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a b s t r a c t 

We study economic incentives provided by space-time dynamics of day-ahead and real-time electricity 

markets. Specifically, we seek to analyze to what extent such dynamics promote decentralization of tech- 

nologies for generation, consumption, and storage (which is essential to obtain a more flexible power 

grid). Incentives for decentralization are also of relevance given recent interest in the deployment of 

small-scale modular technologies (e.g., modular ammonia and biogas production systems). Our analysis 

is based on an asset placement problem that seeks to find optimal locations for generators and loads 

in the network that minimize profit risk. We show that an unconstrained version of this problem can 

be cast as an eigenvalue problem. Under this representation, optimal network allocations are eigenvec- 

tors of the space-time price covariance matrix while the eigenvalues are the associated profit variances. 

We also construct a more sophisticated placement formulation that captures different risk metrics and 

constraints on types of technologies to systematically analyze trade-offs in expected profit and risk. Our 

analysis reveals that space-time market dynamics provide significant incentives for decentralization and 

strategic asset placement but that full mitigation of risk is only possible through simultaneous investment 

in generation and loads (which can be achieved using batteries or microgrids). 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Decentralization of technologies for power generation (e.g.,

ower plants), consumption (e.g., manufacturing facilities and data

enters), and storage (e.g., batteries) is an ongoing industrial trend

 Ramshaw, 1999; Stankiewicz and Moulijn, 20 0 0 ). From the per-

pective of an independent system operator (ISO) of the power

rid, decentralization is desirable as it can provide spatial flexibil-

ty to control network flows and to overcome limited transmission

nfrastructure ( Buchholz, 2010; Kim et al., 2017a ). In addition, large

entralized power generation and consumption facilities can be-

ome liabilities during extreme weather or cyber attacks ( Lier and

rünewald, 2011 ). To give an idea of the risk that large centralized

acilities pose to the power grid, consider the fact that the load

f a conventional ammonia manufacturing plant is around 64 MW

 Egenhofer et al., 2017 ) and that the load of a large data center

eaches 50 MW ( Avgerinou et al., 2017 ) (equivalent to the load of

ens of thousands of homes). Similarly, the power supply of a large

entralized power plant such as the Hammond plant in Georgia

s 800 MW Georgia Power . The growing demand from large data

enters is of particular concern as it is projected that, within the
∗ Corresponding author. 
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ext decade, the loads from such facilities will represent over 20%

f the total grid load ( Kim et al., 2017a ). Another issue associated

ith centralized facilities is that they provide limited investment

exibility to mitigate long-term risks in electricity prices and pol-

cy. The need to mitigate investment risks is promoting the devel-

pment and deployment of smaller-scale (modular) technologies

 Guo et al., 2009; Kim et al., 2017b; Palys et al., 2018; Wu et al.,

009 ). On the other hand, it is well-known that large centralized

ystems benefit from economies of scale and thus a strong trade-

ff exists between expected profit and risk. 

Because electricity prices are a key driving factor in the rev-

nue/cost of facilities, space-time price fluctuations must be con-

idered in investment and operating decisions. For instance, power

eneration and consumption facilities often sell/purchase electric-

ty in the Day-Ahead Energy Market (DAM) as opposed to the

eal-Time Energy Market (RTM) to minimize risk, as the former

s far less volatile ISO New England ,( Conejo et al., 2005; Dowl-

ng et al., 2017 ). The growing share of renewable power in the

upply portfolio is also introducing stronger market volatility and

isk ( Johnson and Oliver, 2016 ), as unpredictable weather events

an disrupt these renewable technologies and thus cause inter-

ittent and volatile electricity supply. This issue is exacerbated

y the lack of sufficient elastic (flexible) demand. The temporal

nd spatial volatility of electricity prices in RTM is illustrated in

https://doi.org/10.1016/j.compchemeng.2019.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
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Fig. 1. Electricity price fluctuation in RTM on February 5, 2015 in CAISO. 
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Fig. 1 . Here, we show the nodal price change over 20 min for

a specific day in California. We see that, under a 20-min period,

the average electricity price increases from 48.42 USD/MWh to

592.33 USD/MWh and then drops to 35.15 USD/MWh. Here, we

also see that such fluctuations are less abrupt at some network lo-

cations. Price volatility is less severe in day-ahead markets; in fact,

day-ahead markets are precisely designed to pre-allocate genera-

tion and loads in the network in order to help participants miti-

gate profit risk ( Zavala et al., 2017 ). On the other hand, the average

RTM price is typically lower than the average DAM price. Conse-

quently, there exists a premium to participate in the DAM (in or-

der to avoid RTM volatility and associated risk). This suggests that

there exists an economic incentive to decentralize (diversify) gen-

eration and load assets over multiple network locations in order

to exploit spatial correlations in DAM and RTM prices (and with

this avoid large premia). Similarly, spatial variations in DAM and

RTM prices can be exploited by decentralized facilities to maximize

profit. For instance, large cloud computing providers are currently

placing data centers strategically in the network in order to avoid

large electricity costs ( Kim et al., 2017a ). One could also envision

that small modular manufacturing facilities can be relocated to ex-

ploit more favorable prices. A challenge that arises in this context

is that DAM and RTM prices exhibit complex spatio-temporal dy-

namics and correlation patterns ( Wang and Hobbs, 2014 ). As a re-

sult, it is non-trivial to identify suitable degrees of asset decentral-

ization and optimal locations for such assets. 

In this work, we propose a computational framework for an-

alyzing economic incentives created by space-time dynamics of

electricity markets. Our framework is based on an asset placement

formulation that seeks to find optimal locations for generation and

load (consumption) assets in the network that minimize profit risk.

We show that an unconstrained version of this problem can be

cast as an eigenvalue problem. Under this representation, opti-

mal network allocations are eigenvectors of the space-time price

covariance matrix, while the eigenvalues are the profit variances

that result from such allocations. Consequently, risk analysis can

be performed in a systematic and computationally efficient man-

ner by using principal component analysis (PCA). We construct a

constrained placement problem that captures constraints on the

types of assets and that trade-offs risk and expected profit. Un-

fortunately, for the ISO-scale data sets of interest, this problem is a

large-scale mixed-integer quadratic programming (MIQP) problem

that cannot be solved with current solvers. We use the mean abso-

lute deviation as an alternative risk measure to obtain a more scal-
 s
ble (but still challenging) mixed-integer linear program (MILP).

nalysis using the California ISO (CAISO) market data for 2015

eveals that space-time market dynamics provide significant in-

entives for strategic diversification and asset placement but that

omplete mitigation of revenue risk is only possible by simultane-

us investment in decentralized generation and load assets (which

an also be achieved by using batteries or hybrid systems such

s microgrids or other prosumers). These results are of relevance

iven the recent interest in the deployment of small-scale mod-

lar technologies. We highlight that our work focuses on the use

f real (but historical) data to conduct analysis; as such, the study

s realistic but has limited predicted power. Unfortunately, exist-

ng forecasting techniques for economic time-series data focus on

ni-dimensional data ( Ledoit and Wolf, 2004 ), while the market

ata set considered here is high-dimensional (reaching thousands

f locations that are correlated in space and time). As part of fu-

ure work, we will investigate forecasting strategies for such high-

imensional data sets. 

The paper is structured as follows. In the following section, we

otivate our discussion by conducting a basic space-time analysis

f electricity markets in California. In Section 2 we formulate the

echnology placement problem, interpret it as an eigenvalue prob-

em, and provide scalable constrained variants. A detailed analysis

f the California ISO data set using the placement problem formu-

ations is provided in Section 3 . 

. Optimal placement problem 

In this section, we derive different variants of the optimal

lacement problem that will allow us to explore incentives pro-

ides by space-time dynamics of electricity markets. 

.1. Unconstrained formulation 

We capture the space-time price data in a matrix � ∈ R 

m ×n .

ere, the number of columns n is the number of spatial network

ocations (nodes) and the number of rows m is the number of

ime points. The matrix entry �i,j is interpreted as the price at

ime i and at node j . We use p i := �i, : ∈ R 

n , i = 1 , . . . , m to de-

ote all node prices at time i . We denote the set of spatial lo-

ations as N := { 1 , . . . , n } and the set of all time realizations as

 := { 1 , . . . , m } . All prices have units of USD/MWh and we con-

truct separate matrices for DAM and RTM. 
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Given the space-time price data, we seek to identify optimal lo-

ations for loads and generators in the network that minimize the

emporal profit variance (variance is used as a standard measure

f risk and can also be interpreted as profit volatility). We define

 node allocation vector w ∈ R 

n and the profit function at time i

s ϕ(w, p i ) := 

∑ 

j∈N w j �i, j . We interpret a positive node alloca-

ion w j > 0 as an injection of power (a generation asset incurring

evenue for a positive price) and a negative node allocation w j < 0

s a withdrawal of power (a load asset incurring cost for a positive

rice). The node allocations w j have units of MWh. If the prices are

egative, a positive allocation incurs cost and a negative allocation

ncurs a revenue. In other words, installing generators maximizes

evenue, but we will see that the simultaneous installation of gen-

rators and loads is needed to minimize risk. 

The temporal average of the profit is given by: 

ϕ (w ) = 

1 

m 

∑ 

i ∈M 

ϕ(w, p i ) (2.1) 

nd the temporal variance is 

ϕ (w ) = 

1 

m − 1 

∑ 

i ∈M 

( ϕ( w, p i ) − μϕ (w )) 2 . (2.2) 

he optimal placement problem consists of finding the allocation

ector w that minimizes the profit risk. This problem is stated as: 

in 
w 

�ϕ (w ) . (2.3) 

e assume that the optimal allocation vector (denoted as w 

∗
1 
) sat-

sfies the constraint ‖ w 

∗
1 
‖ 2 = 1 (it is a vector of unit length), where

 · ‖ 2 denotes the Euclidean norm. This constraint is interpreted as

he distribution of a finite amount of power among the network

odes. We note that the placement problem is scale-invariant. In

ther words, replacing w → γw for some γ > 0 in the optimization

roblem yields the same optimal allocations. Consequently, impos-

ng a constraint of the form ‖ w ‖ 2 = 1 /γ will yield the same op-

imal allocation obtained with the constraint ‖ w ‖ 2 = 1 . This for-

ulation seeks to exploit the space-time dynamics of the prices to

dentify node allocations for generation or load that minimize risk.

his is a large-scale and continuous quadratic program (QP). 

.2. Eigenvalue interpretation 

An interesting observation that we make is that, under the spe-

ial case with no temporal price correlations, the optimal place-

ent problem described above can be interpreted as an eigenvalue

roblem . This connection reveals some interesting properties of the

arket prices. In the absence of temporal price correlations, the

rice at the spatial location (network node) j can be modeled as a

andom variable (denoted as P j ) and we use P = { P 1 , . . . , P n } to de-
ote a random vector containing all node prices. Consequently, the

atrix entry �i,j is interpreted as the i th time realization of the

rice P j and we assume that the probability of the realization is

/ m . In this case, p i denotes the i th realization of the spatial price

ector P . Under this setting, the sample average of the profit ap-

roximates the expected value of the profit: 

ϕ (w ) ≈ E [ ϕ(w, P )] (2.4) 

nd the sample variance approximates the variance: 

ϕ (w ) ≈ V [ ϕ(w, P )] . (2.5) 

ere, we recall that V [ ϕ(w, P )] = E [ ϕ(w, P ) 2 ] − E [ ϕ(w, P )] 2 . The

ey observation is that the profit variance is related to the price
ovariance as V [ ϕ(w )] = w 

T 
E [(P − E [ P ])(P − E [ P ]) T ] w . This result

an be from the following series of implications: 

 [ ϕ(w )] = E [ ϕ(w, P ) 2 ] − E [ ϕ(w, P )] 2 

= 

∑ 

j∈N 

∑ 

k ∈N 
w j w k E [ P j P k ] −

∑ 

j∈N 

∑ 

k ∈N 
w j w k E [ P j ] E [ P k ] 

= 

∑ 

j∈N 

∑ 

k ∈N 
w j w k Cov (P j , P k ) 

= w 

T 
E [(P − E [ P ])(P − E [ P ]) T ] w. (2.6) 

ne can derive a similar relationship between the sample profit

nd covariance matrix to establish �ϕ (w ) = w 

T �w . Consequently,

he optimal placement problem (2.3) can also be written as: 

in 
w 

w 

T �w s.t. ‖ w ‖ 2 = 1 . (2.7) 

his reveals that the placement problem is an eigenvalue problem .

ccordingly, the optimal allocation vector w 

∗
1 

is the eigenvector

orresponding to the minimum eigenvalue λ∗
1 
of the price covari-

nce matrix �. Moreover, the minimum eigenvalue is the min-

mum profit variance ( λ∗
1 

= �ϕ (w 

∗
1 
) ). The eigenvalue problem is

lso a QP but this can also be solved efficiently using standard

echniques (e.g., QR or SVD). 

The eigenvalue problem is the basis of principal compo-

ent analysis (PCA). The first principal component is given by

(w 

∗
1 
) T p i , i ∈ M . In PCA, one extracts the entire eigenvalue spec-

rum of the price matrix to obtain all the principal components.

or instance, to obtain the second smallest eigenvalue and corre-

ponding eigenvector we add the linear orthogonality constraint

 

T w 

∗
1 

= 0 to the eigenvalue problem (2.7) . The solution of the new

roblem yields the eigenvector w 

∗
2 
and corresponding eigenvalue

∗
2 

= �ϕ (w 

∗
2 
) . Since adding the orthogonality constraint restricts

he feasible space, we have that �ϕ (w 

∗
2 
) ≥ �ϕ (w 

∗
1 
) . This procedure

s repeated to obtain the entire set of eigen-pairs w 

∗
j 
, λ∗

j 
, j ∈ N ,

here λ∗
n = �ϕ (w 

∗
n ) is the maximum possible cost variance (ob-

ained with the loading allocation w 

∗
n ). In our context, this proce-

ure provides useful information because it allows us to obtain a

amily of allocations w 

∗
j 
, j ∈ N and to rank them according to their

rofit variance. The eigenvectors can also be used to form a ma-

rix W that can be used to project any price realization p i into the

pace of the principal components as Wp i . The projection can be

sed to identify clusters and/or outliers in the price data by ana-

yzing only a subset of principal components. 

.3. Constrained formulation 

While mitigating profit variance is an important investment

oal, obtaining a maximum expected profit is also important.

oreover, one often has constraints on the nature and capacity

f assets that can be installed. We thus extend the placement

roblem (2.3) to capture these features. We impose an � 1 -norm

onstraint on the allocation vector w so that the total amount of

ower allocated adds up to one MWh and we add a condition that

nly one type of asset is allowed to be built at one location (either

eneration or load). Consequently, we can decompose the node al-

ocation w j into a generation 0 ≤w j, l ≤1 and a load component

1 ≤ w j,g ≤ 0 (which are mutually exclusive). This gives the follow-

ng conflict resolution (multi-objective optimization) problem: 

ax 
w 

{ μϕ (w ) , −�ϕ (w ) } (2.8a) 

.t. 
∑ 

j∈N 

(| w j,l | + | w j,g | 
)

= 1 (2.8b) 

0 ≤ w j,g ≤ z j,g , j ∈ N (2.8c) 

− z j,l ≤ w j,l ≤ 0 , j ∈ N (2.8d) 
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z j,l + z j,g ≤ 1 , j ∈ N (2.8e)

z j,l , z j,g ∈ { 0 , 1 } , j ∈ N . (2.8f)

where z j,l and z j,g are binary variables that indicate if either a load

or generation asset is installed at a particular location j . The con-

straint z j,l + z j,g ≤ 1 indicates that either a load or a generator (but

not both) can be installed at one location. Consequently, we have

that 
∑ 

j∈N 
(| w j,l | + | w j,g | 

)
= 

∑ 

j∈N | w j | = ‖ w ‖ 1 . This constraint is
used to avoid degeneracy of the solution (e.g., adding a load and

a generator in a given node has the same net effect as installing

one generator or load). The objective function captures the trade-

off between expected profit and risk (which are often conflicting).

The use of binary variables allows us to enforce a sharp separa-

tion between loads and generators (a continuous formulation does

not allow for this). This facilitates interpretability of the solution.

Specifically, we aim to use the placement formulation to explore

how space-time price dynamics provide incentives to install de-

centralize facilities for loads and generators. 

Unfortunately, the constrained placement problem is a large-

scale mixed-integer QP. This problem is intractable for the ISO-

scale data sets considered in this work. Motivated by this limita-

tion, we consider the mean absolute deviation as a risk measure.

This is given by: 

MD (w ) = 

1 

m 

∑ 

i ∈M 

| ϕ(w, p i ) − μϕ (w ) | ≈ E [ | ϕ(w, P ) − μϕ (w ) | ] . 
(2.9)

This risk measure is used to formulate the placement problem: 

max 
w 

{ μϕ (w ) , −MD (w ) } (2.10a)

s.t. 
∑ 

j∈N 

(| w j,l | + | w j,g | 
)

= 1 (2.10b)

0 ≤ w j,g ≤ z j,g , j ∈ N (2.10c)

− z j,l ≤ w j,l ≤ 0 , j ∈ N (2.10d)

z j,l + z j,g ≤ 1 , j ∈ N (2.10e)

z j,l , z j,g ∈ { 0 , 1 } , j ∈ N (2.10f)

which can be cast as a mixed-integer linear program that is still

large-scale scale but tractable with existing tools. The constrained

placement problem is also scale-invariant. In other words, replac-

ing w → γw for some γ > 0 yields the same optimal allocations.

This is because MD (γw ) = γMD (w ) , and μϕ (γw ) = γμϕ (w ) (re-

sulting in a linear scaling of the objective function). Consequently,

imposing a constraint of the form ‖ w ‖ 1 = 1 /γ will yield the same

allocation obtained with the unit-length constraint ‖ w ‖ 1 = 1 . The

constraints set capacity of load and generators, and the constraint

on the binary variables ensures that only one type of technology is

allowed at each location. We can use the above formulation to un-

derstand the impacts of installing only certain types of assets or at

certain locations. For instance, if we only wish to install generation

assets, we set all z j,l to zero. 

3. Results and discussion 

In this section, we conduct a basic statistical analysis for an

electricity market data set of CAISO and use the optimal place-

ment formulation to analyze economic incentives created by the

DAM and RTM. 
.1. Volatility analysis of electricity markets 

In the DAM, electricity prices are updated hourly and market

articipants commit to buy or sell power one day before real-time

peration, thus avoiding price volatility. This market produces one

nancial settlement per day. In the RTM market, prices are up-

ated every 5 min and participants commit to buy or sell electric-

ty over the course of the operating day. This market seeks to bal-

nce discrepancies between the day-ahead commitments and the

ctual real-time generation and loads seen in the power grid (e.g.,

ue to unexpected variations in renewable power supply, equip-

ent failures, and so on). The DAM and RTM work together to pro-

uce a multi-settlement system that balances power at different

imescales and at thousands of network locations ( Dowling et al.,

017 ). Usually, electricity prices in the DAM are usually less volatile

ut are on average higher than RTM prices, and thus market partic-

pants can participate strategically in either or both of these mar-

ets. 

We conducted a basic statistical analysis to compute space-time

rice averages and standard deviations for the CAISO data set for

he year of 2015. This dataset is open-access and was collected

rom CAISO Open Access Same-time Information System (OASIS)

 AM and EC, 2014 ). The dataset includes complete electricity price

rofiles for the year at 2234 different network locations. The data

et contains over 19,569,840 price points for the DAM (one-hour

ime resolution) and 234,838,080 price points for the RTM (5-min

ime resolution). We use this data to construct a space-time co-

ariance matrix � form both the DAM and RTM. 

The results are visualized in Figs. 2–4 . Fig. 2 illustrates

hat the time-average price for both markets is in the range

f 27–50 USD/MWh. The space-time average RTM price is

2.71 USD/MWh, which is 2.62% lower than the corresponding

verage DAM price of 33.59 USD/MWh. The differences illustrate

hat there is a premium in the DAM. Spatial patterns for both

arkets are quite similar, indicating that prices are dictated by

he network topology. Fig. 3 demonstrates temporal price volatility

standard deviation) at all locations. The temporal volatility in the

AM is consistently under 10 USD/MWh in most locations while

he volatility in the RTM is in the range of 60–70 USD/MWh and

eaches levels of 90 USD/MWh in some locations. The spatial av-

rage of the temporal volatilities was found to be 62.41 USD/MWh

or the RTM, almost four times larger than in the DAM, which was

nly 12.93 USD/MWh. These results clearly indicate that RTM pos-

esses greater temporal volatility. Fig. 4 presents spatial volatility

hrough time. We see that the DAM shows low spatial volatility

except in a few instances in the summer months) while the RTM

hows more frequent spikes in spatial volatility. Based on this anal-

sis we conclude that the RTM is more volatile than the DAM in

oth time and space. We also found that the temporal average of

he spatial volatility was found to be 8.85 USD/MWh for the RTM

nd 5.60 USD/MWh for the DAM. We can thus see that, on average,

patial volatility is less significant than temporal volatility (which

re 12.93 USD/MWh for DAM and 62.42 USD/MWh for the RTM). 

We also computed the spatial correlation matrix based on the

ovariance matrix. Our results show that, in the DAM, the average

orrelation is 0.67, that 99% of the total number of locations are

ositively correlated, and that the minimum correlation is −0 . 22 .

n the RTM, the average correlation is 0.82 and the minimum cor-

elation is 0.0 0 083. We conclude that a strong positive correlation

xists in both electricity markets (prices at different locations tend

o move in the same direction). This indicates that there is tight

hysical network coupling. As we will see next, strong positive cor-

elation indicates that it is impossible to eliminate investment risk

y simply investing in either generation or loads (a combination

f both is needed). This would not be the case if we had a strong

egative correlation in the market. 
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Fig. 2. Temporal average price (at different spatial locations) for CAISO in day-ahead (left) and real-time (right) markets. 

Fig. 3. Temporal average standard deviation (at different spatial locations) for the DAM (left) and RTM (right). 

Fig. 4. Spatial average standard deviation (at different temporal locations) for the DAM (left) and RTM (right). 
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Fig. 5. Cumulative eigenvalue spectrum for the DAM (left) and the RTM (right) covariances. 

Table 1 

Eigenvalues for DAM and RTM covariance matrices. 

Eigenvalue DAM RTM 

λ1 −4 . 25 × 10 −12 −4 . 59 × 10 −11 

λ10 −2 . 09 × 10 −14 −1 . 90 × 10 −12 

λ100 −2 . 86 × 10 −16 −5 . 74 × 10 −16 

λ500 2 . 91 × 10 −18 5 . 80 × 10 −17 

λ10 0 0 5 . 78 × 10 −4 4 . 68 × 10 −5 

λ1500 0.24 0.016 

λ20 0 0 5.87 9.20 

λ2100 18.35 74.15 

λ2200 300.62 2806.04 

λ2234 2.54 ×10 5 7.31 ×10 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Risk vs. expected profit trade-off for DAM. 

Risk Std. dev. Expected Profit # of # of 

($/MWh) ($/MWh) ($/MWh) Loads Generators 

24.03 46.66 52.76 0 2 

18.15 33.78 49.15 0 3 

12.19 19.52 44.22 0 5 

8.31 11.64 39.24 0 12 

5.75 7.85 34.16 0 8 

5.06 7.00 31.85 0 7 

4.25 5.53 28.15 3 9 

3.15 4.08 22.13 13 9 

1.33 1.75 10.63 29 12 

0.16 0.23 1.92 142 112 

0.055 0.011 0.80 287 254 

3

 

t  

t  

D  

a  

i  

i  

s  

t  

5  

v  

i  

t  

a  

g  

s  

o  

t  

t  

r  

a  

a  

d  

t  

d  

r  

o  

r  
3.2. Eigenvalue analysis of space-Time covariance matrix 

Solving the basic placement formulation is equivalent to solv-

ing an eigenvalue problem. In Table 1 and Fig. 5 , we summarize the

eigenvalue spectrum in ascending order for both the DAM and RTM

price covariance matrices (recall that the eigenvalues are the vari-

ances of the profit). Recall that both the DAM and RTM matrices

have a total of 2234 eigenvalues. The first 1180 eigenvalues of the

DAM price covariance are close to zero. For the RTM, the first 1454

eigenvalues are close to zero (below a threshold value of O (10 −2 ) ).

This indicates that many eigenvectors (allocations) give zero vari-

ance, meaning that many combinations of asset locations (given by

the corresponding eigenvectors) can eliminate profit variance. An

optimal strategy to eliminate risk is to place combinations of loads

and generators at neighboring nodes (those with similar tempo-

ral price profiles). This can be visualized in Fig. 6 , where we show

the optimal placement of assets (the eigenvectors) corresponding

to the minimum eigenvalues. As can be seen, allocations of gener-

ation and load always appear in pairs next to each other and are

of equal magnitude. 

The largest eigenvalue (the maximum possible profit variance)

is O (10 5 ) for the DAM and O (10 6 ) for the RTM, indicating that there

is more volatility in the RTM (reinforcing the observations made

with basic statistical analysis). In Fig. 7 , we present the optimal

allocations corresponding to the maximum variance. The strategy

here is to place the same asset type (in this case power genera-

tion) at all nodes. The maps also reveal areas the are strongly pos-

itively correlated (so the strategy to maximize variance is to al-

locate more generation at such locations). Obviously, this strategy

is not optimal from an investment standpoint but highlights some

interesting properties of the behavior of electricity prices. 
.3. Risk vs. mean profit trade-off for the DAM 

We used the placement formulation to analyze trade-offs be-

ween risk and expected profit. In Table 2 and Fig. 8 we present

he optimal trade-off solutions (Pareto optimal solutions) for the

AM. The Pareto solutions were identified using an ε-constrained
pproach. From these results, we can make a number of interest-

ng observations. First, it is clear that to maximize expected profit

t is optimal to centralize facilities (these facilities are simply in-

talled at locations with large mean price). In this case, obviously,

he type of asset to install is generation and the expected profit is

2.76 $/MWh. This strategy, however, results in a large risk (an MD

alue of 24.03 $/MWh). We can also see that the mean deviation

s significant, representing half of the expected profit, which is due

o the high temporal volatility of the prices. The trade-off trends

lso indicate that installation of a larger number of smaller power

enerators (diversifying generation among multiple locations) can

ubstantially decrease risk. For instance, by increasing the number

f generators to five, we see that the risk is decreased by 50% and

his only decreases the expected profit by 15%. This illustrates that

here is a strong nonlinear trade-off between expected profit and

isk. The mean absolute deviation gives linear penalties for large

nd small deviations (compared to the standard deviation, which

ttributes quadratic penalties). In Table 2 we present the standard

eviation values for each placement problem solved. Note that the

rend of standard deviation agrees with that of the mean absolute

eviation. Therefore, choosing the mean absolute deviation as the

isk measure for the optimal placement problem is consistent. In

ther words, one can recover elements of the Pareto frontier cor-

esponding to the standard deviation by using the mean absolute
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Fig. 6. Optimal placement leading to zero risk for the DAM (left) and RTM (right). 

Fig. 7. Optimal placement leading to maximum risk the DAM (left) and RTM (right). 

Fig. 8. Risk vs. expected profit trade-off for theDAM. 
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eviation (there is a one-to-one corresponding between the risk

easures). 

From Table 2 and Fig. 8 we see that further reductions in risk

equire the installation of both generation and loads. In particu-
ar, elimination of risk cannot be achieved through the use of ei-

her just generation or just loads (due to the positive correlation of

rices). In the hypothetical case in which market prices were nega-

ively correlated, installing the same asset type would be sufficient

o fully mitigate risk. Consequently, the limiting value of risk for

 single asset type is an indicator of the degree of positive corre-

ation in the market. Fig. 9 shows optimal placement locations for

ow-risk and high-risk cases. We see that high-risk is achieved by

lacing only generation assets while low-risk is achieved by diver-

ifying loads and generation. 

An interesting trade-off point that we see in Table 2 is that

n which we obtain a risk of MD = 5 . 06 USD/MWh and expected

rofit of μϕ = 31 . 85 USD/MWh (this is the solution for minimum

ossible risk achieved with only generation assets). In this solution,

even generation locations achieve a mean absolute deviation of

.06 MWh and an expected profit of 31.85 MW (78.94% of the risk

s reduced while 39.63% of the profit is sacrificed). In Table 3 we

how the power allocation to each of the seven locations. We see

hat two locations share 90% of the total generation (these seek to

aximize expected profit) while 10% of the generation is split in

mall generators (these seek to minimize risk). From Table 2 , we
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Fig. 9. Optimal placement for low risk (left) and high risk (right) in the DAM. 

Table 3 

Optimal allocation for case with MD = 5 . 06 USD/MWh 

and −μϕ = 31 . 85 USD/MW in the DAM. 

Location w i (MWh) 

NEORBLF_7_B1 0.60 

JBBLACK1_7_B1 0.31 

DELNORTE_LNODED50 0.037 

HMBUNIT2_7_GN010 0.023 

HMBLTBY_6_N003 0.017 

TOPAZC1_7_N021 0.010 

BAFCOG12_7_B1 0.0 0 090 

Table 4 

Risk vs. expected profit trade-off for the RTM. 

Risk Std. dev. Expected Profit # of # of 

(USD/MWh) (USD/MWh) Loads Generators 

36.85 94.55 51.59 0 1 

29 79.96 47.03 0 3 

24 68.47 43.75 0 4 

19 57.79 40.22 0 4 

16 54.11 37.70 0 6 

13 44.04 33.98 0 13 

10 31.08 29.46 0 22 

8 20.86 25.43 0 21 

6 14.53 19.71 6 18 

4 9.87 13.44 21 22 

2 4.98 6.88 45 47 

1 2.55 3.53 71 62 

0.6 1.56 2.17 87 84 

0.4 1.06 1.49 103 99 

0.2 0.54 0.76 130 157 

 

 

 

 

 

 

 

 

Fig. 10. Risk vs. expected profit trade-off for RTM. 

a  

h  

D  

t  

p  

d  

i  

t  

o

 

l  

w  

i  

o  

t  

p  

(  

c  

a  

t

 

t  

m  

s  

u  
see that the use of just two generators incurs a large risk. Con-

sequently, investing in smaller generators is key to mitigate risk.

From these results, we also conclude that further diversification of

generation does not provide significant benefits in risk mitigation. 

3.4. Risk vs. expected profit trade-off for the RTM 

Trade-off analysis for the RTM was performed by using price

data with a time resolution of 20 min. The reason is that the place-

ment problem is intractable at higher resolutions. The Pareto anal-

ysis results are summarized in Table 4 and Fig. 10 . Here, we re-

port standard deviation values in order to highlight how the mean
nd standard deviation follow the same trend. The results for RTM

ave similar trends to those found in the DAM. In contrast with the

AM results, however, the risk for RTM is higher (which is consis-

ent with the results obtained using the eigenvalue analysis). Com-

ared to the DAM, more diversification of generation is needed to

ecrease the risk by the same amount (due to the higher volatility

n RTM). We also observe that a combination of loads and genera-

ors is needed to fully eliminate risk and that the expected profit

btained with the RTM and DAM are similar. 

Fig. 11 shows high-risk and low-risk allocations. High-risk al-

ocations with large expected profit favor centralization of assets

hile low-risk ones favor decentralization of assets. Moreover, this

ndicates that assets capable of providing simultaneous provision

f generation and load (e.g., microgrids or batteries) can be used

o mitigate risk. Our analysis also indicates that electricity markets

rovide significant incentives to modularize power-intensive assets

e.g., manufacturing facilities and data centers). For instance, de-

entralization of ammonia systems can help mitigate risk associ-

ted with the high consumption of electricity in refrigeration sys-

ems. 

The risk estimated with the 20-min formulation underestimates

hat of the 5-min counterpart. We can see, however, that the 20-

in resolution data already reveals that much higher risk is ob-

erved in RTM relative to DAM. This observation is also confirmed

sing the eigenvalue analysis (which was performed using the
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Fig. 11. Optimal placement for low risk (left) and high risk (right) in the RTM. 
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C

-min resolution data). Moreover, we expect similar trade-off

rends by using higher time resolutions. 

.5. Computational considerations 

The unconstrained placement problem is an eigenvalue prob-

em that can be readily solved for both the DAM and the RTM data

even at 5 min resolutions). The constrained placement formula-

ion (2.10) , on the other hand, is a large-scale mixed-integer lin-

ar program. The RTM problem (with 20-min resolution) contains

5,544 constraints and 61,496 variables (4,468 binary) while the

AM problem contains 32,985 constraints, 21,989 continuous vari-

ble (4,468 binary). The problems were solved using Gurobi with

efault relative MIP gap of 0.01% and solution times range from

.5 h to 5 h (on a standard personal computer). The long times

re due to significant symmetries in the problem (i.e., many al-

ocation combinations achieve the same optimal objective). This

egeneracy was revealed by the eigenvalue analysis (which indi-

ates that the price covariance has a large number of zero eigen-

alues). The RTM problem is intractable with time resolutions be-

ow 20 min. We are currently investigating strategies to decompose

he placement problem in order to be able to scale to higher time

esolutions. In particular, this problem has the interesting property

hat it only has a single coupling constraint. Consequently, one can

evelop specialized Lagrangian decomposition ( Fisher, 2004; Held

nd Karp, 1971 ) schemes that achieve high parallel execution effi-

iency. 

. Conclusions and future work 

This paper examines economic incentives created by space-time

ynamics of day-ahead and real-time electricity markets. We de-

eloped an optimal technology placement formulation that seeks

o identify optimal strategies to maximize expected profit and min-

mize risk. We have shown that a pure risk minimization formu-

ation can be cast as an eigenvalue problem. We also developed

ore sophisticated formulations that capture different technology

sset types (e.g., generation or loads) and risk measures using

ixed-integer programming techniques. Our analysis for the CAISO

arket reveals that significantly more temporal (as opposed to

patial) volatility is observed in both DAM and RTM markets (the

TM also has more volatility in general). Our analysis also reveals
hat both markets exhibit positive spatial correlation in prices, in-

icating that it is impossible to fully eliminate risk by using only

ither generators or loads. Consequently, decentralizing technolo-

ies of the same type has significant but limited impacts on risk

itigation. Full risk mitigation can only be achieved by combina-

ions of generation and load assets (which can be achieved with

icrogrids, prosumers, or batteries). Our analysis also indicates

hat electricity markets provide significant incentives to modular-

ze power-intensive technologies (e.g., manufacturing and data cen-

ers). This is of particular relevance due to recent interest in the

eployment of small-scale modular technologies. 

Our analysis is retroactive in nature (uses historical data) and

hus lacks predictive capabilities. Enabling predictability requires

s to develop advanced forecasting methods that capture simulta-

eous spatial and temporal correlations. Specifically, we are inter-

sted in investigating recently-developed dynamic principal com-

onent analysis and dynamic mode decomposition techniques to

onduct space-time analysis and forecasting of market data ( Dong

nd Qin, 2018; Vanhatalo et al., 2017 ). Such techniques exploit

pace-time correlations to identify dominant modes in the data. 

It is also necessary to extend or placement formulations to ana-

yze effects of temporal flexibility. In particular, our current formu-

ation assumes that technologies provide a fixed capacity all the

ime, while new technologies can provide ramping capacity to ac-

ount for uncertainty due to demand and renewable forecasting er-

ors. Therefore, we are interested in developing advanced formula-

ions that can capture technologies that can shift load/generation

n time. These formulations are intractable with off-the-shelf tools

due to a dramatic increase in the number of decision variables)

nd we will thus investigate decomposition algorithms for their

olution. Specifically, such formulations reach tens to hundreds of

illions of variables but note that the placement formulation ex-

ibits sparse coupling (the total installed capacity constraint). As a

esult, one can envision using Lagrangian dual decomposition tech-

iques to tackle this problem. We are also interested in including

onlinear effects of economies of scales in the placement, which

an be done by using piece-wise linear approximations. 
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