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a b s t r a c t 

An approach for designing developable mechanisms on a conical surface is presented. By 

aligning the joint axes of spherical mechanisms to the ruling lines, the links can be cre- 

ated in a way that the mechanism conforms to a conical surface. Terminology is defined 

for mechanisms mapped onto a right cone. Models are developed to describe the motion 

of the mechanism with respect to the apex of the cone, and connections are made to 

cylindrical developable mechanisms using projected angles. The Loop Sum Method is pre- 

sented as an approach to determine the geometry of the cone to which a given spherical 

mechanism can be mapped. A method for position analysis is presented to determine the 

location of any point along the link of a mechanism with respect to the conical geometry. 

These methods are also applied to multiloop spherical mechanisms. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Developable mechanisms are mechanisms that can conform to a developable surface at some point in its motion [1] .

Developable surfaces (cylinders, cones, and tangent developable surfaces) are found in many areas including aerospace [2] ,

watercraft design [3] , architecture [4,5] , and medical devices [6] . Many aerospace structures have cylindrical bodies and

conical noses [7] . If a developable mechanism is placed on either surface, it could be launched in the compact, conformed

position and then be deployed later in flight increasing the potential functionality of the rocket with little cost in volume,

similar to the benefits of deployable solar arrays [8] . These same principles can also be applied at a smaller scale in medical

devices where the tools continue to decrease in size [9] . For example, a minimally invasive surgical device needs to enter

through a small incision and then a mechanism embedded in the developable shaft could expand increasing the potential

function of the device. 

Several methods for spherical mechanism design and analysis exist [10–15] , but do not consider the constraints of con-

forming to a specific surface. The complex motion of these spherical mechanisms have several applications to control the

orientation of items in assembly processes [16] , multi-DOF wrists [17] , parallel mechanisms [18,19] , gripper mechanisms

[20] , designing rigid origami [21] , and medical rehabilitation devices [22] . 

This paper introduces tools to aid in the design and analysis of mechanisms on right conical surfaces. A background on

developable mechanisms is given along with some of the analysis methods for cylindrical developable mechanisms. Some

conventions of spherical mechanisms are also presented. Terms and definitions for conical developable mechanisms are

then introduced. These definitions facilitate a connection to the design methods for cylindrical developable mechanisms. A

method to determine the geometry of a cone to which a spherical mechanism can be mapped is introduced. Finally, an
∗ Corresponding author. 

E-mail address: lhowell@byu.edu (L.L. Howell). 

https://doi.org/10.1016/j.mechmachtheory.2020.103813 

0094-114X/© 2020 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.mechmachtheory.2020.103813
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmachtheory
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmachtheory.2020.103813&domain=pdf
mailto:lhowell@byu.edu
https://doi.org/10.1016/j.mechmachtheory.2020.103813


2 L.P. Hyatt, S.P. Magleby and L.L. Howell / Mechanism and Machine Theory 149 (2020) 103813 

Fig. 1. Three non-trivial developable surfaces: (left) generalized cylinder, (middle) generalized cone, and (right) tangent developable surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approach for the position analysis of a conical developable mechanism is presented based on the geometry of the conical

surface. 

2. Background 

2.1. Developable surfaces 

Developable surfaces have been studied and utilized in a variety of fields from architecture and engineering to computer

science [5,23] . When restricting our definition to R 3 space, developable surfaces are a subset of ruled surfaces, have zero

Gaussian curvature, are isometric to a plane, and are an envelope of a 1-parameter family of planes [24,25] . As a ruled

surface, it can be formed by moving a straight line (a ruling line) through space. For a ruled surface to be developable,

the ruling line must characterize one of the principle curvatures, causing the product of the principle curvatures (Gaussian

curvature) to be zero. Being isometric to a plane means that any distance between two points measured along the surface

will remain constant if the surface is flattened onto a plane. A useful description of developable surfaces is any surface that

can be flattened to a plane without stretching or tearing. 

There are three non-trivial types of developable surfaces apart from a plane: generalized cylinders, generalized cones, and

tangent developable surfaces. The ruling lines of a generalized cylinder are all parallel while the ruling lines of a generalized

cone all converge to a point. The ruling lines for a tangent developed surface are all tangent to a spacial curve. Fig. 1 shows

examples of the three types of developable surfaces. 

2.2. Developable mechanisms 

Developable mechanisms are defined as mechanisms that fulfill three requirements [1] : 

1. Are contained within or conform to developable surfaces when both are modeled with zero-thickness 

2. Have mobility 

3. Do not require the developable surface to deform to enable the mechanism’s movement 

These mechanisms are facilitated by aligning revolute joint axes along the ruling lines of the host developable surface.

This is known as the Hinge-Axis Ruling Condition [1] . By applying this condition to the three non-trivial developable sur-

faces, different types of mechanisms can be mapped to each surface. Planar mechanisms can be mapped to cylindrical

surfaces, spherical mechanisms can be mapped to conical surfaces, and spatial mechanisms can be mapped to tangent de-

velopable surfaces. Nelson et al. presents examples of the three types of mechanisms, while this work focuses on conical

developable mechanisms [1] . The surface to which a developable mechanism is mapped is called the reference surface. 

Traditional kinematic analysis of mechanisms relies only on the relative location of the joints, and the links can have any

arbitrary shape [26] . However, to satisfy the first requirement, the links of a developable mechanism must also conform to

the reference surface. Greenwood et al. defined this as the link-shape condition [27] . 

2.3. Spherical mechanisms 

While planar mechanism motion is limited to two dimensions, spherical mechanisms move in three dimensions. They

are a subset of spatial mechanisms with all of their joint axes converging to a single point. For this special case, any point

on the mechanism will be constrained to motion on a reference sphere around the point where the axes converge. 

Planar mechanisms appear as a limiting case of spherical mechanisms with a center point at infinity [28] . While planar

mechanism kinematics are determined by link lengths, the kinematics of spherical mechanisms are defined by the link

angles [13] . The loop equations used to analyze spherical mechanisms are typically compositions of rotations about a base
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Fig. 2. A traditional 4-bar spherical mechanism with all axes and link angles labeled, and the links following the surface of a sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frame located at the point where the axes converge rather than vector loops of complex numbers commonly used for planar

mechanisms. These differences require special consideration as some analysis techniques for planar mechanisms may not

apply to spherical mechanisms [12] . 

Traditional spherical mechanisms are represented with links that conform to a reference sphere on which they travel.

Fig. 2 is an example of a spherical four-bar mechanism with the link angles labeled. While several conventions have been

used to describe spherical four-bar mechanisms, this paper will use the convention presented by McCarthy [13] . The links

α, η, β , and γ refer to the input, coupler, output, and ground link, respectively. A reference coordinate frame is placed with

the origin F where the joint axes converge with the z -axis in the direction of O . The y -axis is oriented along the vector

O × C . The input angle θ is the angle about O , and the output angle ψ about C , both measured counterclockwise from the

xz plane. A coupler angle ξ is defined as the dihedral angle between planes OFA and AFB . 

For any spherical mechanism, there exist a number of supplementary spherical linkages that are kinematically equivalent

[12] . This is because the joint axes intersect the center of the reference sphere, and cross the surface of the sphere in two

locations. A spherical link is created as a portion of the great circle connecting two different joint axes along the reference

sphere. With the two intersecting locations, there are multiple options to connect the joint axes to create mechanisms with

different link angles but identical kinematic behavior. For example, any given four-bar spherical mechanism has 15 other

kinematically equivalent configurations if the link angles in each supplementary linkage is no greater than 180 ◦. 
Grashof’s criterion used for planar four-bar mechanisms can also be applied to spherical four-bar mechanisms [29] . A

mechanism is a Grashof mechanism if one of the links can rotate completely relative to the other links. McCarthy introduced

four parameters based on the link angles that can be used to determine the classification of a mechanism [13] . The four

parameters T 1 , T 2 , T 3 , and T 4 are defined below. 

T 1 = γ − α + η − β (1)

T 2 = γ − α − η + β (2)

T 3 = η + β − γ − α (3)

T 4 = 360 ◦ − α − η − β − γ (4)

When you multiply these parameters together, the sign of the product will indicate whether a mechanism satisfies

Grashof’s criterion. If the product is positive ( T 1 T 2 T 3 T 4 > 0), the mechanism will be a Grashof linkage, and a negative prod-

uct ( T 1 T 2 T 3 T 4 < 0) defines a nonGrashof linkage. A mechanism is folded if one or more of the parameters listed is zero. This

means that at some point in the motion of the linkage, all joint axis can lie on a plane. 

2.4. Instant centers and instant pole axes 

In planar kinematics, instant centers are often used for the velocity analysis of a mechanism [26] . An instant center

is a point where there is no relative velocity between two bodies at a given instant [30] . This principle is useful when

determining the relative motion of a mechanism in a given configuration. An analog for instant centers exists in spherical

mechanisms commonly referred to as relative or instant pole axes [12,31] . For two spherical links, α and η, the instant pole
axis is denoted as P αη . This is the axis about which each link rotates relative to each other. The points where this axis

intersects the reference sphere are points where there is no relative velocity between the two links. 
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Fig. 3. The instant pole axis P ηγ which represents the axis about which link η rotates with respect to link γ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a spherical mechanism, the instant pole axis of two adjacent links is the joint axis that connects them. For the

mechanism shown in Fig. 2 the instant pole axis P αη is joint axis A . For the links on opposite sides of the mechanism,

the instant pole axis can be determined by extending two great circles that contain the other two links and finding their

intersection on the reference sphere. The instant pole axis is the line that passes through that intersection and the center of

the reference sphere. To find the instant pole axis P ηγ of the mechanism in Fig. 2 , a great circle that passes through O and

A intersects with a great circle that passes through C and B at point P . The instant pole axis passes through point P and the

center of the reference sphere as shown in Fig. 3 . 

2.5. Intramobility, extramobility, and transmobility 

A developable mechanism is defined as conforming to or being contained within a developable surface, so it is helpful

to understand the motion of the mechanism relative to the reference surface. Three classifications for developable mecha-

nisms have been defined by Greenwood [27] : intramobility, extramobility, and transmobility. These classifications determine

whether all or part of the mechanism will enter or exit the reference surface when actuated from its conformed position.

This is particularly useful when designing a mechanism that must conform to the inside or outside of a rigid developable

surface and would be unable to cross the surface. 

Greenwood presents two graphical methods to determine the classification of a regular cylindrical mechanism: the In-

stant Center Reference Line (ICRL) method and the shadow method. The ICRL method determines the classification of a

mechanism using the instant centers of each link. For a link i , the instant center with respect to ground is IC 1 i . The ICRL is

the line drawn through IC 1 i and the center of the cylindrical cross section. The location of a link with respect to the ICRL

determines whether or not the mechanism is intramobile, extramobile, and/or transmobile. The green coupler link in Fig. 4

lies on either side of the ICRL. Therefore, the mechanism is exclusively transmobile, meaning that part of the mechanism

will enter the cylinder while another part will exit. 

The shadow method is limited to 1 DOF mechanisms with at least one grounded four-bar loop. While faster than the

ICRL method, the shadow method can only indicate the possibility of intramobility or extramobility. When the mechanism

is represented with a skeleton diagram, the area between the input and output links is shaded, and the location of the center

point of the circle relative to this shaded area can determine the possible classifications. An example of the shadow method

is shown in Fig. 5 . The center of the circle is inside the shaded region, meaning the mechanism is exclusively transmobile. A

full description of the different cases for both the ICRL and shadow method can be found in [27] . This paper extends these

two methods to right conical developable mechanisms. 

3. Conical developable mechanisms 

As noted, a conical surface has ruling lines that converge to a point. A spherical mechanism can be mapped to a conical

surface by placing the center of the reference sphere at the convergence point and aligning the joint axes to the ruling lines.

Then, to satisfy the link-shape condition, the shape of the links are modified to conform to the surface. This process was

outlined by Nelson et al. [1] , and is shown in Fig. 6 mapping the mechanism from Fig. 2 to a conical surface. A method for

analyzing developable mechanisms on a right circular conical surface is presented below. 

While any spherical mechanism can be mapped to an arbitrary conical surface, there are some spherical mechanisms

that can not be mapped to a regular right cone. Because a right cone only exists in one hemisphere of a reference sphere,

to map a spherical mechanism to a right conical surface, it must have a configuration in which all link angles lie on one

side of a reference sphere. The parameter T defined in Eq. 4 can identify whether a four-bar mechanism with link angles
4 
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Fig. 4. A four-bar mechanism on a circle with the ICRL method illustrated for the coupler link. 

Fig. 5. The shadow method shown for a four-bar mechanism. As the center of the circle is contained within the shaded portion, the mechanism is exclu- 

sively transmobile. 

 

 

 

 

 

α, η, β , and γ is contained within one hemisphere of the sphere or whether it wraps around the sphere [13] . The condition

for this behavior is 

mechanism : 

{
T 4 > 0 one hemisphere 

T 4 < 0 wraps around sphere 

With the properties outlined by Chiang [12] to simplify a spherical mechanism to minimal link angles, many mechanisms

can be assembled with supplementary linkages to achieve the same motion with different link angles. If a supplementary

linkage lies in one hemisphere, that mechanism can be mapped onto a right cylinder. 

3.1. Projected angles 

Right circular cones can be defined by the rotation of a line at an angle about an axis, and here we define a developable

mechanism on a cone by similar parameters. A reference frame F is placed at the apex of the cone with the y -axis directed
0 
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Fig. 6. (a) A four-bar spherical mechanism that is (b) mapped onto a conical surface with modified link shapes to conform to the surface and (c) shown 

in hardware. 
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Fig. 7. The global reference frame at the apex of the cone along with the projected angles on the xz -plane. 

 

 

 

 

 

 

 

 

 

away from the cone along the center axis. The z -axis is then aligned in the direction of the first joint axis projected onto a

plane perpendicular to the center axis through the apex as seen in Fig. 7 . This will facilitate the description of the motion

of a developable mechanism with respect to the geometry of the reference surface. 

Because the distance from the apex of the cone does not change the angle between the ruling lines, the location of the

link along the surface does not change the behavior of the mechanism. The mechanism shown in Fig. 8 is the same as the

mechanism shown in Fig. 6 . The joint axes can be projected onto the xz plane of frame F 0 . The angles between the projected

lines are referred to as projected angles . The signs of these angles follow the right-hand rule about the y-axis of frame F 0 .

While a physical link may extend beyond the joint axis, only the angles between the axes determine the kinematic behavior.

Therefore, the projected angles are the minimum angle between the projected axes. This ensures that the magnitude of the

projected angles will always be greater than 0 and less than or equal to 180 ◦. The relationship between a spherical link
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Fig. 8. The location of the link along the ruling line does not change the behavior of the mechanism, thus the two mechanisms exhibit the same relative 

motion between joints. 

Table 1 

Determination of the circuit configuration based on the 

projected angles. 

Product Sum Circuit 

α0 η0 β0 γ 0 > 0 
α0 + η0 + β0 + γ0 = 0 Open 

α0 + η0 + β0 + γ0 � = 0 Crossed 

α0 η0 β0 γ 0 < 0 
α0 + η0 + β0 + γ0 = 0 Crossed 

α0 + η0 + β0 + γ0 � = 0 Open 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

angle φ and the projected angle φ0 is 

cos φ = sin 
2 (λ) + cos 2 (λ) cos φ0 (5)

for 0 ≤ λ < 90 ◦, where λ is the cone angle measured from the xz plane to the surface of the cone. 

When the value of λ is equal to zero, the cone can be represented by a two dimensional plane. In this case, the projected

angles will be equal to the spherical link angles. When λ is equal to 90 ◦, the cone will be a cylinder with an apex at infinity,

and Eq. 5 should not be used. In its conformed position, the projected angles remain constant for any cross-section along

the cone-axis. 

For any n-bar spherical mechanism, the sum of the projected angles will always equal a multiple of 360 ◦, or 

(φ1 ) 0 + (φ2 ) 0 + . . . + ( φn ) 0 = 360 k (6)

where k is an integer. 

While the spherical link angle is always positive, when solving for the projected angle, the arccosine function can yield a

positive or negative value indicating a positive or negative rotation about the y-axis. With the additional constraint of Eq. 6 ,

the correct set of projected angles can be calculated from the angles of a spherical mechanism. It is important to note that

this method to calculate the projected angles only applies to the mechanism in its conformed position. Through the motion

of the mechanism, these projected angles will change. 

Projected angles can help determine whether a mechanism is in a configuration with an open or crossed circuit. If a

quadrilateral is formed by connecting the points that the projected angles intersect the unit circle in the proper order,

either a convex or crossed quadrilateral will be formed. A convex quadrilateral corresponds to an open circuit, and the

crossed quadrilateral to a crossed circuit. Because the projected angles have been defined to be between −180 ◦ and 180 ◦,
and non-zero, they can be used to determine whether a conical developable mechanism in its conformed position is in its

open or crossed configuration. Table 1 shows the conditions for each case. The projected angles for a spherical four-bar

mechanism in its conformed position are α0 , η0 , β0 , and γ 0 . 

These properties of projected angles allow for a reduction of the parameters needed to completely define a conical mech-

anism in its conformed position. A traditional spherical four-bar mechanism requires six parameters to define its position:

α, η, β , and γ , the input angle θ , and the configuration. However, by constraining the mechanism to a conical surface, the

conformed position can be defined by just four parameters: the cone angle λ, and three of the four projected angles ( α0 ,

η0 , β0 , and γ 0 ). 

These projected angles in the conformed position allow for connections to be made to analysis methods for developable

mechanisms on a cylindrical surface, along with position analysis of the conical mechanism. 
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Fig. 9. (a) The planar projection of the mechanism with the instant pole axis of the coupler link with respect to ground and (b) the ICRL of its planar 

counterpart. Note that the line ICRL 13 is the planar projection of the instant pole axis P ηγ . (c) The shadow method is applied to the skeleton diagram of the 

planar mechanism created by the projected angles. (d) Based on both methods, the mechanism is exclusively transmobile as seen in the actuated position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Intramobility, extramobility, and transmobility of right conical developable mechanisms 

To determine whether a conical developable mechanism is intramobile, extramobile, and/or transmobile, the ICRL method

and shadow method can be applied. The projections of the spherical links onto a cross-section of the reference cone along

the cone axis resemble a cylindrical developable mechanism with link angles equal to the projected angles ( Fig. 9 a). 

As defined in [27] , the ICRL method considers the motion of a link relative to its instant center in the conformed po-

sition of the mechanism. The spherical mechanism analog of the instant center is the instant pole axis. The projection of

the instant pole axis of any spherical link onto the cross-section passes through the center of the circle and the instant

center of the planar mechanism defined by the projected angles—the definition of the ICRL. The projected velocity vectors

of the spherical mechanism onto the cross-section also coincide with the directions of the motion of the planar mechanism.

Therefore, the conical mechanism will have the same classification as the cylindrical mechanism defined by the projected

angles. This shows that both the ICRL and shadow methods can be used to classify right conical developable mechanisms.

Fig. 9 shows how both methods can be used for the coupler link of a conical mechanism. 

It is important to note that while the analysis is done in two dimensions, a conical mechanism will have three dimen-

sional motion. An extramobile mechanism will also have a positive displacement in the y -direction, and an intramobile

mechanism will have a negative displacement in the y -direction. A transmobile mechanism will have both positive and

negative displacement in the y -direction. 

5. Loop sum method to find cone angle 

This section introduces the Loop Sum Method as an approach to find the cone angle of a right conical reference surface

to which a spherical mechanism can conform. The Loop Sum Method uses the properties of projected angles presented in

Eqs. (5) and (6) . 

If Eq. 5 is solved for the projected angle, the expression is 

φ0 = ± arccos 

(
cos φ − sin 

2 (λ) 

cos 2 (λ) 

)
(7) 

For an n -bar loop in a spherical mechanism, solving Eq. (7) for each link and adding them together generates a set of up

to 2 n combinations due to the positive or negative solutions. Then, using a numerical or graphical approach, the cone angles

which satisfy Eq. (6) can be found. 
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Table 2 

Values of m as a function of (φn −1 ) 0 and ( φn ) 0 . 

Sign of 

(φn −1 ) 0 Value of (φn ) 0 
(φn −1 ) 0 

m θ

(φn −1 ) 0 > 0 
−1 < 

(φn ) 0 
(φn −1 ) 0 

< 0 1 

all other cases −1 

(φn −1 ) 0 < 0 
−1 < 

(φn ) 0 
(φn −1 ) 0 

< 0 −1 

all other cases 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This approach is demonstrated with a spherical four-bar mechanism with link angles α, η, β , and γ . The projected angles

from Eq. (7) are 

α0 = ± arccos 

(
cos α − sin 

2 (λ) 

cos 2 (λ) 

)
(8)

η0 = ± arccos 

(
cos η − sin 

2 (λ) 

cos 2 (λ) 

)
(9)

β0 = ± arccos 

(
cos β − sin 

2 (λ) 

cos 2 (λ) 

)
(10)

γ0 = ± arccos 

(
cos γ − sin 

2 (λ) 

cos 2 (λ) 

)
(11)

Substituting these projected angles into Eq. (6) gives 

±α0 ± η0 ± β0 ± γ0 = 360 k (12)

The left hand side has a total of 16 possible combinations. However, eight of the sets are opposite of one another. For

the following solutions, only the combinations with a positive α0 will be considered. By graphing the real solutions of these

sums as functions of the cone angle λ, a solution is found where the sum is equal to a multiple of 360. Depending on

the mechanism classification, there are four possible solution cases as seen in Fig. 10 (a–d). Each graph shows eight of the

sums for each case. The first case of a Grashof linkage will have two possible cone angles. The second case of a nonGrashof

linkage will have only one possible cone angle. The third case of a folding mechanism will have up to one possible non-zero

cone angle and one cone angle of zero. The final solution case of a mechanism with two sets of equal link angles opposite

each other will have infinite possibilities of cone angles. 

This method will work for any mechanism which lies on one half of a reference sphere. If a mechanism wraps around

the sphere as described in Section 3 , a supplementary linkage can be used to achieve the same motion. This supplementary

linkage can then be used with this approach. 

6. Position analysis with axis-angle rotations 

In both planar and spherical mechanism analysis, when solving for the output angle as a function of the input angle,

there are several possible solutions based on the configuration of the mechanism. However, by constraining the mechanism

to a developable surface, a unique solution can be found analytically. When a spherical mechanism with link angles ( φ1 ,

φ2 ,…, φn ) is mapped to a conical surface, the dihedral angle between any two adjacent links in the conformed position

θn −1 ,n can be calculated with the cone angle and the projected angles. To follow the convention set by McCarthy [13] , the

dihedral angle is measured from the plane created by link n − 1 rotated about the joint axis shared with link n following

the right-hand rule. For example, the input angle of a spherical four-bar θ as seen in Fig. 2 could be expressed as θγ , α with

this notation. The output angle ψ could be expressed as (180 ◦ − θγ ,β ) . Using the spherical law of cosines [12] along with

Eq. 5 , the equations for these angles are 

cos (m θ θn −1 ,n ) = 

cos ε − cos φn −1 cos φn 

sin φn −1 sin φn 
(13)

where 

cos ε = sin 
2 λ + cos 2 λ cos ((φn −1 ) 0 + (φn ) 0 ) (14)

The parameter m θ can be 1 or -1 depending on the signs of (φn −1 ) 0 and ( φn ) 0 . Table 2 gives the value of m given the

projected angles. 

Position analysis of spherical mechanisms is typically done using a sequence of rotations using the link angles [12] .

By using axis-angle representations of rotations, a different approach can describe the mechanism motion using only the
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(d) Case 4
Fig. 10. Eight of the sets of combinations of the Loop Sum Method. The legend indicates the signs of the projected angles in Eq. (12) . The link angles used 

in the cases are (a) α = 120 ◦, η = 95 ◦, β = 45 ◦, γ = 85 ◦, (b) α = 155 ◦, η = 50 ◦, β = 65 ◦, γ = 80 ◦, (c) α = 100 ◦, η = 70 ◦, β = 90 ◦, γ = 60 ◦ . (d) α = 120 ◦, 
η = 50 ◦, β = 120 ◦, γ = 50 ◦ . 

 

 

 

 

 

 

 

 

 

 

 

projected angles and the geometry of the reference cone. Both analysis methods can yield the same results as long as

the reference frames are established correctly, but the method presented in this section uses the projected angles of the

mechanism rather than the link angles. Axis-angle rotations can describe any composition of rotations by defining a single

axis about which an object rotates a certain angle. This is based on Euler’s theorem of a three-dimensional rotation [32] .

The Rodrigues equation [33] describing the rotation of a vector v an angle θ about a unit vector ˆ e is 

v ′ = cos θ v + sin θ ( ̂  e × v ) + (1 − cos θ )( v · ˆ e ) ̂  e (15) 

In this paper, the rotation described by Eq. (15) will have the notation 

v ′ = R ˆ e ,θv (16) 

where ˆ e is the unit vector about which the vector v is rotated by θ . 
A cone can be considered as the rotation of a line segment about a center axis (cone axis). This axis-angle approach

provides a way to visualize the sequence of rotations as rotations along a conical surface. By defining a reference frame as

described in Section 3.1 , the first joint axis can be found by a rotation of λ about the x-axis. In its conformed position, every

joint axis can then be identified by rotating the first joint axis about the y-axis (cone axis) using the projected angles. This

approach is useful to describe the position of the mechanism with respect to the geometry of the reference cone. 

Because of the link-shape condition, each link of a conical developable mechanism is a segment of a conical surface

each with a unique cone axis. In the conformed position all of the axes are collinear, but as the mechanism moves, these

cone axes shift relative to the reference cone. All of these shifts can be described using a series of axis-angle rotations. The
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positions of any point along each link can then be determined. In this paper, this analysis method is presented for a four-bar

conical developable mechanism. 

Given a four-bar conical developable mechanism with projected angles ( α0 , η0 , β0 , and γ 0 ) and a cone angle λ, the
following equations describe the position of the joint axes ( O, A, B , and C ) with respect to the reference frame as described

in Section 3.1 . The changes in the coupler and output angles as functions of the input angle can be calculated through

methods presented in other work [12,13] . 

1. Joint axis O is found by rotating the z -axis of the reference frame about the x -axis by λ. 

O = R ˆ ı ,λ ˆ k = 

[ 

0 
− sin λ
cos λ

] 

(17)

2. The α-cone axis ˆ e α is found be rotating the y -axis about vector O by �θ (change from the conformed position). 

ˆ e α = R O , �θ
ˆ j (18)

3. Joint axis A is found by rotating vector O about ˆ e α by α0 . 

A = R ˆ e α,α0 
O (19)

4. The η-cone axis ˆ e η is found by rotating ˆ e α about A by �ξ (change in the coupler angle from conformed position). 

ˆ e η = R A , �ξ ˆ e α (20)

5. The joint axis B is found by rotating vector A about ˆ e η by η0 . 

B = R ˆ e η,η0 
A (21)

6. The joint axis C is found by rotating vector O about the y -axis by γ 0 . 

C = R ˆ j ,γ0 
O (22)

7. An alternate equation for joint axis B is found by rotating vector C about ˆ e β by β0 . 

B = R ˆ e β ,β0 
C (23)

where 

ˆ e β = R C , �ψ ̂
 j (24)

These equations are used to find just the location of the joint axis. A link may extend beyond the joint axis along the

surface of the cone. To find any point along a link, Eqs. (19) , (21) , and 23 can be used with different angles to find the

position of a point along the α, η, and β links, respectively. The same approach can be extended to mechanisms with more

links. 

7. Multiloop conical developable mechanisms 

Some multiloop spherical mechanisms can also be mapped onto a regular conical surface provided that all of their joint

axes align with the ruling lines of a reference conical surface. The methods for analysis presented in this paper can also be

applied to multiloop linkages. 

7.1. Loop sum method for multiloop mechanisms 

A multiloop linkage is constructed from several connected loops to create a single degree of freedom mechanism. As

the Loop Sum Method described in Section 5 determines the possible cone angles for a single loop mechanism, it would

need to be applied to each individual loop of a multiloop mechanism and yield the same cone angle each time to map the

mechanism to a right conical surface. For example, a six-bar linkage typically contains two closed loops (two four-bar loops

in a Watt linkage, and a four-bar and five-bar loop in a Stephenson linkage). When the Loop Sum Method is applied to

each loop, the mechanism can only be mapped to a conical surface if a common cone angle is found. This is an important

distinction as any spherical four-bar mechanism can be mapped to a cone, but few spherical multiloop mechanisms can.

Therefore, the Loop Sum Method defines a design requirement for multiloop mechanisms rather than a tool to be applied

on an arbitrary mechanism. An example of a spherical Stephenson 2 linkage mapped to a cone is shown in Fig. 11 . 

7.2. Position analysis of multiloop mechanisms 

The method of using axis-angle rotations to analyze the position of a mechanism with respect to the apex of the cone

can be applied to multiloop mechanisms. As with four-bar mechanisms, each link represents a segment of the cone with a

distinct cone axis. Through a sequence of axis-angle rotations, the position along each link can be found provided that the

changes in dihedral angles from the conformed position are known. 
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Fig. 11. (a) A spherical Stephenson 2 linkage (b) mapped onto a regular conical surface. (c) Hardware demonstrates the mechanism in the conformed 

and (d) actuated positions. The displayed mechanism has a cone angle of 20 ◦ and projected angles of (φOA ) 0 = −40 ◦, (φAB ) 0 = −20 ◦, (φBC ) 0 = −45 ◦, 
(φCD ) 0 = −68 ◦, (φDE ) 0 = 28 ◦, (φEF ) 0 = 30 ◦ . 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusion 

This paper has presented several definitions and approaches to aid in the design and analysis of conical developable

mechanisms. By conforming to a conical surface, a spherical mechanism can achieve complex three dimensional motion

while stowing compactly to a designated configuration. The projected angles of the joint axes allow for a reduction of the

parameters needed to completely define a mechanism. These angles also facilitate the adaptation of other analysis methods

for planar mechanisms on cylindrical surfaces. 

This paper introduces several methods to design conical developable mechanisms. With the properties of projected an-

gles, the cone angle of a right conical reference surface can be found for any traditional spherical four-bar mechanism. An

alternate method for the position analysis of a four-bar mechanism was developed that uses rotations about the axis of the

reference cone. This can determine the position of any point along the link throughout a mechanism’s motion with respect

to the reference cone surface. The principles presented can also be applied generally to mechanisms with more than four

links. 
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