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ABSTRACT

Gaining reliable arbitrary code execution through the exploita-
tion of memory corruption vulnerabilities is becoming increasingly
more difficult in the face of modern exploit mitigations. Facing this
challenge, adversaries have started shifting their attention to data
leakage attacks, which can lead to equally damaging outcomes,
such as the disclosure of private keys or other sensitive data.

In this work, we present a compiler-level defense against data
leakage attacks for user-space applications. Our approach strikes
a balance between the manual effort required to protect sensitive
application data, and the performance overhead of achieving strong
data confidentiality. To that end, we require developers to simply
annotate those variables holding sensitive data, after which our
framework automatically transforms only the fraction of the entire
program code that is related to sensitive data operations. We imple-
mented this approach by extending the LLVM compiler, and used
it to protect memory-resident private keys in the MbedTLS server,
ssh-agent, and a Libsodium-based file signing program, as well as
user passwords for Lighttpd and Memcached. Our results demon-
strate the feasibility and practicality of our technique: a modest
runtime overhead (e.g., 13% throughput reduction for MbedTLS)
that is on par with, or better than, existing state-of-the-art memory
safety approaches for selective data protection.
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1 INTRODUCTION

The continuous deployment of exploit mitigation technologies has
made vulnerability exploitation much more challenging than it
was only a decade ago [87]. It is all too telling that contestants of
the first Pwn20Own competition were individual researchers who
discovered vulnerabilities and wrote reliable exploits in a matter
of hours [37], while the winners of recent contests comprised sev-
eral teams, many of whom worked for months to develop a single
exploit [38]. Besides the widespread adoption of non-executable
memory pages [71] and address space layout randomization [70],
the principle of least privilege is better enforced in user accounts
and system services, compilers apply more protections against
buffer overflows, sandboxing is increasingly used in applications
that render untrusted input, and control flow integrity [10] and
other exploit mitigations have become commonplace in commodity
operating systems [1, 4, 31, 69, 87]. Additionally, realizing the impor-
tance of (and demand for) efficient exploit mitigations, CPU vendors
have begun providing primitives that facilitate the development of
lightweight and effective mitigations [19].

That said, the increasing complexity of reliably achieving ar-
bitrary code execution, along with high-profile incidents of data
leakage vulnerabilities (such as Heartbleed [3]), has prompted a
renewed interest into data-only attacks [35, 60, 74, 81], which were
first introduced more than a decade ago [29]. For instance, armed
with an arbitrary memory access capability, adversaries can simply
focus on leaking a user’s HTTP session cookies for cloud storage,
email, e-commerce, and other online services [74].

With the emergence of data-only attacks, protecting the data of
a process, in addition to its code, is of paramount importance. To
date, memory safety [12, 13, 27, 43, 64, 65], data flow integrity [28],
data space randomization [24], privilege separation [26, 73], en-
claves [42], and sandboxing [34, 45, 86, 91] have been proposed as
solutions for protecting in-process data from corruption or illegal
access. In practice, however, their deployment for the protection of
end-user applications has been limited, due to either their high run-
time overhead, or the significant code restructuring effort required.
To complicate matters even more, the recent spate of microarchitec-
tural attacks that leak secrets via side channels (e.g., Spectre [44],
RIDL [84], and Fallout [59]) has aptly shown that existing in-process
memory isolation technologies are not adequate for preventing sen-
sitive data leakage.

In this paper, we propose a practical approach for countering
data leakage attacks against user-space applications. The core idea
stems from the observation that, depending on the application, some
data is more critical than others. By focusing only on a subset of
data, we can achieve a low-enough runtime overhead by amortizing
the cost of the protection mechanism, while offering strong data
confidentiality. Sensitive data is always kept encrypted in memory,
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and is decrypted only while being loaded into registers for carrying
out computations. Similarly, the secret key state used to encrypt
and decrypt sensitive data is always stored only in registers, and in
particular in the AVX2 [9] registers that have been available since
2013 (introduced in the Intel Haswell architecture). Consequently,
even if attackers can repeatedly read arbitrary memory (e.g., by
exercising an arbitrary read primitive through malicious JavaScript
code), any leaked sensitive data will always be encrypted.

We implemented our solution on top of the LLVM compiler, and
rely on whole-program pointer and data flow analysis at the LLVM-
IR level to pinpoint all the code points that access sensitive data, and
instrument them appropriately. A core design goal is to minimize
the effort needed to protect an application, by requiring developers
to just annotate only any initial sensitive data or data sources (e.g.,
cryptographic keys, passwords, HTTP session cookies) without the
need for further source code modifications. Sensitive data is often
not heavily propagated, thus limiting the performance overhead
associated with cryptographic operations. As such, we can protect
sensitive data with limited program instrumentation.

We empirically assess the practicality of our technique using a
set of microbenchmarks and real applications. Our results show
that the runtime overhead is modest (e.g., 13% throughput reduc-
tion for the MbedTLS SSL server when protecting its private key),
achieving performance that is on par with or better than existing
state-of-the-art memory safety approaches for selective data pro-
tection [27]. An additional benefit compared to existing memory
safety and data isolation approaches is that it offers protection
against recent microarchitectural attacks that rely on speculative
execution [44], as any leaked data always remain encrypted. At the
same time, our work highlights important challenges in the front
of whole-program fine-grained pointer analysis that leave room for
significant improvement once resolved.

Our work makes the following main contributions:

e We propose a compiler-level defense against sensitive data leak-
age attacks for user-space applications. Using whole-program
pointer and data flow analysis, our technique instruments only
the fraction of the program code needed to keep sensitive data
always encrypted in memory.

e Animplementation on top of LLVM that requires only minimal
developer intervention in the form of simple code annotations
to protect the confidentiality of sensitive application data.

e An in-depth assessment that shows that we can achieve our
goals with modest runtime overhead.

e An evaluation against a publicly available Spectre proof-of-
concept attack, which demonstrates how our approach protects
sensitive data against microarchitectural side-channel attacks.

2 BACKGROUND AND MOTIVATION

After a decade-long hiatus since the introduction of data-only at-
tacks [29], several advancements that demonstrate their power have
been brought to light [35, 40, 41, 60, 61, 74, 81]. These works take
advantage of memory disclosure vulnerabilities to access arbitrary
memory and subsequently provide adversaries with powerful ca-
pabilities [15, 22, 46, 48, 52, 77]. Heartbleed [3] is a recent example
that demonstrates how the ability to read arbitrary memory can be
used to leak sensitive application data, such as private keys.

To protect sensitive in-memory data from leakage, it is thus im-
portant to consider the adversarial capabilities enabled by memory
disclosure vulnerabilities, especially when combined with scripting
support [74]. Unfortunately, application sandboxing protections
(or sandboxing policies enforced through SFI [86], XFI [34], or data
sandboxing [91]) cannot protect against these attacks, as data leak-
age still occurs within the enforced boundaries. On the other hand,
stricter data isolation policies, such as data flow integrity (DFI) [28]
do protect against data-only attacks, but incur a prohibitively high
runtime overhead (e.g., 104% for the SPEC benchmarks).

Another mitigation against data-only attacks is to change the rep-
resentation of in-memory data, by always keeping it transformed
and restoring its original representation only when it needs to take
part in some computation. As an initial exploration of this idea,
Bhatkar and Sekar [24] proposed an approach for XOR-ing data
objects with a random per-object “key” that is kept alongside each
object in memory. Under the stronger disclosure-aided exploitation
threat model, however, this form of data space randomization does
not offer adequate protection, as the key cannot be kept secret.
Moreover, the runtime overhead—due to the necessity of XOR op-
erations before and after each and every memory access to each
and every object—is prohibitively high.

In this work, we revisit the idea of data space randomization,
but with the goal of achieving stronger protection even under arbi-
trary memory read capabilities. As simple XOR-ing can be defeated
by comparing known data with its transformed version, we use
stronger encryption without introducing substantial computational
overhead [58]. To that end, we leverage the AES-NI instruction set
extensions for hardware-accelerated AES computations, along with
the AVX2 [9] registers for storing the expanded round keys for each
AES operation.

In comparison to existing memory safety and data flow integrity
approaches, which instrument the entire program to prevent ar-
bitrary access to the protected data, our sensitive data protection
approach instruments only the fraction of instructions involved
in sensitive data flows and operations, and ignores the rest of the
memory-related instructions—these may still illegally access the
protected data, but only in its encrypted form.

In comparison to existing approaches based on privilege sepa-
ration [26, 73], hardware-based protection [36, 62, 85] or enclave
solutions like SGX [17, 25, 53, 76, 82], our approach does not require
any code refactoring or rewriting, besides a simple annotation of
existing data variables or data sources.

3 THREAT MODEL

We consider the broad class of memory disclosure or corruption
vulnerabilities that give adversaries the capability to read (i.e., leak)
arbitrary user-space memory. We assume that due to the nature of
the vulnerability (e.g., as was the case with Heartbleed [3]), or due
to the deployment of exploit mitigation mechanisms, immediate
arbitrary code execution is not possible, and thus the adversary is
constrained in mounting some form of data-leakage attack. The
attack may be facilitated by the execution of malicious script code
that leverages the disclosure vulnerability to repeatedly access arbi-
trary memory [74]. Because adversaries do not have arbitrary code



execution capabilities, however, they cannot disclose the sensitive
data and the expanded round keys stored in registers.

Although the end goal of some advanced data-only attacks is to
modify configuration or control data [35, 61], our approach is tai-
lored to defending against data leakage attacks, which still comprise
an important sub-class of data-only attacks [3, 74]. In this work, we
focus on maintaining the confidentiality of sensitive data, but the
integrity of such data may not be fully protected. Specifically, the
encryption scheme we utilize offers some level of protection against
data modification attacks, but cannot prevent certain attacks that
rely on replacing data with other already encrypted values. We
discuss in detail such attacks, along with the challenges of fully
guaranteeing data integrity, in Section 7.

We focus on the protection of user-space applications, and thus
assume that adversaries do not have access to any kernel-level
code or data. Nonetheless, we assume that the attacker can perform
cold boot attacks. Because all sensitive data is present in RAM
in encrypted form, and the secret round keys are present only
in registers, the attacker can not recover the plaintext by simply
reading the physical memory.

With respect to the recent wave of CPU side channel attacks
that allow arbitrary memory access from user space, our solution
does not protect against Meltdown [54], as protecting kernel at-
tacks is out of scope. However, it does offer effective protection
against Spectre [44] and similar microarchitectural attacks based
on speculative execution. Spectre attacks leak arbitrary data that
has been loaded into the cache within the scope of a user-space
process. Thus, these attacks will access protected data only in its
AES-encrypted form.

4 DESIGN

The proposed approach aims to strike a balance between the manual
effort required to enable the protection of sensitive application data,
and the performance overhead of the data protection mechanism
itself. Existing application-level isolation technologies such as priv-
ilege separation [26, 73], enclaves [42], and sandboxing [34, 86, 91],
have a relatively low performance impact, but require an immense
code refactoring effort. As part of this process, one must identify
and move the sensitive data (and all associated critical-path code)
into the protected domain, and implement appropriate interfaces
with the rest of the application code.

By contrast, we merely require developers to annotate sensi-
tive data in the source code, without requiring any further code
modifications. Before any computation is performed, the data is
first decrypted and stored in a register, which is the only location
in which plaintext sensitive data is ever exposed. A decryption
“boundary” is defined at the system call level, to allow for seamless
interaction with the OS or inter-process communication by supply-
ing decrypted data to domains outside the reach of an attacker. To
achieve these capabilities, several challenges must be addressed:

(1) The whole code of the process must be considered, including
the main application and all its libraries.

(2) All pointers that may reference a sensitive object must be iden-
tified and handled accordingly.

(3) Data marked as sensitive may propagate to other (non-marked)
variables and objects.

(4) The unit of encryption for AES is 128 bits, but sensitive data
objects may be smaller or larger than that.

Our design is centered around addressing the above challenges. In
the rest of this section, we describe the different types of analysis
and code transformation required for protecting a given application.

4.1 Whole-Program Analysis

To ensure that sensitive values are never left decrypted in memory,
our approach must analyze and transform the whole program code,
including any external libraries, because sensitive data might be
passed as arguments to functions in these external libraries. This re-
quires the source code of the application and all dependent libraries
to be available for analysis and transformation.

Performing whole-program analysis at the source code level is
difficult, as merging the source code of different libraries may result
in clashes due to identically named static functions and variables.
To avoid these issues, we opt for merging the code object files after
LLVM transforms them to their intermediate representation (IR),
at which point any identically named static functions are automati-
cally renamed. Moreover, operating at the IR level gives us access
to LLVM’s sophisticated analysis and transformation capabilities
available at this level. Also, ensuring that the sensitive data remains
protected through the LLVM backend passes requires interfacing
with them, and operating at the IR level makes this easier.

Link time optimization gives LLVM the capability of dumping
the IR of a compilation unit on disk. This allows the IR of multiple
compilation units to be optimized as a single module. The LLVM
toolchain provides the necessary tools to generate static libraries
from these IR units, thus allowing link time optimization of the
application along with its library dependencies.

4.2 Pointer Analysis

Once the programmer annotates an object or a variable as sensitive,
every valid access to these objects must be transformed with the
appropriate encryption or decryption routines. Given the heavy
reliance of C and C++ code on the use of pointers, we must first
determine which pointers may hold references to sensitive objects,
so that the respective pointer dereference operations can be also
transformed accordingly. To that end, as part of the static analysis
performed at the IR level, we employ pointer analysis to resolve all
possible memory objects that a pointer might refer to.

4.2.1 Sensitive Data Domain. The LLVM optimization phase al-
ready provides implementations of various pointer analysis al-
gorithms. However, these implementations support only intra-
procedural analysis capabilities, which are not adequate for our
purposes. Instead, we use an inter-procedural version of Andersen’s
algorithm [14]. This well-known flow-insensitive pointer analysis
algorithm examines pointer-related statements one by one, and
updates a points-to graph with any newly found points-to rela-
tionships. Each node of the graph represents either a pointer or a
memory object, and each edge represents a points-to relationship.

Figure 1 shows a small C code example and its corresponding
points-to graph. The points-to set of pointer ptr1 includes the
variables a, b, and the array arr, but only variable a has been
annotated as sensitive. Because ptr1 can point to any of the objects
in its points-to set, we must treat all three variables as sensitive.



void funl(void) {
SENSITIVE int a;
int b, c;
int arr[10];
int xptr1, *ptr2;

Sensitive Data Domain

ptr1 = &a;
ptr1 = &b;
ptr2 = &b;
ptr2 = &c;

for (int i

= 0; i < 10; i++) {
ptr1 = &ar

rfil;
3

Figure 1: Example C code with an integer variable marked
as sensitive (line 2), and the corresponding points-to graph.

Moreover, once we mark variable b as sensitive, ptr2 (which points
to b) must also be marked as sensitive, and in turn, variable c
becomes sensitive as well.

These relationships form an equivalence class of sensitive data,
which we call the sensitive data domain, depicted in the upper part
of the points-to graph. This example illustrates one of the major
challenges we faced—that is, the results of pointer analysis are in
general an over-approximation of the actual relationships among
objects, which consequently results in an over-approximation of the
actual sensitive data domain. Ideally, we would like our analysis to
have maximum precision to minimize the instrumentation overhead.
Unfortunately, higher degrees of precision usually entail longer
computation time for the analysis, and in certain cases, may give
rise to other challenges specific to our use case.

4.2.2  Field Sensitivity. Field sensitivity [18, 72] is an approach for
improving the precision of pointer analysis, and refers to the ability
of the analysis algorithm to distinguish between individual fields of
a complex object, such as a C struct. This is particularly important
in case of complex objects containing multiple pointers that may
point to distinct sets of objects in memory. Unlike field-insensitive
analysis, field-sensitive analysis treats each of these pointers (of
the same complex object type) as distinct. Field-sensitive pointer
analysis is thus more precise than field-insensitive analysis, and
would result in a smaller sensitive data domain.

Using field-sensitive analysis for protecting sensitive data is by
no means an easy feat. Numerous challenges abound. For one, while
the block size for AES operations is 128 bits, the individual fields
of a struct object will often not be aligned at 128-bit boundaries,
requiring extra padding and alignment. We describe this and other
related challenges in detail in Sections 4.4 and 5.1.3. As shown by
our experimental evaluation, switching to field-sensitive analysis
resulted in a considerable reduction of the overall runtime overhead
compared to field-insensitive analysis.

4.3 Value Flow Analysis

Resolving all pointer references is not enough to achieve complete
data protection, as sensitive data may propagate to other variables
and objects, which we call sensitive sink sites. To prevent potential
information leakage through them, we use value flow analysis to

recursively find all such sensitive sink sites. All memory accesses
to these sites are then instrumented with appropriate encryption
or decryption transformations.

To correctly track sensitive value flows through function calls, we
first resolve the targets of function pointers using the information
generated from the prior pointer analysis phase, which allows for
the creation of a sound call graph. Having the call graph, we can
then track sensitive values passed as arguments to other functions,
as well as any sensitive values returned by functions. Sensitive
value flows can be direct or indirect. Indirect flows occur due to
the presence of pointers. Due to the reliance on the prior pointer
analysis phase for resolving the targets of pointers, our value flow
analysis is also affected by the precision of the pointer analysis.

The combination of pointer and value flow analysis gives us the
full set of sensitive data objects that must be kept encrypted in
memory, and the corresponding code instrumentation points.

4.4 In-Memory Data Protection

Once all memory objects in the sensitive data domain have been
discovered, as a result of the pointer and value flow analysis phases,
the final step is to instrument the respective memory read and write
operations with calls to custom decryption and encryption routines.
We opted for the strong data confidentiality that AES [30] offers, to
avoid the risk of cryptanalysis-based attacks that an adversary could
mount through script code (or even offline). Modern processors
offer native support for accelerating AES operations, e.g., as is the
case with Intel’s AES-NI extensions [39].

A major engineering challenge we faced stems from the fact
that the basic unit of operation for AES is 128 bits, but sensitive
scalar values may be 8, 16, 32, or 64 bits in length, while data
objects such as private keys, passwords, and configuration-related
data structures, are often larger than 128 bits. The frequent size
mismatch between objects and AES block size prevents us from
applying AES directly to protect individual objects. Dealing with
smaller objects is relatively straightforward by padding them to 128
bits, although this entails several implementation considerations for
different types of memory (global, stack, heap), which we discuss in
Section A.1 of the appendix. On the other hand, dealing with larger
objects unavoidably requires processing them in 128-bit blocks. In
both cases, objects are 128-bit aligned to optimize memory offset
computations.

Decrypted Data Cache. To optimize the common case of repeated
accesses to the same data, we implemented a decrypted data cache
to minimize the number of cryptographic operations over time for a
given block. Our requirement of never exposing plaintext sensitive
data in memory explicitly rules out the possibility of using any
memory-resident buffer for this purpose. However, we can take
advantage of spare CPU registers to temporarily hold decrypted
data—leaking register contents requires the execution of arbitrary
(i.e., non-instrumented) code, which (based on our threat model,
discussed in Section 2) falls outside the attacker’s capabilities.
The x86 Streaming SIMD Extensions provide support for 16 128-
bit registers (named XMMO0 to XMM15) in 64-bit processors (or eight
128-bit registers in 32-bit processors). When accessing a sensitive
value from memory, we first decrypts the 128-bit block that contains
the sensitive value, and loads it into the XMMO register. In case of



a read operation, the respective byte/word/double-word is copied
from the XMMO register to the required general purpose register—
after that point, all arithmetic or logical instructions that follow the
memory read proceed unchanged. In case of a write operation, the
new value of the required byte/word/double-word is written in the
appropriate offset in the XMMO register.

Instead of immediately clearing the XMMO register, the decrypted
contents are retained for as long as possible. Any subsequent ac-
cess to the same block can be directly accommodated from the
already decrypted contents of the XMMO register. When a sub-
sequent sensitive memory operation accesses a different 128-bit
block, the current block is re-encrypted and written back to mem-
ory before proceeding. The register is also re-encrypted and written
back before calls to any external interface. This simplified caching
approach takes advantage of the locality of data accesses to reduce
the overhead of repeated AES operations on the same data.

5 IMPLEMENTATION

The Clang frontend translates C/C++ code to the LLVM interme-
diate representation, which is then lowered into assembly by the
LLVM backend. LLVM provides a powerful and expressive frame-
work for analysis and transformation at the IR level, and thus most
of our implementation was performed at that level. The LLVM IR
also simplifies the high level C/C++ code to enable efficient code
transformations and analysis.

The LLVM compiler toolchain is modularized into several passes,
with most of the passes operating at the IR level. Each pass car-
ries out a single analysis or transformation task. We implemented
pointer analysis and value flow analysis as two separate analysis
passes, and the final AES instrumentation as a transformation pass.
Figure 2 illustrates how the different phases are integrated into the
LLVM toolchain.

The Clang frontend lowers the SENSITIVE annotation to a call
to the 11vm.var.annotation function, which takes as arguments
the objects that were annotated as sensitive. We first collect these
arguments to find the initial set of sensitive objects. Then, at the IR
level, this set of objects becomes the starting point of our analysis
and transformation passes.

5.1 Link Time Optimization

We modified LLVM to invoke our analysis and transformation
passes during the LTO phase, which enables us to support static
libraries and standalone applications. This also has the additional
benefit of not requiring any modifications to Makefiles, except for
passing custom values to environment variables, such as CC, AR,
RANLIB, and CFLAGS.

5.1.1 Pointer Analysis. To perform whole-program analysis, we
extended the the Static Value Flow (SVF) analysis framework [80],
which supports pointer analysis and program dependence analysis
for C and C++ programs. SVF first analyzes the LLVM IR instruc-
tions in the merged IR and gathers constraints that model the flow
of pointers in the program. These constraints are represented in
the form of a constraint graph. Then, using an inter-procedural
Andersen’s style pointer analysis algorithm [14], SVF iteratively
performs pointer analysis by performing a reaching analysis on
this constraint graph, followed by call graph construction. Each

iteration of pointer analysis may discover new function pointer
targets, and therefore updates the call graph with new call edges.
Each new edge in the call graph may expose new pointer flows,
thus requiring the pointer analysis to be repeated. This iterative
execution continues until no new edges are added to the graph, ie.,
until reaching a “fixed point.”

SVF ensures that the result of the pointer analysis is sound. The
pointer analysis provided by SVF is field-sensitive. As discussed in
Section 5.1.3, field-sensitive analysis results in individual fields of
a structure becoming sensitive. This causes problems because the
AES unit of encryption is 128 bit, and individual fields are often
neither aligned to 128 bits, nor 128 bit wide. Therefore, in addition
to the field-sensitive version that handles these complex struct-field
alignment cases, we also implemented a simpler field-insensitive
version. For this, we modified the processing of constraints so
that accesses to individual fields of complex objects are treated
as accesses to the entire object. As discussed in Section 4.2.2, this
field-insensitive pointer analysis results in an over-approximated
sensitive data domain, but provides a simpler implementation alter-
native and does not require widening and aligning of the individual
fields of structures.

Using the results of the pointer analysis, we populate two maps:
pointsToMap, which maps pointers to their possible targets, and
pointsFromMap, which maps objects to pointers that may point to
them. Once the results of the pointer analysis and the value flow
analysis are available, we construct the equivalence class for the
sensitive pointers and objects. The pseudo-code for this process is
provided in Algorithm 1 in the appendix.

5.1.2  Value Flow Analysis. As discussed in Section 4.3, data of
objects marked as sensitive may be copied and stored to other
objects (sink sites). Given that these objects must remain encrypted
in memory, we perform interprocedural value flow analysis to find
them and instrument them appropriately.

The LLVM instructions LoadInst and Storelnst are used to
read from and write to memory, respectively. For the purposes
of our value flow analysis, we track the flows that begin from a
LoadInst reading a sensitive object, and terminate in a StoreInst
writing to a non-sensitive object. As discussed earlier, SVF repre-
sents the constraints required for points-to analysis in the form
of a constraint graph, which it then solves to resolve the targets
of every pointer in the program. We leverage this graph, and add
edges corresponding to the value flows caused by LoadInst and
Storelnst. After the points-to analysis is complete, we perform a
breadth-first graph traversal to derive the sensitive sink sites. Be-
cause the solution of the SVF constraint graph contains the targets
of function pointers, we can trivially track inter-procedural value
flows even in the presence of function pointers.

The results of the pointer analysis are used to track indirect
sensitive value flows through pointers. We first find which pointers
might point to sensitive objects. Then, we perform value flow anal-
ysis on the values defined by LoadInst instructions that perform
an indirect memory read using these pointers.

5.1.3  Partially Sensitive Complex Objects. Field-sensitive points-
to and value flow analysis may cause individual fields of struct-
type objects to become sensitive. This creates a problem because
these individual fields are often smaller than 128-bits long. One
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Figure 2: Overview of our sensitive data protection approach as implemented in LLVM.

solution could be to align all fields of such a partially-sensitive
struct-type objects to 128 bits, but this has the risk of degrading
cache performance, as the individual fields of the objects would be
spaced further away in memory. To minimize performance impact,
we align only those fields of a struct that are sensitive to 128-bit
boundaries, and also pad them to 128-bit size.

A second challenge is the use of the sizeof operator, which
allows the programmer to retrieve the allocation size of an object
in memory. This operator is lowered by the Clang frontend into
constants according to the object size, before the IR is constructed.
With our approach, however, the correct size of partially sensitive
objects becomes available only after alignment and padding, which
is performed at the IR level. We address this issue by modifying
the Clang frontend to append each instruction that uses a sizeof
operator with custom metadata (passed on to the IR level) that
includes the struct type on which the sizeof operator was applied.
Once the points-to and value flow analysis have completed, we
revisit these instructions and recalculate the sizes of any struct-
type objects based on the alignment and padding of their sensitive
fields. We then fix up the constants corresponding to the sizeof
operators with the recalculated sizes.

5.1.4  Memory Encryption Transformations. The Sensitive Data Do-
main contains the set of memory objects that must be kept en-
crypted in memory. This set includes global objects, objects on the
heap, and objects on the stack, which in LLVM IR are represented by
GlobalVariable, Calllnst,and Allocalnst class objects, respec-
tively. First, we use the pointsFromMap provided by the pointer
analysis to find all sensitive pointers that might refer to these ob-
jects. Then, we collect all LoadInst and Storelnst instructions
that read and write to sensitive objects in memory, either directly
or via sensitive pointers. These instructions must be rewritten to
decrypt or encrypt the sensitive objects. We present the details of
this code transformation phase in Section 5.1.5 below.

To apply these cryptographic transformations, objects must be
128-bit aligned, while global variables with default initializers, con-
stant values, and environment variables within the sensitive data
domain, must be initialized to the correct encrypted values. We
handle these special cases by adding the correct transformations to
the IR. To ensure that sensitive values read from memory remain

protected during the subsequent stages of the compilation process,
we add a SENSITIVE metadata tag to the values defined by the
LoadInst instructions, which is propagated to the LLVM backend.

5.1.5 Hardware-accelerated AES and Key Protection. Intel proces-
sors provide the aesenc, aesenclast, aesdec, and aesdeclast
instructions (as part of the AES-NI extensions) to speed up AES oper-
ations. The latest Intel processors also support the Streaming SIMD
Extensions (SSE) [6] and the more recent, Advanced Vector Exten-
sions (AVX) [56]. Intel SSE provides 32 128-bit registers (XMMO0-
XMM15), and AVX widens them to 256 bits (YMM0—YMM15). Intel
SSE also includes instructions for writing and reading individual
8/16/32/64 bytes from XMM registers (pinsrb, pinsrw, pinsrd,
pinsrq, and pextrb, pextrw, pextrd, pextraq, respectively). Sim-
ilarly, AVX includes instructions for reading individual 128-bit
chunks from the YMM registers (vinserti128 and vextracti128).

We use these instructions to perform cryptographic operations
oblivious to memory leakage. Using a 128-bit key with AES requires
10 processing rounds, each consuming four words (128 bits) from
the key schedule (derived from the initial 128-bit key), also referred
to as “round keys.” Before any round-based processing begins, the
input value is XOR-ed with the first four words of the key sched-
ule (for a total of 11 four-word keys). To avoid the overhead of
generating the round keys from scratch before each AES opera-
tion, they should ideally be pre-generated from the initial secret
key, and stored in registers [45, 58]. To protect these round keys
from memory disclosure vulnerabilities, the code that loads them
into registers is placed on its own 4KB page, which is zeroed out
immediately upon its execution.

Storing all the round keys in registers would require 22 128-bit
registers. Processors with AVX support provide access to 16 256-bit
registers, which can be accessed independently as 32 128-bit regis-
ters. However, Libc and other libraries rely on XMM registers to
perform optimizations such as loop unrolling. To maintain compat-
ibility with such optimizations, we use only the 15 YMM registers
to store all ten expanded encryption round keys, a subset (four)
of the expanded decryption round keys, and the single XOR key.
Decryption round keys are the inverse of the encryption round
keys, and Intel provides the aesimc instruction to compute the
decryption round key, given its encryption counterpart. Per Intel’s



documentation, we use this instruction to compute the remaining
six decryption round keys on the fly as needed.

As noted earlier (Section 4.4), we use the 128-bit XMMO register
as our decrypted data cache. We use the SSE instructions to read
or write individual values in an already decrypted block stored in
XMMO, and load the AES round keys into the XMM1 register.

The logic for loading the keys into registers is encapsulated in
a function named populate_keys. To effortlessly rotate the keys
upon each new program invocation, we rely on the binary analysis
and rewriting capabilities of Pyelftools [21], which we used to
implement a custom program that replaces all instances of the
old encryption and decryption keys with new user-provided (or
randomly generated) values.

5.1.6  Handling Common Libc Functions. Functions such as strcpy,
strlen, strcmp, and their memory counterparts memcpy, memcpy,
and memset, are utility functions that are invoked with a variety
of arguments. Some of these arguments are sensitive, while others
are not. If we were to mark the arguments to these functions as
sensitive, then any invocation with even a single sensitive argument
would require the other non-sensitive arguments to also be included
in the Sensitive Data Domain, as discussed in Section 4.2.1. This
would cause these other arguments to also be marked as sensitive
and be encrypted in memory. This would increase the performance
overhead as they would have to be decrypted to be computed on.

We solve this challenge by providing custom sensitive and non-
sensitive implementations of these commonly used functions. For
example, if the Libc function strlen is invoked at two places, once
with a sensitive string, and once with a non-sensitive string, the
first instance will invoke the sensitive implementation of strlen.
This version decrypts every byte of the string, as it checks for
the NULL termination character. The other invocation will invoke
the vanilla implementation of strlen. This approach prevents the
over-approximation of the Sensitive Data Domain, and the resulting
additional performance overhead.

5.2 LLVM Backend

The LLVM backend lowers the IR to assembly code. We propagate
the sensitive metadata associated with every sensitive IR value
through the different phases of this lowering process. Instruction
selection and register allocation are two critical phases of this low-
ering step. Using the sensitive metadata, we made a number of
modifications to these phases to guarantee that sensitive data re-
mains encrypted in memory. We discuss each in turn.

5.2.1 Instruction Selection. One of the requirements of encrypting
sensitive data in memory is that no instruction can directly operate
on in-memory operands. However, the x86 architecture supports in-
memory operands for arithmetic and logical instructions. Directly
accessing in-memory encrypted operands, without decrypting and
storing them in registers first, will give incorrect results for the
operation. Based on our experimentation, we observed that LLVM’s
FastISel instruction selection algorithm prefers the selection of
instructions with in-register operands, over those with in-memory
operands. However, to ensure the absolute correctness of our imple-
mentation, we modified FastISel to select arithmetic and logical
instructions with solely in-register operands.

5.2.2 Register Allocation. Registers in LLVM’s IR are virtual and
infinite. As the IR is lowered to architecture-specific instructions,
virtual registers are mapped to physical architecture-specific regis-
ters. Due to the limited number of physical registers, values stored
in them may be spilled to memory. We use the metadata collected
during the memory encryption transformation (described in Sec-
tion 5.1.4), to track the virtual registers that contain sensitive values.
LLVM’s FastRegAlloc register allocation algorithm maps each
virtual register to a slot on the stack. When register pressure in-
creases, it selects a virtual register to spill on the respective stack
slot. We modified LLVM’s FastRegAlloc to encrypt the values
stored in sensitive virtual registers before spilling them their desig-
nated stack slots, and re-encrypt them when they are restored.

6 EXPERIMENTAL EVALUATION

To investigate the performance overhead of the proposed approach,
we evaluated our prototype with stress-test microbenchmarks and
five real-world applications. In the microbenchmarks, we annotate
all data used for computation as sensitive, whereas in the real-world
applications, we mark only data that is critical from a security per-
spective as sensitive. To illustrate the impact of pointer analysis
accuracy on performance, in case of the real-world applications,
we evaluate both our simpler field-insensitive implementation, as
well as the more fine-grained field-sensitive implementation. Note
that pointer analysis accuracy does not have an impact on the mi-
crobenchmarks, in which all data is marked as sensitive. In addition,
we performed experiments to verify that sensitive data always re-
main encrypted in memory, and to demonstrate how this thwarts
Spectre attacks.

Our testbed consists of a server with an Intel Xeon E3-1240 v6
processor, and a client with an Intel Xeon E5-2620 v4 processor.
Both machines run Ubuntu 16.04.3 LTS, and use Glibc version 2.23.
Single-machine benchmarks were run on the server machine.

6.1 Microbenchmarks

As discussed in Section 2, previous works on data space random-
ization [24] rely on XOR-based transformation to protect all in-
memory data. In the face of memory leakage vulnerabilities, how-
ever, strong encryption must be used to ensure data confidentiality.
Unfortunately, unrestrictedly encrypting all data in memory re-
sults in a prohibitively high runtime overhead, which we set out to
explore with a pair of worst-case microbenchmarks.

The first program computes the sum of ten billion randomly gen-
erated 64-bit integers, which are stored in a dynamically allocated
buffer that is annotated as sensitive. We measured the average CPU
user time to compute the sum across multiple repetitions, which
resulted in a runtime overhead of 390%. By inspecting the output
of the the value flow and pointer analysis, we observed that 95% of
all memory read and write operations across the whole code access
sensitive memory regions. These accesses are the main source of
the runtime overhead due to cryptographic operations.

The second program uses the quicksort algorithm on ten bil-
lion randomly generated 64-bit integers. The key difference of this
benchmark from the previous one is that its memory access pattern
is more random. We observe that close to 96% of all memory reads
and writes access sensitive memory regions. However, due to the



Table 1: Fraction of instrumented instructions among all
memory-related instructions in the code, and all memory-
related instructions executed.

.. Code Execution
Application
Field Field Field Field
Ins. Sen. Ins. Sen.
MbedTLS SSL Server 31% 1% 26% 15%

Lighttpd with ModAuth ~ 20% 5%  26%  11%
Memcached with Auth.  0.1% 01% ~0% ~0%
ssh-agent 17% 8% 8% 3%
Minisign 28% 14% 55% 27%

random memory access pattern, fewer accesses can be served from
the already decrypted contents in the XMMO register, which re-
sulted in a higher overhead of 650%. These results clearly motivate
the need for protecting only a subset of the data.

6.2 Applications

The test cases of benchmark suites typically used for performance
evaluation, such as SPEC2006 [2], do not involve data that is clearly
sensitive. Moreover, our microbenchmark experiments show that
the cost of encrypting all data in a process using AES is prohibi-
tively high. To assess the overhead of our approach under realistic
conditions, we evaluate our implementation using five real-world
applications and libraries. We opted for a diverse set of both server
(MbedTLS, Lighttpd, Memcached) and client (ssh-agent, Minisign)
applications that handle critical user data, such as secret keys and
passwords. The size and complexity of these applications is ad-
equate for our current static analysis capabilities, and is on par
with what other alternative selective data protection solutions can
support (e.g., DataShield [27]).

6.2.1 MbedTLS Server. Our first application is the ssl_server2
server that comes with MbedTLS [7], an SSL/TLS library written in
C. We built a minimal version of the MbedTLS library, including
only the RSA and AES ciphersuites. Our modified LLVM toolchain
does not support inline assembly yet, so we disabled the use of
inline assembly in the MbedTLS configuration options.

The private key of the SSL server is stored in an object of type
mbedtls_pk_context, which we annotate as sensitive. This is the
only manual step involved—our LLVM-LTO toolchain then auto-
matically generates a merged IR object file, which comprises both
the SSL server and the MbedTLS library, and performs value flow
and pointer analysis to find and instrument all memory operations
that access sensitive data. In Table 1, we report both the number of
memory-related instructions that are instrumented in the code, and
the number of instrumented memory accesses executed at runtime.
Across all memory accesses, only 31%, for the naive field-insensitive
approach, and 11%, for the field-sensitive approach involved sensi-
tive memory objects, and thus had to be instrumented.

We deployed the instrumented server and the unmodified ss1_
client2 program on the server and client machines, respectively.
The client makes 500,000 consecutive requests to the server, with

each request fetching the same 200 byte HTML page. Table 2 shows
the performance overhead incurred by the instrumentation. When
the field-insensitive analysis is used, the instrumentation reduces
the throughput by 28%. Although the performance overhead is
higher than one would want in practice, the main culprit is the im-
precision of the field-insensitive pointer analysis algorithm, which
over-approximates the sensitive data domain that is protected.

When switching to the field-sensitive implementation, the over-
head is limited to only 13%, regaining the performance that was
lost due to field insensitivity. As a comparison data point, Carr and
Payer [27] reported a 35.7% overhead for a similar experiment of
applying DataShield on ssl_server?2.

6.2.2 Lighttpd with ModAuth. Lighttpd is a popular, lightweight
web server. Lighttpd’s ModAuth module supports HTTP Basic Ac-
cess Authentication, a method for an HTTP user agent to provide a
username and password while making a request, which are stored
in a preconfigured file on the server. The password is loaded from
this file to the variable password_buf. We annotated this variable
as sensitive and compiled the server using our framework. Using
the hardened binary, we performed 2,000 requests to a password-
protected 1 KB web page. In case of the field-insensitive approach,
the throughput degrades by 22%, and for the field-sensitive ap-
proach, the throughput is reduced by 8%.

6.2.3 Memcached: Authentication using SASL. Memcached is a pop-
ular in-memory key-value store, used to improve web server per-
formance by caching the results of expensive database queries.
Memcached provides an authentication mechanism that can be
used to deploy it in untrusted networks, which relies on the SASL
(Simple Authentication and Security Layer) library.

For simple password-based authentication, the function sasl
_server_userdb_checkpass loads the password from the speci-
fied password file and stores it in the buffer variable, which we
annotate as sensitive. We use the hardened binary to perform 1M
“set” and “get” operations, which store and retrieve keys in the
Memcached server, respectively. Because the authentication step
is performed once at the time of connection establishment, each
operation is performed over a new connection and is preceded by
an authentication step. Our results show that for both approaches,
the throughput overhead of our instrumentation is negligible. This
is because there is only one pointer to the stored password, and the
password is not copied to any other memory location. Moreover,
this pointer is not part of any complex C struct, and thus both
the field-insensitive and field-sensitive approaches give the same
results. Also, the code that checks for password validity accesses
the password sequentially, maximizing the use of the AES cache.

6.2.4 ssh-agent. The ssh-agent daemon holds a user’s decrypted
private keys in memory to speed up the creation of new SSH ses-
sions, by avoiding having to type the key’s passphrase. Applications
such as ssh, scp, and git, which require access to the user’s de-
crypted private keys, communicate with ssh-agent over a Unix
domain socket to carry out the SSH authentication process.

To reduce dependencies on external libraries, we built ssh-agent
with support only for the internal crypto engine. When a user adds
a new private key, ssh-agent dynamically allocates an sshkey ob-
ject on the heap. We annotate the pointer returned by this allocation



Table 2: Performance evaluation results. Overhead numbers
correspond to throughput for the first three servers, and
user time for the last two programs.

L. Run-time Run-time Overhead
Application

(original) Field Field Field Field

Ins. Sen. Ins. Sen.

MbedTLS SSL server
(500,000 requests)

Lighttpd with ModAuth
(2,000 requests)

Memcached with Auth.

110s 152s 126s 28% 13%

37s 47s 40s 22% 8%

67s 67s 67s 0% 0%

(1M Get/Set req.)
ssh-agent
450s 485s 469s 8% 4%
(2,000 user sessions)
Minisign
41s 69s 54s 68% 33%
(1GB file signing)

as sensitive. This ensures that all private keys in dynamically allo-
cated sshkey objects always remain encrypted in memory. Based
on our IR-level static analysis results, 17% (field-insensitive) and 8%
(field-sensitive) of all memory operations required instrumentation,
while 8% and 3% of all memory operations performed at runtime
were instrumented, respectively.

Using the same setup, we deployed the instrumented ssh-agent
daemon on the client machine and set it up with the user’s private
keys. Public key authentication to the server machine was precon-
figured. The experiment consists of the client making 2K logins to
the server. We measured the total time taken for the 2K logins, and
report an overhead of 8% (field-ins.) and 4% (field-sen.).

6.2.5 Minisign: File Signing using Libsodium. Libsodium [8] is a
popular library for core cryptographic routines. We chose Min-
isign [32], a client-only tool for signing files and verifying signa-
tures, as a representative application that uses Libsodium. The
private key used for file signing is stored in an object of type

SeckeyStruct. We annotated the SeckeyStruct pointerinminisign.c

as sensitive. Using the hardened binary, we performed two oper-
ations. We first signed a 1GB file using a pre-generated private
key, and then verified the signature against the file. Our results of
measuring the completion time show that for signing the runtime
overhead is 68% (field-ins.) and 33% (field-sen.), while for verifica-
tion the overhead is 57% (field-ins.) and 35% (field-sen.).

It is important to note that although the verification process does
not use the sensitive private key, it still suffers from some perfor-
mance overhead due to the imprecision of our sensitive data domain
construction, in both approaches. This imprecision causes the argu-
ments to the crypt_hash_sha512, crypt_hash_sha512_update,
and crypt_hash_sha512_final functions, which compute the
hash of the file contents, to be marked as sensitive. As these func-
tions are shared by both signing and verification operations, both
operations exhibit a performance overhead.

6.2.6 Results Summary. Our results are summarized in Tables 1
and 2. We observe that for all five applications, only a fraction of
all memory accesses had to be instrumented, and as expected, this

fraction is lower for the field-sensitive approach. The time taken
for the pointer analysis and the value flow analysis (not shown
in the table) for the five applications ranges from 20 seconds (for
Memcached) to 3 minutes 45 seconds (for Lighttpd).

The performance overhead observed in all five applications
varies significantly. The variance is clearly tied to the nature of
these applications. For instance, in the MbedTLS server case, the
bulk of instrumentation involves only the SSL handshake phase.
Data transfer incurs little overhead, and network I/O incurs no
overhead. In the ssh-agent case, the instrumentation affects only
the fetching of the decrypted private key. The rest of the SSH login
and network I/O proceeds unchanged. In the Lighttpd case, the
instrumentation affects each access, but the sensitive password
buffer is accessed sequentially, leading to amortization of the data
transformation cost over multiple accesses to the password buffer.
On the other extreme, every iteration of the core loop in Minisign
that computes the signature of the file is instrumented. Since all
operations are local, there is no expensive network I/O, and so the
overhead is significantly higher.

Although a direct comparison is not possible due to the differ-
ent hardware experimental setups, we report significantly lower
overhead than solutions based on memory safety. For example,
DataShield [27] performs a coarse-grained bounds check on all
memory accesses, with a more fine-grained bounds check for point-
ers potentially accessing sensitive data, whereas our solution re-
quires instrumenting only the required sensitive pointers. DataShield
reports a higher performance overhead of 35% for the same MbedTLS
server application, compared to 13% for our approach. We could
not successfully compile the other applications in our test suite
with DataShield. Similarly, SoftBound [64], which applies full mem-
ory safety, incurs a 116% overhead for the SPEC benchmarks [2].
Moreover, as described in Section 6.3, our solution provides pro-
tection against cold boot attacks, as well as side-channel attacks
such as Spectre [44], because the sensitive data is present in mem-
ory only in an encrypted form, unlike in the case of approaches
based on memory safety, which only protect pointers. Additionally,
the performance overhead of our approach is comparable to the
reported overhead of official mitigations for some Spectre attack
variants [49].

6.3 Security Evaluation

As a sanity check, we verified that sensitive data is never present un-
encrypted in main memory. To that end, we used a custom program
to repeatedly scan the memory of the running process every two
seconds. The program uses the gcore tool to attach to the process
and dump its memory contents. At the end of the experiment, we
scan these memory dumps for the first and last four bytes of the
protected data. We verified that for all five applications the sensitive
data was not present in an unencrypted form in memory.

Defending against Spectre Attacks. We use a publicly available proof-
of-concept to illustrate the effectiveness of our system against Spec-
tre attacks. Figure 3 shows a simplified snippet of the vulnerable
code used. The attack begins by passing a chosen value x, so that
array1[x] point to a victim address that the attacker chooses to
disclose—in this case, the variable named secret. The vulnerability
causes array1[x] to be loaded, and used to compute the offset into



SENSITIVE char *secret = "The_Secret";
void victimFunction() {

if (x < arrayl_size)
y = array2[arrayl1[x] * 4096];

Figure 3: Simplified example of code vulnerable to the Spec-
tre attack used for our evaluation.

array2, even if the branch condition fails, that is, if x is greater
than arrayl1_size. This results in the contents of secret to be
loaded into the cache, from where they can be leaked through side
channel attacks.

To protect the contents of secret, we annotate it as SENSITIVE.
At runtime, its contents are stored only in its encrypted form in
memory, and thus also in the hardware caches. As expected, we
verified that leaking the contents of the cache via the Spectre attack
only returns the encrypted values of the secret variable.

7 LIMITATIONS

In our approach, all loads and stores to variables annotated as sen-
sitive are protected through encryption. Hence, without knowing
the secret key, attackers cannot write any desired values to sensi-
tive variables in their correct encrypted form. However, encryption
alone does not provide complete protection against attackers who
have the capability of performing arbitrary memory writes.

For instance, consider a sensitive variable is_admin related to
some authentication operation. Such variables are often checked
as part of the program logic by comparing against “not-zero” (e.g.,
is_admin != 0).In such scenarios, even if the variable is encrypted,
attackers can overwrite it with an arbitrary value, and achieve a
very high probability of the decrypted value being non-zero. A
possible way to address this limitation is to use a message authenti-
cation code (MAC) for authenticating writes to sensitive variables,
in order to guarantee that only authorized instructions can mod-
ify sensitive values. However, it is difficult to identify authorized
instructions, especially in case of complex data-only attacks. We
leave the exploration of more effective techniques for ensuring data
integrity as part of future work.

The dearth of efficient pointer analysis techniques directly im-
pacts the precision of our approach, and its applicability to larger
and more complex applications. Ideally, one would want to analyze
and transform all libraries that are used by the target application.
However, the analysis time depends on the size of the input source
code. In our current prototype, to keep the analysis time manage-
able (i.e., in the order of minutes instead of multiple hours), we
excluded Libc from our static analysis passes in order to limit the
size of the input source code. Thus, when sensitive arguments are
passed to a Libc function, we must first decrypt them.

Nevertheless, to minimize the exposure of decrypted sensitive
data to external functions, we turned to custom implementations
of commonly used Libc functions, such as memcpy, memcmp, strcpy,
and strlen. An immediate direction for future work is to explore
other pointer analysis techniques besides Andersen’s algorithm
(which has a complexity of O(n®)). One possibility is the more

efficient unification-based Steensgaard’s algorithm [79]. Unlike An-
dersen’s algorithm, however, there is no available implementation
(to the best of our knowledge) of Steensgaard’s algorithm that could
be easily incorporated into the SVF suite [80] or LLVM itself.!

It is prudent to note that precise and scalable pointer analysis is
an open problem, and other state-of-the-art memory isolation [45]
and control flow integrity [83] mechanisms have made similar
compromises by opting for overly conservative pointer analysis.
We use the best available techniques in a conservative way to avoid
false positive issues. We demonstrate that despite incurring a much
higher performance penalty than what would be possible with more
accurate pointer analysis, our approach still incurs a reasonable
performance overhead.

Lastly, because we do not implement runtime key rotation, one
can envision a scenario where an adversary can use a known plain-
text attack against the sensitive data. However, the data we are
trying to protect (i.e., private keys, session cookies) has sufficient
entropy to ensure that finding exact matches with 128 bits of known
plaintext is hard. Therefore, it is safe to use deterministic encryp-
tion under the assumed threat model and goals. Moreover, for this
type of attack to be successful, the attacker would require access to
an oracle, which falls outside of our threat model.

8 RELATED WORK
8.1 Memory Safety

Enforcing full memory safety to unsafe languages can, in the-
ory, block most memory corruption exploits. In practice, however,
the low-level nature of the C and C++ languages, which allow
unchecked array indexing, conflation of pointers and arrays, pointer
arithmetic, and type casting, makes retrofitting memory safety pro-
tections into existing programs a daunting task [63]. The overall
strategy for enforcing whole-program memory safety is to main-
tain bounds information either for each pointer [43, 64-66] or ob-
ject [13, 50, 75], and to check every pointer dereference against
the bounds associated with the target pointer or object. By trading
extra memory space for performance, baggy bounds checking [13]
is currently one of the most efficient object-based bounds checking
approaches, although its performance overhead is still prohibitively
high, at an average of 60% for the SPEC benchmarks.

That said, spatial safety in the form of bounds checking alone
still cannot prevent use-after-free and double-free vulnerabilities.
Approaches that combine both spatial and temporal safety achieve
better memory safety, but at an even higher cost. As a case in point,
when CETS [65] is coupled with SoftBound [64] to achieve full
memory safety, the composition results in an average overhead of
116% for the SPEC benchmarks [65].

Other approaches, such as Diehard [23], Dieharder [67], Cling [11],
Archipelago [57], FreeSentry [89], WIT [12], CPI [47], and the works
of Dhurjati et al. [33] and Byoungyoung et al. [51], opt for providing
weaker guarantees to achieve better performance and compatibility,
and thus do not offer complete protection. An alternative trade-off

! Although the LLVM compiler toolchain provides a CFL unification-based alias analysis
pass named CFL-Steens [5], because the pass performs alias analysis, it must be invoked
separately for each pair of memory operands. It then performs a graph search on each
query to resolve whether the two operands alias, instead of computing the full points-
to graph at once, like SVF. Due to these fundamental differences in the functionality
of SVF and CFL-Steens, we leave porting CFL-Steens to SVF as future work.



is made by DataShield [27], which opts to provide full memory
safety on only a subset of sensitive data annotated by developers.
Although promising, even for an I/O-heavy application such as
a TLS server, DataShield still incurs a considerable runtime over-
head of 35.7%. Selective data encryption provides a complementary
approach, but at a much lower cost.

8.2 Transformation of In-Memory Data

An alternative approach to memory safety is to apply a transfor-
mation to the data in the main memory. As long as the attacker
can not reverse this transformation, the original data can not be
recovered or modified, thus preserving confidentiality and integrity.
Data space randomization [20, 24] applies this principle to prevent
buffer overflow attacks, using a XOR operation to randomize the
in-memory representation of objects. Our work is inspired by this
approach to selectively transform sensitive data in memory, but
using stronger AES encryption instead.

Memory encryption using AES as a protection against cold boot
attacks was proposed by Papadopoulos et al. [68]. While their ap-
proach uses a similar decryption cache scheme as ours, we integrate
a more robust pointer and value flow analysis to ensure that ac-
cesses to sensitive data is always transformed correctly.

8.3 Data Flow Integrity

Similar to control flow integrity techniques, that protect against
control flow attacks, data flow integrity mechanisms can protect
against data-only attacks. Data Flow Integrity [28] precomputes a
valid data flow graph and, at runtime, validates all data flows against
it. However, this approach has a significant overhead of 104% for the
CPU-bound SPEC benchmarks. Recently, DFI-assisting hardware
extensions [78] were proposed to lower the runtime overhead.

8.4 Hardware Based Mechanisms

Hardware-based defenses such as TRESOR [62], PRIME [36], and
PixelVault [85] protect sensitive computation from an adversary
with physical access to the device. TRESOR and PRIME provide a
memory-less, CPU bound infrastructure for sensitive computation,
such as RSA encryption. Ginseng [90] protects against an untrusted
operating system, by storing sensitive stack variables, strictly in reg-
isters, and relies on a secure implementation of secure stack, and CFI,
in ARM TrustZone’s Trusted Execution Environment (TEE) [16].
Likewise, Intel’s Software Guard Extensions (SGX) [42] provides
a set of CPU instructions that can be used by user mode applica-
tions to create private regions, called “enclaves,” for sensitive code
and data. Various approaches have leveraged this (e.g., [17], [25],
[76], [82], [53]), but each involves major restructuring of the source
code, including changes to the compiler, OS support, and runtime
libraries. The same is true for TRESOR, PRIME, and PixelVault.

MemSentry [45] is a memory isolation framework that allows
users to create isolated memory regions by leveraging hardware
features. SP® [88] and SeCage [55] use hypervisor support to isolate
sensitive data on a per-page basis. Compared to these systems,
we support a finer-grained separation between sensitive and non-
sensitive data, at the granularity of individual variables.

9 CONCLUSION

We presented a compiler-level defense that provides strong pro-
tection against the emerging threat of data leakage attacks. Our
approach allows developers to conveniently annotate program vari-
ables or data inputs as sensitive, and ensures that all sensitive data
is always kept encrypted when stored in memory.

Unlike existing memory safety or isolation approaches, our solu-
tion is geared toward protecting only a subset of a process’ data—a
design decision that allows for a radically different memory ac-
cess instrumentation strategy. Instead of instrumenting all memory
accesses in the most lightweight manner possible, our solution in-
struments only a fraction of all memory accesses, and thus enables
the use of more heavyweight encryption using AES. Our prototype
implementation aptly demonstrates the benefits of the proposed
approach, and also highlights important challenges in the area of
whole-program fine-grained pointer analysis that, once resolved,
will allow faster analysis of more complex applications, and will
enable protection against the full spectrum of data-only attacks, by
offering data integrity in addition to data confidentiality.
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A APPENDIX: ADDITIONAL
IMPLEMENTATION DETAILS

In Section 5 we discussed the encryption transformation which we
apply to the merged intermediate representation code. During our
experiments with applying our approach to various applications,
we encountered several corner cases that required special consid-
eration, when applying this transformation. In what follows, we
discuss the most important ones and how we addressed them.

A.1 Object Alignment

Although AES operates on 128-bit data blocks, sensitive objects
come in various smaller and larger sizes. To accommodate any
object size, we round up the size of sensitive objects to multiples
of 128 bits, and allocate them strictly on 128-bit boundaries. We
handle global, stack, and heap objects in the following ways.

Global and Stack Variables: LLVM’s IR supports the specification
of alignment for global and stack variables. We use this feature
to specify a custom alignment of 16 bytes for sensitive global and
stack variables and round up the size of these variables to a multiple
of 128 bits.

Heap Variables: We must ensure that the alignment requirements
are respected for objects allocated dynamically on the heap. To
achieve this, we provide custom memory allocation functions. These
custom memory allocation functions use the posix_memalign func-
tion to allocate memory aligned to 128 bit boundaries. We also
round up the size of the allocated region to the nearest multiple of
128 bits. Then, as part of our memory encryption transformation,
all sensitive calls to memory allocation library functions, such as
malloc and calloc, are automatically replaced with our custom
memory allocation functions.

A.2 Globals with Default Initializers

When global variables are initialized to default values, their mem-
ory is allocated in the . data segment and is initialized to the spec-
ified value at compilation time—there are no explicit StoreInst
instruction executed at runtime. Because our AES instrumentation
transforms explicit memory loads and stores, we must handle the
initialization of global variables in a separate way. This is achieved
by introducing an encrypt_globals function that encrypts all sen-
sitive global variables, and inserting a call to this function at the
start of the main function.

A.3 Sensitive Constants

The sensitive data domain may include constants which must be
encrypted in memory. By default, LLVM allocates constants in the
.rodata section, which is a read-only section. Attempting to write
to these objects as part of the encryption process would cause a
protection fault. In our implementation, we address this problem
by removing the constant specifier for these objects.

A.4 Environment variables

The sensitive data domain may include pointers to environment
variables, such as $HOME, which can end up being marked as sensi-
tive as a result of the over-approximation of our pointer analysis.


https://blogs.msdn.microsoft.com/vcblog/2017/06/28/security-features-in-microsoft-visual-c/
https://blogs.msdn.microsoft.com/vcblog/2017/06/28/security-features-in-microsoft-visual-c/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/pageexec.txt
http://pax.grsecurity.net/docs/pageexec.txt
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf

Data: List of objects annotated as SENSITIVE, sensitive
value flow sinks, pts-to and pts-from information
Result: List of all objects in the sensitive equivalence class
eq_class := List of objects annotated as sensitive;
new_objs := eq_class;
while 'new_objs.isEmpty() do
ptr_set := ptrs which can point to objs in eq_class;
ptr_targets := targets of all ptrs in ptr_set;
new_objs := ptr_targets \ eq_class;
eq_class := eq_class U ptr_targets;
end
Algorithm 1: Find sensitive data equivalence class.

Encrypting these environment variables causes system calls such
as fopen to break, and thus these variables must not be modified.
We provide a cloneenv function, that first clones the value of the
environment variable, and returns a pointer to the cloned version.
Our memory encryption transformation replaces all sensitive calls
to the libc function getenv with this cloneenv function.
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