfAtt-Relative (Ours) | 64.57 54.14
SelfAtt-Relative+Dir 63.93 53.62
RNN 63.25 52.94
SelfAtt-Absolute 61.76 51.71
SelfAtt-NoPosi 28.18 21.45

Table 3: Comparisons of different encoders (averaged
results over all languages on the original training sets).

4.3 Analysis

We further analyze how different modeling
choices influence cross-lingual transfer. Since we
have not touched the training sets for languages
other than English, in this subsection, we evaluate
and analyze the performance of target languages
using training splits in UD. Performance of En-
glish is evaluated on the test set. We verify that
the trends observed in test set are similar to those
on the training sets. As mentioned in the previous
section, the bilingual embeddings for Chinese and
Japanese do not align well with English. There-
fore, we report the results with delexicalizing. In
the following, we discuss our observations, and
detailed results are listed in Appendix E.

4.3.1 Encoder Architecture

We assume models that are less sensitive to word
order perform better when transfer to distant lan-
guages. To empirically verify this point, we con-
duct controlled comparisons on various encoders
with the same graph-based decoder. Table 3 shows
the average performances in all languages.

To compare models with various degrees of sen-
sitivity to word order, we include several vari-
ations of self-attention models. The “SelfAtt-
NoPosi” is the self-attention model without any
positional information. Although it is most insen-
sitive to word order, it performs poorly possibly
because of the lack of access to the locality of
contexts. The self-attention model with absolute
positional embeddings (“SelfAtt-Absolute”) also
does not perform well. In the case of parsing,
relative positional representations may be more
useful as indicated by the improvements brought
by the directional relative position representa-
tions (“SelfAtt-Relative+Dir”) (Shaw et al., 2018).
Interestingly, the RNN encoder ranks between
“SelfAtt-Relative+Dir” and “SelfAtt-Absolute™;
all these three encoders explicitly capture word or-
der information in some way. Finally, by discard-
ing the information of directions, our relative posi-
tion representation (“‘SelfAtt-Relative”) performs
the best (significantly better at p < 0.05).

T
— Diff(SelfAtt-Enc(OF),...RNN-Enc(OS))

o »

Encoding

0 /\/\/\ /_/\/\
[ SN A%l
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-
>
~
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\
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Figure 2: Evaluation score differences between Order-
Free (OF) and Order Sensitive (OS) modules. We show
results of both encoder (blue solid curve) and decoder
(dashed red curve). Languages are sorted by their
word-ordering distances to English from left to right.
The position of English is marked with a green bar.

One crucial observation we have is that the pat-
terns of breakdown performances for “SelfAtt-
Relative+Dir” are similar to those of RNN: on
closer languages, the direction-aware model per-
forms better, while on distant languages the
non-directional one generally obtains better re-
sults. Since the only difference between our pro-
posed “SelfAtt-Relative” model and the “SelfAtt-
Relative+Dir” model is the directional encoding,
we believe the better performances should credit
to its effectiveness in capturing useful context in-
formation without depending too much on the
language-specific order information.

These results suggest that a model’s sensitivity
to word order indeed affects its cross-lingual trans-
fer performances. In later sections, we stick to our
“SelfAtt-Relative” variation of the self-attentive
encoder and focus on the comparisons among the
four main models.

4.3.2 Performance v.s. Language Distance

We posit that order-free models can do better than
order-sensitive ones on cross-lingual transfer pars-
ing when the target languages have different word
orders to the source language. Now we can ana-
lyze this with the word-ordering distance.

For each target language, we collect two types
of distances when comparing it to English: one is
the word-ordering distance as described in Section
2, the other is the performance distance, which is
the gap of evaluation scores® between the target
language and English. The performance distance
can represent the general transferability from En-

81n the rest of this paper, we simply average UAS and
LAS for evaluation scores unless otherwise noted.
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Figure 3: Analysis on specific dependency types. To save space, we merge the curves of encoders and decoders
into one figure. The blue and red curves and left y-axis represent the differences in evaluation scores, the brown
curve and right y-axis represents the relative frequency of left-direction (modifier before head) on this type. The
languages (x-axis) are sorted by this relative frequency from high to low.

glish to this language. We calculate the correla-
tion of these two distances on all the concerned
languages, and the results turn to be quite high:
the Pearson and Spearman correlations are around
0.90 and 0.87 respectively, using the evaluations
of any of our four cross-lingual transfer models.
This suggests that word order can be an important
factor of cross-lingual transferability.
Furthermore, we individually analyze the en-
coders and decoders of the dependency parsers.
Since we have two architectures for each of the
modules, when examining one, we take the high-
est scores obtained by any of the other mod-
ules. For example, when comparing RNN and
Self-Attention encoders, we take the best evalu-
ation scores of “RNN-Graph” and “RNN-Stack”
for RNN and the best of “SelfAtt-Graph” and
“SelfAtt-Stack” for Self-Attention.  Figure 2
shows the score differences of encoding and de-
coding architectures against the languages’ dis-
tances to English. For both the encoding and
decoding module, we observe a similar overall
pattern: the order-free models, in general, per-
form better than order-sensitive ones in the lan-
guages that are distant from the source language
English. On the other hand, for some languages
that are closer to English, order-sensitive mod-
els perform better, possibly benefiting from be-
ing able to capture similar word ordering infor-
mation. The performance gap between order-free

and order-sensitive models are positively corre-
lated with language distance.

4.3.3 Performance Breakdown by Types

Moreover, we compare the results on specific de-
pendency types using concrete examples. For each
type, we sort the languages by their relative fre-
quencies of left-direction (modifier before head)
and plot the performance differences for encoders
and decoders. We highlight the source language
English in green. Figure 3 shows four typical ex-
ample types: Adposition and Noun, Adjective and
Noun, Auxiliary and Verb, and Object and Verb.
In Figure 3a, we examine the “case” dependency
type between adpositions and nouns. The pattern
is similar to the overall pattern. For languages
that mainly use prepositions as in English, differ-
ent models perform similarly, while for languages
that use postpositions, order-free models get better
results. The patterns of adjective modifier (Figure
3b) and auxiliary (Figure 3c) are also similar.

On dependencies between verbs and object
nouns, although in general order-free models per-
form better, the pattern diverges from what we ex-
pect. There can be several possible explanations
for this. Firstly, the tokens which are noun objects
of verbs only take about 3.1% on average over all
tokens. Considering just this specific dependency
type, the correlation between frequency distances
and performance differences is 0.64, which is far
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d English | Average
<-2 | 14.36 12.93
-2 15.45 11.83
-1 31.55 30.42

1 7.51 14.22
2 9.84 10.49
>2 21.29 20.11

Table 4: Relative frequencies (%) of dependency dis-
tances. English differs from the Average at d=1.

less than 0.9 when considering all types. There-
fore, although Verb-Object ordering is a typical
example, we cannot take it as the whole story
of word order. Secondly, Verb-Object dependen-
cies can often be difficult to decide. They some-
times are long-ranged and have complex interac-
tions with other words. Therefore, merely reduc-
ing modeling order information can have compli-
cated effects. Moreover, although our relative-
position self-attention encoder does not explicitly
encode word positions, it may still capture some
positional information with relative distances. For
example, the words in the middle of a sentence
will have different distance patterns from those at
the beginning or the end. With this knowledge, the
model can still prefer the pattern where a verb is in
the middle as in English’s Subject-Verb-Object or-
dering and may find sentences in Subject-Object-
Verb languages strange. It will be interesting to
explore more ways to weaken or remove this bias.

4.3.4 Analysis on Dependency Distances

We now look into dependency lengths and di-
rections. Here, we combine dependency length
and direction into dependency distance d, by us-
ing negative signs for dependencies with left-
direction (modifier before head) and positive for
right-direction (head before modifier). We find a
seemingly strange pattern at dependency distances
|d|=1: for all transfer models, evaluation scores on
d=-1 can reach about 80, but on d=1, the scores
are only around 40. This may be explained by
the relative frequencies of dependency distances
as shown in Table 4, where there is a discrep-
ancy between English and the average of other lan-
guages at d=1. About 80% of the dependencies
with |d|=1 in English is the left direction (mod-
ifier before head), while overall other languages
have more right directions at |d|=1. This suggests
an interesting future direction of training on more
source languages with different dependency dis-
tance distributions.

We further compare the four models on the d=1

Evaluation...Difference

T 035
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Figure 4: Evaluation differences of models on d=1 de-
pendencies. Annotations are the same as in Figure 3,
languages are sorted by percentages (represented by the
brown curve and right y-axis) of d=1 dependencies.
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Figure 5: Transfer performance of all source-target lan-
guage pairs. The blue and red curves show the averages
over columns and over rows of the source-target pair
performance matrix (see text for details). The brown
curve and the right y-axis legend represent the average
language distance between one language and all others.

dependencies and as shown in Figure 4, the fa-
miliar pattern appears again. The order-free mod-
els perform better at the languages which have
more d=1 dependencies. Such finding indicates
that our model design of reducing the ability to
capture word order information can help on short-
ranged dependencies of different directions to the
source language. However, the improvements are
still limited. One of the most challenging parts
of unsupervised cross-lingual parsing is modeling
cross-lingually shareable and language-unspecific
information. In other words, we want flexible yet
powerful models. Our exploration of the order-
free self-attentive models is the first step.

4.3.5 Transfer between All Language Pairs

Finally, we investigate the transfer performance of
all source-target language pairs.’ We first gen-
erate a performance matrix A, where each en-
try (i,7) records the transfer performance from
a source language ¢ to a target language 7. We
then report the following two aggregate perfor-

Because the size of training corpus for each language
is different in UD, to compare among languages, we train
a parser on the first 4,000 sentences for each language and
evaluate its transfer performance on all other languages.
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mance measures on A in Figure 5: 1) As-source
reports the average over columns of A for each
row of the source language and 2) As-target re-
ports the average over rows of A for each column
of the target language. As a reference, we also
plot the average word-order distance between one
language to other languages. Results show that
both As-source (blue line) and As-target (red line)
highly are anti-correlated (Pearson correlation co-
efficients are —0.90 and —0.87, respectively) with
average language distance (brown line).

5 Related Work

Cross-language transfer learning employing deep
neural networks has widely been studied in the ar-
eas of natural language processing (Ma and Xia,
2014; Guo et al., 2015; Kim et al., 2017; Kann
et al.,, 2017; Cotterell and Duh, 2017), speech
recognition (Xu et al., 2014; Huang et al., 2013),
and information retrieval (Vuli¢ and Moens, 2015;
Sasaki et al., 2018; Litschko et al., 2018). Learn-
ing the language structure (e.g., morphology, syn-
tax) and transferring knowledge from the source
language to the target language is the main under-
neath challenge, and has been thoroughly investi-
gated for a wide variety of NLP applications, in-
cluding sequence tagging (Yang et al., 2016; Buys
and Botha, 2016), name entity recognition (Xie
et al., 2018), dependency parsing (Tiedemann,
2015; Agic et al., 2014), entity coreference reso-
lution and linking (Kundu et al., 2018; Sil et al.,
2018), sentiment classification (Zhou et al., 2015,
2016b), and question answering (Joty et al., 2017).

Existing work on unsupervised cross-lingual
dependency parsing, in general, trains a depen-
dency parser on the source language and then
directly run on the target languages. Training
of the monolingual parsers are often delexical-
ized, i.e., removing all lexical features from the
source treebank (Zeman and Resnik, 2008; Mc-
Donald et al., 2013), and the underlying feature
model is selected from a shared part-of-speech
(POS) representation utilizing the Universal POS
Tagset (Petrov et al., 2012). Another pool of prior
work improves the delexicalized approaches by
adapting the model to fit the target languages bet-
ter. Cross-lingual approaches that facilitate the
usage of lexical features includes choosing the
source language data points suitable for the tar-
get language (Sggaard, 2011; Tackstrom et al.,
2013), transferring from multiple sources (Mc-

Donald et al., 2011; Guo et al., 2016; Tackstrom
et al., 2013), using cross-lingual word clusters
(Téackstrom et al., 2012) and lexicon mapping
(Xiao and Guo, 2014; Guo et al., 2015). In this
paper, we consider single-source transfer—train a
parser on a single source language, and evaluate it
on the target languages to test the transferability of
neural architectures.

Multilingual transfer (Ammar et al., 2016;
Naseem et al., 2012; Zhang and Barzilay, 2015)
is another broad category of techniques applied to
parsing where knowledge from many languages
having a common linguistic typology is utilized.
Recent works (Aufrant et al., 2016; Wang and Eis-
ner, 2018a,b) demonstrated the significance of ex-
plicitly extracting and modeling linguistic prop-
erties of the target languages to improve cross-
lingual dependency parsing. Our work is different
in that we focus on the neural architectures and
explore their influences on cross-lingual transfer.

6 Conclusion

In this work, we conduct a comprehensive study
on how the design of neural architectures affects
cross-lingual transfer learning. We examine two
notable families of neural architectures (sequential
RNN v.s. self-attention) using dependency parsing
as the evaluation task. We show that order-free
models perform better than order-sensitive ones
when there is a significant difference in the word
order typology between the target and source lan-
guage. In the future, we plan to explore multi-
source transfer and incorporating prior linguistic
knowledge into the models for better cross-lingual
transfer.
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