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ABSTRACT

Oceans of image and particle track data encountered in plasma interactions with microparticle clouds motivate development and
applications of machine-learning (ML) algorithms. A local-constant-velocity tracker, a Kohonen neural network or self-organizing map, the
feature tracking kit, and U-Net are described and compared with each other for microparticle cloud datasets generated from exploding wires,
dusty plasmas, and atmospheric plasmas. Particle density and the signal-to-noise ratio have been identified as two important factors that
affect the tracking accuracy. Fast Fourier transform is used to reveal how U-Net, a deep convolutional neural network developed for non-
plasma applications, achieves the improvements for noisy scenes. Viscous effects are revealed in the ballistic motions of the particles from
the exploding wires and atmospheric plasmas. Subdiffusion of microparticles satisfying Ar? o t* (k = 0.84=0.02) is obtained from the dusty
plasma datasets. Microparticle cloud imaging and tracking, when enhanced with data and ML models, present new possibilities for plasma
physics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134787

I. INTRODUCTION

Automated knowledge discovery through massive data mining is
a recent concept of plasma physics. Fueled by advances in instrumen-
tation and the oceans of archived and new data, it seems unavoidable
to use computer hardware and machine-learning (ML) algorithms to
replace or heavily supplement manual data mining for knowledge or
real-time controls of experiments. How much data are produced in
today’s plasma physics experiments? Many experiments, if not already,
have the capability to produce 1 terabyte (TB) of data per day. The
data rate is expected to grow due to the advances in instrumentation,
which parallel Moore’s law for transistors. One scenario to obtain the
TB/day rate is through imaging of plasmas using video cameras. For
image sizes of 1 megabyte (MB) and a video recording rate of 10%
frames per second (fps), the data can be generated at 10°® bytes/s. 1 TB

of data can be collected in less than 3 h per camera from a continuous
plasma experiment. The state-of-the-art smart phone cameras, with
image sizes exceeding 10 MB and a constant streaming rate above
10 fps, can exceed such a data rate. In practice, this may not have been
done often due to other factors such as the bandwidth of the data
transmission or the storage space available. Several commercial off-
the-shelf high-speed cameras can deliver a data rate at 10* MB/s. In
the exploding wire experiment shown in Sec. V, 800 x 1280 8-bit
images were generated at 25 kfps. When such a high-speed camera is
used in a pulsed 10-ms-long plasma experiment, an experimental duty
cycle at 1Hz can also produce 1 TB of image data within 3h.
Computer simulations and especially large-scale simulations carried
out on supercomputers or large computer clusters, not a focus here,
can readily exceed 10 TB/day data rate through parallelization.
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How to couple the existing frameworks of physics and statistics
to ML algorithms and vice versa presents another opportunity toward
automated plasma knowledge discovery. On the one hand, a ML pro-
cess can be symbolically described by a functional dependence Y =f
(X), where X stands for the inputs such as the one-dimensional time
series of a probe measurement or the two-dimensional raw images
from a plasma and Y is the output such as microparticle trajectories or
a track classification or the growth rate of an instability. On the other
hand, the existing formulas to derive f are usually decoupled from the
physics context. If each step such as denoising, image convolution,
multi-pixel averaging, or “pooling” is presented by a “daughter” func-
tion, f;, then f(-) = fi(L(f5(-..(fu(*))...))), while n could be a large
number and thus requires automation or ML algorithms to generate.
Is there a systematic way to derive f and f; based on plasma physics
and statistics? Such and similar questions not only stimulate theoreti-
cal interest but may also have bearing on ML algorithm optimization
for efficient data mining and knowledge discovery.

We shall limit our discussions to the settings of plasma interac-
tions with microparticle clouds. Datasets in this work came from three
types of microparticle clouds: exploding wires, dusty plasmas, and
atmospheric plasmas. The rich physics and phenomena of microparti-
cle-plasma interactions and the availability of TB datasets motivate
new ML approaches. Imaging of microparticle interaction with plas-
mas has also been ongoing under micro-gravity,"” where about 20 TB
of data is now available, and can be extended to other plasmas includ-
ing high-temperature magnetic fusion plasmas.” ° When the core elec-
tron temperature can reach 10keV and the edge temperature can be at
least tens of eV, there are additional complications of time-dependent
microparticle size, shape, and mass due to evaporation and sublima-
tion. Particle nucleation and agglomeration can meanwhile lead to the
growth of micrometer and larger particles in an environment such as
semiconductor and other material processing plasmas. In the simple
scenarios when the particle size can be treated as a constant, outstand-
ing physical questions related to the microparticle-plasma interactions
include the microparticle charging and the mechanisms behind the
sophisticated motion patterns.

The rest of this paper is partitioned as follows. Section II presents
an overview of microparticle tracking models motivated by physics
and statistics, followed by Sec. III on data models. Three tracking algo-
rithms: physics-constrained motion tracking, self-organizing map
(SOM), and the feature tracking kit (FTK), are also explained in
Sec. III. The three types of microparticle clouds are described in
Sec. IV. Section V compares the results using different algorithms to
process the image sets. Particle density and noise are found to be
important factors that affect the effectiveness of the algorithms. An
Appendix is also included to account for the fact that particle tracking
and imaging are a rapidly expanding interdisciplinary field, and many
tools are available.

Il. MICROPARTICLE TRACKING FRAMEWORKS
A. Physics models
Digital cameras for particle imaging motivate discretized motion
models,
Iyl = Iy + VAL (1)

Here, the subscripts n+ 1 and # are for the consecutive time steps or
video frame numbers with a time step At. 1/At is the constant frame

ARTICLE scitation.org/journal/php

rate of the video camera. The bold face symbol r is for the instanta-
neous position of a particle in three-dimensional (3D) physical space
in general. v, is the instantaneous velocity of the particle at the time
step n, which in general also varies as a function of time or frame
number n,

Vnt1 = Vi + anAt~ (2)

For non-relativistic motion, a,, is given by Newton’s equation,
Mya, = f,. 3)
i

Here, M, is the particle mass at the time step 7 and the summation on
the RHS is over different forces. In a laboratory plasma, the sum may
include gravity, neutral gas drag, ion drag force, electrostatic or electro-
magnetic force for a charged particle, etc. In the strongly coupled
regime, electrostatic Coulomb interactions among neighboring par-
ticles also have to be included.” In cases when the particle mass M,,
varies with #, the RHS can also include a “rocket force” given by v,
dMm,/dt = v,, (M,,;1 — M,,)/At. We mention without further elabora-
tion that Egs. (1)-(3) can also be extended to include additional
degrees of freedom such as particle rotation or spin since a particle
consists of millions or more atoms.

To learn about the plasma conditions or unknown physical prop-
erties such as the electric charge or a force on a particle through Eq.
(3), it will require the information of v, and a,, first through Egs. (1)
and (2). Therefore, it appears that a non-physical approach such as a
data-driven method would be a prerequisite to derive r,, and r, ;.
Meanwhile, even an initial estimate of particle velocities based on
physics arguments such as particle kinetic energy, momentum conser-
vation, or energy conservation would be useful to correctly pair up r,
with r,,1 ;. One example will be included in Sec. IIT and Fig. 1. Another
reason why a pure data-based method may not be the best option is
related to the so-called NP-hard problems in computing. When an
image contains many microparticles, correctly pairing of the micro-
particles from one image to another is not obvious, giving rise to the
“particle linking” problem in tracking algorithms. For example, when
processing a video with 100 particles per frame and 100 frames long, a
random pairing algorithm would give rise to ~100'" = 10°* possible
tracks. Data association and track-to-track association, two fundamen-
tal problems in multi-target tracking, are instances of an NP-hard
combinatorial optimization problem known as the multidimensional
assignment problem (MDAP)." Physics constraints will allow substan-
tial reduction of computing time to correctly identify ~100 tracks.
Physics consideration also motivates machine learning of “physical
features” such as the particle size, particle brightness, particle velocity,
angular momentum, etc. Another application of physics models would
be to provide “ground truths” for data model training and validation.

In raw image data, r,, and r,;; are not measured directly. An
optical camera image is a 2D projection of a 3D physical scene. Such a
projection is usually described by epigeometry,” "' which relates 3D
coordinates r (suppressing the subscript for now) in the physical space
to at least two independent 2D projections or two pairs of camera
coordinates q, (uy, vy) and q_ (u_, v_). A triangulation algorithm
can recover r from q... Therefore, in addition to linking of particles
from different image frames in a single camera, another type of linking
algorithm is required to link particles from a pair of cameras, which
project the same physical scene from different positions and angles.
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(a) AN=1

FIG. 1. lllustration of the LCV algorithm. (a) A particle from the initial time step
AN = 0 (colored “+” in the center of the circle) is looking for its counter part in
AN = 1. Within the search radius (R; = 20 pixels), seven candidates are found,
each gives new information about possible velocity vectors, shown in colored
arrows. (b). At AN=10, only one of the seven initial velocity vectors survives the
consistency check. The particle trajectory is the longest chain of colored + linked
by the colored arrows. The error in search is two pixels. The time unit At in Eq. (1)
is normalized to 1.

Derivation of the positions q or (1, v) from an image is called
particle localization. Subscripts * are suppressed to avoid clutter. A
particle image is typically spread over a cluster of neighboring pixels
with an intensity distribution I;(q;). Isolation of the pixel cluster from
the rest of the image is called instance segmentation. Once segmented,
one common algorithm to locate q is through the centroid of the
intensity cluster, q = >, [;;/ >, Ii. Due to the finite pixel size of a
camera, the signal-to-noise ratio (SNR) of the particle image intensity,
motion blur due to the finite camera exposure time, and particle image
overlap in high particle densities, q, can only be determined within a
certain accuracy. The errors of q measurement can propagate down
through the whole data processing chain that essentially limits the
accuracy about a derived physical quantity such as the spatial coordi-
nates and velocities.

B. Statistical models

In either a data-based approach or physics-driven approach, a
central problem is about effectively dealing with noise or uncertain-
ties,"> which naturally motivates statistical models for positions r,, and
other physical quantities as defined in Sec. [T A. A statistical tracking
model predicts the motion of an object such as its next position 1,1

ARTICLE scitation.org/journal/php

as a probabilistic distribution function, P (X,+1| q1» 92 - - *» q,.)- Here,
q; with i = 1, ..., n are the measured quantities as a function of time
up to the nth step. One example of q; is the image coordinates q.. as
given above. Each q; can be further framed as a function of x; as
explained in Eq. (5) below. x,,11 is a generalized state vector from the
three-dimensional position r,;; that may also include for example
instantaneous velocity, acceleration, electric charge (Q); i.e., X,
= (fys1> Vit 1> Agt1, Quer, -+ -)- Based on the probabilistic distribution
function, and the new measurement q,,_,, the optimal estimate for
Xu41, OF X,41 can be made. The new information through q,,, also
updates the probabilistic function to P (X,:2] Qs Qo =+ G Gyppp)s
which allows optimal prediction of the future state, X,,;, with addi-
tional measurements q,,, , and so on.

One well-known statistical model with applications to particle
tracking is the Kalman filter.” '° Originated in the sixties for object
tracking using radar, sonar, and electromagnetic techniques, recent
surges in automated object recognition and tracking are motivated by
computer vision and image processing applications such as robotics
and self-driving cars."” Kalman filter is an optimal recursive Bayesian
filter for linear functions subjected to white Gaussian noise. Constant
gain Kalman filter is computationally fast for single-object detection,
tracking, and localization. The original Kalman filter has been
extended in various ways. The extended Kalman filter (EKF) and
unscented Kalman filter are nonlinear versions of the Kalman fil-
ter.” " Additional nonlinear, non-Gaussian filters and application
examples can be found in the books'®*" and citations therein.
Example applications of Kalman filters and variants related to micro-
particles in plasmas can be found in Refs. 7, 17, and 22.

A Kalman-filter statistical model modifies Egs. (1)-(3) by a state
equation,25

Xp11 = AnXy + f, + €xn, (4)
and a measurement equation,
q, = Bux, + €, (5)

at the time step n. The state equation describes the state evolution to
the next step. The measurement equation relates the state x,, to the
measurement q,,. The term f,, stands for external control including an
external force. €y, and €q, symbolize uncertainties or noise in the state
evolution and errors in measurements, respectively. Both €y, and €4,
have a zero mean and non-vanishing covariance. A common noise
and error model is the white Gaussian noise model,"* '® when €, and
€4, have a Gaussian distribution with a zero mean.

Both physics models and statistical models rely on assumptions
to make predictions. Good assumptions play multiple roles such as (a)
simplifying the calculations or the reasoning process; (b) supplement-
ing the incomplete knowledge about the physical systems; and (c) fit-
ting the experimental data well. In practice, good and simplifying
assumptions can be difficult to come by in complex plasmas and as a
result, the predictive power of a physics or statistical model is limited.
For example, in most physics or statistical frameworks for microparti-
cle interaction with plasmas, microparticles are almost always assumed
to be a perfect sphere, which reduces the number of geometrical
parameters to one (particle radius). In another example, models for
material properties rarely consider the surface morphology that could
significantly affect the electron emissivity, electron scattering and trap-
ping, and therefore the amount of electric charge on a microparticle
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immersed in a plasma. Kinetic effects, non-equilibrium states of a
plasma and especially near the sheath of a microparticle, are another
example of when good physics and a statistical model can be difficult
to develop. Simplifying assumptions is sometimes essential to avoid
computational penalty associated with sophisticated physics or statisti-
cal models. The continuous decrease in computing cost opens door to
more sophisticated physics and statistical models.

lll. DATA MODELS

A data model may be characterized by how the data flows within
the model (“model architecture”) and how the data adjust the values
by the parameters chosen for the model (“model parameters”). A sim-
ple data model such as a linear regression only has a single channel
that connects the input and output, and the data adjust their values by
two parameters. A modern deep convolutional neural network (NN)
may have billions or more parameters, corresponding to complex
channel connectivity. The data that are used to find out or tune the
parameters are called “training data.” New data can be used to validate
or further tune the model parameters. Independent of the model com-
plexity, the parameters may start with random initial values. Least
squares fitting is a widely used procedure to tune the model with two
or a few parameters. Backpropagation is a procedure developed for
parameter tuning in feedforward neural networks.

Neural networks (NN) have shown to be effective for processing
large image data sets,”* solving differential equations, and simulation
of physical systems.”” NN are remarkable in recovering “empirical
truth” when the physical framework for the data is unknown, and a
generic approach with a large number of tunable parameters is used.
In classification, the input data such as images need to be sorted into
different categories (“dogs,” “cats,” “fish,” “cars”) as accurately as pos-
sible. Through parallel processing of different parts of an input image
and passing the outputs in sync, it is possible to process a large-size
image in real time quickly.” It has been shown that continuous func-
tions can be approximated by feed-forward NN with a single hidden
layer, which is the universal approximation theorem.”” Eldan and
Shamir (2015) showed that, to approximate a specific function, a two-
layer network requires an exponential number of neurons in the input
dimension, while a three-layer network requires a polynomial number
of neurons.”” In using NN for stereo image analysis, for example, the
state-of-the-art NN can recover millions of parameters out of a data-
set. Learning polynomial functions with neural networks was
described in Ref. 30. Another example is to learn about probability
density p (X) of a turbulent field for a given set of images. For a locally
regular or continuous function p (X) and error ¢, an estimate p(X)
that satisfies E(||p — p||) <€, the number of samples required
is given by’ n > ke . Since the dimension of a 1 mega-pixel image
d ~ 10, the huge number of samples # required is also known as the
curse of dimensionality. A school of thought is to find regularity prop-
erties (such as symmetry and scale separation), which can break the
curse of dimensionality.

NN methods for particle tracking have been investigated by a
growing number of authors.”””” Different types of artificial NN have
been used for tracking: feedforward NN (such as autoencoder and
convolutional),” feedback NN, recurrent NN (such as Hopfield, long
short-term memory, competitive, or self-organizing), radial basis func-
tion NN, and modular NN. Additional examples are given in Table I.
We examine data models that determine the individual particle
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coordinates, velocities and acceleration, or particle tracking velocime-
try (PTV). A closely related class of approaches, particle image veloc-
imetry (PIV), generally does not need to determine the particle
coordinates explicitly and is usually used when the particle density is
high and separation of individual particles is difficult. The algorithm
needs to perform two basic functions: (1) particle localization; (2) par-
ticle matching or linking. Particle localization is to determine the coor-
dinates of a particle. Particle matching or linking is to recognize the
same particle at different times or from different camera views. A
“particle” can be a macroscopic object such as a star,”° a car or a
human, or a microscopic object such as a biological cell or an organelle
inside the cell. Despite different physical origins, the images captured
have similar features through the uses of telescopes, microscopes, and
other hardware. The similarities in the images potentially allow data
models developed for one type of context to be used for a different
context.

In particle tracking, the input vectors I are the intensity maps or
images. The output vectors y can vary. For particle localization, y are
the coordinates of individual particles. Correspondingly, NN algo-
rithm workflow could be as simple as I — q =Y. Here, the output y is
the raw camera coordinates q, using the symbols defined in Sec. II.
Additional steps or NN layers can be added, for example, I — I' — q
— r=y. Here, I stands for transformed raw images after denoising,
smoothing, convolution, etc. In a recent example,"* output is the prob-
ability of a particle centered at a pixel. For particle linking, y corre-
sponds to linkage between the coordinates from different images.
For example, if two pairs of coordinates q; and q, are linked, then y
(91> 2) = 1; otherwise y (q;, q2) =0.

In general, the input and output can be described by an unknown
function f: I — y and modeled by a neural network for a set of given
data pairs { (I, y)}. The building elements of a neural network are neu-
rons, which are connected to other neurons.”” Each neuron calculates
a weighted sum of the outputs of neurons, which are fed to it (and usu-
ally adds a bias term, b), z = 0(>_, wix; + b), here, 0 is called the acti-
vation function. x; and z are the individual neuron inputs and output.
Some of the popular activation functions include rectified linear unit
(ReLU), tanH, softmax. In a feed-forward neural network, the neurons
are arranged in layers, and the outputs of each layer form the inputs to
the next layer. Each layer may be interpreted as a transformation of its
inputs to outputs. As the input data propagate through the layers,
higher-level concepts or features emerge. The depth of a network is
the number of layers and the size of the network is the total number of
neurons. In a convolutional neural network (CNN), the weighted
input sum to a neuron through multiplication ), wix; = w - X is
replaced by a convolution operation ®: w ® x. The weight parameter
w in a CNN is also called a kernel. Further discussions about algo-
rithms are given in the Appendix.

Once the neuron linkage and activation functions within NN are
chosen by design, the next step is to determine the values of the
weights {w} and biases {b} using a training dataset. Training is itera-
tive starting with random values (within certain bounds) for {w} and
{b}. A cost function such as L, norm ||y; — fil|, = (y; — f;)* can be
obtained,” where y; is the expected output and f; is the corresponding
value from NN. Iteration continues by adjusting {w} and biases {b}
to minimize the cost function until the desired value or error is
reached. Gradient descent and backpropagation algorithms have been
developed for the iteration.”” ** It has been shown that sophisticated
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TABLE 1. Examples of data-driven tracking algorithms and their applications. lllumination is assumed to be optical by default and otherwise specified. CC: cascade classifier.
CNN: convolutional neural network. DM: diffusion maps. HF: Haar features. KNN: Kohonen neural network. LSTM: long short term memory. RNN: recurrent neural network.

SOM: self-organizing map.

Instrument (image set) Application Parameter (feature) Data model
(Simulations)”” Fluids Position KNN (SOM)
Microscope’’ Cellular dynamics Position HF
Microscope™ Self-assembly Cluster (distance) DM
Video™ Surveillance Object CNN + RNN
Cryo-EM™ Macromolecules Object Deep CNN
Particle High-energy Track LSTM + CNN
Detector”' Physics

Holograms*” Colloidal science 3D position CC, CNN
MNIST* Computer science Position cloud SO-Net

NN such as deep CNN involving millions or more parameters {w}
and {b} are computationally hard to train.”’ In practice, recent
NN are commonly trained using stochastic gradient descent
(SGD) for expediency and a variety of tools are used that include a
proper selection of activation functions (e.g., ReLU), over-
specification (i.e., train networks which are larger than needed),
and regularization.” ">’

A. Physics-constrained motion tracking

We first describe a motion-based linking algorithm using a
local-constant-velocity (LCV) assumption. Modifying LCV to, for
example, local constant acceleration (LCA) or periodic oscillatory
motion (POM), is also possible and depends on the physics con-
text. The essential function of the algorithm is to link particles
from two different images, corresponding to particle positions at
two different times. For stationary particles that do not move, the
track reduces to a point. For a given particle, estimate of the parti-
cle velocity and the time lapse between the two images give the
estimate of the search radius (R;). Since the direction of the motion
is unknown a priori, the candidate particles within the search
radius now give the possible velocity vectors (both the magnitude
and direction), as illustrated in Fig. 1(a). Third and additional
images can be used to down-select the particles. In Fig. 1(a), seven
candidate particles are found in the initial search circle. A third
image is sufficient to settle down on the correct search, which is
further confirmed by a sequence of six additional frames, Fig. 1(b).

Only a rough estimate of the search radius R; is needed as illus-
trated in Fig. 2, when the search radius is doubled from Fig. 1. There
are now 25 possible matches within R; at AN = 1. Only one particle is
left at AN = 10. In both examples shown here in Figs. 1 and 2, a
nearest-neighbor algorithm would give the incorrect linking. The
nearest-neighbor approach fails here because of large particle density
(n,), complicated further by the fact that the velocities of the particle
motion (v,) are sufficiently large so that

l, = v,At > n;1/3, (6)

where At is the time step as defined in Eq. (1). A nearest-neighbor
algorithm would work if [, < n,, 1,

B. KNN/SOM tracking

Similar to Refs. 32 and 33, we describe a parallel tracking method
using the Kohonen neural network (KNN), also known as the self-
organizing map (SOM).”"”” Here, the KNN consists of three layers:
the input layer, the neuron layer, and the output layer. The N inputs
are the individual particle 2D positions, {q;,q,, ...,qy} from one of
the two frames. The output layer is the possible matched particles
from the other frame, {q}, qj, ..., q};}. M # N in general. For a parti-
cle that occupies multiple pixels, the average position or the centroid
that averages the pixel coordinates is used, similar to Sec. IIL A.

Each neuron (z;, i=1, 2, - - -, N) assumes one of the N initiation
positions {zfl) =4q;,i=1,2,...,N} to start. The subsequent

positions at the (k + 1) th step evolve from the kth step through ZEHI)

=z 4 P ngk) with the weight wl(jk> given by

wi¥ = a(q — ) HRY — [29 — 7)), )

ci i ci

where the summation is over the possible matches M in the other
image frame. 0 < o < 1 is a constant and we use o = 0.1 here. zg() is

- l -
I .o " = .
I
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i =
" o 1
» v 5 ;
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FIG. 2. lllustration of the LCV algorithm with twice the initial search radius (Rs = 40
pixels) as in Fig. 1, and with a higher particle density. Only one particle is left at
AN = 10.
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the “winning” neuron position that is the closest to q at the step k.
H(x) is the Heaviside step function that satisfies H(x) =1 for x > 0
and H(x) = 0 otherwise. Rﬁk) is the search radius at the kth step. In the
low density particle regime, the KNN reduces to the nearest neighbor
algorithm.

When the particle density increases, the KNN is different from
the nearest neighbor algorithm as illustrated in , where we select
a case when two neighbors in the other frame are found within the ini-
tial search radius R!. The neuron starts to evolve toward the centroid
of the two match candidates (P1 and P2) until the search radius R,
shrinks to the value when only one nearest neighbor (P1) is found.
Then, it evolves along the straight line determined by the neuron posi-
tion and the matched particle position. KNN/SOM differs from the
nearest neighbor algorithm and the physics-constrained tracker by
design. It is attractive to use KNN/SOM for parallel tracking of multi-
ple particles. Meanwhile, its effectiveness varies significantly with the
particle density for the datasets presented here.

C. The feature tracking kit (FTK)

The feature tracking kit (FTK) ™ is a general purpose library to
track features in both simulation and experimental data in a scalable
manner. The motivation of the FTK is to ease the burden of develop-
ing domain-specific algorithms to track features such as local extrema
and superlevel sets. Basically, the FTK incorporates an ensemble of
techniques including machine learning, statistical, and topological fea-
ture tracking algorithms to help scientists define, localize, and associate
features over space and time. The FTK has a unique design to general-
ize existing 2D/3D feature descriptors to trace the trajectories of fea-
tures in 3D/4D spacetime directly. The FTK also supports feature
tracking in distributed and parallel machines.

later neuron motion

FIG. 3. llustration of the KNN algorithm described by Eq. (7) when there are at
least two particles (P1 and P2) falling within the initially search radius Rg”. The
neuron initially moves toward the weighted centroid between the two particles, until
the search radius R§k> shrinks and only one particle is nearby. Then, the neuron is
“attracted” to the object (P1) in a straight line.
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Specific to the microparticle tracking application, we use the FTK
to track local maxima in the time-varying imaging data. We first
derive the image gradients and then localize maxima-locations where
the gradient vanishes and the Jacobian is negative definite in the 3D
spacetime mesh. Based on a scalable union-find data structure,” we
associate these space-time maxima and construct their trajectories
based on the connectivities of spacetime mesh elements. Examples of
trajectories obtained from FTK are given in

IV. EXPERIMENTAL IMAGE SETS

Here, we summarize three experimental video sets of microparti-
cle clouds: in an exploding wire experiment, in a dusty plasma, and in
an atmospheric plasma. The exploding wire dataset has the highest sig-
nal-to-noise ratio among the three. The dusty and atmospheric plasma
datasets provide examples of rich motion patterns at an individual par-
ticle level as well as particle group level when particles are immersed in
plasmas.

The exploding wire experimental setup and some analyses are
reported in Ref. 11 and subsequent publications. Two new exam-
ples of microparticle clouds are shown in at different particle
densities.

FIG. 4. Two examples of microparticle pattern created from exploding wires. Each
panel is a superposition of 11 consecutive video frames taken at the rate of 25k
fps. Frame (a) has about 1/10 particle density as in the dense regions in (b).
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FIG. 5. A movie of dust particles in the MDPX device recorded at 12.5 frames per second. The experiment is performed using 2 um diameter silica particles in an argon
plasma at a magnetic field of B =2 T. Motions of individual particles give rise to collective dust acoustic mode.

A. Dusty plasmas in a strong magnetic field

One example of a dusty plasma experiment in the Magnetized
Dusty Plasma Experiment (MDPX) device at Auburn University is
shown in Fig. 5. MPDX is a superconducting, multi-configuration,
high magnetic field (Byax ~ 4 Tesla) research instrument.””” A key
feature of the MDPX design is that the cryostat has a central, cylindri-
cal warm bore that has overall dimensions of: 50 cm inner diameter,
122 cm outer diameter, and an overall length of 157 cm. The cryostat
is “split” into upper and lower halves that are 69 cm long with a gap of
19 cm between the two halves. Each half of the cryostat contains two
superconducting coils. In combination, the four coils can be operated
independently so that a variety of magnetic field configurations—from
uniform to cusp-like—can be formed. For the experiments discussed
in this paper, the uniform configuration is used.

B. Atmospheric plasmas

Atmospheric pressure plasmas (APPs) are non-equilibrium plas-
mas produced in the ambient atmosphere. These plasmas are currently
being investigated for a number of applications ranging from wound
healing to material processing to water purification.”” ** A particular
class of these discharges is the 1 ATM DC glow with a liquid anode.””
Here, the anode electrode is an electrolytic solution and ions complete
the electric current flow. In such discharges, the anode attachment can
self-organize into complex shapes observable at the liquid surface.
These discharges produce copious amounts of nanoparticles in the lig-
uid phase. Under certain conditions, particles and droplets derived
from the liquid phase are injected into the plasma above. Upon

injection, metal nanoparticles are rapidly oxidized, appearing as lumi-
nous streaks in photographs, as shown in Fig. 6(a).

Dynamic motion of particle swarms can also be seen in Fig. 6
when the anode attaches to the plasma region above. A high-speed
camera at 2k fps was used to video-record the emission process. As
can be seen from the video, the particle emission coincides with the
plasma attachment center at the liquid surface. Although the discharge
is steady DC on average, the emission of particles appears as cyclic
bursts. The bursts release copious amounts of fast moving particles,
which appear as streaks due to the insufficient camera temporal reso-
lution at 2k fps. Additional excitation is apparent as particles reach the
core of the discharge as inferred from the over exposed glow region
shown in frames Figs. 6(b) and 6(c). Following the burst release, the
particles travel ballistically as inferred from the observed parabolic tra-
jectories. Note that the streaks are longer during the emission phase
(frames a and b) in comparison to later stages where the particles fol-
low what appears to be simple rectilinear motion. This disparity in
streak length suggests that the particles emitted are moving consider-
ably faster upon launch. For non-viscous ballistic motion however, the
particle velocity at the surface upon return should equal the launch
speed, which suggests that at later times, the streaks should have
lengths similar to the initially emitted particles. The absence of the
long streaks at later times implies one or more of the following possible
scenarios: (1) a distribution of particles of differing sizes and velocities
is launched; (2) the smaller faster moving particles may move out of
the camera focus and do not come near the emission zone; and (3) vis-
cosity is not negligible as in the exploding wire experiment.””°

The mechanism for the particle injection into the gas phase and
even the excitation processes along the trajectories are still not well
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FIG. 6. Time-resolved particle emission with a high-speed camera at 2k fps: (a)—(d)
t=2, 4, 6, and 8 ms, respectively.

understood. By capturing the particle swarms with even higher speed
cameras as in the exploding wire experiment, and through stereoscopic
imaging from different vantage points, we plan to examine the kine-
matics of the particle generation and motion in further details, includ-
ing applications of the physics, statistical, and data models described
here.

V. ANALYSES AND DISCUSSION

Four algorithms for particle tracking are compared by using the
exploding wire set: Trackpy (TP),” self-organizing map (SOM), FTK,
and LCV, which is motivated by physics. All four algorithms worked
well for low particle densities as in Fig. 4(a), achieving a tracking accu-
racy above 80%. At the particle density increased by about a factor of
10 higher, however, only LCV achieved the tracking accuracy above
75%. In implementation of each of the algorithms, the image analysis
workflow can be divided into the following modules: image prepro-
cessing (denoising), particle localization and characterization, and par-
ticle linking. The tracking accuracy is defined as the percentage of the
particles being assigned to the different tracks with a track length lon-
ger than 30. The number of the expected tracks can be estimated with
above 95% accuracy by tallying the number of particles in the video
frame that contains the largest number of particles.

A. U-Net for particle localization in noisy images

Besides the particle density, another important factor that affects
the tracking accuracy is the signal-to-noise ratio (SNR) of the images.
The dusty plasma image set has a SNR less than 3, defined as the aver-
age particle intensity to the mean background pixel intensity, which is

scitation.org/journal/php

much smaller than that of the exploding wire set (SNR>6). We
adopted U-Net for particle localization,””*® a deep CNN (23 convolu-
tional layer total) that can be trained end-to-end with very few images
through data augmentation. Here, particle localization is equivalent to
pixel classification. The U-Net architecture extends the fully convolu-
tional network”” and has a symmetric “U” shape. It consists of a con-
tracting first half and an expanding second half.”” The contracting half
has the typical CNN architecture to capture context. The symmetric
expanding half enables precise localization.

The U-Net algorithm here was trained using eighty images from
the dusty plasma dataset. The training inputs were produced by
extracting 256 x 256 patches from the frames and upsampling the
patches to 512 x 512. Ground truth segmentations were generated by
thresholding the images based upon statistical significance above back-
ground pixels. In total, this procedure produced 1600 pairs of patches
and segmentation maps. The parameters of U-Net were then opti-
mized by using Adam,”” which is an extension of stochastic gradient
descent that has an adaptive learning rate. Figure 7 shows an example
processed by the trained U-Net where the segmentation is used to
mask the input image.

Another way to look at the workflow of U-Net algorithm is in the
Fourier space. Here, discrete Fourier transform converts an image into
a spatial frequency representation. This representation is complex val-
ued and the modulus (amplitude) can be interpreted as the intensity of
a particular frequency in the image. The transform is done efficiently
using a fast Fourier Transform (FFT) algorithm.””’” U-Net-generated
masks allow an improved SNR for the dust acoustic mode (the lowest
frequency band in the dusty plasma images), Figs. 8(a) and 8(b), as
well as the particle localization (intermediate frequency band), Figs.
8(c) and 8(d). Wavelet analysis of U-Net outputs gives similar confir-
mation on SNR improvement.

B. Trajectory classification

Examples of reconstructed tracks are shown in Fig. 9 for the set
of exploding wire data shown in Fig. 10. The combination of gravity
and viscous force motivates a second-order polynomial fitting as dis-
cussed below.

The dusty plasma particle tracking based on U-Net is shown in
Fig. 11. U-Net provides a labeling as to whether a pixel belongs to a
particle or the background. Particle instances are then produced by
finding connected components in the segmentation mask. In images, a
connected component’” is the largest set of pixels such that they are
the same value and there is a path between any two pixels. The compo-
nents were found using 1-connectivity, meaning that paths do not
include diagonals. Each connected component is treated as an individ-
ual particle. The particles are localized by averaging the pixel locations
for pixels in each particle. Figure 11 shows tracks produced from this
localization scheme and a nearest neighbor matching between frames.

The particle tracks from the dusty plasma can be checked against
the following model Ar? = 2NDAt*; here, N=2 is for two dimen-
sions. Ar is the distance between the initial time and end time, which
differ by At. k=1 corresponds to the normal diffusion with D being
the diffusion coefficient. However, most of the particle tracks cannot
be described by normal diffusion. Some particles are observed to hop
their position for a short period of time, similar to ballistic motion, fol-
lowed by oscillatory motion that cannot be reduced to a simple mode.
The result from analyzing the whole population of the particle
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FIG. 7. Supervised noise reduction of the dusty plasma image set using U-Net. (a) An original image; (b). U-Net generated binary mask; (c) masked original image; (d) back-

ground after the subtraction of the masked image (c) from the original image (a).

trajectories is shown in Fig. 12, indicating that the “sub-diffusion”
model with an exponent k = 0.84%0.02 gives a smaller root-mean
square error (RMSE) than the normal diffusion model with k= 1. The
observed subdiffusion is consistent with the strong coupling due to
Coulombic interactions in dusty plasmas.””

VI. SUMMARY AND PERSPECTIVE

We present new datasets of microparticle clouds and their inter-
actions with laboratory plasmas: from exploding wires, in dusty plas-
mas in a strong magnetic field (MDPX), and in atmospheric plasmas.
A physics-motivated local-constant-velocity (LCV) tracker, a
Kohonen neural network (KNN) or self-organizing map (SOM), the
feature tracking kit (FTK), and U-Net are described and compared
with each other for particle tracking using the datasets. Particle density
and the signal-to-noise ratio have been identified as two important fac-
tors that affect the tracking accuracy. Fast Fourier transform (FFT) is
used to reveal how U-Net, a deep convolutional neural network
(CNN) developed for non-plasma applications, improves the signal-

to-noise ratio. Viscous effects are revealed in the ballistic motions of
the particles from the exploding wires and atmospheric plasmas.
Subdiffusion of microparticles is obtained from the dusty plasma data-
sets, consistent with earlier work.

The methods for the experimental datasets can be extended to
simulation data of corresponding microparticle experiments. As a
matter of fact, coupling of simulation and experiment becomes
straight-forward if the experimental and simulation data share the
same format. A data model such as a neural network (NN) does not
differentiate data origins. Some NN reported elsewhere were trained
purely on simulations before their applications to experimental data.
Therefore, data methods also provide a new approach to unify plasma
theory, simulations, and experiments. Such a unifying approach may
provide answers to some of the hardest yet elementary problems such
as the charging dynamics of microparticles immersed in plasmas.

Here, we emphasize the microparticle cloud imaging and track-
ing (mCIT or uCIT) for plasma science when more than a few
micrometer-size particles are tracked simultaneously. Rapid recordings
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FIG. 8. Enhancement of the SNR using U-Net for different frequency bands: inverse FFT of the lowest frequencies of the original image (a), the lowest frequencies of U-Net
masked image (b), intermediate frequency band of the original image (c), and the intermediate frequency band of the U-Net masked image (d).

of individual particle motion lead to temporally resolved local infor-
mation. The whole particle cloud yields collective and global informa-
tion. The data size increases with the number of particles, the number
of cameras, camera sensor size, and camera frame rate. Terabyte of
data per day can be readily achievable in today’s plasma experiments.
Traditional frameworks of data processing based on physics and statis-
tical principles can now be significantly enhanced by data-driven
methods, with the potential toward fully automated image processing
and information extraction, doing away with ad hoc assumptions com-
monly employed in physics and statistical models in order to supple-
ment incomplete information or understanding or to accelerate large
scale simulations. Meanwhile, physical and statistical methods are
indispensable such as by providing ground truths for data model train-
ing, simplifying or constraining data models, which could become
non-deterministic polynomial-time (NP)-hard otherwise.

Automated knowledge discovery through massive data mining is
new to plasma physics, boosted significantly by recent advances in
data methods developed outside plasma physics and in high-
throughput technologies such as fast cameras. In addition to large

FIG. 9. Particle tracks recovered from the particle cloud scene using the same
dataset as in Fig. 10. The tracks can be characterized as ballistic. Bifurcation of
some tracks is due to secondary explosions as discussed previously. "’
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datasets of microparticle cloud interactions with plasmas, other TB
plasma datasets also exist or can be readily obtained, giving rise to the
“fourth paradigm” of scientific discovery and technology development,
extending other approaches based on human intuition, fundamental
laws of physics, statistics, and intense computation. Both experiments
and simulations can benefit from data-driven discoveries and inven-
tions. For example, data methods are being explored to accelerate
high-definition simulations, which can be time-consuming even on
the state-of-the-art exascale computers. Data methods are also being
developed for real-time control of experiments, when the events occur
too swiftly to make decision manually.

How much data are available from a plasma? The Bekenstein
bound” for the information content (Iz) of a plasma sphere with
a radius R is estimated to be Iz < 2nRE/ficln2 = 2ncRm/hiln2
~ amR bits, with o = 2.577 x 10 bit/kgm. Consider the ion and
electron mass alone and a 1-mm hydrogen plasma sphere with an
electron density of 10" m~3, Iy < 2.3 x 107 TB. Since most of the
internal mass energy does not change during a low temperature plasma
measurement, we may replace the energy mc* by 3/2kp(T; + T.)
~ 3¢V for three degrees of freedom for each pair of hydrogen ions and
electrons. I is then reduced to 17 kB, which may be interpreted as the
lower bound in the information content as the plasma system reaches
the thermal equilibrium. When the system is deviated from the thermal
equilibrium, more bits of information are needed to describe the sys-
tem. Ignoring the internal degrees of freedom such as excited states of
an ion, rotation and vibration states of a molecular ion, or nuclear spin
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FIG. 12. Trajectory-averaged mean squared displacement with respect to time. The
bell-shaped inset in the upper left corner is the probability density function of particle
positions obtained from Gaussian kernel density estimation (KDE) of the dataset
shown in Fig. 11. The full-width half maximum is (4.2 = 0.2) pixels. The power-
law fit over the range of At = 10-40 frames is (Ar?) = (1.6 = 0.1)Af*84=002
|nd|cat|ng subdiffusion. The Ilnear fit (normal diffusion) over the same range is
((Ar)?) = (9.6=0.1) x 10~ At. The RMSE between the models and the data is
1.12 (power) and 1.36 (linear), respectively. The power-law model produces an
improvement around 17.6% in the RMSE over the normal diffusion model.
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FIG. 11. Top: summation of 100 video frames from the dusty plasma movie shown
in Fig. 5 after background subtraction using ImageJ/Fiji. Bottom: the particle tracks
recovered using U-Net from the same region as bounded by the box in the Top.
The tracks show a combination of ballistic and Brownian motion.
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states for now, only the position and momentum for each ion and elec-
tron are needed to fully describe the system. Similar to the “classical” or
Shannon information content,”” an upper limit in information content
is estimated to be on the order of kN log,N for N electron and ion
pairs. The multiplier k=12 is for three spatial dimensions, three
momentum dimensions, and two types of particles (electrons and
ions).

In short, powered by data science and technology, further advan-
ces in microparticle tracking in plasmas can come in many flavors:
from imaging of smaller and smaller microparticles, paving the way
toward super-resolution that opens door to nanoparticle and ulti-
mately atom and ion tracking in plasma science, to data algorithms, to
automated plasma knowledge discovery, to data unification among
experiments, simulations and theory, and to the ultimate information
content of a plasma.
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APPENDIX: ADDITIONAL PARTICLE TRACKING
RESOURCES

Particle or object tracking is widely used in astronomy, space
science, biology, materials science, chemistry, and physics such as
fluids and plasmas, and more recently in computer vision, autono-
mous driving, and surveillance. In spite of their contextual and spa-
tial scale differences ranging from galactic sizes to nanometers,
similar uses of imaging hardware, similar needs for image process-
ing such as particle/object localization, particle linking from one
time to another, particle linking from different camera views,
denoising, etc., have led to open software and algorithms that can
be used in multiple fields, making particle tracking a powerful and
accessible technique for data-driven plasma science.

We include some additional tracking algorithms and software,
intended mainly for beginners and users. One open resource is
Image]/Fiji,”" which has multiple plug-in particle trackers such as
TrackMate, MosaicSuite that includes Particle Tracker tool.
OpenPTV is another open source that allows 3D particle velocity
field measurement from multiple cameras.”” Many research groups
have developed application-specific trackers. A large fraction of

ARTICLE scitation.org/journal/php

these use MATLAB (licensed) or Python (open) platform, and the
codes are downloadable from GitHub or individual research group
websites. Searchable examples include TracTrac, Lagrangian Particle
Tracking. An IDL package’” and a MATLAB package’® have been
developed for dusty plasmas. Reviews and comparative studies exist

for cell and biology applications”*’ and fluid mechanics.”” The early

work on colloidal microscopy by Crocker and Grier led to many devel-
opments.”’ For example, Trackpy is a Python implementation of the
tracking algorithm originally developed by John Crocker and Eric
Weeks in IDL.
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