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A  B  S  T  R  A  C T 

 
The  lateral export of carbon from  coastal marshes via tidal  exchange is a key  component of the  marsh carbon 

budget and coastal carbon cycles. However, the magnitude of this export has been  difficult to accurately quantify 

due  to complex tidal  dynamics and  seasonal cycling  of carbon. In this study, we use in situ, high-frequency 

measurements of dissolved inorganic carbon (DIC) and  water fluxes to estimate lateral DIC fluxes from  a U.S. 

northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor  (CHANOS) that  provided an in situ 

concentration  measurement  at  15-min  intervals,  during  periods  in  summer  (July   – August)   and   late   fall 

(December). Seasonal changes in the marsh had  strong effects on DIC concentrations, while  tidally-driven water 

fluxes were the fundamental vehicle of marsh carbon export. Episodic  events, such as groundwater discharge and 

mean sea  water level  changes,  can  impact DIC  flux through altered DIC  concentrations and   water flow. 

Variability between individual tides  within each  season  was  comparable to  mean variability between the  two 

seasons. Estimated mean DIC fluxes based  on a multiple linear regression (MLR) model  of DIC concentrations 

and high-frequency water fluxes agreed reasonably well with  those  derived from CHANOS DIC measurements for 

both  study  periods, indicating that  high-frequency, modeled DIC concentrations, coupled with  continuous water 

flux measurements and  a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis 

of sampling strategies revealed that  DIC fluxes calculated using  conventional sampling frequencies (hourly to 

two-hourly) of a single  tidal  cycle  are  unlikely to capture a representative mean DIC flux compared to longer- 

term  measurements across  multiple tidal  cycles  with  sampling frequency on the  order of tens  of minutes. This 

results from a disproportionately large  amount of the net DIC flux occurring over a small  number of tidal  cycles, 

while  most  tides  have  a  near-zero DIC export. Thus,  high-frequency measurements (on  the  order of tens  of 

minutes or better) over  the  time  period of interest are  necessary to accurately quantify tidal  exports of carbon 

species  from  salt  marshes. 

 
 

 
1.  Introduction 

 
Despite  their  small  areal  extent,  intertidal salt  marshes  are  a sig- 

nificant    sink    of    atmospheric    CO2,     with     a    net     uptake    of 

4.8  ± 0.5–87.2  ± 9.6  Tg C yr−1   on  a  global  scale,  and  an  average 

long-term burial  rate in sediments of 218  ± 24 g C m−2 yr−1  (Chmura 

et al., 2003; Duarte et al., 2005; McLeod et al., 2011). The outwelling 

hypothesis, that  salt marshes  are an important source of organic  carbon 

and  nutrients to the  coastal  ocean,  has  driven  decades  of research on 

carbon  and nutrient cycling in these systems (Teal, 1962; Odum, 1968). 

More recent  studies  indicate that  tidal marshes  also export  a significant 

amount of dissolved  inorganic carbon  (DIC) to adjacent waters  via tidal 

exchange, such that  this lateral  carbon  export  may be an important 

component of the coastal carbon  budget  (Morris and Whiting, 1986; Cai 

and  Wang,  1998;  Raymond   et  al.,  2000;  Raymond   and  Hopkinson, 

2003;  Neubauer and  Anderson,  2003;  Wang and  Cai, 2004). 

Broadly, DIC export  from coastal marshes  results from production of 

organic  matter followed  by plant  and  microbial respiration in  marsh 
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sediments and  tidal  water,  and  then  subsequent tidal  exchange with 

adjacent estuaries or coastal  waters  (Wang  and  Cai, 2004).  These pro- 

cesses operate over a variety  of temporal scales. Biogeochemical cycling 

of DIC concentrations (hereafter [DIC]) in tidal  marshes  is typically 

controlled by seasonal  plant  production and  concurrent microbial ac- 

tivity (Wang and Cai, 2004; Wang et al., 2016),  while tidal water  fluxes 

vary within  and between individual tidal  (~12–24 h), and spring-neap 

(~14 d) cycles. Episodic events  such as storms  and groundwater inputs 

potentially affect  carbon  export  from marshes, although an assessment 

of such effects  is lacking.  Indeed,  while diel light and dark cycles affect 

photosynthesis and respiration rates,  they only exert a minor  control  on 

DIC fluxes (hereafter FDIC) compared to tidally-driven variability (Wang 

and  Cai, 2004). 

While mechanistic understanding of processes  driving  production of 

DIC in coastal  wetlands has evolved,  it has been challenging to quantify 

the   magnitude  of  lateral   carbon   export   due   to  the   high   temporal 

variability of hydrological (inundation, groundwater), biogeochemical 

(photosynthesis, respiration), and  physical  (light,  temperature, storm 

activity) processes.  Furthermore, the  accuracy of FDIC   estimates is fur- 

ther confounded by the limitations of current methods. First, salt marsh 

studies  have traditionally estimated carbon  tidal  export  using sampling 

plans that  include  taking  at most hourly  bottle  samples  over a few tidal 

cycles on a monthly or seasonal  interval (Morris and Whiting,  1986; 

Neubauer and  Anderson,   2003;  Wang  and  Cai,  2004).   While  no  as- 

sessment  has yet been made of what time scales (e.g., tidal, spring-neap, 

and  seasonal) must  be resolved  to capture the  entire  annual flux,  it is 

likely that  sampling  a few tidal cycles does not capture the full range  of 

concentrations or water  exchange seen  throughout the  year,  and  thus 

may  bias  the  seasonal  or annual extrapolations, ultimately leading  to 

large uncertainties in the contribution of wetlands to the coastal  carbon 

budget   (Duarte  et  al.,  2005;  Bouillon  et  al.,  2008;  Cai,  2011;  Bauer 

et  al.,  2013;  Herrmann et  al.,  2015;  Wang  et  al.,  2016,  Najjar  et  al., 

2018).  Sparse  sampling  is also unlikely  to capture episodic  events  that 

may  potentially contribute a  significant portion of  the  overall   flux. 

Second,  if water  fluxes  are estimated from the  tidal  prism,  rather than 

directly measured, they may not fully capture the magnitude or timing 

of water  flux  in  these  complex  environments (Gardner et  al.,  2006). 

Large extrapolations between sampling  events  to generate seasonal  or 

annual estimates of export  could  therefore result  in large  uncertainties 

(Downing  et al., 2009;  Ganju  et al., 2012). 

A recently published study by Wang et al. (2016) demonstrated that 

high-frequency sampling  and  directly measured water  flow  captured 

the  temporal variability of both  biogeochemical and  hydrological pro- 

cesses and may have  greatly  reduced the FDIC  uncertainty. In the 2016 

study,  we used data from seasonal  bottle  sampling  over tidal cycles and 

in situ high-frequency biogeochemical sensors  in a multiple linear  re- 

gression  (MLR) model  to  estimate  high-frequency [DIC].  Concentra- 

tions  were  then  combined with  high-frequency measurements of tidal 

flow  and  modeled water  fluxes  to  generate high-frequency in- 

stantaneous FDIC.  Based  on  this  high-frequency method, Wang  et  al. 

(2016) estimated an  annual FDIC   export  of 414 g C m
−2   

from  a  salt 

marsh  in the  northeast U.S.. This export  was more  than  twice  the  pre- 

viously  estimated FDIC    in  U.S.  southeastern marshes   (Neubauer and 

Anderson,  2003;  Wang  and  Cai, 2004).  Wang  et  al.  (2016) suggested 

that  such  a large  difference potentially resulted from  the  fact that  the 

MLR method was able  to capture much  more  variability in [DIC] and 

water   fluxes  over  tidal,  seasonal, and  annual time  scales,  including 

episodic  events  and  high-frequency tidal  variability. They  concluded 

that  conventional discrete sampling  may not be able to capture the true 

dynamics of marsh  tidal  exports  that  span  such  a wide  range  of time 

scales, each  of which  is highly  variable. 

In this study,  we build  on our previous work  in Wang et al. (2016) 

by deploying a recently developed in situ DIC sensor,  CHANnelized 

Optical  System  (CHANOS) (Wang  et  al.,  2015),  along  with  a suite  of 

other  physical  and biogeochemical sensors, to directly quantify high- 

frequency FDIC  in a salt marsh  tidal creek during  the summer  and fall of 

2015.  While the study  site is the same as the previous study,  this is the 

first  time that  high-frequency, direct  measurements of [DIC] and water 

fluxes were measured simultaneously over significant periods  of time in 

a salt marsh  with  the  aim to accurately assess lateral  DIC exports.  Ad- 

ditionally, we evaluated the robustness and validity  of the MLR method 

from  Wang  et  al.  (2016) to  determine whether accurate estimates of 

[DIC]   require  direct    measurements  by   a   specialized  sensor   like 

CHANOS or whether they could be estimated by an MLR based on more 

readily  available parameters verified with periodic  [DIC] discrete bottle 

sampling. With CHANOS's high-frequency (15-min) data,  we provide an 

in-depth analysis  of directly measured DIC export  at tidal  and seasonal 

timescales as well as a comparison of the effectiveness of conventional 

sampling  frequencies to resolve the true magnitude of lateral  DIC fluxes 

over a specific  interval. 

 
2.  Materials and methods 

 
2.1.  Study site 

 
Sage  Lot Pond  (SLP) is an  intertidal salt  marsh  located   near  the 

eastern inlet  of Waquoit  Bay, on Cape Cod, Massachusetts (Fig. 1). As 

stated  in Wang  et al. (2016), SLP is comparable to other  Atlantic  salt 

marshes  with respect  to faunal  and floral  communities and is typical  for 

a New  England  salt  marsh,  with  regard  to  relative sea  level  rise  rate 

(2.81  ± 0.18 mm yr−1, based on monthly mean  sea level from 1932 to 

2015,  NOAA Tide Station  ID 8447930), and  mean  annual temperature 

(9.88 °C) (Chmura  et al., 2003).  It has a small,  forested  watershed that 

delivers   a   relatively  low   level   of  nutrient  loading,    estimated at 

~12 kg N ha−1yr−1  (Kroeger  et al., 2006). 

A time-series sampling  site was established at the  mouth of a tidal 

creek  that  drains  a well-constrained portion of the  marsh  where  both 

discrete sampling  and high-frequency in situ sensor measurements were 

obtained. The  drainage area  (Fig.  1b)  was  defined using  a 1-m  bare- 

earth  LiDAR-derived digital  elevation model  (DEM), and  a water  drop 

analysis  routine (Wang et al., 2016).  Elevation range  for the marsh  was 

0 to 0.3 m. Maximum  tidal  amplitude ranged  from −0.4 to 0.4 m. The 

drainage basin associated with the chosen tidal creek site has an area of 

4132 m2,  excluding ponds,   with   fresh  groundwater  discharge  com- 

prising  a minor  portion of the  water  budget  (see details  in section  2.4 

Assessment of water fluxes).  This area was used to determine area- 

normalized fluxes  from the  salt marsh. 

 
2.2.  Discrete sampling and analysis 

 
Discrete bottle  samples  were collected  at ~30 cm above  the bottom 

of the tidal  creek  every 1–2 h at the sampling  site using a peristaltic or 

diaphragm pump  for periods  of a full tidal  cycle (~12–14 h) in April, 

July,  October,  November, and  December  in 2015.  These samples  from 

2015 were not included in the Wang et al. (2016) study,  which  covered 

the  period  from  2012  to  2014.  DIC collection and  analysis  followed 

standard best practice procedures outlined by Dickson et al. (2007). 

Samples  were  collected  through purgeable capsule  filters  with  0.45 μm 

pore  size  (Farrwest Environmental Supply,  Texas,  USA) into  250 mL 

borosilicate bottles,  poisoned with  100 uL saturated mercuric chloride, 

sealed  with  a glass stopper  coated  with  APIEZON® – L grease,  and  se- 

cured  with  a rubber band. 

Discrete  bottle  samples  were  measured with  an Apollo SciTech DIC 

auto-analyzer (Model AS-C3) by acidifying  the sample  with  10% 

phosphoric acid. The acidified CO2  sample  was purged with high purity 

nitrogen gas  and  total  CO2   gas  was  detected with  a  LICOR-7000  in- 

frared  analyzer (LI-COR Environmental, Nebraska, USA). Certified 

Reference   Material  (CRM)  from   Dr.  A.G.  Dickson   at   the   Scripps 

Institution of Oceanography was  used  to  calibrate the  DIC auto-ana- 

lyzer. DIC values  were  reported in μmol kg−1  after  being  corrected for 

water  density  and  mercuric chloride addition. The  precision and  ac- 

curacy  of the  instrument is ± 2.0 μmol kg−1   (one  standard deviation) 
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Fig. 1. (a) The Sage Lot Pond marsh sampling area  with  habitat classifications, (b) the drainage basin  (elevation indicated by colour map)  for the time-series sampling 

tidal  creek  (small  triangle as the  sampling site),  and  (c) the  picture showing the  CHANelized  Optical Sensor  (CHANOS) deployment setup  in Waquoit Bay National 

Estuarine Research Reserve  (WBNERR) on Cape Cod, Massachusetts. The red  rectangle in (a) represents the  area  containing the  drainage basin  outlined in black  in 

panel (b).  Map in (a)  was  created by WBNERR with  habitat classifications based  on 2004  aerial photography (NIR, 0.25 m resolution). Water  boundary layer  was 

provided by MassGIS. (For  interpretation of the  references to colour in this  figure legend, the  reader is referred to the  web  version of this  article.) 

 
 

estimated based  on replicate measurements and  inter-laboratory  com- 

parison  of CRM measurements (Bockmon  and Dickson, 2015)  using the 

sampling  protocol  described above. 

 
2.3.  High-frequency sensor measurements 

 
In situ high-frequency sensors  were  deployed at the  SLP tidal  creek 

to measure physical  and biogeochemical properties of tidal  water  from 

April  to  December   2015.  An EXO2 Multiparameter Sonde  (YSI Inc., 

Yellow Springs,  OH) measured temperature, salinity,  water  depth, dis- 

solved oxygen (DO), fluorescent dissolved  organic  matter (fDOM), 

chlorophyll, turbidity, oxidation/reduction potential (ORP), and probe 

pH. In this  study,  we only  use the  salinity  (measured on the  practical 

salinity  scale), DO (measured in percentage of saturation), and ORP 

(measured  in  mV)  parameters  from   the   EXO2.  A  SonTek  IQ  Plus 

acoustic  Doppler  velocity  meter  (ADVM) (Sontek/YSI, San Diego, CA) 

measured water  velocity  and surface  elevation. The YSI EXO2 recorded 

at  intervals ranging from  2 min  to 8 min  and  the  Sontek  IQ recorded 

time-averaged data every 15 min. The relative elevation of the deployed 

Sontek  IQ was referenced to NAVD88 and is associated with  negligible 

error.  All EXO2 sensors were cleaned and calibrated regularly according 

to manufacturer recommended methods to maintain performance, and 

antifouling measures were  deployed including copper  and  automated 

wiping.  After  a  deployment period  of 2–4 weeks,  YSI EXO2 data  for 

2015  were  evaluated for fouling  and  calibration drift,  similar  to Wang 

et  al.  (2016) YSI data  from  2012  to 2014.  The YSI EXO2 was  recali- 

brated and  a correction factor  based  on calibration standards was ap- 

plied linearly across the deployment as needed. A maximum correction 

up  to ± 30%  of the  calibration value  was  allowed   or  otherwise  dis- 

carded  (Wagner  et al., 2006);  however, the 30% threshold was only 

exceeded  for one parameter (ORP) during  one deployment. During  the 

13 deployments, DO was corrected during  one period  (1.4%),  ORP was 

corrected during  5 periods  (1–30%) and salinity  was corrected during  3 

periods  (maximum correction 0.2  salinity  units).  Reported YSI EXO2 

sensor accuracy specifications are: 0.20 pH units (NBS scale), 1% of the 

reading for  salinity,   0.05 °C for  temperature, 1%  of  the  reading  for 

dissolved  oxygen,  and  20 mV for ORP. 

The  Sontek   IQ  ADVM includes   a  vertical   beam   and   integrated 

pressure sensor  to measure water  level in addition to four transducers 

with  two  along-axis  beams  and  two  skew  beams  to measure velocity. 

Sontek  IQ ADVM proprietary  software internally calculates cross-sec- 

tional  area with user-provided creek geometry and Sontek IQ measured 

water  depth. Cross-sectional area  is then  multiplied by mean  channel 

velocity  to  provide flow  in  and  out  of the  creek.  The  uncertainty in 

water  flux  arising  from cross-sectional area  and  velocity  measurement 

as well as internal algorithms is reported as < 5%. 

In  addition to  the  Sontek  IQ and  YSI EXO2, an  in situ CHANOS 

sensor (Wang et al., 2015) was also deployed at the tidal creek sampling 
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site  in July  – August  and  December  2015.  CHANOS was  placed  on  a 

platform atop  the  marsh  adjacent to the  creek  with  the  inlet  pumping 

from the creek at the same depth  and within  30 cm of the YSI (Fig. 1c). 

This setup  avoided any  interference by CHANOS on water  flow  in the 

creek. There is no significant concentration difference with depth  in the 

creek  (data  not shown).  In order  to prevent fouling,  sample  water  was 

filtered by  a  100 μm plastic  disc  filter   (Keller  Products, Acton,  MA) 

followed  by a copper  mesh  filter. CHANOS was powered by two  12 V 

batteries that   were  charged with   two  250 W  solar  panels   (Renogy, 

Ontario, CA). 

CHANOS uses spectrophotometric principles to measure DIC and pH 

using two independent channels (Wang et al., 2015).  Briefly,  CHANOS 

consisted  of syringe pumps for delivery  of reagents, junction boxes 

containing valves,  thermistors, and  optical  and  fluidic  components for 

DIC and pH analysis,  and an electronics housing, as well as reagent bags 

for  storage   of  CRM, hydrochloric acid,  reference solution, and  pH- 

sensitive  indicator solution. For this  study,  only  [DIC]  measurements 

were   used.  The  DIC channel  uses  an  improved spectrophotometric 

method described in detail  in Wang  et al. (2013) whereby a counter- 

current flow  configuration between acidified seawater and  a pH-sensi- 

tive indicator solution  in a tube-in-tube design achieves  fast, continuous 

CO2  equilibration across highly  CO2-permeable Teflon  AF 2400  tubing. 

After CO2   exchange in the  countercurrent flow  cell,  the  indicator  so- 

lution  is directed into an optical  cell for detection. A spectrophotometer 

measures the absorbance at the wavelengths for indicator acid and base 

species, and the absorbance ratio  (R) is used to calculate the final  [DIC] 

concentration using  Eq. 4 from Wang et al. (2015): 

and YSI, this temperature difference could account for a large portion of 

the  uncertainty between [DIC] measured by the  CHANOS and  discrete 

bottle  samples.  2)  All constants in  Eq. 1 vary  with  salinity.  Properly 

aligning   the  YSI EXO2 salinity   measurements to  CHANOS measure- 

ments  and  CHANOS measurements to  discrete bottle   samples   could 

cause uncertainty, especially  if the water  flow was large and caused  the 

water  composition to  be  slightly  different in  between CHANOS and 

bottle  sampling  times.  3) The composition (alkalinity) of the  indicator 

solution  used for CHANOS [DIC] measurements could change  over time 

if  storage   bags  are  compromised, thus  causing   calibration errors   in 

[DIC]  measurements. This  is  likely  a  minor  error  compared to  tem- 

perature  discrepancy because   indicator solution   bags  were  replaced 

~monthly and the impermeable laminated bags have been shown  to be 

stable  within  a three-week field  test (Wang et al., 2015). 

 
2.4.  Assessment of water fluxes 

 
Water  fluxes  were  calculated using  the  methodology described in 

Wang et al. (2016). Briefly,  SonTek IQ ADVM water  fluxes  measured in 

the  tidal  creek  were  used  to derive  the  base  (raw)  water  fluxes.  Cor- 

rections  were  made  to the  base  SonTek IQ water  fluxes  to account for 

overland  flow   and   groundwater  contributions  to  the   marsh   creek. 

Overland flow  occurs when  tidal  height  is above  the marsh  surface  and 

flooding or ebbing  tidal  water  inundates or drains  the  marsh  without 

going  through the  creek  channel. Water  flow  over  the  marsh  is not 

measured by the ADVM and therefore needs to be accounted for with  a 

correction. The ratio  between the  flow  in the  tidal  creek  and  the  total 

tidal  flux  in the  marsh  drainage basin  depends on tidal  height  and  the 

log 
[DIC] 

(K0 )a 

⎛   R − e1  ⎞ 
= B (t ) − log (K0 )i  − log 

⎜ 1 − R 
e3 ⎟ 

⎝ e2 ⎠ 

platform elevation. To correct  for overland flow  in order  to assess total 

(1)  
tidal  flux  in the  drainage area  at a given  time,  a hydrodynamic model 

was  created for  the  drainage basin  of the  tidal  creek  to  derive  such 

here,  (K0)i  is the Henry's Law constant for the internal indicator solution, 

(K0)a  is the Henry's Law constant for the acidified sample  calculated using 

salinity from the YSI EXO2 and temperature measured by the CHANOS, e1, 

e2, e3  are  indicator molar  absorbance ratios,   and  B(t)  is  a  calibration 

constant determined by  measuring CRM at  specific  temperatures. Each 

measurement  cycle  is  ~15 min.   The  system   achieved  a  precision  of 

~  ± 2.5 μmol kg−1    and   an   accuracy  of  ~ ± 5.0 μmol kg−1    during 

coastal  deployments (Wang et al., 2015). 

CHANOS was calibrated autonomously both  in the  laboratory and  in 

situ with CRM over the range of temperatures at which field measurements 

were  conducted. CHANOS [DIC] measurements  were  corrected based  on 

discrete  bottle  samples  (Supporting information Fig. S1). Discrete  bottle 

samples were collected over 2–3 days during  each CHANOS deployment in 

July  and  December.  Bottle  samples  were  matched to CHANOS measure- 

ments  taken  within  8 min  of each  other.  After correction, the  mean  re- 

sidual between CHANOS and bottle measurements was 0 ± 44 μmol kg−1 

with  n = 30 and r2 = 0.86  for all points. 

Possible  sources  of larger  uncertainty ( ± 44 μmol kg−1) compared 

to the reported [DIC] error  for CHANOS ( ± 5.0 μmol kg−1, Wang et al., 

2015)  may  include   the  following:  1)  [DIC]  data  processing   requires 

actual  measurement temperature. The CHANOS instrument was de- 

ployed  on the marsh  surface  outside  the tidal  creek  to avoid  impacting 

water  fluxes.  Consequently, the actual  measurement temperature by 

CHANOS might  not be equal  to in situ water  temperature as is the case 

for typical  in-water deployment. Air temperature was  measured by a 

ratios  using  the  1-m DEM with  the  Coupled  Ocean-Atmosphere-Wave- 

Sediment Transport (COAWST) model  (Warner  et al., 2010).  Flood and 

ebb corrections were each determined from the ratio  of water  fluxes  in 

the tidal creek to total water fluxes during flood or ebb conditions, 

respectively, and  then  applied  to the  measured ADVM water  fluxes  in 

the creek channel to derive  total tidal fluxes as a function  of water  level 

and flow  direction (Wang et al., 2016).  The hydrodynamic model  does 

not include  any mechanisms controlling carbon  cycling as its purpose is 

to correct  overland flow  in order  to obtain  high-frequency tidal  fluxes. 

We  also  included  a  groundwater  correction  to  the   DIC  fluxes. 

Groundwater can affect  DIC fluxes  in two ways, by contributing both  a 

water  flux component and a [DIC] component. Assuming the annual net 

tidal  flow  should  be zero,  the  mean  water  flow  over  the  study  period 

was shifted to match  to the net groundwater flow as described in further 

detail  in Wang et al. (2016). The annual net groundwater flow was 

estimated to be 0.00024 m3 s−1   or 7570 m3 yr−1   calculated using  the 

isohaline method from  MacCready  (2011) and  the  salt  balance appli- 

cation  from Ganju (2011). The correction shift to match  the mean  flow 

to the  net  groundwater flow  was 0.0017 m3 s−1  (5.36 × 104 m3 yr−1). 

This is only 3% of the mean  annual tidal flow magnitude (0.057 m3 s−1 

or 1.8 × 106 m3 yr−1), suggesting  that groundwater flow is only a small 

fraction of net tidal  water  flux  at this site. 

Finally,  total  tidal  water  flux  (Q)  was  used  in  combination with 

[DIC] concentrations to calculate instantaneous DIC flux  (FDIC): 

thermistor  near   the   measurement  cell,  and   it  was   treated  as  the 
FDIC  = [DIC] ∗Q (2) 

CHANOS measurement temperature. The actual  measurement tem- 

perature is likely  between in situ water  temperature and  air  tempera- 

ture.  Many factors  contributed to this  temperature difference, such  as 

time  of day,  season,  or weather conditions. Every  degree  Celsius  dif- 

ference   in  temperature  would   result   in   a  difference  in   [DIC]   of 

7–9 μmol kg−1.   The   average  temperature  difference  between  the 

CHANOS air  temperature and  YSI water   temperature was  ~4.5 °C, 

which  would  result  in a [DIC] offset  of 30–40 μmol kg−1. Although  the 

actual  measurement temperature was  likely  in between the  CHANOS 

We assume  that  the [DIC] measured at the tidal  creek sampling  site 

is representative of the  [DIC]  entering and  exiting  the  drainage area 

such that  FDIC  represents the total  DIC flux into and out of the drainage 

basin  at any given  moment. 

 
2.5.  Multiple linear regression DIC model 

 
A multiple linear   regression  (MLR) model   was  developed  using 

discrete [DIC] bottle  measurements and in situ YSI EXO2 parameters to 
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Table 1 

Coefficients and  associated standard errors used  for  the  DIC multiple linear 

r  egression. 

errors,    58 μmol kg−1     and   44 μmol kg−1     were   used   for   MLR  and 

CHANOS uncertainty, respectively. To estimate error  in the calculation 

of FDIC,  uncertainty was first  added  to base  fluxes  based  on the  water 

Intercept     Day’  Sal. 

(PSS- 

78) 

DO (% 

saturation) 

ORP 

(mV) 

n  R
2  

RMSE flow  measurement uncertainty from  the  ADVM at  5%.  Then,  we  as- 

sumed  random errors  centered at 25% for the flood  and ebb equations 

for  the  overland corrected fluxes  and  a random error  with  the  same 

magnitude as the groundwater correction (0.0017 m3 s−1) was added  to 
DIC  

(μm- 

ol kg
-
 

1
)
 

557 ± 58     73.2 

± 9- 

.9 

57.7 

± 2.- 

6 

−3.5 ± 0.3      −0.5 

± 0.1 

104      0.91    58 
corrected fluxes,  such that  the total  uncertainty included error  from 

measured base  water  fluxes  as well  as the  overland and  groundwater 

corrections to the  water  fluxes. 

 
 

estimate  high-frequency [DIC]  concentrations similar  to  the  method 

used in Wang et al. (2016) at the same location. Data used for the MLR 

covered  the  time  period  from  April to December  2015  when  discrete 

bottle  and YSI EXO2 measurements were taken.  The chosen  parameters 

to  characterize [DIC]  were  Day’,  salinity  (S), dissolved  oxygen  (DO), 

and  oxidation-reduction potential (ORP) resulting in the  following 

equation to predict [DIC]: 

3.  Results and discussion 

 
3.1.  High-frequency time series CHANOS [DIC] measurements 

 
Our conceptual model  is that  [DIC] in the  tidal  creek  is mainly  af- 

fected by biogeochemical cycling in the marsh  and the creek water,  and 

mixing  between water  sources  including estuary, marsh  drainage, and 

fresh   groundwater.  High-frequency MLR and   CHANOS [DIC]  mea- 

[DIC](umol kg−1) = k + a (Day′) + b (S) + c (pH ) + d (ORP) (3) surements captured the  combined effect  of these  contributing factors. 

The CHANOS was deployed in July  7 – August 11 and  November  30 – 

where  Day  = sin  
2πJday    

, and  Jday  is Julian Day, a value  between 1 
365 

and 365. The Day’ term accounts for seasonal  cycling, where  January is 

treated  similarly   to  December   and   February  (Lefevre  et  al.,  2005; 

Friedrich and  Oschlies,  2009;  Signorini  et  al.,  2013).  The [DIC]  MLR 

coefficients (Table  1) were  optimized for the  highest  correlation  coef- 

ficient (R2) and  lowest  root  mean  square   error  (RMSE).  Parameters 

were  chosen  based  on data  availability, data  quality, and  goodness  of 

fit. Salinity characterizes mixing effects  of the estuary and marsh  water 

on [DIC]. DO and  ORP represent the  effects  of aerobic  and  anaerobic 

respiration processes  that  occur in the marsh  sediments and water.  The 

MLR was  able  to  capture [DIC]  variability at  91%  with  an  RMSE of 

58 μmol kg−1. 

 
2.6.  Mean tide calculations 

 
High-frequency time-series measurements allowed  for evaluation of 

mean  characteristics of a tidal  cycle for each  of the  two  measurement 

periods   by  CHANOS,  July–August   and   December   2015.   That   data 

treatment reveals  representative features within  a tidal  cycle and mean 

seasonal  differences, and  the  ability  of different sampling  strategies to 

capture  a  ‘representative’  mean   tidal   cycle  for  flux   estimates  (see 

Section  3.6).  A mean  tidal  cycle  over  ~12.42 h  for  each  period  was 

constructed based  on  high-frequency CHANOS data.  Individual tidal 

cycles  were  first  divided   into  15-minute intervals (the  frequency  of 

time-series measurements for [DIC])  with  the  starting point  from  the 

time  of lowest  water  level (low tide).  Measured parameters, estimated 

DIC fluxes,  and water  fluxes  were then  binned  into 15-minute intervals 

over  each  tidal  cycle,  and  then  each  bin  was averaged across  all tides 

within  each of the two periods  to create  a July – August and December 

representative mean  tide. 

 
2.7.  Error analysis for DIC flux estimates 

 
Uncertainty in DIC flux  estimates was  assessed  using  Monte  Carlo 

simulations with  the maximum uncertainty possible.  A Monte Carlo 

simulation was run for the MLR [DIC] by adding  a random error  to each 

value  of the  input  parameters based  on their  respective uncertainties, 

where  a 5% error  was assumed for Day (seasonal variability), and other 

uncertainties were  from  the  YSI EXO2 manual, 1% for S, 1% for DO, 

and 20 mV for ORP. 1000 iterations were generated for each time point 

for MLR [DIC] with  random errors  and the average [DIC] and standard 

deviation was found  for each  point.  Averaged  over all time  points,  the 

standard deviation was < 1% of the average [DIC]. For CHANOS [DIC], 

the  overall  uncertainty was 44 μmol kg−1  based  on comparison to dis- 

crete  bottle  samples  or 2% using  the  Monte  Carlo analysis.  For [DIC] 

December  18,  2015  (Fig.  2).  In  July  – August  (Fig.  2a–b),  CHANOS 

[DIC] showed  a clear  tidal  signal.  At high  tide,  [DIC] was close to the 

estuarine end  member at  ~1800–1900 μmol kg−1.  [DIC]  at  low  tide 

reached values  of ~2200–2400 μmol kg−1, due  to the  addition of CO2 

from respiration of marsh  organic  carbon  in sediments and creek water. 

These concentrations were similar  to the ranges  of discrete [DIC] bottle 

samples  reported for  July  and  August  of  2012–2014  in  Wang  et  al. 

(2016). Water temperatures during  this period  had a daily cycle ranging 

from  20 to 30 °C (Fig. 2b).  Salinity  stayed  relatively constant between 

28  and  32 ppt  with  lowest  salinities at  low  tide.  Most  of  this  small 

salinity  variability may  be due  to the  limited  input  of groundwater at 

this site. Water level showed  a clear tidal  cycle with  one high-high tide 

and  one  low-low  tide  over  a day.  It ranged  from  −0.4  to +0.4 m at 

spring  tides  and − 0.1 to +0.25 m at neap  tides  when  the  tidal  range 

was smallest  (Fig. 2b). 

In contrast to  July  – August,  [DIC]  during  regular tidal  cycles  in 

December   (Fig.  2c)  showed   a  smaller   variation  range   of  ~100  to 

200 μmol kg−1  over a tidal  cycle compared to ~400 to 600 μmol kg−1 

seen in July  – August.  The smaller  tidal  [DIC] range  in November  30 – 

December  18 is likely a result  of reduced respiration in the  salt marsh 

and  tidal  creek.  However, the  difference between maximum and 

minimum concentrations        observed        in         this         period 

(~1200–2100 μmol kg−1)  were  similar  to the  range  in July  – August, 

since    the    period     of    December     4–9    had     the    lowest     [DIC] 

(~1200–1500 μmol kg−1) observed. This period  also corresponded to a 

drop  in salinity  from  ~30 to as low as 15 and  the  lowest  water  level, 

close to −0.4 m, in December  (Fig. 2c–d). 

In general, there  was much  more variability in salinity  in December 

compared to  July  – August,  with  a few  low  tides  where  salinity  was 

below 20 (Fig. 2d). There were more rain events in December  compared 

to July  – August  (Fig. 2); however, there  did  not  appear to be a con- 

sistent  effect  of rainfall  on [DIC]. Lower [DIC], more  variable salinity, 

and  lower  water  levels  likely  indicate influence from  groundwater in- 

puts.    Groundwater   [DIC]    at    this    site    range     from    1040    to 

2570 μmol kg−1   (Wang  et  al.,  2016).   Lower  sea  level  in  this  period 

compared to July  – August  (Fig. 2) might  increase  the  hydraulic gra- 

dient  from  land  to sea, driving  an increase  in the  rate  of groundwater 

discharge (Gonneea et al., 2013). 

 
3.2.  CHANOS DIC fluxes over two study periods 

 
Overland and groundwater corrected CHANOS FDIC  in July – August 

2015  showed  large  variability and a clear  tidal  cycle signal  (Fig. 3). In 

general, tidal  cycles of FDIC  were smaller  in December  2015.  There was 

a period  of time (December 4–9) when  FDIC  were  close to zero (Fig. 3). 
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Fig. 2. Time series  measurements of biogeochemical and environmental parameters at the Sage Lot Pond  marsh tidal  creek  from 2015. CHANOS measured DIC, MLR 

modeled DIC, discrete bottle DIC samples and  precipitation are  shown from  a)  July  – August  and  c) December. b)  and  d)  show  corresponding temperature  (°C), 

salinity (PSS), and  water level  (m)  referenced to NAVD88 in the  two  sampling periods. Rain  data  are  from  NOAA NERRS, n.d. 

 
This corresponds to low [DIC], salinity  decrease, and  low water  levels 

(Fig. 2). The low water  level decreased water  flow  during  this  period, 

which  may  result  in an  insignificant FDIC.  Larger  FDIC,  comparable in 

magnitude to  those  in  July  – August  of ~ −10  to  10 g C s−1,  only 

occurred from  December   15–18,  likely  driven  by  a  period   of  larger 

water  fluxes,  shown  by  the  water  level  ranging from  −0.2  to  0.4 m 

(Fig. 2). 

Mean  FDIC   base  flux  for  CHANOS was  −0.26 g C s−1   (1973 g C 

m−2 yr−1) for July  – August and − 0.17 g C s−1  (1284 g C m−2 yr−1) 

for December  (Table  2). The Monte  Carlo analysis  as described earlier 

resulted in an uncertainty of ~12% for the CHANOS base FDIC  over both 

periods  and ~47% uncertainty for final  corrected fluxes,  where  ~30% 

of the  uncertainty is due to errors  in the measured water  flow  and  the 

remainder due  to overland and  groundwater corrections. After correc- 

tions  for  overland flow  and  groundwater inputs,   the  mean  FDIC   rate 

based  on CHANOS data  was about  25% greater in July  7 – August  11 

compared to November  30 – December  18 (Table  2). In July  – August, 

the  overland flow  correction reduced the  mean  FDIC   significantly  by 

0.07 g C s−1  (558 g C m−2 yr−1) or ~28%. Similarly,  in December  the 

correction was 0.04 g C s−1  (260 g C m−2 yr−1) or ~20%. The overland 

correction in these  two periods  was generally in line with  that  of Wang 

et al. (2016). The groundwater water  flux correction decreased seaward 

export   by  ~0.03–0.04 g  C  s−1    in  both   months.  Due  to  infrequent 

sampling, groundwater [DIC] input  was unable  to be estimated at the 

same frequency to match  FDIC  in order to make corrections to FDIC. Such 

a   mismatch   in   temporal   resolution   might    introduce   additional 
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Fig. 3. Time series of DIC fluxes calculated using water fluxes and either CHANOS measured DIC or MLR estimated DIC in (a) July–August and (b) December. Positive 

values  indicate the  direction of flux is into  the  marsh and  negative flux values  indicate export to the  coast. 

 
 

uncertainty in the  groundwater correction. The contribution of [DIC] 

by  direct   groundwater  discharge accounted  for < 10%  of  the  total 

corrected annual flux  at SLP (Wang et al., 2016). 

The corrected mean  CHANOS FDIC  showed  an export  rate  of 1084 g C 

m−2 yr−1   (converted to  an  annual flux  rate  for  comparison) in  July  – 

August and 743 g C m−2 yr−1  in December  (Table 2). These 2015 exports 

are  higher, especially  in July  – August,  than  those  found  in Wang et al. 

(2016) using the MLR modeling method derived  from the data collected in 

2012–2014 (July – August export of 500–550 g C m−2 yr−1 and December 

export  of < 400 g C m−2 yr−1). Several possible  reasons  may explain  the 

differences of the  monthly mean  fluxes  between the  two  studies.  In this 

study,  CHANOS measurements only  covered  a portion of July  and  De- 

cember,  and  thus  the  derived monthly rate  may not be representative of 

full monthly means.  The monthly mean  DIC fluxes  estimated from Wang 

et al. (2016)  were  averaged over multiple months  from three  years.  It is 

unlikely  that  this difference in flux magnitude is due to differences in the 

methods since  this  study  demonstrates that  base  DIC fluxes  as  well  as 

overland and groundwater corrected mean  FDIC  calculated using MLR es- 

timated [DIC] are  comparable to those  estimated from the  CHANOS 

measurements, which  suggests  the  validity  of the  two methods (Table  2; 

see details  in the following  section). 

3.3.  Comparison of CHANOS and MLR [DIC] concentrations and 

corresponding fluxes 

 
To  verify  whether the  MLR method could  be  used  as  a  robust 

method to estimate DIC exports  from  the  marsh,  MLR derived  DIC 

concentrations and  fluxes  were  compared directly to  CHANOS mea- 

sured  [DIC] and derived  FDIC  for both  sampling  periods  (Figs. 4 and 5). 

In July  – August,  taking  a simple  mean  of the  residuals between MLR 

and  CHANOS [DIC] (MLR [DIC] – CHANOS [DIC]) at each  time  point 

resulted in an average difference of −23  ± 154  (one  standard devia- 

tion)   μmol  kg−1   (N = 2470).   Applying  the  Monte  Carlo  simulation 

method discussed  in section  2.7 by adding  random errors  to MLR and 

CHANOS [DIC] resulted in a similar  mean  [DIC] residual between MLR 

and CHANOS of −24  ± 49 μmol kg−1. For July – August, the residuals 

were  mostly  randomly distributed over  the  CHANOS [DIC] concentra- 

tion  range,  except  for several  points  at either  extreme, where  the  MLR 

overestimated at low CHANOS [DIC] and  the  MLR underestimated at 

high  CHANOS [DIC]  (Fig.  4a).  [DIC]  residuals > 500 μmol kg−1   also 

occurred at high  salinity  between 31 and  33 ppt (Fig. 4c), when  water 

flows were close to zero (Fig. 4e). Two large rain events  on July 24 and 

August  4 (Fig. 2a)  showed > 500 μmol kg−1  differences between MLR 

 
Table 2 

Mean CHANOS and  MLR estimated DIC fluxes (reported in g C s−1  and  converted to annual flux units  in g C m−2 yr−1  in parentheses) over the same time  periods in 

the  July–August and  December. Negative fluxes indicate export from  the  marsh. Number of days  covered refers  to total  amount of time  in days  when instantaneous 

CHANOS DIC flux was  available for a given  period. Missing  data  were  not  interpolated. 
 

Time  period 

 
 

 
  

CHANOS 

 
MLR 

 
CHANOS 

 
MLR 

 
CHANOS 

 
MLR 

 

July 7 to  August 11  (36  days) −0.26 −0.28 −0.19 −0.22 −0.14 −0.17 25.7 (71% of time period) 

 (−1973) (−2159) (−1415) (−1648) (−1084) (−1321)  
November 30  to  December 18 (19 days)    −0.17 

(−1284) 

−0.16 

(−1220) 

−0.13 

(−1023) 

−0.13 

(−958) 

−0.10 

(−743) 

−0.09 

(−679) 

10.8 (57% of time period) 
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Fig. 4. Residuals of DIC concentration and  DIC flux between MLR estimated and  CHANOS measured (or  derived) values  (MLR – CHANOS) against CHANOS DIC 

concentration (a and  b),  salinity (c and  d),  water flow (e and  f), and  water level  (g and  h) in July  – August  2015. 

 
and  CHANOS [DIC], where  CHANOS measured lower  [DIC]. The MLR 

model for [DIC] was established using discrete bottle  samples  that were 

collected  during  periods  mostly  without rain.  Therefore, the  effect  of 

rain  on [DIC] concentrations might  not  be fully captured by the  MLR, 

which  may result  in the  larger  residuals. However, the  patterns of dif- 

ferences  in [DIC] did not transfer to the residuals between CHANOS and 

MLR FDIC   (Fig. 4b,  d, f, and  h),  mostly  because  water  flow  was  small 

during   periods  near  slack  tide  when  [DIC]  discrepancies were  large 

(Fig.  4e).  The  FDIC   residuals increased with  water  level  and  absolute 

water  flux  (Fig. 4f and  h). This resulted from  the  fact that  the  largest 

absolute fluxes  (both  positive  and  negative) occurred near  high  tide 

(Fig.  4f  and   h).  If  there   is  a  [DIC]  difference  between  MLR and 

CHANOS, the difference would be magnified after multiplying [DIC] by 

a larger  water  flux.  Similar  to CHANOS FDIC   error,  the  MLR FDIC  error 

analysis  resulted in a 16% uncertainty for MLR base  fluxes,  which  in- 

creased  to 46% after  adding  uncertainty from the  water  flux  measure- 

ment  uncertainty and  corrections. The mean  difference between MLR 

and  CHANOS FDIC   was  −0.03  ± 0.20  (one  standard deviation) g C 

s
−1

, which was about  22% of the total corrected CHANOS FDIC  in July – 

August (Table  2). Results from the Monte  Carlo error  analysis  for MLR 

and CHANOS FDIC  showed  a mean difference in FDIC  of −0.03  ± 0.04 g 

C s−1  (1σ, including all uncertainties), or ~22% of the corrected 

CHANOS FDIC   for  this  period. As such,  on  average, the  two  methods 

agree  reasonably well. 

In December, the  mean  [DIC] residual between MLR and  CHANOS 

values   was   −3  ± 172 μmol kg−1     or − 3  ± 48 μmol kg−1     using   a 

Monte Carlo simulation (N = 1037).  A few large discrepancies in [DIC] 

residuals were mostly associated with low salinity  (~15) (Fig. 5c) likely 

due to groundwater inputs  (Figs. 2c and  5a).  Rain events  in December 

corresponded to higher  CHANOS [DIC] than  MLR-estimated  [DIC], in 

contrast to July  – August.  The [DIC] residuals in December  were  also 

greater at  high  salinity  and  near-zero water  flows  (Fig. 5c and  e),  si- 

milar to July – August. In contrast to July–August, the residuals of FDIC 

in December  were  more  scattered at high  salinity  (Fig. 5d).  The mean 

residual between MLR and CHANOS FDIC  was −0.008  ± 0.15 g C s−1, 

about  9% of the CHANOS FDIC  during  this period  (Table 2). Monte Carlo 

analysis  gave a mean  residual of −0.013  ± 0.032 g C s−1, about  13% 

of the CHANOS FDIC, showing  that  there  is agreement between the two 

methods of estimating fluxes  for this period. 

In summary, the  MLR [DIC] model  is reasonably robust, except  for 
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Fig. 5. Residuals of DIC concentration and  DIC flux between MLR estimated and  CHANOS measured (or  derived) values  (MLR – CHANOS) against CHANOS DIC 

concentration (a and  b),  salinity (c and  d),  water flow (e and  f), and  water level  (g and  h) in December 2015. 

 
near  slack tide and periods  of episodic  events  such as rain,  which  were 

not captured well by the MLR model.  Nevertheless, such discrepancies 

did  not  greatly  affect  the  estimates of net  mean  FDIC   in the  two  study 

periods,  where  the  mean  difference between CHANOS and  MLR fluxes 

were < 25% of the CHANOS corrected flux for both periods.  The larger 

uncertainty in CHANOS [DIC] measurements did not significantly affect 

FDIC   estimates due  to  randomness of the  errors,  which  affected both 

positive  and  negative fluxes  that  partially cancel  each  other,  as shown 

in this and the  previous study  at this site (Wang et al., 2016).  Overall, 

using  the  MLR method to  estimate FDIC   is a  reasonable approach to 

quantify lateral   transport of  carbon   from  this  salt  marsh  location  if 

direct,  high-frequency DIC measurements are not available. 

 
3.4.  Mean tidal cycles and variabilities of individual tides 

 
[DIC] over the  mean  tidal  cycle in July  – August was much  higher 

than  that  in December  (Fig. 6a),  at both  high and low tide,  supporting 

the notion  that the rate of DIC generation is greater during  the summer, 

both  in the  estuary and  in the  marsh.  The mean  [DIC] in the  summer 

had  a range  of 2000 μmol kg−1  at incoming tide  to 2200 μmol kg−1  at 

ebbing  tide,  while  December  showed  limited  variation in mean  [DIC] 

over  a  tidal  cycle,  varying   between 1750  and  1800 μmol kg−1.  This 

result  is qualitatively consistent with previous studies  based on ob- 

servations from limited  individual tides at different seasons,  suggesting 

strong seasonality in marsh  production and respiration that  are directly 

related to  DIC production  in  marshes   (e.g.,  Raymond   et  al.,  2000; 

Neubauer and  Anderson,   2003;   Wang  and  Cai,  2004;   Wang  et  al., 

2016).  However, the  analysis  also showed  that  the  variability (shaded 

area  in Fig. 6a)  in [DIC] within  each  period  could  be as large  as the 

mean   variability between  the  two  periods   at  ~200–250 μmol kg−1. 

Thus, it is likely that sampling  a few individual tides in multiple seasons 

may  not  be representative of mean  seasonal  differences in such  a dy- 

namic  environment. 

There  was  a typical  difference of ~0.4 m between mean  high  and 

low tide  water  levels (Fig. 6b), where  July  – August had  a higher  tidal 

range  than  December  on average. Correspondingly, July  – August had 

larger  mean  water  fluxes  (Fig. 6c), and  those  larger  water  fluxes  were 

partially responsible for  larger  mean  FDIC   in  July  – August  (Fig.  6d). 

Instantaneous, CHANOS-derived FDIC  over the mean tidal cycle in July – 

August ranged  from −4 to 4 g C s−1  compared to only −2 to 2 g C s−1
 

in December  (Fig. 6d). The differences in water  flux, in addition to 

differences in  [DIC]  concentration over  the  mean  tidal  cycles  during 
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Table 3 

Probabilities for  different sampling protocols to  capture the  net  DIC flux for 

each  individual tide within 25% of the CHANOS value  (where the CHANOS flux 

is treated as the  reference or  ‘true’  flux) during the  two  study  periods. For  a 

given  sampling protocol, the  probability is calculated as the  percentage of in- 

dividual tides   where the   DIC  flux  estimated from   that   particular  sampling 

protocol was within 25% of the  net  CHANOS DIC flux over  that  tidal  cycle.  All 

sampling protocols are centered at high  tide to attempt to balance the incoming 

and outgoing water fluxes whereas starting at low tide would  produce a positive 

bias  due  to the  variability of the  length of each  tidal  cycle. 
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⁎  12 h was used to represent a full tidal  cycle while  the actual tidal  period for 

each  individual tide  varied between 10.25 and  13.5 h, where tidal  cycles  were 

delineated by time  of low tide  to the  following low tide. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Mean DIC concentration (a), water level (b), water flux (c), and DIC flux 

(d) over  a binned tidal  cycle  in July  – August  2015  (blue) and  December 2015 

(red). Shaded blue  and  red areas  show  the corresponding standard deviation of 

the  mean values  and  vertical lines  designate mean time  for high  tide  for each 

period. The data  in each  period from Fig. 2 are binned every  15 min to produce 

means and  standard deviation for each  time  interval over  the  ~12.42 h mean 

tide  cycle.  (For  interpretation of the  references to colour in this  figure legend, 

the  reader is referred to the  web  version of this  article.) 

 
these   two  periods,   resulted  in  the  overall   difference  in  mean   FDIC 

(−0.20  vs. −0.15 g  C s−1;  Table  2).  Again,  variability within   each 

measurement period  in terms  of water  level,  water  flux,  and  DIC flux 

are comparable to the mean  variability between the July  – August and 

December  periods.  The analysis  also shows that  on average the largest 

DIC fluxes  (in absolute values)  occur within  ~2 h before  and after high 

tide  when  water  fluxes  have  peaked  (Fig. 6c–d). 

 
3.5.  Effectiveness of sampling strategies to capture representative tidal cycle 

fluxes 

 
In previous salt  marsh  studies,  carbon  fluxes  were  commonly de- 

rived using discrete samples  collected  over one or a few individual tidal 

cycles  with  a  fixed  sampling   interval (e.g., hourly), along  with  tidal 

prism  estimates of water  exchange. These individual flux  estimates for 

specific  tidal cycles were then extrapolated to a longer time period  (e.g., 

a month  or a season)  to evaluate the  net  flux  for that  period. Several 

measurements in  this  study  can  help  to  shed  light  on  the  validity  of 

these  assumptions. 

To investigate the first  assumption, that  the tidal cycle is sampled  at 

sufficiently high frequency with bottle  samples  to capture the true flux, 

four  sampling  strategies were  assessed  to determine the  probability of 

obtaining a flux  within  25%  of the  measured (CHANOS) DIC flux  at 

each  individual tide  in  both  periods.  Herein,  CHANOS DIC flux  was 

treated as the representative or actual  flux. Each tide in each period  was 

assessed  by these  four strategies: Case 1) 12-h sampling  with  a 15-min 

interval, Case  2)  8-h  sampling   with  a  15-min  interval, Case  3)  12-h 

sampling  with  a 1-h  interval, and  Case 4)  12-h  sampling  with  a 2-h 

interval (Table  3). If sampling  occurs  at 15-min  intervals over  a com- 

plete  tidal  cycle (~12 h), in 88–92%  of individual tides  for the  July  – 

August  and  December  time  periods  resulting flux  estimates would  be 

within  25% of their  corresponding CHANOS fluxes  (Table 3). Although 

the Case 1 sampling  strategy mirrors  the one employed by CHANOS, it 

does not capture the  real  flux  100%  of the  time.  This is due  in part  to 

variability in  tidal  cycle  periods,   which  range  from  10.25  to  13.5 h 

during  the study, while a fixed 12-h sampling  was used for this analysis. 

If the  sampling  duration for  each  tide  is reduced to  8 h with  15-min 

intervals, only 22–33%  of the  tides  have  their  estimated fluxes  within 

25%  of the  actual  fluxes  measured. Since  the  sampling  is centered at 

high tide, this result suggests that sampling  a few hours right before and 

after  a low  tide  when  water  fluxes  are  lowest  is just  as important as 

sampling  around high  tide,  when  water  fluxes  are  highest. At hourly 

sampling  over 12 h, only 27–36% of the tides  would  yield a mean  FDIC 

within  25% of the  actual  CHANOS mean  flux.  The probability of cap- 

turing  a representative flux  drops  even  further to 15–17%  if the  sam- 

pling  interval doubles  to  every  two  hours  over  each  tidal  cycle.  This 

analysis  thus demonstrates that  coarse sampling  intervals and sampling 

over a shortened tidal  cycle will result  in inaccurate flux estimates and 

highlights the  need  for  high-frequency measurements over  the  entire 

tidal  cycle to more  accurately determine carbon  fluxes  from  salt  mar- 

shes. 

To assess the validity  of the second  assumption, whether or not the 

flux  derived  from an individual tide  is representative of the  mean  flux 

over an extended period, we conducted a frequency analysis  of all mean 

FDIC  over individual tidal cycles for the two sampling  periods  (Fig. 7). In 
concerns  arise from the assumptions made by this approach. First, there 

has been no analysis  of the sampling  frequency required to capture the July  – August,  the  largest  portion (32%)  of individual mean  F 
−1

 

 
DIC oc- 

entire  flux  over  a tidal  cycle.  Secondly,  the  variability in fluxes  from
 curred  in the range of −0.1–0 g C s (small net export). The histogram 

 

multiple tidal cycles across months  or seasons has not been constrained 

to determine if a tidal  cycle  could  be representative of a longer  time 

period.   The    extended    time-scale   and     high-frequency    of    the 

flux  distribution is centered at this  range,  following  an approximately 

normal  distribution. The tides  in this range  can be called  ‘typical’  tidal 

cycles,  when  there  is  statistically the  highest   likelihood that  a  tidal 
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Fig.  7. Histogram distributions  of  mean  CHANOS 

DIC fluxes over individual tides  during the two study 

periods a) July–August and b) December. The overall 

mean DIC fluxes over  the  two  periods are  indicated 

in red.  (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web 

version of this  article.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cycle  with  this  mean  flux  would  be sampled  and  extrapolated for the 

entire  extended time  period. However, the  actual  mean  flux  over  the 

period  was −0.14 g C s−1, greater in export  magnitude than  the center 

of the  −0.1–0 g  C s−1  range.  This mismatch was  primarily driven  by 

the fact that about  15% of the tides had much larger  mean export  fluxes 

(< −0.5 g C s−1) (Fig. 7). These  large  fluxes  may  result  from  an epi- 

sodic  event  such  as a very large  tide  or rain  that  enhances flushing of 

the  marsh   subsurface. Although   CHANOS captured several   episodic 

large flux events,  there  were some measurement gaps in which  the MLR 

approach indicated that  large  fluxes  occurred (e.g.,  following  a  rain 

event   on  December   15;  Figs.  2d  and  3b).  As such,  periodic   bottle 

sampling  would  almost  certainly result  in  failure  to  capture episodic 

large  flux  events,  thus  causing  an underestimate of the  mean  DIC flux 

over the  entire  period. 

We saw a similar  pattern in December,  where  about  31% and 35% of 

the tides had mean fluxes in the range of −0.1–0 g C s−1  and 0 − +0.1 g 

C s−1,  respectively. However,  because  of a few large  export  fluxes,  the 

overall  mean  flux  over  the  period  was  −0.10 g C s−1,  which  was  sig- 

nificantly higher  in export magnitude than the center of the flux frequency 

distribution in December (Fig. 7). In summary, the majority of tides have a 

small  mean  tidal  flux,  typically  sea-ward. However, a  small  portion of 

large  flux  events  can  have  a  disproportionately large  influence on  the 

mean  flux over a longer  period. As such, it is unlikely  that  sampling  over 

one  or a few tidal  cycles will capture a representative mean  flux  for an 

extended period. It is likely then  that  infrequent, low frequency sampling 

of tidal  fluxes  from salt marshes would  not capture the  true  flux  and,  in 

fact,  the  failure  to capture large,  episodic  events  would  result  in under- 

estimating fluxes  on longer  time  scales (e.g., monthly, seasonally and an- 

nually). This conclusion may support and provide an explanation for the 

high rate of DIC export  (~414 gC m−2 yr−1) estimated in the Wang et al. 

(2016) study,  that  was about  twice the rate estimated in previous studies. 

Those previous studies  were based  on lower  frequency and  shorter dura- 

tion measurements, which we have shown here are likely to underestimate 

total annual flux. High-frequency measurements over the period of interest 

are thus necessary in order  to accurately measure lateral carbon  fluxes  in 

tidal  marshes. 

4.  Conclusions 

 
High-frequency in situ measurements of [DIC] and water  flux  allow 

the  most  direct  and  accurate way to quantify lateral  DIC exports  from 

salt marshes  via tidal  exchange. They also reveal  the intricacies of such 

exports  over tidal  cycles at different periods  over the  year.  The results 

indicate that   tidally-driven water   fluxes   are  fundamental drivers   of 

marsh  carbon  export.  Additionally, episodic  events  (e.g., rain  and large 

tides)  and  groundwater inputs  can  leave  significant imprints on  both 

DIC concentrations and fluxes at times. Direct observations confirm that 

there  are  distinct  differences in [DIC], water  fluxes,  and  FDIC   in mean 

tidal  cycles in different seasons.  However, the variability of FDIC  across 

tidal  cycles  within  a  season  was  comparable to  the  mean  variability 

between seasons.  The  effectiveness or  probability of  accurately  cap- 

turing  the  net  FDIC   for a single  tidal  cycle  decreases quickly  with  de- 

creased  sampling  frequency from every 15 min up to 2 hourly  sampling. 

Sampling  incomplete tidal  cycles  also  significantly decreases the  like- 

lihood  of capturing accurate DIC fluxes.  A small  number of tides  with 

high  net  flux  accounted for a disproportionately large  fraction of the 

mean  seaward FDIC, while  a large  portion of tides  only show small DIC 

exports  from the  marsh.  Insufficient sampling  of these  ‘pulsing’  events 

can directly cause underestimates of lateral  carbon  export  from tidal 

marshes. These results highlight the need for long-term, high-frequency 

measurements and/or  modeling to  quantify tidal  exports   of  carbon 

species  from salt marshes. 

The  study  concludes that  using  the  MLR method to  derive  high- 

frequency [DIC] and thus FDIC  is a reasonably robust  approach to define 

DIC export  fluxes  from the salt marsh  in this study  and offers  guidance 

to  expand  this  approach to  other  coastal  wetlands. There  were  times 

when   the  MLR model   did  not  show  good  agreement with   directly 

measured [DIC],  especially  during  episodic  events.  During  these  per- 

iods,  the  MLR model  showed   limited   capability, likely  because   the 

discrete bottle  samples  used  to establish the  MLR model  did  not  fully 

cover  such  events.  However, net  FDIC   were  in general  less sensitive  to 

uncertainty in [DIC], as random errors  tended to cancel  out  when  es- 

timating net  fluxes  by integrating positive  and  negative instantaneous 
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fluxes.  In addition, much  of the  discrepancy between the  MLR and  di- 

rect [DIC] measurements occurred near slack tide when water  flow was 

close to zero. Thus, there  were  limited  effects  on the calculation of net 

DIC fluxes. 

Overall,  this study  demonstrates that  highly  variable lateral  export 

of carbon  species from tidal  marshes  can be quantified in a robust  way, 

through both  direct,  high-frequency measurements or  high-frequency 

MLR modeling, thus  improving our ability  to study  the carbon  budgets 

in coastal  wetlands and  coastal  oceans. 
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