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Thin elastic solids are easily deformed into a myriad of three-dimensional shapes, which may contain
sharp localized structures as in a crumpled candy wrapper or have smooth and diffuse features like the
undulating edge of a flower. Anticipating and controlling these morphologies is crucial to a variety of
applications involving textiles, synthetic skins, and inflatable structures. Here, we show that a “wrinkle-to-
crumple” transition, previously observed in specific settings, is a ubiquitous response for confined sheets.
This unified picture is borne out of a suite of model experiments on polymer films confined to liquid
interfaces with spherical, hyperbolic, and cylindrical geometries, which are complemented by experiments
on macroscopic membranes inflated with gas. We use measurements across this wide range of geometries,
boundary conditions, and length scales to quantify several robust morphological features of the crumpled
phase, and we build an empirical phase diagram for crumple formation that disentangles the competing
effects of curvature and compression. Our results suggest that crumples are a generic microstructure that
emerge at large curvatures due to a competition of elastic and substrate energies.
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I. INTRODUCTION

When unrolling plastic wrap, handling a large flimsy
poster, or watching a fluttering flag, we witness a
multitude of deformations available to thin sheets. In
some cases, the shapes are smooth and diffuse like the
undulating edge of a flower [1–3], while in others they are
sharp and localized like the ridges and corners in a
crumpled piece of paper [4–7]. Although much progress
has been made to describe a wide range of deformations
and patterns, a general understanding of the transition
from smooth to sharp topographies under featureless
confinement remains a major challenge. Such an under-
standing promises broad practical implications from con-
trolling surface patterning through buckling [8,9] to
anticipating material degradation due to the focusing of
stresses at elastic singularities [10–12].
Many of these rich and complex morphologies stem

from a basic consideration: A sufficiently thin sheet prefers
to minimize costly stretching deformations in favor of

low-energy bending. For sheets constrained to planar or
gently curved topographies, wrinkles are an effective method
for relaxing compressive stresses while minimizing out-of-
plane displacements [13–16]. Wrinkles can even allow an
initially planar sheet to hug the contour of a doubly curved
geometry, such as a sphere or saddle, with negligible
stretching [17–22]. Yet, under sufficiently strong confine-
ment, a sheet may concentrate strain energy along localized
ridges or singular vertices to lower the total elastic energy
[5,23,24]. In this article, we study the transition from smooth
to sharp deformations in general geometries, and we find a
common response whereby wrinkles are replaced at large
imposed curvatures by a generic buckling motif, termed
“crumples.”
The realization that both wrinkles and crumples can form

sequentially under gradual confinement is the outcome
of recent work by King et al. [25,26]. In their experiments,
an initially flat circular sheet is placed on a spherical water
meniscus. As the curvature of the interface is gradually
increased, a wrinkled state gives way to a different
deformation mode with a finite number of stress-focusing
patterns [Fig. 1(a)]. This progression reveals two distinct
symmetry-breaking transformations: First, wrinkles break
the axial symmetry of the deformation field, and crumples
subsequently break the axial symmetry of the stress field
[25]. Yet, despite the practical importance and fundamental
nature of the crumpling transition, a predictive under-
standing has remained out of reach.
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Here, we study the wrinkle-to-crumple transition in a set
of model experiments on ultrathin polymer films and
macroscopic inflated membranes. First, we show that this
transition appears to be generic: We observe a strikingly
similar morphological transition in hyperbolic and cylin-
drical geometries. Moreover, by isolating the wrinkle-to-
crumple transition in a membrane inflated with gas, we
show that the phenomenon is scale-free, and we identify
robust morphological features of the crumpled phase that
are shared across a diverse range of setups.
We then characterize the crumpling threshold. We cross

this transition by varying the curvature along the wrinkle
crests in the interfacial films and by modifying the tensile
stresses along wrinkles in the inflated membranes. We
generalize an empirical threshold from previous work [25]
to give an approximate criteria for the transition, and we
show that a full account of the crumpling threshold must
also include the fractional in-plane compression.
Wrinkles, folds, creases, ridges, blisters, and other

buckled microstructures have been studied extensively
in recent years [8,9,28–32]. Crumple formation and
evolution have not been documented to a similar extent
and are still poorly understood. Our experimental mea-
surements and phenomenological description provide

a foothold for a theoretical understanding of this ubiqui-
tous transition.

II. ISOLATING THE CRUMPLING TRANSITION
IN DIVERSE SETTINGS

We conduct experiments using interfacial films in two
geometries that differ from the spherical setup where the
transition was previously reported [25]. We make polymer
films of thickness 40 < t < 630 nm and Young’s modulus
E ¼ 3.4 GPa by spin-coating solutions of polystyrene
(Mn ¼ 99 000, Mw ¼ 105 500, Polymer Source) in toluene
(99.9%, Fisher Scientific) onto glass substrates, following
Ref. [33]. We cut the films into various shapes and float them
onto deionized water with surface tension γ ¼ 72 mN=m.
We use a white-light interferometer (Filmetrics F3) to
measure the film thickness, which is uniform over each
film to within 3%. Our experiments fall in a regime char-
acterized by weak tension, γ=Y < 10−3, and negligible
bending stiffness, characterized by large “bendability”
[25], ϵ−1 ¼ γW2=B > 104, where Y ¼ Et and B ¼
Et3=½12ð1 − Λ2Þ� are the stretching and bending moduli,
respectively, with Λ the Poisson’s ratio. Such films can
withstand only vanishingly small levels of in-plane com-
pression before they buckle out of plane.
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FIG. 1. Wrinkle-to-crumple transition in a wide range of geometries, boundary conditions, and system sizes. The overall Gaussian
curvature K imposed on the relevant portion of the sheet is given below each schematic. (a) A circular polystyrene sheet (E ¼ 3.4 GPa)
of radiusW ¼ 1.5 mm and thickness t ¼ 77 nm on a liquid meniscus forms crumples at a large droplet curvature [25]. Images adapted
from Ref. [26] with permission. (b) A polystyrene sheet floating on a liquid bath forms crumples when indented beyond a threshold
depth. Here, W ¼ 11 mm and t ¼ 436 nm. (c) Central portion of a rectangular polystyrene film of thickness t ¼ 157 nm, width
W ¼ 3.3 mm, and length 9.7 mm on a water meniscus that is uniaxially compressed between two barriers. Wrinkles form when the
meniscus is flat or gently curved; crumples form when the imposed curvature along the wrinkle crests is sufficiently large. (d) A square
polyethylene bag (t ¼ 102 μm, E ¼ 210 MPa) forms wrinkles when inflated with sufficient internal pressure P. Crumples occur at a
lower pressure. The deflated bag width is W ¼ 20 cm. Supplemental Movies 1–3 in [27] show the transitions in (b)–(d), respectively.
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Our first setup, shown in Fig. 1(b) and Supplemental
Movie 1 in [27], is an indentation protocol that has been
investigated previously [18,20,34,35]. We indent a circular
film of radius 11 < W < 44 mm by a vertical distance δ
using a spherical probe. At a threshold δ, wrinkles form
within a narrow annulus due to the azimuthal compression
that would have been induced by the contraction of circles.
The wrinkled region grows with increasing δ until it covers
the sheet [36]. Beyond another threshold, some wrinkles
increase in amplitude and develop into crumples, while the
amplitude in the intervening regions decreases. The tran-
sition resembles the response in Fig. 1(a), despite the
markedly different geometry and loading. Here, the small-
scale wrinkles and crumples help the gross shape of the
sheet (i.e., the overall geometry of the sheet that ignores
undulations) to follow a hornlike profile with a negative
Gaussian curvature. We return to analyze this and the
following setups in Secs. III–IV.
Figures 1(a) and 1(b) leave open the possibility that

geometric incompatibility plays an important role in
crumple formation. However, a crumpling transition can
also be observed in a cylindrical geometry, where the
Gaussian curvature of the gross shape is conserved while a
principal curvature is made to vary. This experimental
finding is shown in Fig. 1(c) and Supplemental Movie 2
in [27], where a rectangular polymer film of width 1.1 <
W < 3.2 mm and length 12 < L < 13 mm is placed on a
water meniscus that is pinned along two straight Teflon
walls that are 4.0 mm apart. First, we buckle the film by
compressing it between two barriers using a micrometer
stage. Then, by changing the height of a liquid reservoir, we
vary the curvature of the interface continuously between 0
(planar) and 0.50 mm−1 (half a cylinder). We confirm that
the meniscus shape shows no measurable deviations from a
cylinder, both with and without a film on its surface, by
measuring its profile with a sheet of laser light. We thus
measure the curvature of the meniscus via its height in side-
view images. The buckled sheet forms parallel wrinkles
that transition into crumples beyond a threshold meniscus
curvature [Fig. 1(c)]. This geometry is perhaps the minimal
one for producing crumples, by pairing curvature and
compression along perpendicular axes.
To probe the generality of this transition further, we

perform experiments where we quasistatically inflate sealed
plastic membranes while measuring their internal pressure
[Fig. 1(d) and Supplemental Movie 3 in [27]]. Square
membranes of width 10 < W < 31 cm and thickness
15 < t < 222 μm are made by folding a rectangular
sheet in half and sealing the three open sides. We use a
variety of materials, including low-density polyethylene,
perfluoroalkoxy alkane (PFA), polyolefin shrink film
(SYTEC MVP), aluminized Mylar, and natural rubber,
in order to vary the Young’s modulus over a wide range
(2.0 < E < 1500 MPa), which we measure using a tensile
tester (TestResources Model 100P). As the membrane is

inflated, geometric constraints lead to buckling in four
regions along the perimeter. We image the buckled zone on
the side of the membrane without a seal while measuring
the internal pressure with a digital pressure gauge. At low
gauge pressures, crumples are visible in this region; at
a higher pressure, they transition into smooth wrinkles
[Fig. 1(d)]. Observing crumples in this setting without a
liquid suggests that they are general features that arise out
of a minimization of elastic energies in the sheet plus a
substrate energy that helps impose the gross shape.
In order to draw quantitative comparisons between these

four setups, we define a general set of variables for the
region of the sheet that is wrinkled or crumpled. We denote
the length of this region by lk, as drawn in Fig. 1(c), which
corresponds to the length of wrinkles when they are
present. An individual “crumple” has a length lcr < lk
[also indicated in Fig. 1(c)]. We denote the radius of
curvature and stress along the tensile direction by Rk and
σk, respectively, as pictured in Fig. 2. Table I shows
estimates for these variables in each setup. We use these
variables to quantify the threshold for crumple formation in
Sec. IV. But first, in Sec. III, we clarify the morphology of
the crumpled state and how it evolves with increasing
confinement.

III. CRUMPLE MORPHOLOGY

A. Topography of a single crumple

To define the difference between wrinkles and crum-
ples more precisely, we use a laser scanner to map the
three-dimensional topography of a portion of an inflated
membrane at several internal pressures. Figure 3(a) shows
renderings of the reconstructions at P ¼ 6.3 kPa, where
the sheet is wrinkled, and P ¼ 0.87 kPa, where there are
crumples, with P being the gauge pressure. Figure 3(b)
shows cross sections taken along the central trough, which
we track through a series of pressures during a single
inflation. At low pressures, the crumple trough is approx-
imately flat and terminates at two localized regions of high
curvature [red circles in Figs. 3(a) and 3(b)]. As the internal
pressure increases, these kinks gradually become smoother,
while the crumple gets longer until it spans the length of the

FIG. 2. Schematic of a wrinkled rectangular patch, showing σk
and Rk. Their values and the total length of the buckled region,
lk, are quantified in Table I for each setup.
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FIG. 3. Crumple morphology. (a) Renderings of three-dimensional scans of an inflated square polyethylene bag (t ¼ 49 μm,
E ¼ 297 MPa, W ¼ 20 cm), showing the topography of wrinkles (top) and crumples (bottom). (b) Cross sections through a single
buckled feature as a function of the gauge pressure. The profiles are taken along the dashed lines in (a), and the two circles highlight
the sharp tips at the two ends of the crumple. (c) Cross sections along a perpendicular direction, which show only a small change in
width through the transition [the same scale as (a),(b)]. (d) Local Gaussian curvature K for the scans shown in (a). The wrinkled state
(top) shows large positive and negative curvatures along the wrinkle crests and troughs. The crumpled state (bottom) localizes K
and, hence, material stresses. Scale bars in (a)–(d), 1 cm. (e),(f) Origami patterns resembling crumpled states, suggesting that
crumples may be an approximate isometry of the plane, with localized bending and stretching in place of the edges and vertices in
these paper models.

TABLE I. Physical scales near the wrinkle-to-crumple transition. Expressions for the buckled length (lk), curvature along the wrinkles
(Rk), and tensile stress along the wrinkles (σk), which are pictured schematically in Fig. 2. Values for the sheet-on-droplet setup are
based on Ref. [25]. In this setup, Rk and σk vary spatially; we show their values at the location r ¼ W, where the curvature is largest.
[The full radial dependance may be obtained from Eqs. (24) and (25) in Supplemental Material to Ref. [25].] Values for indentation are
based on the height profile ζðrÞ in the relevant regime where wrinkles cover the sheet. In that case, ζðrÞ ¼ δAiðr=lcurvÞ=Aið0Þ, where
AiðxÞ is the Airy function and lcurv ¼ W1=3l2=3

c with lc ¼
ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
being the capillary length [18,20]. The curvature R−1

k ðrÞ ¼ ζ00ðrÞ is
nearly maximal at r ¼ lcurv, so we take Rk and σk there. For the inflated membranes, σk ≈ PRk comes from force balance on a small
cylindrical patch, Rk is measured using a set of paper stencils of circular arcs, and lk is measured by laying a string along the buckled
region [37].

Setup Control parameter lk Rk σk
Sheet on droplet Droplet radius (R) W=2 (at transition) R=2 γ
Indentation Indentation depth (δ) W 2.62 l2

curv=δ γW=lcurv
Sheet on cylinder Radius (R), compression (Δ) W R γ
Inflated membrane Pressure (P) Measured Measured PRk
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buckled region; the crumple thereby converts into a smooth
wrinkle.
Figure 3(c) shows the evolution of the same buckled

feature along a perpendicular cross section, taken halfway
between the crumple tips. This undulation is present
through the transition, and it serves to collect excess
material due to lateral compression.

B. Gaussian curvature

The observed wrinkle and crumple morphologies are
linked to the distribution of stresses in the sheet via Gauss’s
theorema egregium. To gain insight into the stress field, we
measure the local Gaussian curvature of the scans by fitting
small regions to a quadratic polynomial and extracting the
principal curvatures from the coefficients of the fit, follow-
ing Ref. [38]. We calibrate the scanner and analysis code
on a smooth metal cylinder, which gives the radius of
the cylinder with an accuracy of 1% and yields spatial
fluctuations in the Gaussian curvature on the order of
0.01 cm−2, which is one indicator of the measurement
precision.
Figure 3(d) shows the measured curvature maps for the

scans in Fig. 3(a). The wrinkled morphology shows finite
Gaussian curvatures in stripes of alternating sign. This
result is due to the nearly constant curvature along the
x axis and the alternating positive and negative curvature of
the wrinkled profile along the y axis, which together imply
finite strains and stresses that are spatially extended. In
contrast, the curvature map of the crumpled morphology
suggests that the material stresses are reduced throughout
much of the sheet, at the expense of higher stresses around
the boundary of the individual crumples, most notably at
their tips. These data support a picture where crumples
lower the total elastic energy by condensing stresses to
small regions in the sheet.

C. Similarity to origami bellows

These observations may lead one to consider isometries
of a cylinder. The Yoshimura pattern [39,40] and the
Kresling pattern [41] are two origami constructions that
are built from a repeated diamond-shaped unit cell con-
sisting of two flat triangular faces sharing an edge.
Simultaneously actuating all the folds leads to global axial
compression of the original cylinder.
Taking one row of diamonds from the Yoshimura pattern

yields the structure shown in Fig. 3(e), which resembles the
morphologies in Figs. 1(c), 1(d), and 3(a). Symmetric
patterns may be constructed as well [Fig. 3(f)]. This
qualitative similarity may prompt one to ask whether the
crumped phase is a kind of “self-organized origami” [42]
that occurs in order for the sheet to be approximately
isometric to an uncompressed cylinder (or, equivalently, to
the initial planar state). An answer might be reached by
assessing the elastic energy cost of the finite-curvature
ridges that replace the infinitely sharp origami folds. It

should also address the energetic cost for matching the
crumpled region to the cylindrical profile flanking its sides.

D. Crumple length

Focusing now on a single crumple, we examine the cross
sections in Fig. 3(b) once again. One can see the crumple
length lcr in these profiles at low pressures by noting the
distance between the pair of sharp kinks. The mechanism
selecting this crumple length is not yet known, and our
first task is to identify the parameters that affect it [43].
The cross sections in Fig. 3(b) show that lcr grows as the
pressure increases, suggesting that lcr depends on the
tensile stress σk. Optical images of the sheet-on-cylinder
and indentation setups show that lcr also depends on the
radius of curvature along the wrinkles, Rk.
In order to build an empirical scaling relation for the

crumple length, we gather images in the indentation, sheet-
on-cylinder, and inflated membrane setups. Because these
systems span multiple scales, we are sensitive to any
dependence on the length of the buckled region, lk. We
record the longest crumple in each image, since smaller
crumples may be associated with boundary effects. In the
sheet-on-cylinder setup, we also perform experiments
with σk ¼ γ ¼ 36 mN=m by using a surfactant (sodium
dodecyl sulfate).
Possible scaling relations for lcr are constrained by

dimensional analysis and an observation from our experi-
ments: At the crumpling transition, the crumple length is
comparable to the wrinkle length, i.e., lcr ≈ lk. Based on
the crumpling threshold presented in the following section

[Eq. (2)], we therefore expect that lcr ∼ lð1−2βÞ
k R2β

k ðσk=YÞβ
for some β. Our measurements over two decades in lcr are
reasonably described by

lcr ≈ 5.6l0.4
k R0.6

k

�
σk
Y

�
0.3
; ð1Þ

as shown in Fig. 4(a), which corresponds to β ¼ 0.3.
Notably, the numerical prefactor in Eq. (1) is set by the
above arguments, so that β is the only parameter we fit to
arrive at this result. Our data could also be consistent with β
ranging from 0.2 and 0.4. We are not able to produce a
significantly better collapse by fitting the three exponents
separately.
The above scaling relation does not have any explicit

dependance on the lateral compression applied to the sheet,
which may explain some of the scatter in the data. Indeed,
the images in Fig. 4(a) show a chain of crumples evolving
under increasing compression, which causes lcr to grow.
Thus, Eq. (1) is only approximate and should be modified
to include a dependence on the compression. Nevertheless,
the ability of Eq. (1) to capture our results from three very
different systems supports our approach of describing the
data using the general set of variables in Table I.
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E. Lateral spacing between crumpled regions

Looking now to the structure of the crumpled phase on a
larger scale, we note that individual crumples organize into
extended structures that span the length of the buckled
region, as shown in each of the setups in Fig. 1. In some
cases, these structures have bilateral symmetry, like those in
Figs. 1(a) and 1(b) and the origami pattern in Fig. 3(f). In
another commonmotif, each crumple tip is situated near the

midline of a neighboring crumple, as in Figs. 1(c) and 1(d)
and the origami pattern in Fig. 3(e). We call these latter
structures “chains.” Both the symmetric and chain assem-
blies break the translational symmetry of the sheet-
on-cylinder setup, whereas chains further break reflection
symmetry due to their angled structure. Left- and right-
angled chains can occupy the sheet at the same time, in
equal or unequal numbers.
These assemblies are ordered on a larger scale as well:

They exhibit a relatively regular lateral spacing, with low-
amplitude wrinkles or flat regions between them. This
lateral spacing can be seen in Figs. 1(b) and 1(c) (denoted
by l⊥). It is also evident in the last panel in Fig. S9 in
Ref. [25] for the sheet-on-droplet setup. Because there is
some stochastic variation in this lateral spacing, we focus
on the minimum spacing within a sheet in the indenta-
tion setup, which gives the most reproducible results. In
particular, we revisit the experiments of Paulsen et al. [20],
where a sheet of radius W ¼ 11 mm is indented from
below. Figure 4(b) shows the minimum angular size θ of
the region between crumples in a given sheet, which we
measure for a variety of thicknesses and indentation
amplitudes δ. This spacing is systematically larger for
thicker films, and it grows with increasing δ as entire
assemblies of crumples “unfurl,” giving their excess azi-
muthal length to other areas of the sheet [44].
These data suggest that the spacing between crumpled

regions is a robust feature of a uniform elastic sheet under
suitable confinement rather than an artifact of material
defects in the film, which we expect would not lead to such
systematic trends. Indeed, a characteristic angular separa-
tion is also evident in numerical simulations of an indented
pressurized elastic shell [see Fig. 4(d) in Ref. [45] ].
Elucidating its underlying mechanism in each of the
geometries remains an open challenge.

IV. CRUMPLING THRESHOLD

A. Confinement parameter

Having characterized the basic phenomenology and
morphology of the crumpled state, we now give a quanti-
tative account of the crumpling threshold. As we show, the
crumpling transition in these four experimental setups may
be gathered in a single empirical phase diagram. For the
case of a thin circular sheet on a droplet, King et al. [25]
identify a basic dimensionless group governing the mor-
phological transitions seen in experiment, given by
α≡ YW2=ð2γR2Þ, where R is the radius of curvature of
the droplet [25]. This expression may be seen as a ratio of
geometric strain (∼W2=R2) to mechanical strain (∼γ=Y).
For the experiment in Fig. 1(a), King et al. predict the
appearance of wrinkles when α ¼ αwr ≈ 5.16, consistent
with their experiments, and they observe a theoretically
unanticipated crumpling transition when α ¼ αcr ≈ 155.
To generalize this empirical threshold so that it may be
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FIG. 4. Emergent scales in the crumpled phase. (a) Crumple
length lcr, measured from optical images in the sheet-on-
cylinder, indentation, and inflated membrane setups. The sheet
thickness and modulus are varied over a wide range by using
rubber (E ∼ 2 MPa), polyethylene (E ∼ 200 MPa), and polysty-
rene (E ¼ 3.4 GPa) sheets. We also vary the surface tension in
the sheet-on-droplet setup (open symbols, 72 mN=m; closed
symbols, 36 mN=m). The data are reasonably described by a
simple expression involving lk, Rk, and σk=Y [solid line, Eq. (1)].
The two images show lcr increasing upon compression; this
behavior may account for some of the scatter in the data. Inset: lcr
versus Rk, which does not collapse the data. (b) Minimum
angular separation between crumpled regions in indentation. The
angular spacing grows with indentation depth δ and is larger for
thicker films.
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compared with other setups, we replace γ, R, and W with
the general set of variables introduced in Table I. Thus,

α≡ Yl2
k

2σkR2
k
: ð2Þ

Figure 5(a) shows the crumpling thresholds measured in
the four setups, plotted as a function of lk=Rk and σk=Y,
which characterize the magnitude of the imposed curvature
and tensile strains, respectively. (The rightmost points

indicate that the bags may undergo macroscopic strains
of the order of 3% at the transition; the polymer films
experience significantly smaller strains.) For the experi-
ments using floating films, the threshold is traversed
vertically by varying the imposed curvature 1=Rk. For
the inflated membranes, the threshold is crossed horizon-
tally, as changing the internal pressure causes σk to vary,
while lk=Rk remains approximately constant [see the inset
in Fig. 6(a)]. The dashed line shows αcr ¼ 155. Although
there is significant scatter (corresponding to αcr ranging
from 23 to 700), this simple scaling organizes the data into
a single phase diagram, covering a wide range of exper-
imental setups with different sheet geometries and confine-
ment protocols.
To probe this picture further, we examine the dependence

of the crumpling threshold on the buckled length lk.
Equation (2) implies that longer wrinkles should transi-
tion into crumples at smaller curvature 1=Rk. This depend-
ence may be tested directly in the sheet-on-cylinder
setup, where the buckled region spans the entire sheet
width, i.e., lk ¼ W. We perform experiments with a single
sheet thickness, t ¼ 113 nm, and vary the sheet width,
1.1 < W < 3.2 mm. The inset in Fig. 5(a) shows the
observed curvature where crumples appear. The data are
consistent with 1=Rk ∝ 1=lk at the crumpling transition,
following Eq. (2) with α ¼ 155.
King et al. [25] propose that the crumpling threshold is

independent of bendability, ϵ−1 ¼ γW2=B, in the asymp-
totic limit ϵ−1 ≫ 1, although their measurements are
confined to two decades: 105 < ϵ−1 < 107. Our measure-
ments greatly expand this range. Figure 5(b) shows that αcr
is approximately constant for 104 < ϵ−1 < 109 in the
floating polymer films and the inflated membranes (where
we define ϵ−1 ¼ PRkW2=B, with P the pressure at the
crumpling transition).
Although we glean significant overall trends from these

experiments, there is a fairly broad distribution of observed
crumpling thresholds αcr. We look at the scatter in another
transition at smaller confinement as a basis for comparison.
The wrinkling transition in indentation has been studied
previously using theory and experiments [18,35,36]; trans-
lating these results to our variables [46] gives a predicted
threshold of αwr ¼ 10.02. Figure 5(c) shows experimental
measurements that are clustered around this value, although
many sheets undergo the transition at smallerα. This behavior
might be caused by imperfections in the sheet or at its edge,
which could bring about wrinkles at smaller α and could
likewise contribute to the scatter in the crumpling threshold.
Note that there is an overall shift between the open and

closed triangles in Fig. 5(b) that is absent in Fig. 5(c). This
difference is because the appearance of wrinkles is a sharp
criterion that is easily identified in the images, whereas the
crumpling transition is much broader. For indentation,
Paulsen et al. [20] (open triangles) report the beginning
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(b)
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Wrinkles

Sheet on drop [King et al.]

Indentation, W=11 mm
Indentation, W=22 mm
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Sheet on cylinder, =72 mN/m
Inflated membrane

 t = 113 nm
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101
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Wrinkles
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(c)

105 107 109

100
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102
Wrinkles

Flat

FIG. 5. Phase diagram for wrinkles and crumples. (a) Crum-
pling threshold measured in the four experimental setups in Fig. 1,
including sheet-on-droplet data from King et al. [25] and
indentation data from Paulsen et al. [20]. Values of lk, Rk,
and σk are either measured or deduced from other measured
quantities (see Table I). The sheet thickness ranges from 40 <
t < 630 nm for the polymer films and 15 < t < 222 μm for the
inflated membranes. Indentation data have γ ¼ 72 mN=m and W
shown in the legend. Sheet-on-cylinder data have W ¼ 3.2 mm
and γ shown in the legend. Parameters for inflated membranes are
detailed in Fig. 6(a) and 6(b). The data are reasonably well
described by Eq. (2) with α ¼ αcr ¼ 155 (dashed line). Inset:
Threshold curvature 1=Rk for crumpling, versus wrinkle length
lk, in the sheet-on-cylinder setup at fixed t and γ. Dashed line:
Equation (2) with α ¼ 155. (b) Crumpling threshold versus
bendability ϵ−1. The threshold is approximately constant over a
wide range of bendability. (c) Wrinkling threshold in the
indentation setup, measured in the same indentation experiments
as (a),(b). The scatter in the filled and open triangles is similar in
magnitude to their scatter in (b), respectively.
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of the transition by identifying the growth of the wrinkle
amplitude in discrete regions that eventually become crum-
ples. In contrast, the filled triangles from the present study
indicate where the sharp tips at the end of the crumples are
clearly visible—an event that occurs at a larger curvature.

B. Pressure threshold for inflated membranes

The threshold confinement αcr for inflated membranes
may be recast as a threshold pressure. Plugging σk ≈ PRk
into Eq. (2), we obtain

Pcr ≈
1

2αcr

Yl2
k

R3
k
: ð3Þ

In principle, the threshold αcr may depend on the shape of
the bag, but a good estimate should be given by the value
measured in the sheet-on-droplet experiments. Figure 6(a)
shows the measured threshold pressure in experiments
where we gradually increase the internal pressure. We vary
the stretching modulus Y over 2 orders of magnitude
by constructing bags from different polymer or rubber
sheets. The data are captured by Eq. (3), and we obtain
αcr ¼ 100� 30 by fitting for the numerical prefactor.
We also measure the transition upon decreasing the

internal pressure in one bag of each material. The open
symbols in Fig. 6(a) show these measurements, which are
systematically lower than the points for increasing pressure.

By cycling the pressure within each bag, we measure a ratio
of transition pressures of 0.55 for the polyethylene bag and
a ratio between 0.71 and 0.76 for the other four materials.
We do not observe such a strong hysteresis in the sheet-on-
cylinder setup (Fig. 7). One possible interpretation is that
the larger strains imposed on the bags (estimated by the
range of σk=Y shown in Fig. 5) could lead to larger plastic
deformations in both the wrinkled and crumpled phases,
thereby biasing the deformation pattern toward what is
already there.
We now move to test the generality of Eq. (3)

by constructing bags of different shapes, as pictured in
Fig. 6(b). Predicting the inflated shape of the bag or the
locations of the buckled regions are both nontrivial tasks
[47–51]. Nevertheless, we may simply measure lk and Rk
at the crumping transition. Plugging these measurements
into Eq. (3) gives a good estimate of the threshold pressure
Pcr for each bag shape, size, material, and thickness, as
shown in Fig. 6(b). Moreover, our experiments show that
lk and Rk do not vary significantly as a function of the
pressure, as shown in the inset in Fig. 6(a) for a square
polyethylene bag. Thus, one may obtain a basic estimate
of the minimum pressure Pcr required to replace sharp
crumples with smooth wrinkles by measuring lk and Rk at
lower pressures.
These results suggest that the bag geometry affects the

crumpling threshold through a straightforward mechanism,
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FIG. 6. Pressure threshold for transitioning from sharp crumples to smooth wrinkles in inflated membranes. (a) Experiments using
square bags of various thickness (15 < t < 222 μm), width (10 < W < 31 cm), and Young’s modulus (2.0 < E < 1500 MPa). Open
symbols show the transition for decreasing pressure; the rest of the data are obtained by increasing the pressure. The data are well
described by Eq. (3) with αcr ¼ 100 (dashed line). Inset: lk and Rk versus pressure for a square polyethylene bag (W ¼ 20 cm,
t ¼ 49 μm). Both quantities are relatively constant near the threshold pressure (dashed line, Pcr). (b) Experiments with different bag
shapes, which are shown in the insets prior to inflation. We use a variety of polyethylene (E ∼ 200 MPa) and rubber (E ∼ 2 MPa) sheets
to vary the Young’s modulus and thickness, as denoted in the legend. Here, 9.4 < W < 31 cm. The crumpling threshold is consistent
with the result for square bags, as shown by the gray squares and dashed line that are repeated from (a).
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i.e., by creating a compressive zone and selecting lk and Rk
there. However, as we describe in Sec. IV C, experiments in
the sheet-on-cylinder setup show that the crumpling thresh-
old depends also on the compression Δ, which for the
inflated membranes depends on the bag geometry and the
internal pressure. This additional consideration implies a
more nuanced coupling of the bag geometry to the
crumpling transition, although it could still be consistent
with Eq. (3) with a threshold αcr that depends on the
compression, i.e., αcr ¼ αcrðΔÞ. As we now show, this
general idea is supported by more detailed experiments in
the sheet-on-cylinder setup.

C. Disentangling curvature and compression

In the sheet-on-drop, indentation, and inflated membrane
setups, compression is achieved by causing the sheet to
approximate a surface with a nonzero Gaussian curvature.
In this way, the compression and curvature fields are
linked—they are two complementary aspects of confining
a planar sheet in a geometrically incompatible setting. To
separate the distinct roles of curvature and compression, we
conduct further experiments in the sheet-on-cylinder setup.
We situate a rectangular sheet of width 1.6 < W < 3.2 mm
and length L ¼ 12� 0.5 mm on a cylindrically curved
liquid meniscus of radius Rk and then quasistatically
compress the film a distance Δ on its long axis by moving
one of the barriers via a micrometer stage. Figure 7 shows
the observed crumpling transition as a function of the
confinement parameter α and the fractional compression
Δ̃ ¼ Δ=L. For small α, only wrinkles are observed for the
entire range of Δ̃ probed. For intermediate α, wrinkles are
observed at small Δ̃ and crumples appear at large Δ̃. We
thus observe a transition from wrinkles to crumples as a
function of Δ̃. For large α, we do not detect a wrinkled
phase; to within our experimental resolution, crumples arise
as soon as the sheet is compressed.
In another set of experiments, we first compress the film

and thenvary the curvature.We observe a transition between
wrinkles and crumples at a threshold α that depends on the
particular value of Δ̃ (right- and left-facing triangles in
Fig. 7). The threshold is consistent with our experiments at
fixed α and varying Δ̃ (up- and down-facing triangles),
although there is significant run-to-run variation. We do not
detect any systematic hysteresis across these experiments (in
contrast to what is observed for the inflated membranes). In
these experiments where the value of Δ̃ is held fixed, we
witness two transitions as we increase the curvature, passing
through three distinct buckling responses: (i) wrinkles only,
(ii) wrinkles and crumples, and (iii) crumples only. [In
keepingwith previous terminology [25], we refer to both (ii)
and (iii) as a “crumpled” phase.] In response (iii), com-
pression is relieved only by crumples, separated by
unbuckled regions. We mark the range where we observe
this behavior with dark bands in Fig. 7. This response also

occurs in experiments with fixed curvature when α is
sufficiently large (α ≳ 3000).
These observations prompt us to ask how wrinkles and

crumples may appear next to each other on the same sheet.
One interpretation is that such “coexistence” can arise if the
compression field is spatially varying. Thus, wrinkles or
crumples occurwhere Δ̃ is locally small or large, respectively,
for suitable intermediate α. We emphasize that the vertical
axis ofFig. 7 is the global compression.One could imagine an
analogous phase diagram with local compression as the
vertical axis,where coexistencewould correspond to different
regions of the sheet occupying different positions along that
axis. This freedom to move excess material between adjacent
portions of the sheet may also account for some of the scatter
in the data in Figs. 5 and 7. Namely, a wrinkled state could
give way to a crumpled state by a small “trade” of excess
length that pushes a region of the sheet to higher Δ̃ that
exceeds the crumpling threshold.
At sufficiently large Δ̃, the sheets are found to fold—

they spontaneously gather material into a localized region
where the film contacts itself. We limit our measurements
in Fig. 7 to sufficiently small Δ̃ where such folds do
not appear. For the case of a flat bath (α ¼ 0), there is a
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FIG. 7. Role of compression in the crumpling threshold.
Symbols show the observed crumpling transition for experiments
in the sheet-on-cylinder setup, where either the curvature 1=Rk or
the compression Δ are varied while the other is held fixed. The
sheet width (1.6 < W < 3.2 mm) and thickness (50 < t <
300 nm) are also varied, and γ ¼ 72 mN=m. Gray bands show
the range probed in experiments. Over an intermediate range of α,
wrinkles or crumples may both exist, depending on the com-
pression. Filled symbols denote a transition to a morphology with
crumples but no wrinkles, marked by the darker gray bands.
(Open symbols with fixed Δ̃ > 0.03 are also shown in Fig. 5.)
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well-studied wrinkle-to-fold transition that results from
a competition of bending and gravitational energies
[32,52,53], but this folding threshold depends on Δ rather
than Δ̃, so we do not denote it in Fig. 7.

V. DISCUSSION

We have shown that wrinkles are unstable to another
buckled morphology at large curvatures, namely, sharp
localized crumples. Although this transition was observed
in previous experiments on circular polymer films in a
spherical geometry [25,26], we have shown that this
symmetry-breaking event appears to be a generic phe-
nomenon by isolating and characterizing the transition in a
wide range of experimental setups across multiple length
scales. These varied experimental geometries show that
crumple formation is not unique to a particular overall
Gaussian curvature; rather, crumples are sufficiently robust
to form in spherical, hyperbolic, and cylindrical settings.
By showing that a quantitatively similar transition occurs

for both interfacial films and inflated membranes, our work
suggests that a competition of elastic energies along with
a suitable substrate energy is enough to give this rich
behavior. This view is plausible given the basic observation
that wrinkle crests must traverse a longer arclength than
wrinkle troughs in curved topographies, implying costly
stretching [20]. Crumples may offer a lower-energy sol-
ution by condensing stresses to smaller regions on the
sheet. Indeed, our topographic measurements suggest that,
at high confinement, a portion of a crumple trough may be
nearly developable (i.e., isometric to the original planar
sheet). In contrast, the region near a crumple tip has
significant localized stretching. Whether this region is well
approximated by a d-cone [5,12,54–56], as suggested by
King et al. [25,26], remains to be elucidated. Accounting
for the elastic cost of these structures, in a manner that is
consistent with various geometric constraints, could give
insight into this transition.
Another foothold for theoretical study comes from our

results in the sheet-on-cylinder setup at large α, which
suggest a transition directly from a cylinder to a crumpled
state, without an intervening wrinkled state. These experi-
ments open up the possibility that, at a sufficiently large
curvature, crumples might be modeled through an expansion
around a smooth cylinder in analogy to what has been
achieved for wrinkling in the far-from-threshold approach
[15,17,18,21].
In contrast to the shell buckling of an axially loaded

hollow cylinder [57–59], the distinctive crumple morphol-
ogy studied here relies on hoop tension. Cylinders sub-
jected to static circumferential tension are common in
industrial settings, for instance, in liquid storage tanks.
We note a striking visual similarity between crumples in the
sheet-on-cylinder setup [Fig. 1(c)] and the localized buck-
ling patterns that were observed on stainless-steel wine
tanks due to an earthquake [see Fig. 1.7(b) in Ref. [60] ].

Crumples appear to be highly adaptable to a variety of
geometries, as shown by the range of experimental setups
explored here, and also the variety of membrane shapes.
Qualitatively similar features have also been observed in
pressurized spherical shells [45] and rapidly crushed
conical shells [61], which raise questions about how
intrinsic curvature and dynamics could influence stress
focusing of the kind studied here.
Many of the results presented in this article are sugges-

tive of a local view of crumpling—that is, a description of
crumpling in terms of the local values of a small set of
variables. In particular, we have shown how the crumpling
threshold depends on the curvature and system size via
lk=Rk, the in-plane tensile strain via σk=Y, and the frac-
tional compression Δ=L in phase diagrams spanned by
combinations of these variables (Figs. 5 and 7). We have
also presented a picture wherein the local value of the
compression is key to understanding the coexistence of
wrinkles and crumples.
Despite this promising local view that may capture

important aspects of the transition, nonlocal effects may
matter as well. In the axisymmetric setups studied here, the
curvature and compression vary with the radial coordinate,
but we observe chains of crumples appearing along radial
lines all at once rather than starting at a location of high
curvature and growing in extent with increasing confine-
ment. There are also hints of organization at intermediate
scales in the crumpled phase: Chains of crumples seem to
have a well-defined spacing between them [l⊥ in Fig. 1(c)
and θmin in Fig. 4(b)]. Although there are fluctuations in
this spacing, it appears to have a reproducible minimum
value, which is smaller for thinner sheets. These observa-
tions are suggestive of a domain structure [62,63] where
chains of crumples are separated by regions of smaller-
amplitude deformations as a repeated motif. This structure
stands in contrast to the space-filling buckling patterns that
are observed when a thin cylinder is axially compressed
around a mandrel of slightly smaller diameter [64–66].
Understanding the origin of this emergent mesoscopic
length scale, and why it arises for a fluid substrate but
not for a solid mandrel, could allow one to control these
patterns with a suitably engineered substrate or sheet.
On the microscale, wrinkles have been used for metrol-

ogies of films [67], for making smart surfaces with tunable
wetting and adhesion [68,69], and to conduct surface
microfluidics [70]. Our results expand the vocabulary of
film deformations for advanced materials and illustrate how
buckled microstructures may change their nature in curved
topographies. Discovering the mechanism of this sym-
metry-breaking instability remains an open challenge that
should be the subject of future work.
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