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Abstract

We propose a measure to quantify the modularity of industrial production

(manufacturing) systems and optimization formulations to compute it. From a

manufacturing perspective, we argue that a system is deemed modular if: (a) the

equipment units that comprise it form clusters (modules) of dense connectivity

(i.e., difficult module assembly tasks are performed off-site), (b) connectivity between

modules is sparse (i.e., easy assembly tasks are performed on-site), (c) the number of

modules is small, and (d) the module dimensions facilitate transportation. We show

that the measure proposed satisfies these requirements and that it can be computed

by solving a convex mixed-integer quadratic program. We provide a discussion on

advantages and disadvantages of alternative modularity measures used in different

scientific and engineering communities. Our results seek to highlight conceptual and

computational challenges that arise from the need to define and quantify modularity

in a manufacturing context.
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1 | INTRODUCTION

Modularization is an organization strategy that is used in living, socio-

economic, and industrial systems to facilitate learning and evolution

and to cope with complexity.1,2 For instance, biological networks and

the human body exhibit high modularity.3-6 This organization struc-

ture facilitates specialization of components (e.g., organs and meta-

bolic cycles) and enables management of large numbers of functions.

In a modular organization, fundamental components and associated

functions are grouped into clusters (modules). Modules have the dis-

tinctive feature that coupling between internal components (intra-

module) is significantly stronger than coupling across modules

(intermodule). Scientists have long argued that modular organization

provides flexibility and facilitates evolution because modules can

adapt, mature, or disappear without significantly disrupting the entire

system. This arrangement also facilitates the management of complex-

ity because tasks and information are refined progressively. Herbert

Simon, one of the pioneers of computer and cognitive science, argued

that it is rather natural that human-made organizations

(e.g., government institutions and enterprises) also exhibit high

degrees of modularity.1 This is because the human brain processes

information and makes decisions in a modular manner.6 Modularity

provides an indication of the flexibility and maturity of an organization

and of the range of functions that it can perform.2 Modularity has also

been found to facilitate the control of large networks.7

Modularity concepts have also been recently explored in the con-

text of industrial production (manufacturing) systems such as chemical

processes, energy systems, and infrastructures. Industrial production

systems can be built from small-scale and standardized equipment

modules that perform well-defined tasks and that are coupled

together using well-defined and sparse interfaces.8-10 Standardization

and size reduction enables mass off-site fabrication and fast transpor-

tation and deployment of equipment, which accelerates experimenta-

tion and learning and ultimately leads to technology cost

reductions.11-16 A celebrated example of this principle is Henry Ford's

assembly line.2 Modular systems contrast with large and customized

systems, which involve lengthy on-site construction phases and diffi-

cult transportation (and are thus rarely relocated); these systems also
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provide limited experimentation/testing opportunities.17 Modular sys-

tems also enable sequential investment strategies, which provide flex-

ibility to mitigate market and regulatory risk.18 Small modular systems

can also facilitate the processing of geographically dispersed

resources that are deemed too expensive to collect and centralize.

Modularization can accelerate investment in technologies such as

small nuclear reactors, distributed generators, power electronics, chemi-

cal processes, and battery storage systems.19-23 Specifically, large indus-

trial facilities (reaching investments of billions of U.S. dollars) might

involve slow deployments and risks that few investors are willing to tol-

erate. On the other hand, modularization provides flexibility in invest-

ment size and enables faster deployments that ultimately result in

reductions in time-to-market and facilitates financing. Moreover, expan-

sion of production capacity in modular systems can proceed sequen-

tially, which provides a mechanism to hedge against the market and

regulatory risk. We can interpret the ability to accelerate and stage

investment (and thus a hedge against risk) as a form of built-in logistical

temporal flexibility. Modularity can also provide logistical spatial flexibil-

ity in the sense that small modules can be easily transported and

relocated. This can enable the recovery of resources that are highly dis-

tributed and potentially short-lived. As a result, it has been argued that

modularization can enable more sustainable systems and circular econo-

mies.24 For instance, modular systems can be used to harness natural

gas resources that remain stranded at oil production facilities due to

limited gas pipeline infrastructure.25 Modular technologies can also be

used to recover bio-gas from organic waste generated at animal farms,

landfills, and waste-water treatment facilities. It has also been recently

observed that modular systems can be strategically placed to exploit

space–time electricity price dynamics and with this mitigate risk.26 In

this context, module transportability is important from a relocation per-

spective. For instance, unlike large central systems, modular systems

might not be permanently placed at a single location but might be dis-

assembled, relocated, and reassembled at different locations throughout

their lifetime based on changes in resource availability, policy, weather,

and infrastructure. For instance, a change in government regulations

might render a given facility location undesirable or obsolete. Small

modules can also be transported back to shops to perform maintenance

and can be quickly replaced. As can be seen, space–time logistical flexi-

bility provided by modularity can allow organizations to diversify, miti-

gate risk, and have a higher likelihood of surviving strong fluctuations of

markets, government regulations, and other externalities. On the down-

side, the flexibility provided by small modular systems often comes at

the expense of higher investments and reduced operational efficiency

when comparing to large systems. Specifically, economies of scale bene-

fit large systems due to the favorable scaling of throughput with equip-

ment size. Industrial systems will thus likely evolve into a mixed state in

which certain tasks are performed in small dispersed modular systems

while others are performed in large centralized facilities. This has the

potential of inducing a reorganization of production facilities and of

entire supply chains. This is particularly the case in chemical processes

and power plants.27 This reasoning also indicates that large centralized

facilities are operationally efficient but logistically inefficient from an

assembly and transportation stand-point.

The concept of modularity is pervasive in science and engineering

but, surprisingly, there are few quantifiable measures of modularity. The

availability of proper measures is key to enable more systematic analysis,

design, and comparison of modular systems. In pioneering work, New-

man proposed a modularity measure that quantifies the edge density of

a system (represented as a graph) relative to the expected edge density

of a random graph.5,28 The argument behind this measure is that modular

organizations that arise in natural systems are nonrandom. This measure

is intuitive and has seen many interesting applications; for instance, this

measure has been shown to provide a flexible and powerful tool for the

analysis and design of control architectures29-34 and for the decomposi-

tion of large-scale optimization problems.35,36 A powerful generalization

of Newman's measure has been proposed in Reference 37 and here it

was shown that systems of high modularity are extremum points of a

Hamiltonian function. Information-theoretical interpretations of modular-

ity have also been proposed in the literature.38

Unfortunately, the modularity measure proposed by Newman (and

its generalizations) does not have an intuitive interpretation from a

manufacturing perspective and fails to capture some desirable features

arising in this context (e.g., module dimensions). In order to define alter-

native modularity measures, it is important to highlight that: modularity

is not a classification but a measure (i.e., systems have different degrees

of modularity). Moreover, one should note that a system with fixed phys-

ical connectivity (topology) can have different modular organizations with

associated degrees of modularity and that topology dictates the number

of alternative modular organizations and their associated modularity

value. While these notions are clear from a conceptual point of view,

there is significant ambiguity associated with the definition of modularity

in manufacturing. In the metal processing industry, for instance, a module

is defined as a technically and organizationally limited area of a facility

that fulfills a defined task in terms of company-internal or -external sal-

able goods and services.39 In the process industry, a module is defined as

an unmodifiable element that provides a dedicated function for the pro-

cess and is reusable during the planning or realization of modular

plants.40 In other words, a module is a standardized and self-functioning

unit. While these definitions are intuitive, they do not provide means to

quantify modularity. Specifically, under these definitions, any equipment

unit or an entire facility itself can be a module. Moreover, these defini-

tions fail to capture aspects such as transportability and dimensions.

In this work, we propose measures to quantify the modularity of

manufacturing systems and optimization formulations to compute them.

We claim that, from a manufacturing perspective, a system is deemed

modular if: (a) the equipment units that compose it form clusters (mod-

ules) of dense connectivity (i.e., difficult module construction is per-

formed off-site), (b) connectivity between modules is sparse (i.e., easy

module assembly is performed on-site), (c) the number of modules is

small, and (d) the module dimensions facilitate transportation. In the pro-

posed framework, a facility has a topology that is modeled as a graph.

Here, the physical equipment units represent nodes that are coupled

together via edges. This representation allows us to borrow concepts

and techniques from graph theory. Specifically, from a graph-theoretical

perspective, the partitioning of a graph induces a modular organization,

as each partition (module) is composed of a set of nodes. For a given
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organization, the amount of internal module coupling relative to the cou-

pling between modules is referred to as the modularity.5 In our approach,

the proposed measure is computed for a graph by finding the partition

that induces the maximum modularity (given a fixed number of modules).

We show that this measure can be computed by solving a convex

mixed-integer quadratic program (MIQP). Moreover, we show that the

mixed-integer representation allows us to impose additional features

such as module dimensions and to identify multiple solutions that give

the same level of modularity. We compare the proposed measure against

that of Newman (widely used in other scientific communities) to highlight

the advantages and disadvantages from a manufacturing perspective.

This analysis reveals that the mixed-integer programming formulations

proposed can also be used to compute the measure of Newman while

handling constraints and that they can be used to find multiple solutions.

Moreover, the proposed measure can be used within optimal design for-

mulations and in other applications beyond manufacturing (e.g., design of

control architectures and decomposition of large sets of equations).

2 | MEASURES OF MODULARITY

In our framework, we assume that connectivity, number of modules, and

dimensions are key features that define the modularity of a system. Con-

nectivity and number of modules dictate the nature and complexity of

off-site and on-site assembly tasks while dimensions dictate whether

modules are transportable (and thus off-site assembly is possible) and

dictate economies of scale. Module connectivity is related to the prob-

lem of community detection in networks, which has been widely studied

in graph theory.41 Motivated by this, it seems natural to model a

manufacturing system as a graph that is composed of nodes (equipment

units) and edges (that connect the units) and use graph theoretical tech-

niques to identify modular organizations. Current techniques available

include hierarchical clustering algorithms,42,43 k-means clustering,44 spec-

tral clustering,45 and techniques based on modularity maximization.5,28

An excellent review on community detection techniques is provided in

Reference 46. In this work, we adopt a modularity maximization

approach, as this provides an intuitive approach to analyze and design

modular manufacturing systems.

Transportation logistics is a key factor that is often overlooked in

modularity studies and that is unique to manufacturing (compared to

other scientific disciplines such as neurology). In particular, a

commercially-viable equipment module must be transportable using

available infrastructure (e.g., railway and trucks).47 As such, module

dimensions (length, width, and height) and weight must follow govern-

ment regulations. For instance, according to the United States regula-

tions for commercial motor vehicles, the maximum width allowed in

an interstate highway is 102–130 in. (2.6–3.3 m), the maximum height

allowed is 14–16 ft (4.3–4.9 m), the maximum length allowed is 75 ft

(22.86 m), and the maximum weight is 44,000 lbs.47 Consequently,

any system that does not satisfy these limits must be partitioned in

order to enable transportation. For example, a distillation system with

a diameter of more than 120 in. and height of 100 ft (around 40 trays

with 24 in. spacing) must be partitioned to enable transportation and

must be assembled on-site. As expected, the larger the dimensions of

the system the more partitions that will be needed and the more com-

plex the on-site assembly (Figure 1).

We observe that the different features desired for modular sys-

tems might be conflicting. For instance, a small system might be the

ideal modular system in that it can be completely assembled off-site

(i.e., minimizing on-site assembly tasks), packed in a single module,

and transported to its final destination. However, this small system

might be inefficient from the perspective of economies of scale. Con-

sequently, one might be willing to modularize only certain compo-

nents of the system (thus increasing the number of modules but

increasing efficiency). As another example, note that one might inten-

tionally prefer a system with a larger number of modules in order to

facilitate shop assembly of different types of modules and at different

locations.

3 | GRAPH THEORETICAL CONCEPTS

We model a system as an undirected graph G = (V, E) where V is its

set of nodes (vertices) and E is its set of edges. We define the number

of nodes as n: = |V | and the number of edges as m: = |E|. Connectivity

of nodes in G is encoded in the adjacency matrix A ∈ Rn × n with

entries Ai, j, i, j ∈ V. We have that Ai, j = 1 if node i and node j are con-

nected by an edge or Ai, j = 0 otherwise. We also have that A is sym-

metric (i.e., Ai, j = Aj, i) and we assume that no self-connections are

present (i.e., Ai, i = 0).

F IGURE 1 United States federal regulations on transportation dimensions50
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A graph G = (V, E) admits multiple possible modular organizations. A

given organization partitions the node set V into a set of modules C and

we define the number of modules as t: = |C|. A module c ∈ C is a node

collection Vc ⊆ V and we have that [
c∈C

Vc =V and Vc\Vc0 = ;,c,c0∈C
(modules have nonoverlapping elements). We use notation c(i) ∈ C, i ∈

V to denote the module that node i∈V belongs to. We define the

binary module membership matrix δ ∈{0, 1}n× n with entries:

δi,j =
1 if c ið Þ= c jð Þ
0 otherwise

�
i, j∈V: ð1Þ

In other words, δi, j = 1 if nodes i, j are in the same module or δi,

j = 0 otherwise. If all nodes are in the same module we have thatP
i∈V

P
j∈V

δi,j = n�n; on the other hand, if all nodes are in separate modules,

we have that
P
i∈V

P
j∈V

δi,j = n because δi, j = 1 for i = j and δi, j = 0 for i 6¼ j

(i.e., the membership matrix is the identity matrix). An important prop-

erty of the membership matrix is that rank(δ) = t. In other words, the

number of modules equals the number of linearly independent col-

umns (or rows) of δ. As can be seen, the membership matrix δ encodes

all relevant information associated with a given modular organization.

To illustrate the relationship between the rank of the membership

matrix and the number of modules, suppose that we have a graph

with four nodes V = {a, b, c, d} and C = {1, 2} modules (and thus t = 2).

Assume that nodes a and b are in the same module and nodes c and

d are in the another module. Therefore, we have δa, b = δc, d = 1, and

δa, d = δc, b = 0. We define the columns of δ corresponding to nodes

a and c as δa and δc, and we would like to show that these columns

are linearly independent. Equivalently, we want to prove that the only

solution to the linear system

S1δa,b + S2δc,b = 0 ð2aÞ

S1δa,d + S2δc,d = 0 ð2bÞ

is S1 = S2 = 0. Upon substitution of δi, j in the above equations we

obtain that S1 = S2 = 0 and we thus have rank(δ) = t = 2.

The partitioning of the graph G = (V, E) into modules induces an

organization with a given connectivity inside modules (intramodules)

and between modules (intermodules). We measure modularity of an

organization as the density of internal module edges relative to the

total number of edges. This measure is known as the graph coverage

and can be computed as:

cov δð Þ =
1
m

X
c∈C

j E cð Þ j

=
1
2m

X
i, j∈V

δi,jAi,j

ð3Þ

where |E(c)| denotes the number of edges in module c ∈ C. The factor

1/2 eliminates the repeated counting of edges in the adjacency

matrix A.

We define the modularity measure of system G as:

Mt≔max
δ

cov δð Þ ð4aÞ

s:t: rank δð Þ≥ t: ð4bÞ

In other words, the modularity measure is computed by solving a

rank-constrained optimization problem. We note that
P

i, j∈Vδi, jAi, j is

at least zero and at most 2m and thus cov(δ) ∈ [0, 1]. The cov(δ) = 1

case corresponds to
P
i, j∈V

δi,jAi,j =2m and occurs when δi, j = 1 for all i,

j ∈ V (all nodes are in one module and thus t = 1). The cov(δ) = 0 case

corresponds to
P
i, j∈V

δi,jAi,j =0 and occurs when δi, j = 0 for all i, j ∈ V such

that Ai, j = 1. For the maximum possible rank n = t = rank(δ), this occurs

when δi, i = 1 and δi, j = 0 (the membership matrix is the identity

matrix). In general, we have that cov(δ) is large when connectivity

between modules is sparse (connectivity inside modules is dense) and

we have that cov(δ) is small when the connectivity between modules

is dense (inside modules is sparse).

Consistent with the definition of graph coverage, the maximum

possible value for Mt is achieved when all nodes are contained in one

module (t = 1). Consequently, for connected graphs, the value of M1 is

always one. In this case, the modularity measure is given by the

unconstrained problem M1 = maxδ cov(δ). Restricting the number of

F IGURE 2 Example graph G = (V, E) used to illustrate graph
theoretical concepts [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Modular organizations for example graph with t = 2 (left)
and t = 5 (right) [Color figure can be viewed at wileyonlinelibrary.com]
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modules to any value t > 1 forces placement of edges outside mod-

ules and thus decreases the modularity measure Mt. In the limit when

we restrict t = n, we obtain the minimum modularity Mn

(corresponding to the case in which every node is in a different mod-

ule). The proposed modularity measure Mt thus naturally captures

trade-offs between graph connectivity and number of modules.

The proposed definition of modularity is intuitive from a

manufacturing perspective but alternative definitions exist in the liter-

ature (particularly in scientific applications). In Supporting Information

we provide a perspective on alternative definitions along with their

advantages and limitations.

4 | ILLUSTRATIVE EXAMPLE

We use a simple graph (see Figure 2) with n = 5 nodes and m = 6

edges to illustrate the concepts. The adjacency matrix A of this

graph is:

A=

0 1 1 0 1

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

1 0 0 1 0

2
6666664

3
7777775

The membership matrices δ for two modular organizations with

t = 2 and t = 5 (see Figure 3) are:

δ=

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 1

2
6666664

3
7777775

δ=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775

The matrix on the left has rank(δ) = t = 2 and is a solution of Problem

(4) with t = 2 and modularity measure is M2 = 4/6 (coverage cov

(δ) = 4/6). Because this is a solution to Problem (4), any alternative con-

figuration with t = 2 must have M2≤4/6. Upon inspection, one can

indeed see that the number of internal module edges is four and the total

number of edges is m = 6. The identity matrix on the right indicates that

each node belongs to a module and thus rank(δ) = t = 5 and is the solu-

tion of Problem (4) with t = 5 andM5 = 0 (coverage is cov(δ) = 0).

5 | OPTIMIZATION FORMULATIONS FOR
THE MODULARITY MEASURE

We proceed to show that the proposed modularity measure can be

formulated as a MIQP. To motivate our discussion, we define the

binary variable matrix x ∈{0, 1}n × n with entries xi, j: = (1 − δi, j). The

F IGURE 4 Flow diagram and subsystems for dimethyl-ethyl (DME) process (adapted from Reference 48) [Color figure can be viewed at

wileyonlinelibrary.com]
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unconstrained modularity measure can be computed by using the

mixed-integer linear program (MILP):

max
x

1
2m

X
i, j

Ai,j 1−xi,j
� � ð5aÞ

s:t: xi,j ≤ xi,k + xk,j, j > i, i, j,k∈V ð5bÞ

xi,i =0, i∈V ð5cÞ

xi,j = x j,i, i, j∈V: ð5dÞ

The first constraint enforces the logic that, if i and j are in the

same module and i and k are in the same module, then j and k must be

in the same module. The second and third constraints capture basic

logic that follows from the definition of the membership matrix. This

formulation highlights intuitive connections between modularity and

mixed-integer formulations. Unfortunately, this MILP formulation

does not offer direct control on the number of modules (which is

needed to compute measureMt).
To obtain direct control on the number of modules, we propose a

MIQP programming formulation. Here, we define a module (partition)

set C: = {1, …, t} with dimension t ≤ n. We define a binary

variable matrix x ∈{0, 1}n × t with entries xi, k = 1 if node i ∈ V is in

module k ∈ C and xi, k = 0 otherwise. Importantly, under these defini-

tions, we have that:

δi,j =
X
k∈C

xi,kx j,k , i, j∈V: ð6Þ

Because of this, the modularity measure Mt can be computed by

using the MIQP:

max
x

1
2m

X
i, j∈V

Ai,j

X
k∈C

xi,kx j,k ð7aÞ

s:t:
X
k∈C

xi,k =1, i∈V ð7bÞ

X
i∈V

xi,k ≥1, k∈C ð7cÞ

The first constraint enforces the logic that a node can only belong

to one module while the second constraint ensures that at least one

node is assigned to each module. The MIQP formulation is expected

to be more computationally intensive than the MILP formulation but

it captures the features needed (i.e., enforces the rank constraint). For

simplicity in the discussion, we transform the MIQP into a minimiza-

tion problem with objective − 1
2m

P
i, j∈V

Ai,j
P
k∈C

xi,kx j,k .

6 | CONVEXIFICATION OF MIQP
FORMULATION

We have found that the MIQP (in minimization form) can be cast as a

convex MIQP, which is solvable by modern solvers. To see this, we

define the variable vector xk = (x1, k, x2, k, …, xn, k), k ∈ C and note that

we can rewrite the objective function as:

1
2m

X
i, j∈V

Ai,j

X
k∈C

xi,kx j,k =
1
2m

X
k∈C

X
i, j∈V

xi,kAi,jx j,k

=
1
2m

X
k∈C

xTkAxk

=
1
2m

vec xð ÞTHvec xð Þ

ð8Þ

where H is a block-diagonal matrix of the form:

H=

A

. .
.

A

2
64

3
75 ð9Þ

and vec(x) = (x1, x2, …, xt). We note that H is indefinite because the adja-

cency matrix A is indefinite. However, we note that the entries of vec(x)

are all binary at any feasible solution and thus vec(x)Te = vec(x)Tvec(x)

holds (e is a vector of ones of the same dimension as vec(x)). Conse-

quently, we can write the objective function in the equivalent form:

1
2m

vec xð ÞTHvec xð Þ= 1
2m

vec xð ÞT H+ Iρð Þvec xð Þ−ρvec xð ÞTe
� �

: ð10Þ

for any positive ρ∈R+ and where I is the identity matrix. This equiva-

lence follows from:

1
2m

vec xð ÞTHvec xð Þ= 1
2m

vec xð ÞT H+ Iρð Þvec xð Þ−ρvec xð ÞTIvec xð Þ
� �

=
1
2m

vec xð ÞT H+ Iρð Þvec xð Þ−ρvec xð ÞTe
� �

=
1
2m

vec xð ÞTHvec xð Þ+ ρvec xð ÞTe−ρvec xð ÞTe
� �

=
1
2m

vec xð ÞTHvec xð Þ:
ð11Þ

As a result, we can always make the coefficient matrix of the

MIQP (H+ Iρ) positive definite without affecting the solution and thus

make the problem solvable using state-of-the-art solvers. The most

obvious choice for ρ would be to use the smallest eigenvalue of H (the

smallest eigenvalue of A).

7 | MODELING EXTENSIONS AND OTHER
APPLICATIONS

Mixed-integer programming formulations offer flexibility to impose

requirements that might be of interest from a manufacturing perspec-

tive. For instance, we consider the extended formulation:

max
x

1
2m

X
i, j∈V

Ai,j

X
k∈C

xi,kx j,k ð12aÞ

s:t:
X
k∈C

xi,k =1, i∈V ð12bÞ

X
i∈V

xi,k ≥1, k∈C ð12cÞ
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Dk ≤
X
i∈V

xi,kDi ≤ �Dk , k∈C ð12dÞ

Here, the last constraint imposes module feature constraints. The

quantity Di∈R+ denotes the feature of each node and Dk , �Dk∈R+ are

lower and upper bounds for the features. This constraint can be used

to enforce different module features such as weight, height, and

number of nodes in a module. For instance, the number of nodes in a

module can be controlled by using the constraint:

Dk ≤
X
i∈V

xi,k ≤ �Dk , k∈C: ð13Þ

The proposed formulation can also be extended to impose logic

constraints to force/prevent nodes from being in the same modules

F IGURE 5 Block diagram representation (top) and graph representation (bottom) for DME process [Color figure can be viewed at
wileyonlinelibrary.com]
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and can be extended to identify multiple organizations that lead to

the same modularity measure (e.g., by using no-good cuts). In fact,

modern mixed-integer solvers can compute all solutions that give the

same optimal objective value.

We highlight that the proposed modularity measure and MIQP for-

mulation can be used in other applications that go beyond manufactur-

ing. For instance, these tools can be used to identify optimal

configurations for control architectures and optimal decomposition strat-

egies for optimization problems.36,46 In this context, constraints on the

number and size of modules can be used to create balanced configura-

tions (e.g., to handle computational load balancing issues).

TABLE 1 Node labels and
dimensions for each node in the DME
process

Node Equipment Dimension Node Equipment Dimension

1 Feed 0 19 Valve 1

2 V-1001 5 20 Valve 1

3 P-1001A/B 2 21 Product 0

4 Flow Junction 0 22 Valve 1

5 Valve 1 23 T-1002 15

6 E-1001 2 24 E-1007 2

7 E-1002 8 25 V-1003 4

8 R-1001 20 26 P-1003A/B 2

9 Flow Junction 0 27 Valve 1

10 Valve 1 28 E-1006 2

11 Flow Junction 0 29 Valve 1

12 E-1003 2 30 E-1008 2

13 Valve 1 31 Product 0

14 T-1001 20 32 Valve 1

15 E-1004 2 33 Flow Junc 0

16 E-1005 2 34 Flow Junc 0

17 V-1002 4 35 Flow Junc 0

18 P-1002A/B 2

TABLE 2 Modularity measures and number of alternative
configurations for DME process obtained with rank constraints
(without dimension constraints)

Rank
(t)

Modularity
measure (Mt)

Number of
configurations

Solution
time (s)

1 1 1 14.69

2 0.975 18 14.67

3 0.95 216 14.77

4 0.925 2016 15.68

5 0.9 15,120 15.16

6 0.875 90,720 15.10

F IGURE 6 Sample modular configurations for DME process for t ∈ [1, 6] [Color figure can be viewed at wileyonlinelibrary.com]
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It is important to emphasize that modularity is directly associated to

the partitioning of a graph and, as such, there is no analytical representa-

tion for such a measure. In other words, one needs to specify the

partition of the graph first and then compute the modularity measure.

Because of this, modularity needs to be expressed as an optimization

that implicitly finds a partition of maximum modularity.

F IGURE 7 Modular configuration for baseline DME process obtained under dimension constraints (adapted from Reference 48). Graph
representation (top) and corresponding flowsheet (bottom) [Color figure can be viewed at wileyonlinelibrary.com]
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8 | CASE STUDY

We use the proposed modularity measure and MIQP formulation to

identify modular configurations for a dimethyl-ethyl (DME) production

process from methanol.48 Methanol is an intermediate product during

the production of DME from natural gas and thus small modular DME

plants can provide a potential pathway to help recover billions of

cubic feet of natural gas that are currently stranded and flared. The

DME process is intuitively partitioned by practitioners into three func-

tional subsystems: the feed and reactor section, the DME purification

section, and the methanol separation and the recycle section. The pro-

cess flow diagram (PFD) and the subsystems are shown in Figure 4.

We created a block and graph representation for the process. To do

so, we represent each equipment unit and junction as a node and each

flow connection as an edge. The block and graph representations are

shown in Figure 5. We use node dimension as a feature that affects

the system modularity (i.e., this affects transportation). Labels and

dimensions for the nodes are presented in Table 1.

We first computed the unconstrained modularity measure while

ignoring rank (number of modules) and dimension constraints. As

expected, the solution of this problem gives a modularity measure

M1 = 1 (i.e., all nodes are assigned to one module). We then computed

the modularity measure by spanning the range t ∈ [1, 6] The results

are summarized in Table 2 and a visualization of each configuration is

presented in Figure 6. We can see that, as the number of modules

increases, the modularity measure decreases from M1 = 1 to

M6 = 0.875. We thus have that, for a configuration with t = 6, 87.5%

of the edges are inside the modules while 12.5% connect the modules

(the configuration has sparse intermodule coupling).

For every value of t, we computed all possible equivalent con-

figurations (solutions that give the maximum value of Mt). We do

this in order to highlight that multiple configurations can give the

same modularity measure. We found that the number of alternative

solutions increases sharply with the increasing number of modules.

This indicates that degeneracy increases with the number of mod-

ules and highlights the combinatorial nature of the problem. This

also indicates that there is significant flexibility to find configura-

tions that satisfy additional requirements (such as dimension

constraints).

We computed the modularity measure by considering dimension

constraints (but ignore rank constraints). Here, we explore the impact

of scaling-up the process and set the minimum dimension of each

module to Dk = 20 and the maximum dimension �Dk =40. A visualiza-

tion of the modular configuration is shown in Figure 7 and the associ-

ated node-module membership is shown in Table 3. Here, we also

report the module dimensions
P
i∈V

xi,kDi for all k ∈ C. We observe that

the dimension constraints induce an organization with t = 3 modules

and the associated modularity measure is M3 = 0.925 (only 7.5% of

the edges connect modules). Interestingly, we can see that the

resulting modular organization is the same as the functional organiza-

tion shown in Figure 4 (with the exception of valves). In fact, if we

found that the modularity measure that result from the functional

organization of Figure 4 is 0.925 and is thus optimal. This highlights

that practitioners use natural logic to modularize systems and that the

proposed modularity measure is intuitive.

We explored the effect of scaling up and down on the modularity

measure by scaling the equipment unit dimensions. Scaling results are

summarized in Table 4. We recall that the baseline measure value is

TABLE 4 Effect of DME process scaling on modularity measure

Scale Measure (Mt) Rank (t) Solution time (s) with Gurobi Solution time (s) with convexification

0.3 1.0 1 15.59 16.91

0.5 0.95 2 15.25 16.17

1 (baseline) 0.925 3 15.36 17.67

1.2 0.875 4 15.80 16.48

1.5 0.775 5 15.37 16.73

1.9 0.75 6 16.05 17.01

TABLE 5 Comparison of the number of solutions for problems with and without dimension constraints (DCs)

Rank (t) Measure (Mt) without DCs Number of configurations without DCs Measure (Mt) with DCs Number of configurations with DCs

3 0.950 216 0.925 78

4 0.925 2016 0.875 384

5 0.900 15,120 0.775 1920

TABLE 3 Modular configuration for DME process obtained under
dimension constraints

Module Nodes
Module
dimension

1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 32, 33] 40

2 [12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 34

36

3 [23, 24, 25, 26, 27, 28, 29, 30, 31, 35] 29
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M3 = 0.925. As expected, we observe that the number of modules

increases and the modularity measure decreases as we scale up the

process. By scaling the equipment units up by 20% the measure

decreases to M2 = 0.875. The modularity measure achieves its ideal

value of M1 = 1 when the baseline process is scaled down by 30%.

This highlights that the modularity measure proposed is consistent

and that dimension constraints can also be used to implicitly control

the number of modules.

The MIQPs were solved using the Gurobi (version 0.6.0) and were

implemented in the Julia-based JuMP modeling framework. We use

GraphPlot and LightGraphs for graph manipulation and visualization.

All nodes needed to reproduce the results can be found in https://

github.com/zavalab/JuliaBox/tree/master/ModularityMeasures. We

solved the MIQP problems by convexifying them directly. To do so,

the minimum eigenvalue of the adjacency matrix A is −2.62 and thus

we used ρ = 3. We highlight that Gurobi can also automatically con-

vexify the problem (convexification by the user is not needed). We

confirmed that both approaches give the same solutions (Gurobi gives

slightly better times). The solution times obtained are in the range of

14–17 s (these are reported in Table 4).

We computed the number of solutions for problems with dimen-

sion constraints for t = 3, t = 4, and t = 5 and compared against

the number of solutions obtained without dimension constraints. The

results are summarized in Table 5. We can see that for all cases, the

number of solutions is drastically reduced when dimensional con-

straints are added. This highlights the importance of enforcing addi-

tional module features to mitigate the natural degeneracy of

modularity measures. In particular, other modularity measures used in

the scientific literature, such as that of Newman, are degenerate

(i.e., different organizations give the same modularity measure) and

this degeneracy can introduce ambiguity in the analysis. Mixed-

integer programming approaches allow us to systematically explore

the set of feasible solutions.

9 | CONCLUSIONS AND FUTURE WORK

In this work, we propose a modularity measure to guide the analysis,

comparison, and design of modular systems. The proposed measure

seeks to capture desirable features from a manufacturing perspective.

We show that the modularity measure can be computed by solving a

MIQP and that this MIQP can be convexified to enable efficient solu-

tions with state-of-the-art solvers. Moreover, this formulation allows

us to capture logical constraints associated with module dimensions

and node-module membership restrictions. As part of future work, we

are interested in using the proposed measure to guide the synthesis

of systems with desired modularity properties. Moreover, we are

interested in exploring computational strategies to analyze large-scale

graphs.

There exist interesting synergies of the modular design principles

discussed in this work with modular design principles of control archi-

tectures.49 This is because in both cases one is implicitly seeking to

minimize the degree of interaction between modules. Using the

proposed measure to understand the interplay between modular

design and control is an interesting topic of future work.

ACKNOWLEDGMENT

Victor M. Zavala acknowledges funding from the NSF CAREER award

CBET-1748516.

ORCID

Victor M. Zavala https://orcid.org/0000-0002-5744-7378

REFERENCES

1. Simon HA. The architecture of complexity. Proc Am Philos Soc. 1962;

106(6):467-482.

2. Langlois RN. Modularity in technology and organization. J Econ Beh

Org. 2002;49(1):19-37.

3. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchi-

cal organization of modularity in metabolic networks. Science. 2002;

297(5586):1551-1555.

4. Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically

modular organization of brain networks. Front Neurosci. 2010;4:200.

5. Newman ME. Modularity and community structure in networks. Proc

Natl Acad Sci. 2006;103(23):8577-8582.

6. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET. Hierar-

chical modularity in human brain functional networks. Front Neuro-

inform. 2009;3:37.

7. Constantino PH, Tang W, Daoutidis P. Topology effects on sparse

control of complex networks with laplacian dynamics. Sci Rep. 2019;9

(1):9034.

8. Seifert T, Sievers S, Bramsiepe C, Schembecker G. Small scale, modu-

lar and continuous: a new approach in plant design. Chem Eng Process:

Process Intens. 2012;52:140-150.

9. Bramsiepe C, Sievers S, Seifert T, et al. Low-cost small scale

processing technologies for production applications in various envi-

ronments mass produced factories. Chem Eng Process: Process Intens.

2012;51:32-52.

10. Baldea M, Edgar TF, Stanley BL, Kiss AA. Modular manufacturing pro-

cesses: status, challenges, and opportunities. AIChE J. 2017;63(10):

4262-4272.

11. Lier S, Grünewald M. Net present value analysis of modular chemical

production plants. Chem Eng Technol. 2011;34(5):809-816.

12. Lier S, Wörsdörfer D, Grünewald M. Transformable production con-

cepts: flexible, mobile, decentralized, modular, fast. ChemBioEng Rev.

2016;3(1):16-25.

13. Rogers G, Bottaci L. Modular production systems: a new manufactur-

ing paradigm. J Intell Manuf. 1997;8(2):147-156.

14. Tatum C. Improving constructibility during conceptual planning.

J Constr Eng Manag. 1987;113(2):191-207.

15. Roy S. Consider modular plant design. Chem Eng Proc. 2017;28-31.

16. Hesler WE. Modular design—where it fits. Chem Eng Proc. 1990;76-80.

17. Wells DD. Movement key to pre-fab module use. Oil Gas J. 1979;77

(42):148-168.

18. Hagspiel V, Huisman KJ, Kort PM. Volume flexibility and capacity

investment under demand uncertainty. Int J Prod Econ. 2016;178:

95-108.

19. Berthélemy M, Rangel LE. Nuclear reactors' construction costs: The

role of lead-time, standardization and technological progress. Energy

Policy. 2015;82:118-130.

20. Chakraborty S, Kramer B, Kroposki B. A review of power electronics

interfaces for distributed energy systems towards achieving low-cost

modular design. Renew Sustain Energy Rev. 2009;13(9):2323-2335.

21. DiPippo R. Small geothermal power plants: design, performance and

economics. GHC Bull. 1999;20(2):1-8.

SHAO AND ZAVALA 11 of 12

https://github.com/zavalab/JuliaBox/tree/master/ModularityMeasures
https://github.com/zavalab/JuliaBox/tree/master/ModularityMeasures
https://orcid.org/0000-0002-5744-7378
https://orcid.org/0000-0002-5744-7378


22. Rothwell G. A real options approach to evaluating new nuclear power

plants. Energy J. 2006;27(1):37-53.

23. Dong L, Liu H, Riffat S. Development of small-scale and micro-scale

biomass-fuelled CHP systems–A literature review. Appl Therm Eng.

2009;29(11):2119-2126.

24. Seliger G, Zettl M. Modularization as an enabler for cycle economy.

CIRP Annals-Manuf Technol. 2008;57(1):133-136.

25. Davis N. Natural gas flaring in North Dakota has declined sharply

since 2014. https://www.eia.gov/todayinenergy/detail.php?id=

26632. 2016. Accessed: July 5, 2017.

26. Shao Y, Zavala VM. Space-time dynamics of electricity markets incen-

tivize technology decentralization. Comp Chem Eng. 2019;127:31-40.

27. Peters MS, Timmerhaus KD, West RE, Timmerhaus K, West R. Plant

Design and Economics for Chemical Engineers. Vol 4. New York:

McGraw-Hill; 1968.

28. Newman MEJ, Girvan M. Finding and evaluating community structure

in networks. Phys Rev E. 2004;69:026113.

29. Jogwar SS, Daoutidis P. Community-based synthesis of distributed

control architectures for integrated process networks. Chem Eng Sci.

2017;172:434-443.

30. Moharir M, Pourkargar DB, Almansoori A, Daoutidis P. Graph repre-

sentation and distributed control of diffusion-convection-reaction

system networks. Chem Eng Sci. 2019;204:128-139.

31. Daoutidis P, Tang W, Jogwar SS. Decomposing complex plants for

distributed control: Perspectives from network theory. Comp Chem

Eng. 2018;114:43-51.

32. Tang W, Allman A, Pourkargar DB, Daoutidis P. Optimal decomposi-

tion for distributed optimization in nonlinear model predictive control

through community detection. Comp Chem Eng. 2018;111:43-54.

33. Pourkargar DB, Almansoori A, Daoutidis P. Comprehensive study of

decomposition effects on distributed output tracking of an integrated pro-

cess over a wide operating range. Chem Eng Res Des. 2018;134:553-563.

34. Pourkargar DB, Moharir M, Almansoori A, Daoutidis P. Distributed

estimation and nonlinear model predictive control using community

detection. Ind Eng Chem Res. 2019;58(30):13495-13507.

35. Moharir M, Kang L, Daoutidis P, Almansoori A. Graph representation

and decomposition of ODE/hyperbolic PDE systems. Comp Chem

Eng. 2017;106:532-543.

36. Allman A, Tang W, Daoutidis P. DeCODe: a community-based algo-

rithm for generating high-quality decompositions of optimization

problems. Optim Eng. 2019;20(4):1067-1084.

37. Reichardt J, Bornholdt S. Statistical mechanics of community detec-

tion. Phys Rev E. 2006;74(1):016110.

38. Rosvall M, Bergstrom CT. Maps of random walks on complex net-

works reveal community structure. Proc Natl Acad Sci. 2008;105(4):

1118-1123.

39. Wiendahl H-P, Nofen D, Carl Hanser FB. Planung Modularer Fabriken.

Munich, Germany: Carl Hanser Verlag GmbH & Co. KG; 2005.

40. Hohmann L, Kössl K, Kockmann N, Schembecker G, Bramsiepe C.

Modules in process industry - A life cycle definition. Chem Eng Pro-

cess: Process Intens. 2017;111:115-126.

41. Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3):

75-174.

42. Trevor Hastie RT, Friedman J. The Elements of Statistical Learning.

New York, NY: Springer-Verlag; 2009.

43. Heo S, Marvin WA, Daoutidis P. Automated synthesis of control con-

figurations for process networks based on structural coupling. Chem

Eng Sci. 2015;136:76-87.

44. Rattigan MJ, Maier M, Jensen D. Graph clustering with network

structure indices. Proceedings of the 24th International Conference

on Machine Learning, ICML '07; 2007; New York, NY: ACM;

pp. 783-790.

45. Donath WE, Hoffman AJ. Lower bounds for the partitioning of

graphs. IBM J Res Dev. 1973;17(5):420-425.

46. Daoutidis P, Tang W, Allman A. Decomposition of control and optimi-

zation problems by network structure: Concepts, methods, and inspi-

rations from biology. AIChE J. 2019;65(10):e16708.

47. Haney F, Donovan G, Roth T, Lowrie A, Morlidge G, Lucchini S,

Halvorsen S. Modular Processing Facility

48. Bhattacharyya D, Shaeiwitz JA, Whiting WB, Bailie RC, Turton R.

Analysis, Synthesis, and Design of Chemical Processes. Upper Saddle

River, USA: Prentice Hall; 2012.

49. Daoutidis P, Allman A, Khatib S, et al. Distributed decision making

for intensified process systems. Curr Opin Chem Eng. 2019;25:

75-81.

50. Federal Size Regulations for Commercial Motor Vehicles. https://ops.

fhwa.dot.gov/freight/publications/size_regs_final_rpt/index.htm.

2017. Accessed July 5, 2019.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Shao Y, Zavala VM. Modularity

measures: Concepts, computation, and applications to

manufacturing systems. AIChE J. 2020;e16965. https://doi.

org/10.1002/aic.16965

12 of 12 SHAO AND ZAVALA

https://www.eia.gov/todayinenergy/detail.php?id=26632
https://www.eia.gov/todayinenergy/detail.php?id=26632
https://ops.fhwa.dot.gov/freight/publications/size_regs_final_rpt/index.htm
https://ops.fhwa.dot.gov/freight/publications/size_regs_final_rpt/index.htm
https://doi.org/10.1002/aic.16965
https://doi.org/10.1002/aic.16965

	Modularity measures: Concepts, computation, and applications to manufacturing systems
	1  INTRODUCTION
	2  MEASURES OF MODULARITY
	3  GRAPH THEORETICAL CONCEPTS
	4  ILLUSTRATIVE EXAMPLE
	5  OPTIMIZATION FORMULATIONS FOR THE MODULARITY MEASURE
	6  CONVEXIFICATION OF MIQP FORMULATION
	7  MODELING EXTENSIONS AND OTHER APPLICATIONS
	8  CASE STUDY
	9  CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES


