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A search for vectorlike leptons in multilepton final states is presented. The data sample corresponds to an
integrated luminosity of 77.4 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV
collected by the CMS experiment at the LHC in 2016 and 2017. Events are categorized by the multiplicity
of electrons, muons, and hadronically decaying τ leptons. The missing transverse momentum and the scalar
sum of the lepton transverse momenta are used to distinguish the signal from background. The observed
results are consistent with the expectations from the standard model hypothesis. The existence of a
vectorlike lepton doublet, coupling to the third-generation standard model leptons in the mass range of
120–790 GeV, is excluded at 95% confidence level. These are the most stringent limits yet on the
production of a vectorlike lepton doublet, coupling to the third-generation standard model leptons.
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I. INTRODUCTION

The standard model (SM) of particle physics is a
quantum field theory that describes the known fundamental
particles and their interactions. The predictions of the SM
have been experimentally tested with great precision [1].
However, the SM does not explain several observations,
such as the existence of dark matter and the baryon
asymmetry in the Universe. In addition, there exist theo-
retical issues such as the hierarchy problem, that suggest
that an extension of the SM, predicting new particles, is
needed to provide a more complete description of nature.
In one class of new particles there are nonchiral color

singlet fermions that couple to the SM leptons. The term
nonchiral implies that the left- and right-handed compo-
nents of these particles transform identically under gauge
symmetries. These particles are thus referred to as vector-
like leptons (VLLs). They arise in a wide variety of models
invoking, for example, supersymmetry or extra dimensions
[2–5]. The VLLs are often classified by the SM lepton
generation with which they are associated. VLLs and their
associated SM leptons have identical lepton numbers.
This paper presents a search for an SU(2) doublet VLL

extension [6] of the SM with couplings to the third-
generation SM leptons. The search is carried out in final
states with multiple charged leptons (e, μ, τ), using proton-

proton (pp) collision data collected by the CMS detector at
the LHC in 2016 and 2017. The model that we consider
introduces a vectorlike τ lepton ðτ0−Þ, its antiparticle ðττ0þÞ,
and the corresponding neutrinos (ν0τ and ν̄0τ). At the LHC,
they can be produced in τ0�ν0τ, τ0þτ0−, and ν0τν̄0τ channels,
with subsequent decays of τ0 to Zτ or Hτ and of ν0τ to Wτ,
where W, Z, and H are the SM W, Z, and Higgs bosons,
respectively. At tree level, the τ0 and ν0τ are mass degenerate,
whereas higher-order radiative corrections predict < 0.3%
relative mass splitting between these two states, for VLL
masses greater than 100 GeV. In this paper, τ0 and ν0τ are
assumed to be mass degenerate. The mass of the VLL is the
only free parameter both in the production cross section and
in the branching fraction calculations. The tree-level
Feynman diagrams for associated and pair production of
the doublet model VLLs are shown in Fig. 1 along with
possible subsequent decay chains that would result in a
multilepton final state.
The ATLAS Collaboration performed a search for heavy

lepton resonances decaying into a Z boson and a lepton in a
multilepton final state at a center-of-mass energy of 8 TeV
[7], constraining a singlet VLL model and excluding VLLs
in the mass range of 114–176 GeV. However, to date, there
are no such constraints on the doublet VLL model from any
of the LHC experiments. The L3 Collaboration at LEP
placed a lower bound of ≈100 GeV on additional heavy
leptons [8]. Given these existing constraints, this analysis
focuses on VLL masses greater than 100 GeV.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
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magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter, each composed of a barrel
and two end cap sections. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid. The inner tracker measures charged
particles with jηj < 2.5 and provides an impact parameter
resolution of ≈15 μm and a transverse momentum (pT)
resolution of about 1.5% for 100 GeV charged particles.
Extensive forward calorimetry complements the barrel and
end cap detectors by covering the pseudorapidity range
3.0 < jηj < 5.2. Collision events of interest are selected
using a two-tiered trigger system [9]. The first level,
composed of custom hardware processors, selects events
at a rate of around 100 kHz. The second level, based on an
array of microprocessors running a version of the full event
reconstruction software optimized for fast processing,
reduces the event rate to around 1 kHz before data storage.
A detailed description of the CMS detector, along with a
definition of the coordinate system and relevant kinematic
variables, can be found in Ref. [10].

III. EVENT RECONSTRUCTION
AND PARTICLE IDENTIFICATION

Events collected for this search are recorded using a
combination of triggers requiring a single electron or a single
muon. For events collected in 2016 (2017), the electron
trigger requires an electron with pT > 27 ð35Þ GeV, while
the muon trigger requires a muon with pT > 24 ð27Þ GeV.
Information from all subdetectors is combined using the
CMS particle-flow (PF) algorithm [11] to reconstruct and
identify individual particles (charged hadrons, neutral
hadrons, photons, electrons, and muons). Collectively these
are referred to as PF objects.
For each event, PF objects originating from the same

interaction vertex are clustered into jets using the infrared-
and collinear-safe anti-kT algorithm [12,13], with a radius
parameter of 0.4. The momenta of all PF objects in each jet
are summed vectorially to determine the jet momentum.
The reconstructed vertex with the largest value of summed

physics-object p2
T is taken to be the primary pp interaction

vertex. The physics objects are the jets, clustered using the
jet finding algorithm [12,13] with the tracks assigned to the
vertex as inputs, and the associated missing transverse
momentum, taken as the negative vector sum of the pT of
those jets. Additional interactions within the same or
nearby bunch crossings (pileup) can contribute spurious
extra tracks and calorimetric energy depositions to the jet
momentum. Hence, charged particles identified as origi-
nating from pileup vertices are discarded and an offset
correction [14] is applied to account for the remaining
neutral pileup particle contributions. Additional jet energy
corrections are applied to account for the nonlinear
response of the detectors [15].
The missing transverse momentum vector (p⃗miss

T ) is
calculated as the negative vectorial pT sum of all the PF
objects belonging to the primary vertex. The pmiss

T is defined
as themagnitude of this vector. For calculatingpmiss

T in 2016,
we use PF objects located in the full fiducial volume of the
detector, whereas for 2017, PF objects within 2.5< jηj<3.0
andwithpT < 50 GeVare excluded tomitigate noise effects
related to the aging of the CMS ECAL.
Electron candidates are reconstructed by combining

ECAL superclusters and Gaussian sum filter [16] tracks
from the silicon tracker [17]. Muon candidates are recon-
structed by combining the information from both the silicon
tracker and the muon spectrometer [18]. Hadronically
decaying τ lepton candidates (τh) are selected using the
hadron-plus-strips algorithm [19]. This algorithm has been
designed to optimize the performance of τh reconstruction by
considering specific τh decay modes. It starts with hadronic
jets and reconstructs τh candidates from the tracks (“prongs”)
and energy deposits in strips of the ECAL, in the one-prong,
one-prong þπ0, and three-prong decay modes. We require
the reconstructed leptons to lie within the region of pseudor-
apidity jηj < 2.5, 2.4, and 2.3 for the electron, muon, and τh
candidates, respectively.
Lepton candidates arising from pp collisions can be

broadly categorized into prompt, nonprompt, and conver-
sion leptons. A prompt lepton can be produced in the decay
of a W, Z or Higgs boson. Events from background

FIG. 1. Two illustrative leading-order Feynman diagrams for associated production of τ0 with a ν0τ (left) and for pair production of τ0
(right) and possible subsequent decay chains that result in a multilepton final state.
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processes such as WZ and ZZ contain multiple prompt
leptons and thus these backgrounds are classified as prompt
backgrounds. A nonprompt lepton can arise in heavy flavor
hadron decays within a jet, or from hadrons that punch
through to the muon system, or from hadronic showers with
large electromagnetic fractions. A small fraction of recon-
structed leptons from nonprompt sources mimic leptons
from prompt sources and are referred to as misidentified
leptons. The background arising from such sources is
referred to as the misidentified background (MisID). A
conversion lepton is one which is produced when a radiated
photon converts to a pair of leptons. The background
arising from such processes is referred to as the conversion
background.
Unlike prompt leptons, misidentified leptons are

expected to have significant nearby hadronic activity. An
isolation requirement that compares the pT of a lepton to
the pT sum of particles in its immediate neighborhood
strongly reduces the backgrounds from misidentified lep-
tons. We use relative isolation criteria for both electrons and
muons. Relative isolation is defined as the scalar pT sum of
photons, and charged and neutral hadrons, as reconstructed
by the PF algorithm within a specified ΔR cone around the
lepton candidate, normalized to the lepton candidate pT.
The ΔR between a particle and the lepton is defined as
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
, where Δη is the difference in

pseudorapidity and Δϕ is the difference in the azimuthal
angle (in radians). This relative isolation is required to be
less than 7% or 8% within a cone of size ΔR ¼ 0.3 for
electrons whose energy deposits are reconstructed in
the ECAL barrel (jηj < 1.48) or in the end cap
(1.48 < jηj < 3.00), respectively, and less than 15% within
a cone of size ΔR ¼ 0.4 for muons. The τh candidates are
required to pass an isolation requirement based on a
multivariate analysis [20]. The isolation quantities are
corrected for pileup by considering only those charged
PF candidates that are consistent with having originated
from the primary vertex and by subtracting a per-event
average pileup contribution to the neutral PF components.
We further reduce the MisID backgrounds by imposing
requirements on the longitudinal (dz) and transverse (dxy)
impact parameters of the leptons with respect to the primary
vertex in the event. Electrons in the barrel (end cap) must
satisfy jdzj < 0.1 ð0.2Þ cm and jdxyj < 0.05 ð0.1Þ cm.
Muons must satisfy jdzj < 0.1 cm and jdxyj < 0.05 cm.
For τh leptons, we require jdzj < 0.2 cm.

IV. SIGNAL AND BACKGROUND SIMULATION

Simulated samples are used to estimate the contribution
of all prompt and conversion background processes. The
WZ and ZZ processes are generated at next-to-leading
order (NLO) using POWHEG v2 [21–25]. The Z=γ�,
Z=γ� þ γ, tt̄, tt̄þ γ, and triboson processes are generated
at NLO using MADGRAPH 5_aMC@NLO v5.2.2 [26] and

processes with the Higgs boson are generated using
POWHEG v2 [27,28] and the JHUGEN v6.2.8 generator
[29–32]. Signal events are generated using MADGRAPH

5_aMC@NLO at leading order (LO) precision. For all
simulation data, the parton showering, fragmentation,
and hadronization steps are done using PYTHIA 8.230
[33] with tune CUETP8M1 [34] for 2016 samples and
CP5 [35] for 2017 samples.
All 2016 samples are generated with the same order of

the NNPDF3.0 parton distribution function (PDF) [36]
as the order of the MC generator. All 2017 samples are
generated with the NNPDF3.1 next-to-next-to-leading
(NNLO) order PDF [37], irrespective of the order of the
MC generator. The response of the CMS detector is
simulated using dedicated software based on the GEANT4

toolkit [38]. Additional weights are applied to all simulated
events to account for differences in the trigger and lepton
identification efficiencies between data and simulation. For
the simulated events, additional minimum bias interactions
are superimposed on the primary collision, reweighted in
such a way that the frequency distribution of the extra
interactions matches that observed in data.

V. EVENT SELECTION CRITERIA

We collectively refer to electrons and muons as light
leptons to distinguish them from τh leptons. Events are then
categorized as those with four or more light leptons (4L),
exactly three light leptons (3L), and exactly two light
leptons along with at least one τh lepton (2L1T). In the
2L1T channel, we have a further division based on whether
the two light leptons are of opposite sign (OS) or same sign
(SS). In all categories, the leptons are ordered by decreasing
transverse momenta and those with the largest pT are
labeled as the leading leptons. The leading light lepton is
required to satisfy pT > 38 ð28Þ GeV if it is an electron
(muon). These thresholds are imposed so that the corre-
sponding single lepton triggers are fully efficient for events
that would subsequently satisfy the offline selection. All of
the other leptons are required to satisfy pT > 20 GeV.

We use the scalar pT sum of the leptons (denoted as LT)
to discriminate signal from SM backgrounds in all chan-
nels. The LT distribution is divided into 150 GeV bins, each
of which is treated as a separate experiment. In the 2L1T
and 4L categories that contain more than one τh and more
than four light-lepton candidates, respectively, only the
leading τh and the leading four light leptons are used in the
calculation of LT.
In order to improve sensitivity for the signal, in each of

the 4L, 3L, and 2L1T (OS, SS) categories, the events are
divided into low- and high-pmiss

T regions. While the 4L
category is divided into pmiss

T < 50 GeV and > 50 GeV
regions, the 3L and 2L1T (OS, SS) categories are divided
into pmiss

T < 150 GeV and > 150 GeV regions. These
categories form the bases of signal regions (SRs) that
would be sensitive to the presence of a VLL signal. They
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are complemented by orthogonal control regions (CRs) that
are expected to be dominantly populated by backgrounds.
Additionally, all events with a light-lepton pair invariant
mass below 12 GeVare vetoed regardless of the flavor and
sign of the pair, in order to suppress low mass quarkonia
resonances. The SRs are described in Table I, where OSSF
refers to an opposite-sign, same-flavor lepton pair. A
detailed description of the CRs is given in Sec. VI.

VI. BACKGROUND ESTIMATION

TheWZ andZZ background yields are normalized to data
using dedicated CRs. For the WZ CR, we select events
with exactly three light leptons, one OSSF pair invariant
mass satisfying the 91� 15 GeV window (“on-Z”), and
50 < pmiss

T < 100 GeV. The ratio of the expectedWZ yield
to data (after correcting for non-WZ events) is found to be
1.14� 0.06 (1.07� 0.05) for the 2016 (2017) data analysis,
where the uncertainty includes both statistical and systematic
contributions. Similarly, for the ZZ background, we select
events with exactly four leptons, two distinct OSSF pairs
both satisfying the on-Z requirement, and pmiss

T < 50 GeV.
The ratio of the expected ZZ yield to data is found to be
1.01� 0.05 (0.98� 0.05) for the 2016 (2017) search.
The conversion background consists of events with

photons from final-state radiation, where the photon con-
verts asymmetrically to two additional leptons, only one of
which is reconstructed in the detector. A selection of events
with three light leptons with an OSSF pair below the Z
boson mass (<76 GeV), M3l satisfying the on-Z window,
and with pmiss

T < 50 GeV is used to calculate the ratio of
the conversion background prediction in simulation to data.
The quantity m3l is defined as the invariant mass of the
three light leptons. The ratio is measured to be 0.95� 0.11
(0.87� 0.10) for the 2016 (2017) data analysis. For the
2017 analysis, the Z=γ� þ γ and tt̄þ γ simulation samples
are used, while for the 2016 analysis, the Z=γ� and tt̄
simulation samples are used because of the unavailability
of enhanced samples.
The measured ratios are then applied to theWZ, ZZ, and

conversion background estimates to correct for any residual
differences in the efficiency and acceptance between data
and simulation. The CRs are also used to verify the

performance of the simulation in modeling the kinematic
distributions of interest. Figure 2 shows the transverse
mass mT and the LT distributions in the WZ CR and the
m4l and LT distributions in the ZZ CR for data and
simulation, in the combined 2016 and 2017 datasets.
The quantity m4l is defined as the invariant mass of the
leading four light leptons. The quantity mT is defined as

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmiss

T pl
T½1 − cosðΔϕmT

Þ�
q

, where pl
T refers to the

pT of the lepton that is not part of the OSSF pair closest to
the Z boson mass and ΔϕmT

is the difference in azimuth
between Wp⃗miss

T and p⃗l
T. The prompt backgrounds from

triboson and associated Higgs boson production are esti-
mated from simulation using the calculated cross sections
at NLO and are henceforth referred to as the VVV and the
H þ X backgrounds, respectively. Similarly, the back-
ground from tt̄V and tt̄Z is estimated from simulation
and is referred to as the tt̄V background.
The MisID background arises from processes such as

Z þ jets and tt̄þ jets. This background is estimated using a
three-dimensional implementation of a matrix method [39].
In this method, rates are measured in data CRs for leptons
to pass the analysis lepton selections, given that these
leptons pass looser offline selections. It is assumed that
these rates for prompt and misidentified leptons behave
similarly across the different CRs and SRs. We measure
these rates in dedicated CRs: one with a dilepton selection
for prompt rates and another with a trilepton signal-
depleted selection with one OSSF on-Z pair and pmiss

T <
50 GeV for misidentification rates. The rates are para-
meterized as functions of lepton pT and η. An additional
correction factor is applied as a function of the number of
charged particles, to account for rate variations due to the
hadronic activity in the event. For τh misidentification rates,
an additional parameterization is needed, based on the pT
of the jet matched to the τh. This is required to account
correctly for rate variations due to the boost of the lepton
system. The rate measurements are dominated by Z þ jets
events and are corrected using simulation to an average of
the Z þ jets and tt̄þ jets events. Figure 3 demonstrates the
agreement between the expected background and the
observed data yields, as a function of the dilepton mass
and LT, in a signal-depleted 2L1T (OS) selection.

TABLE I. The signal regions defined in this analysis. The on-Z mass window is defined as 76 < mll < 106 GeV,
while the below-Z condition is defined as mll < 76 GeV.

Nleptons pmiss
T (GeV) CR veto

≥4e=μ <50 Two OSSF on-Z pairs and pmiss
T < 50 GeV

>50
3e=μ <150 OSSF on-Z pair and pmiss

T < 100 GeV,
or OSSF below-Z pair and pmiss

T < 50 GeV,
or OSSF below-Z pair and on-Z m3l

>150

2e=μ OS (or SS) þ≥1τh <150 pmiss
T < 50 GeV

>150
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VII. SYSTEMATIC UNCERTAINTIES

The primary sources of systematic uncertainty in the SM
background arise from those in the MisID background and
from those in theWZ and ZZ backgrounds. The systematic

uncertainty in the MisID background contribution arises
primarily via the uncertainties in the measurement of
prompt and misidentified rates in the matrix method. In
addition, the uncertainties in the Z þ jets and tt̄þ jets rates
contribute to the systematic uncertainty in this background.
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FIG. 2. The upper row shows the mT (left) and the LT (right) distributions in the WZ control region in data and simulation. The WZ
control region contains events with three leptons and an OSSF pair with mass on-Z, and 50 < pmiss

T < 100 GeV. The lower row shows
the m4l (left) and the LT (right) distributions in the ZZ control region. The ZZ control region contains events with two OSSF lepton
pairs, both of which are on-Z, and pmiss

T < 50 GeV. The total SM background is shown as a stack of all contributing processes. The
hatched gray bands in the upper panels represent the total uncertainty in the expected background. The lower panels show the ratios of
observed data to the total expected background. In the lower panels, the light gray band represents the combined statistical and
systematic uncertainty in the expected background, while the dark gray band represents the statistical uncertainty only. The rightmost
bins include the overflow events.
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We vary the rates within their respective uncertainties and
observe the change in the background yield in all SRs. The
final estimates vary by 20%–35% depending upon the year
the data were collected and the SR. The WZ and ZZ
background estimates have systematic uncertainties of
4%–5% arising from the normalization factor measure-
ments in the dedicated CRs. The conversion background
estimate has a systematic uncertainty of 11%.
To account for differences between the data and simu-

lation, a number of different sources of systematic uncer-
tainty are considered. Lepton energy (or momentum) scale
uncertainties, as well as jet and lepton resolution uncer-
tainties, are applied at the per-object level, where the
corresponding object momenta are varied up and down
by their corresponding uncertainties. This results in a 2%–
10% impact on the background prediction, depending on
LT and the SR. The uncertainty in the trigger efficiency
results in a 2%–3% uncertainty in the background pre-
diction. Additionally, an integrated luminosity measure-
ment uncertainty of 2.5% (2.3%) is applied to the simulated
rare background estimates for the 2016 [40] (2017 [41])
analysis. For the subdominant, rare background processes
such as tt̄V, triboson, or associated Higgs boson produc-
tion, a 50% systematic uncertainty is applied to the
theoretical cross sections to cover the PDF and the
renormalization and factorization scale uncertainties.
The pileup modeling uncertainty is evaluated by varying
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FIG. 3. The dilepton mass (left) and the LT (right) distributions in data and simulation in a misidentified τh control region. This control
region contains 2L1T (OS) events with pmiss

T < 50 GeV. The total SM background is shown as a stack of all contributing processes. The
hatched gray bands in the upper panels represent the total uncertainty in the expected background. The lower panels show the ratios of
observed data to the total expected background. In the lower panels, the light gray band represents the combined statistical and
systematic uncertainty in the expected background, while the dark gray band represents the statistical uncertainty only. The rightmost
bins include the overflow events.

TABLE II. The sources of systematic uncertainty and the
typical variations (percent) observed in the affected background
and signal yields in the analysis. All sources of uncertainty are
considered as correlated between the 2016 and 2017 data
analyses except for the lepton identification and isolation, the
single lepton trigger, and the integrated luminosity. The label
ALL is defined as WZ, ZZ, rare (tt̄V, VVV, Higgs boson), and
signal processes.

Source of uncertainty

Typical
variations

(%) Processes

MisID background 20–35 � � �
Rare background normalization 50 � � �
Conversion background normalization 11 � � �
WZ background normalization 5 � � �
ZZ background normalization 4–5 � � �
Lepton identification and isolation 6–8 ALL
Single lepton trigger <3 ALL
Electron energy scale and resolution 2–5 ALL
Muon momentum scale and resolution 2–10 ALL
Hadronic τ lepton energy scale <5 ALL
Jet energy scale 5–10 ALL
Unclustered energy scale 1–10 ALL
Integrated luminosity 2.3–2.5 Rare=signal
Pileup modeling <4 ALL
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the cross section used in the reweighting procedure up and
down by 5%, which results in a 4% impact on background
yields according to simulation. The typical variations for
various sources of systematic uncertainty are provided in
Table II.

VIII. RESULTS

The LT distributions for the 4L and 3L SRs are shown in
Fig. 4, while those for various 2L1T SRs are shown in
Fig. 5. We do not observe any significant discrepancies
between the background predictions and the observed data.
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FIG. 4. The LT distributions for the 3L signal regions with pmiss
T < 150 GeV (upper left) and pmiss

T > 150 GeV (upper right) and for
the 4L signal regions with pmiss

T < 50 GeV (lower left) and pmiss
T > 50 GeV (lower right). The total SM background is shown as a stack

of all contributing processes. The predictions for VLL signal models (the sum of all production and decay modes) withmτ0=ν0 ¼ 200 and
500 GeV are shown as dashed lines. The hatched gray bands in the upper panels represent the total uncertainty in the expected
background. The lower panels show the ratios of observed data to the total expected background. In the lower panels, the light gray band
represents the combined statistical and systematic uncertainty in the expected background, while the dark gray band represents the
statistical uncertainty only. The rightmost bins include the overflow events.
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Limits are set on the combined cross section for associated
(τ0ν0τ) and pair (τ0τ0=ν0τν0τ) production of VLLs. To obtain
upper limits on the signal cross section at 95% confidence
level (C:L:), we use a modified frequentist approach with a
test statistic based on the profile likelihood in the asymp-
totic approximation and the CLs criterion [42–44].

The upper limits are shown in Fig. 6. We use a linear
interpolation of the expected event yields between the
simulated signal samples in the limit calculations.
Systematic uncertainties are incorporated into the like-
lihood as nuisance parameters with log-normal probability
distributions, while statistical uncertainties are modeled
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FIG. 5. The LT distributions for the 2L1T OS signal regions with pmiss
T < 150 GeV (upper left) and pmiss

T > 150 GeV (upper right)
and for the 2L1T SS signal regions with pmiss

T < 150 GeV (lower left) and pmiss
T > 150 GeV (lower right). The total SM background is

shown as a stack of all contributing processes. The predictions for VLL signal models (sum of all production and decay modes) with
mτ0=ν0 ¼ 200 and 500 GeVare also shown as dashed lines. The hatched gray bands in the upper panels represent the total uncertainty in
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A. M. SIRUNYAN et al. PHYS. REV. D 100, 052003 (2019)

052003-8



with gamma functions. The observed limits are within 2
standard deviations of the expected limits from the back-
ground-only hypothesis. Because of the preferential cou-
pling of VLLs to τ leptons, the major contribution to these
results comes from the 2L1T SRs. The analysis sensitivity
benefits from the large signal-to-background ratio in the
2L1T (SS) SRs, despite the small production rate for
this channel. The measurements in the 2L1T channels
alone exclude VLLs in the mass range 120–740 GeV. On
combining all the 4L, 3L, and 2L1T SRs, with the
hypothesis of an SU(2) mass degenerate VLL doublet with
couplings to the third generation SM leptons, we exclude
VLLs with mass in the range of 120–790 GeVat 95% C:L:

IX. SUMMARY

A search for vectorlike leptons coupled to the third-
generation standard model leptons has been performed in
several multilepton final states using 77.4 fb−1 of proton-
proton collision data at a center-of-mass energy of 13 TeV,
collected by the CMS experiment in 2016 and 2017. No
significant deviations of the data from the standard model
predictions are observed. These results exclude a vectorlike
lepton doublet with a common mass in the range 120–
790 GeV at 95% confidence level. These are the most
stringent limits yet on the production of a vectorlike lepton
doublet, coupling to the third-generation standard model
leptons.
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de Excelencia María de Maeztu, Grant No. MDM-2015-
0509 and the Programa Severo Ochoa del Principado
de Asturias; the Thalis and Aristeia programs cofinanced
by EU-ESF and theGreekNSRF; the Rachadapisek Sompot
Fund for Postdoctoral Fellowship, Chulalongkorn
University and the Chulalongkorn Academic into Its 2nd
Century Project Advancement Project (Thailand); theWelch
Foundation, Contract No. C-1845; and the Weston Havens
Foundation (USA).

[1] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[2] S. P. Martin, Extra vector-like matter and the lightest Higgs
scalar boson mass in low-energy supersymmetry, Phys.
Rev. D 81, 035004 (2010).

[3] M. Endo, K. Hamaguchi, S. Iwamoto, and N. Yokozaki,
Higgs mass and muon anomalous magnetic moment in
supersymmetric models with vector-like matters, Phys.
Rev. D 84, 075017 (2011).

[4] R. Dermisek and A. Raval, Explanation of the muon g-2
anomaly with vectorlike leptons and its implications for
Higgs decays, Phys. Rev. D 88, 013017 (2013).

[5] J. Halverson, N. Orlofsky, and A. Pierce, Vectorlike leptons
as the tip of the dark matter iceberg, Phys. Rev. D 90,
015002 (2014).

[6] N. Kumar and S. P. Martin, Vectorlike leptons at the large
hadron collider, Phys. Rev. D 92, 115018 (2015).

[7] ATLAS Collaboration, Search for heavy lepton resonances
decaying to a Z boson and a lepton in pp collisions at

ffiffiffi
s

p ¼
8 TeV with the ATLAS detector, J. High Energy Phys. 09
(2015) 108.

[8] P. Achard et al. (L3 Collaboration), Search for heavy neutral
and charged leptons in eþe− annihilation at LEP, Phys. Lett.
B 517, 75 (2001).

[9] CMS Collaboration, The CMS trigger system, J. Instrum.
12, P01020 (2017).

[10] CMS Collaboration, The CMS experiment at the CERN
LHC, J. Instrum. 3, S08004 (2008).

[11] CMS Collaboration, Particle-flow reconstruction and global
event description with the CMS detector, J. Instrum. 12,
P10003 (2017).

[12] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[13] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[14] M. Cacciari and G. P. Salam, Pileup subtraction using jet
areas, Phys. Lett. B 659, 119 (2008).

[15] CMS Collaboration, Jet energy scale and resolution perfor-
mance with 13 TeV data collected by CMS in 2016, CMS
Detector Performance Report, CERN Report No. CMS-DP-
2018-028, 2018, http://cds.cern.ch/record/2622157.

[16] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov,
Reconstruction of electrons with the Gaussian-sum filter in
the CMS tracker at the LHC, J. Phys. G 31, N9 (2005).

[17] CMS Collaboration, Performance of electron reconstruction
and selection with the CMS detector in proton-proton
collisions at

ffiffiffi
s

p ¼ 8 TeV, J. Instrum. 10, P06005 (2015).
[18] CMS Collaboration, Performance of the CMS muon de-

tector and muon reconstruction with proton-proton colli-
sions at

ffiffiffi
s

p ¼ 13 TeV, J. Instrum. 13, P06015 (2018).
[19] CMS Collaboration, Reconstruction and identification of τ

lepton decays to hadrons and ντ at CMS, J. Instrum. 11,
P01019 (2016).

[20] CMS Collaboration, Performance of reconstruction and
identification of τ leptons decaying to hadrons and ντ in pp
collisions at

ffiffiffi
s

p ¼ 13 TeV, J. Instrum. 13, P10005 (2018).
[21] P. Nason, A new method for combining NLO QCD with

shower Monte Carlo algorithms, J. High Energy Phys. 11
(2004) 040.

[22] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD
computations with Parton shower simulations: The POW-
HEG method, J. High Energy Phys. 11 (2007) 070.

[23] S. Alioli, P. Nason, C. Oleari, and Emanuele Re, A general
framework for implementing NLO calculations in shower
Monte Carlo programs: The POWHEG BOX, J. High
Energy Phys. 06 (2010) 043.

[24] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi,WþW−,
WZ and ZZ production in the POWHEG BOX, J. High
Energy Phys. 11 (2011) 078.

[25] P. Nason and G. Zanderighi, WþW−, WZ, and ZZ pro-
duction in the POWHEG-BOX-V2, Eur. Phys. J. C 74, 2702
(2014).

[26] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O.
Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, andM. Zaro, The
automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton
shower simulations, J. High Energy Phys. 07 (2014) 079.

[27] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, Higgs
production via gluon fusion in the POWHEG approach in
the SM and in the MSSM, J. High Energy Phys. 02 (2012)
088.

[28] M. Klasen, K. Kovarik, P. Nason, and C. Weydert, Asso-
ciated production of charged Higgs bosons and top quarks
with POWHEG, Eur. Phys. J. C 72, 2088 (2012).

[29] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze,
and N. V. Tran, Spin determination of single-produced
resonances at hadron colliders, Phys. Rev. D 81, 075022
(2010).

A. M. SIRUNYAN et al. PHYS. REV. D 100, 052003 (2019)

052003-10

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.81.035004
https://doi.org/10.1103/PhysRevD.81.035004
https://doi.org/10.1103/PhysRevD.84.075017
https://doi.org/10.1103/PhysRevD.84.075017
https://doi.org/10.1103/PhysRevD.88.013017
https://doi.org/10.1103/PhysRevD.90.015002
https://doi.org/10.1103/PhysRevD.90.015002
https://doi.org/10.1103/PhysRevD.92.115018
https://doi.org/10.1007/JHEP09(2015)108
https://doi.org/10.1007/JHEP09(2015)108
https://doi.org/10.1016/S0370-2693(01)01005-X
https://doi.org/10.1016/S0370-2693(01)01005-X
https://doi.org/10.1088/1748-0221/12/01/P01020
https://doi.org/10.1088/1748-0221/12/01/P01020
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1016/j.physletb.2007.09.077
http://cds.cern.ch/record/2622157
http://cds.cern.ch/record/2622157
http://cds.cern.ch/record/2622157
https://doi.org/10.1088/0954-3899/31/9/N01
https://doi.org/10.1088/1748-0221/10/06/P06005
https://doi.org/10.1088/1748-0221/13/06/P06015
https://doi.org/10.1088/1748-0221/11/01/P01019
https://doi.org/10.1088/1748-0221/11/01/P01019
https://doi.org/10.1088/1748-0221/13/10/P10005
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP11(2011)078
https://doi.org/10.1007/JHEP11(2011)078
https://doi.org/10.1140/epjc/s10052-013-2702-5
https://doi.org/10.1140/epjc/s10052-013-2702-5
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP02(2012)088
https://doi.org/10.1007/JHEP02(2012)088
https://doi.org/10.1140/epjc/s10052-012-2088-9
https://doi.org/10.1103/PhysRevD.81.075022
https://doi.org/10.1103/PhysRevD.81.075022


[30] S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, M.
Schulze, N. V. Tran, and A. Whitbeck, On the spin and
parity of a single-produced resonance at the LHC, Phys.
Rev. D 86, 095031 (2012).

[31] I. Anderson, S. Bolognesi, F. Caola, Y. Gao, A. V. Gritsan,
C. B. Martin, K. Melnikov, M. Schulze, N. V. Tran, A.
Whitbeck, and Y. Zhou, Constraining anomalous HVV
interactions at proton and lepton colliders, Phys. Rev. D
89, 035007 (2014).

[32] A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao,
Constraining anomalous Higgs boson couplings to the
heavy flavor fermions using matrix element techniques,
Phys. Rev. D 94, 055023 (2016).

[33] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[34] CMS Collaboration, Event generator tunes obtained from
underlying event and multiparton scattering measurements,
Eur. Phys. J. C 76, 155 (2016).

[35] CMS Collaboration, Extraction and validation of a new set of
CMS PYTHIA8 tunes from underlying-event measurements,
arXiv:1903.12179 [Eur. Phys. J. C (to be published)].

[36] R. D. Ball et al. (NNPDFCollaboration), Parton distributions
for the LHC Run II, J. High Energy Phys. 04 (2015)
040.

[37] R. D. Ball et al. (NNPDF Collaboration), Parton distribu-
tions from high-precision collider data, Eur. Phys. J. C 77,
663 (2017).

[38] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—A
simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[39] CMS Collaboration, Measurement of the tt̄ production cross
section in the dilepton channel in pp collisions atffiffiffi
s

p ¼ 7 TeV, J. High Energy Phys. 11 (2012) 067.
[40] CMS Collaboration, CMS luminosity measurements for the

2016 data taking period, CMS physics analysis summary,
CERN Report No. CMS-PAS-LUM-17-001, 2017, https://
cds.cern.ch/record/2257069.

[41] CMS Collaboration, CMS luminosity measurement for the
2017 data-taking period at

ffiffiffi
s

p ¼ 13 TeV, CMS physics
analysis summary, CERN Report No. CMS-PAS-LUM-17-
004, 2018, https://cds.cern.ch/record/2621960.

[42] T. Junk, Confidence level computation for combining
searches with small statistics, Nucl. Instrum. Methods Phys.
Res., Sect. A 434, 435 (1999).

[43] A. L. Read, Presentation of search results: The CLs tech-
nique, J. Phys. G 28, 2693 (2002).

[44] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymp-
totic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71, 1554 (2011); Erratum, Eur. Phys. J. C 73,
2501(E) (2013).

A. M. Sirunyan,1,a A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 T. Bergauer,2 J. Brandstetter,2 M. Dragicevic,2 J. Erö,2

A. Escalante Del Valle,2 M. Flechl,2 R. Frühwirth,2,b M. Jeitler,2,b N. Krammer,2 I. Krätschmer,2 D. Liko,2 T. Madlener,2

I. Mikulec,2 N. Rad,2 J. Schieck,2,b R. Schöfbeck,2 M. Spanring,2 D. Spitzbart,2 W. Waltenberger,2 C.-E. Wulz,2,b

M. Zarucki,2 V. Drugakov,3 V. Mossolov,3 J. Suarez Gonzalez,3 M. R. Darwish,4 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4

J. Lauwers,4 A. Lelek,4 M. Pieters,4 H. Rejeb Sfar,4 H. Van Haevermaet,4 P. Van Mechelen,4 S. Van Putte,4

N. Van Remortel,4 F. Blekman,5 E. S. Bols,5 S. S. Chhibra,5 J. D’Hondt,5 J. De Clercq,5 D. Lontkovskyi,5 S. Lowette,5

I. Marchesini,5 S. Moortgat,5 L. Moreels,5 Q. Python,5 K. Skovpen,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5

I. Van Parijs,5 D. Beghin,6 B. Bilin,6 H. Brun,6 B. Clerbaux,6 G. De Lentdecker,6 H. Delannoy,6 B. Dorney,6 L. Favart,6

A. Grebenyuk,6 A. K. Kalsi,6 J. Luetic,6 A. Popov,6 N. Postiau,6 E. Starling,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6

D. Vannerom,6 Q. Wang,6 T. Cornelis,7 D. Dobur,7 I. Khvastunov,7,c C. Roskas,7 D. Trocino,7 M. Tytgat,7 W. Verbeke,7

B. Vermassen,7 M. Vit,7 N. Zaganidis,7 O. Bondu,8 G. Bruno,8 C. Caputo,8 P. David,8 C. Delaere,8 M. Delcourt,8

A. Giammanco,8 V. Lemaitre,8 A. Magitteri,8 J. Prisciandaro,8 A. Saggio,8 M. Vidal Marono,8 P. Vischia,8 J. Zobec,8

F. L. Alves,9 G. A. Alves,9 G. Correia Silva,9 C. Hensel,9 A. Moraes,9 P. Rebello Teles,9 E. Belchior Batista Das Chagas,10

W. Carvalho,10 J. Chinellato,10,d E. Coelho,10 E. M. Da Costa,10 G. G. Da Silveira,10,e D. De Jesus Damiao,10

C. De Oliveira Martins,10 S. Fonseca De Souza,10 L. M. Huertas Guativa,10 H. Malbouisson,10 J. Martins,10,f

D. Matos Figueiredo,10 M. Medina Jaime,10,g M. Melo De Almeida,10 C. Mora Herrera,10 L. Mundim,10 H. Nogima,10

W. L. Prado Da Silva,10 L. J. Sanchez Rosas,10 A. Santoro,10 A. Sznajder,10 M. Thiel,10 E. J. Tonelli Manganote,10,d

F. Torres Da Silva De Araujo,10 A. Vilela Pereira,10 S. Ahuja,11a C. A. Bernardes,11a L. Calligaris,11a

T. R. Fernandez Perez Tomei,11a E. M. Gregores,11a,11b D. S. Lemos,11a P. G. Mercadante,11a,11b S. F. Novaes,11a

Sandra S. Padula,11a A. Aleksandrov,12 G. Antchev,12 R. Hadjiiska,12 P. Iaydjiev,12 A. Marinov,12 M. Misheva,12

M. Rodozov,12 M. Shopova,12 G. Sultanov,12 M. Bonchev,13 A. Dimitrov,13 T. Ivanov,13 L. Litov,13 B. Pavlov,13 P. Petkov,13

W. Fang,14,h X. Gao,14,h L. Yuan,14 M. Ahmad,15 G. M. Chen,15 H. S. Chen,15 M. Chen,15 C. H. Jiang,15 D. Leggat,15

H. Liao,15 Z. Liu,15 S. M. Shaheen,15,i A. Spiezia,15 J. Tao,15 E. Yazgan,15 H. Zhang,15 S. Zhang,15,i J. Zhao,15 A. Agapitos,16

Y. Ban,16 G. Chen,16 A. Levin,16 J. Li,16 L. Li,16 Q. Li,16 Y. Mao,16 S. J. Qian,16 D. Wang,16 Z. Hu,17 Y. Wang,17 C. Avila,18

SEARCH FOR VECTORLIKE LEPTONS IN MULTILEPTON … PHYS. REV. D 100, 052003 (2019)

052003-11

https://doi.org/10.1103/PhysRevD.86.095031
https://doi.org/10.1103/PhysRevD.86.095031
https://doi.org/10.1103/PhysRevD.89.035007
https://doi.org/10.1103/PhysRevD.89.035007
https://doi.org/10.1103/PhysRevD.94.055023
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-016-3988-x
http://arXiv.org/abs/1903.12179
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/JHEP11(2012)067
https://cds.cern.ch/record/2257069
https://cds.cern.ch/record/2257069
https://cds.cern.ch/record/2257069
https://cds.cern.ch/record/2257069
https://cds.cern.ch/record/2621960
https://cds.cern.ch/record/2621960
https://cds.cern.ch/record/2621960
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-013-2501-z
https://doi.org/10.1140/epjc/s10052-013-2501-z


A. Cabrera,18 L. F. Chaparro Sierra,18 C. Florez,18 C. F. González Hernández,18 M. A. Segura Delgado,18 J. Mejia Guisao,19

J. D. Ruiz Alvarez,19 C. A. Salazar González,19 N. Vanegas Arbelaez,19 D. Giljanović,20 N. Godinovic,20 D. Lelas,20

I. Puljak,20 T. Sculac,20 Z. Antunovic,21 M. Kovac,21 V. Brigljevic,22 S. Ceci,22 D. Ferencek,22 K. Kadija,22 B. Mesic,22

M. Roguljic,22 A. Starodumov,22,j T. Susa,22 M.W. Ather,23 A. Attikis,23 E. Erodotou,23 A. Ioannou,23 M. Kolosova,23

S. Konstantinou,23 G. Mavromanolakis,23 J. Mousa,23 C. Nicolaou,23 F. Ptochos,23 P. A. Razis,23 H. Rykaczewski,23

D. Tsiakkouri,23 M. Finger,24,k M. Finger Jr.,24,k A. Kveton,24 J. Tomsa,24 E. Ayala,25 E. Carrera Jarrin,26 Y. Assran,27,l,m

S. Elgammal,27,l S. Bhowmik,28 A. Carvalho Antunes De Oliveira,28 R. K. Dewanjee,28 K. Ehataht,28 M. Kadastik,28

M. Raidal,28 C. Veelken,28 P. Eerola,29 L. Forthomme,29 H. Kirschenmann,29 K. Osterberg,29 M. Voutilainen,29 F. Garcia,30

J. Havukainen,30 J. K. Heikkilä,30 T. Järvinen,30 V. Karimäki,30 R. Kinnunen,30 T. Lampén,30 K. Lassila-Perini,30

S. Laurila,30 S. Lehti,30 T. Lindén,30 P. Luukka,30 T. Mäenpää,30 H. Siikonen,30 E. Tuominen,30 J. Tuominiemi,30 T. Tuuva,31

M. Besancon,32 F. Couderc,32 M. Dejardin,32 D. Denegri,32 B. Fabbro,32 J. L. Faure,32 F. Ferri,32 S. Ganjour,32

A. Givernaud,32 P. Gras,32 G. Hamel de Monchenault,32 P. Jarry,32 C. Leloup,32 E. Locci,32 J. Malcles,32 J. Rander,32

A. Rosowsky,32 M. Ö. Sahin,32 A. Savoy-Navarro,32,n M. Titov,32 C. Amendola,33 F. Beaudette,33 P. Busson,33 C. Charlot,33

B. Diab,33 G. Falmagne,33 R. Granier de Cassagnac,33 I. Kucher,33 A. Lobanov,33 C. Martin Perez,33 M. Nguyen,33

C. Ochando,33 P. Paganini,33 J. Rembser,33 R. Salerno,33 J. B. Sauvan,33 Y. Sirois,33 A. Zabi,33 A. Zghiche,33 J.-L. Agram,34,o

J. Andrea,34 D. Bloch,34 G. Bourgatte,34 J.-M. Brom,34 E. C. Chabert,34 C. Collard,34 E. Conte,34,o J.-C. Fontaine,34,o
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36Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3,
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67bUniversità di Bologna, Bologna, Italy

68aINFN Sezione di Catania, Catania, Italy
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oAlso at Université de Haute Alsace, Mulhouse, France.
pAlso at Tbilisi State University, Tbilisi, Georgia.
qAlso at Erzincan Binali Yildirim University, Erzincan, Turkey.
rAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
sAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
tAlso at University of Hamburg, Hamburg, Germany.
uAlso at Brandenburg University of Technology, Cottbus, Germany.
vAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary.
wAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
xAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
yAlso at IIT Bhubaneswar, Bhubaneswar, India.
zAlso at Institute of Physics, Bhubaneswar, India.
aaAlso at Shoolini University, Solan, India.
bbAlso at University of Visva-Bharati, Santiniketan, India.
ccAlso at Isfahan University of Technology, Isfahan, Iran.
ddAlso at ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC
DEVELOPMENT, Bologna, Italy.

SEARCH FOR VECTORLIKE LEPTONS IN MULTILEPTON … PHYS. REV. D 100, 052003 (2019)

052003-21



eeAlso at CENTRO SICILIANO DI FISICA NUCLEARE E DI STRUTTURA DELLA MATERIA.
ffAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
ggAlso at Riga Technical University, Riga, Latvia.
hhAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
iiAlso at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
jjAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
kkAlso at Institute for Nuclear Research, Moscow, Russia.
llAlso at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.

mmAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
nnAlso at University of Florida, Gainesville, Florida, USA.
ooAlso at Imperial College, London, United Kingdom.
ppAlso at P.N. Lebedev Physical Institute, Moscow, Russia.
qqAlso at California Institute of Technology, Pasadena, California, USA.
rrAlso at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
ssAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
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