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Abstract

We propose a measure to quantify the modularity of industrial production
(manufacturing) systems and optimization formulations to compute it. From a
manufacturing perspective, we argue that a system is deemed modular if: (a) the
equipment units that comprise it form clusters (modules) of dense connectivity
(i.e., difficult module assembly tasks are performed off-site), (b) connectivity between
modules is sparse (i.e., easy assembly tasks are performed on-site), (c) the number of
modules is small, and (d) the module dimensions facilitate transportation. We show
that the measure proposed satisfies these requirements and that it can be computed
by solving a convex mixed-integer quadratic program. We provide a discussion on
advantages and disadvantages of alternative modularity measures used in different
scientific and engineering communities. Our results seek to highlight conceptual and

computational challenges that arise from the need to define and quantify modularity
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1 | INTRODUCTION

Modularization is an organization strategy that is used in living, socio-
economic, and industrial systems to facilitate learning and evolution
and to cope with complexity.>? For instance, biological networks and
the human body exhibit high modularity.> This organization struc-
ture facilitates specialization of components (e.g., organs and meta-
bolic cycles) and enables management of large numbers of functions.
In a modular organization, fundamental components and associated
functions are grouped into clusters (modules). Modules have the dis-
tinctive feature that coupling between internal components (intra-
module) is significantly stronger than coupling across modules
(intermodule). Scientists have long argued that modular organization
provides flexibility and facilitates evolution because modules can
adapt, mature, or disappear without significantly disrupting the entire
system. This arrangement also facilitates the management of complex-
ity because tasks and information are refined progressively. Herbert
Simon, one of the pioneers of computer and cognitive science, argued
that it is natural that human-made

rather organizations

in a manufacturing context.

graph theory, manufacturing, modularity, optimization, organization

(e.g., government institutions and enterprises) also exhibit high
degrees of modularity.! This is because the human brain processes
information and makes decisions in a modular manner.® Modularity
provides an indication of the flexibility and maturity of an organization
and of the range of functions that it can perform.2 Modularity has also
been found to facilitate the control of large networks.”

Modularity concepts have also been recently explored in the con-
text of industrial production (manufacturing) systems such as chemical
processes, energy systems, and infrastructures. Industrial production
systems can be built from small-scale and standardized equipment
modules that perform well-defined tasks and that are coupled
together using well-defined and sparse interfaces.81° Standardization
and size reduction enables mass off-site fabrication and fast transpor-
tation and deployment of equipment, which accelerates experimenta-
tion and learning and ultimately leads to technology cost
reductions.?*¢ A celebrated example of this principle is Henry Ford's
assembly line.2 Modular systems contrast with large and customized
systems, which involve lengthy on-site construction phases and diffi-

cult transportation (and are thus rarely relocated); these systems also
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provide limited experimentation/testing opportunities.t” Modular sys-
tems also enable sequential investment strategies, which provide flex-
ibility to mitigate market and regulatory risk.*® Small modular systems
can also facilitate the processing of geographically dispersed
resources that are deemed too expensive to collect and centralize.
Modularization can accelerate investment in technologies such as
small nuclear reactors, distributed generators, power electronics, chemi-
cal processes, and battery storage systems. 2% Specifically, large indus-
trial facilities (reaching investments of billions of U.S. dollars) might
involve slow deployments and risks that few investors are willing to tol-
erate. On the other hand, modularization provides flexibility in invest-
ment size and enables faster deployments that ultimately result in
reductions in time-to-market and facilitates financing. Moreover, expan-
sion of production capacity in modular systems can proceed sequen-
tially, which provides a mechanism to hedge against the market and
regulatory risk. We can interpret the ability to accelerate and stage
investment (and thus a hedge against risk) as a form of built-in logistical
temporal flexibility. Modularity can also provide logistical spatial flexibil-
ity in the sense that small modules can be easily transported and
relocated. This can enable the recovery of resources that are highly dis-
tributed and potentially short-lived. As a result, it has been argued that
modularization can enable more sustainable systems and circular econo-
mies.?* For instance, modular systems can be used to harness natural
gas resources that remain stranded at oil production facilities due to
limited gas pipeline infrastructure.2> Modular technologies can also be
used to recover bio-gas from organic waste generated at animal farms,
landfills, and waste-water treatment facilities. It has also been recently
observed that modular systems can be strategically placed to exploit
space-time electricity price dynamics and with this mitigate risk.2® In
this context, module transportability is important from a relocation per-
spective. For instance, unlike large central systems, modular systems
might not be permanently placed at a single location but might be dis-
assembled, relocated, and reassembled at different locations throughout
their lifetime based on changes in resource availability, policy, weather,
and infrastructure. For instance, a change in government regulations
might render a given facility location undesirable or obsolete. Small
modules can also be transported back to shops to perform maintenance
and can be quickly replaced. As can be seen, space-time logistical flexi-
bility provided by modularity can allow organizations to diversify, miti-
gate risk, and have a higher likelihood of surviving strong fluctuations of
markets, government regulations, and other externalities. On the down-
side, the flexibility provided by small modular systems often comes at
the expense of higher investments and reduced operational efficiency
when comparing to large systems. Specifically, economies of scale bene-
fit large systems due to the favorable scaling of throughput with equip-
ment size. Industrial systems will thus likely evolve into a mixed state in
which certain tasks are performed in small dispersed modular systems
while others are performed in large centralized facilities. This has the
potential of inducing a reorganization of production facilities and of
entire supply chains. This is particularly the case in chemical processes
and power plants.?” This reasoning also indicates that large centralized
facilities are operationally efficient but logistically inefficient from an

assembly and transportation stand-point.

The concept of modularity is pervasive in science and engineering
but, surprisingly, there are few quantifiable measures of modularity. The
availability of proper measures is key to enable more systematic analysis,
design, and comparison of modular systems. In pioneering work, New-
man proposed a modularity measure that quantifies the edge density of
a system (represented as a graph) relative to the expected edge density
of a random graph.>?® The argument behind this measure is that modular
organizations that arise in natural systems are nonrandom. This measure
is intuitive and has seen many interesting applications; for instance, this
measure has been shown to provide a flexible and powerful tool for the

2934 and for the decomposi-

analysis and design of control architectures
tion of large-scale optimization problems.3>3¢ A powerful generalization
of Newman's measure has been proposed in Reference 37 and here it
was shown that systems of high modularity are extremum points of a
Hamiltonian function. Information-theoretical interpretations of modular-
ity have also been proposed in the literature.3®

Unfortunately, the modularity measure proposed by Newman (and
its generalizations) does not have an intuitive interpretation from a
manufacturing perspective and fails to capture some desirable features
arising in this context (e.g., module dimensions). In order to define alter-
native modularity measures, it is important to highlight that: modularity
is not a classification but a measure (i.e., systems have different degrees
of modularity). Moreover, one should note that a system with fixed phys-
ical connectivity (topology) can have different modular organizations with
associated degrees of modularity and that topology dictates the number
of alternative modular organizations and their associated modularity
value. While these notions are clear from a conceptual point of view,
there is significant ambiguity associated with the definition of modularity
in manufacturing. In the metal processing industry, for instance, a module
is defined as a technically and organizationally limited area of a facility
that fulfills a defined task in terms of company-internal or -external sal-
able goods and services.?? In the process industry, a module is defined as
an unmodifiable element that provides a dedicated function for the pro-
cess and is reusable during the planning or realization of modular
plants.*° In other words, a module is a standardized and self-functioning
unit. While these definitions are intuitive, they do not provide means to
quantify modularity. Specifically, under these definitions, any equipment
unit or an entire facility itself can be a module. Moreover, these defini-
tions fail to capture aspects such as transportability and dimensions.

In this work, we propose measures to quantify the modularity of
manufacturing systems and optimization formulations to compute them.
We claim that, from a manufacturing perspective, a system is deemed
modular if: (a) the equipment units that compose it form clusters (mod-
ules) of dense connectivity (i.e., difficult module construction is per-
formed off-site), (b) connectivity between modules is sparse (i.e., easy
module assembly is performed on-site), (c) the number of modules is
small, and (d) the module dimensions facilitate transportation. In the pro-
posed framework, a facility has a topology that is modeled as a graph.
Here, the physical equipment units represent nodes that are coupled
together via edges. This representation allows us to borrow concepts
and techniques from graph theory. Specifically, from a graph-theoretical
perspective, the partitioning of a graph induces a modular organization,

as each partition (module) is composed of a set of nodes. For a given



SHAO anp ZAVALA

organization, the amount of internal module coupling relative to the cou-
pling between modules is referred to as the modularity.> In our approach,
the proposed measure is computed for a graph by finding the partition
that induces the maximum modularity (given a fixed number of modules).
We show that this measure can be computed by solving a convex
mixed-integer quadratic program (MIQP). Moreover, we show that the
mixed-integer representation allows us to impose additional features
such as module dimensions and to identify multiple solutions that give
the same level of modularity. We compare the proposed measure against
that of Newman (widely used in other scientific communities) to highlight
the advantages and disadvantages from a manufacturing perspective.
This analysis reveals that the mixed-integer programming formulations
proposed can also be used to compute the measure of Newman while
handling constraints and that they can be used to find multiple solutions.
Moreover, the proposed measure can be used within optimal design for-
mulations and in other applications beyond manufacturing (e.g., design of

control architectures and decomposition of large sets of equations).

2 | MEASURES OF MODULARITY
In our framework, we assume that connectivity, number of modules, and
dimensions are key features that define the modularity of a system. Con-
nectivity and number of modules dictate the nature and complexity of
off-site and on-site assembly tasks while dimensions dictate whether
modules are transportable (and thus off-site assembly is possible) and
dictate economies of scale. Module connectivity is related to the prob-
lem of community detection in networks, which has been widely studied
in graph theory.*? Motivated by this, it seems natural to model a
manufacturing system as a graph that is composed of nodes (equipment
units) and edges (that connect the units) and use graph theoretical tech-
niques to identify modular organizations. Current techniques available
include hierarchical clustering algorithms,*>*® k-means clustering** spec-
tral clustering* and techniques based on modularity maximization.>2®
An excellent review on community detection techniques is provided in
Reference 46. In this work, we adopt a modularity maximization
approach, as this provides an intuitive approach to analyze and design
modular manufacturing systems.

Transportation logistics is a key factor that is often overlooked in

modularity studies and that is unique to manufacturing (compared to
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other scientific disciplines such as neurology). In particular, a
commercially-viable equipment module must be transportable using
available infrastructure (e.g., railway and trucks).*” As such, module
dimensions (length, width, and height) and weight must follow govern-
ment regulations. For instance, according to the United States regula-
tions for commercial motor vehicles, the maximum width allowed in
an interstate highway is 102-130 in. (2.6-3.3 m), the maximum height
allowed is 14-16 ft (4.3-4.9 m), the maximum length allowed is 75 ft
(22.86 m), and the maximum weight is 44,000 Ibs.*” Consequently,
any system that does not satisfy these limits must be partitioned in
order to enable transportation. For example, a distillation system with
a diameter of more than 120 in. and height of 100 ft (around 40 trays
with 24 in. spacing) must be partitioned to enable transportation and
must be assembled on-site. As expected, the larger the dimensions of
the system the more partitions that will be needed and the more com-
plex the on-site assembly (Figure 1).

We observe that the different features desired for modular sys-
tems might be conflicting. For instance, a small system might be the
ideal modular system in that it can be completely assembled off-site
(i.e., minimizing on-site assembly tasks), packed in a single module,
and transported to its final destination. However, this small system
might be inefficient from the perspective of economies of scale. Con-
sequently, one might be willing to modularize only certain compo-
nents of the system (thus increasing the number of modules but
increasing efficiency). As another example, note that one might inten-
tionally prefer a system with a larger number of modules in order to
facilitate shop assembly of different types of modules and at different

locations.

3 | GRAPH THEORETICAL CONCEPTS

We model a system as an undirected graph G = (V, E) where V is its
set of nodes (vertices) and E is its set of edges. We define the number
of nodes as n: = |V | and the number of edges as m: = |E|. Connectivity
of nodes in G is encoded in the adjacency matrix A € R"*" with
entries A; , i, j € V. We have that A; ; = 1 if node i and node j are con-
nected by an edge or A; ; = O otherwise. We also have that A is sym-
metric (i.e,, A; ; = A; ;) and we assume that no self-connections are
present (i.e., A; ; = 0).

2.6m(102.36inches)

2.6m(102.36inches)

Excluding Mirrors |
and Certain
Safety Devices

United States federal regulations on transportation dimensions>®
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A graph G = (V, E) admits multiple possible modular organizations. A
given organization partitions the node set V into a set of modules C and
we define the number of modules as t: = |C|. A module ¢ € C is a node
collection V. C V and we have that cLeJcVC =V and V.NV. =0,c,c’'eC
(modules have nonoverlapping elements). We use notation c(i) € C,i €
V to denote the module that node i€V belongs to. We define the

binary module membership matrix § €{0, 1}"*" with entries:
1 ife(i)=c(j) ..
8ij= JEV. 1
Y {O otherwise hE 1)

In other words, §; j = 1 if nodes i, j are in the same module or §;
j = 0 otherwise. If all nodes are in the same module we have that

>->-6ij=n-n; on the other hand, if all nodes are in separate modules,
ievjev

we have that >3 6;;=n because §; j = 1 fori = jand & ; = O for i #j
ievVjev

(i.e., the membership matrix is the identity matrix). An important prop-
erty of the membership matrix is that rank(s) = t. In other words, the
number of modules equals the number of linearly independent col-
umns (or rows) of 8. As can be seen, the membership matrix § encodes

all relevant information associated with a given modular organization.

To illustrate the relationship between the rank of the membership
matrix and the number of modules, suppose that we have a graph
with four nodes V = {a, b, ¢, d} and C = {1, 2} modules (and thus t = 2).
Assume that nodes a and b are in the same module and nodes ¢ and
d are in the another module. Therefore, we have &, , = &, 4 = 1, and
8a, d = 6, b = 0. We define the columns of § corresponding to nodes
a and c as §, and &, and we would like to show that these columns
are linearly independent. Equivalently, we want to prove that the only
solution to the linear system

S18ap + 5265 =0 (2a)

S1844+5264=0 (2b)

is 51 = S = 0. Upon substitution of §; ; in the above equations we
obtain that S; = S, = 0 and we thus have rank(d) =t = 2.

The partitioning of the graph G = (V, E) into modules induces an
organization with a given connectivity inside modules (intramodules)
and between modules (intermodules). We measure modularity of an
organization as the density of internal module edges relative to the
total number of edges. This measure is known as the graph coverage

and can be computed as:

cov(e) = 3" 1E()|

ceC

1
= ﬂZ&’jA;J

ijev

)

where |E(c)| denotes the number of edges in module ¢ € C. The factor
1/2 eliminates the repeated counting of edges in the adjacency
matrix A.

We define the modularity measure of system G as:

FIGURE 2 Example graph G = (V, E) used to illustrate graph
theoretical concepts [Color figure can be viewed at
wileyonlinelibrary.com]

; @

FIGURE 3 Modular organizations for example graph with t = 2 (left)
and t = 5 (right) [Color figure can be viewed at wileyonlinelibrary.com]

Mt:=m&ax cov(8) (4a)

s.t. rank(s) 2 t. (4b)

In other words, the modularity measure is computed by solving a
rank-constrained optimization problem. We note that }; jcvdi jA; j is
at least zero and at most 2m and thus cov(s) € [0, 1]. The cov(s) = 1
case corresponds to ) §;;A;; =2m and occurs when §; ;= 1 for all i,
j € V(all nodes are ini'jc%e module and thus t = 1). The cov(s) = O case
corresponds to > §;A;; =0 and occurs when §; j= O forall i, j € V such
that A; ;= 1. Fo:"jﬁ\{e maximum possible rank n = t = rank(5), this occurs
when §; ; = 1 and &, j = O (the membership matrix is the identity
matrix). In general, we have that cov(s) is large when connectivity
between modules is sparse (connectivity inside modules is dense) and
we have that cov(d) is small when the connectivity between modules
is dense (inside modules is sparse).

Consistent with the definition of graph coverage, the maximum
possible value for M; is achieved when all nodes are contained in one
module (t = 1). Consequently, for connected graphs, the value of M, is
always one. In this case, the modularity measure is given by the

unconstrained problem M; = maxs cov(). Restricting the number of
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FIGURE 4 Flow diagram and subsystems for dimethyl-ethyl (DME) process (adapted from Reference 48) [Color figure can be viewed at
wileyonlinelibrary.com]

modules to any value t > 1 forces placement of edges outside mod- The membership matrices & for two modular organizations with
ules and thus decreases the modularity measure M;. In the limit when t=2andt =5 (see Figure 3) are:
we restrict t = n, we obtain the minimum modularity M, 11110 10000
(corresponding to the case in which every node is in a different mod- 11110 01000
ule). The proposed modularity measure M; thus naturally captures 5=111110 s5=|l00100
trade-offs between graph connectivity and number of modules. 11110 00010
The proposed definition of modularity is intuitive from a 00001 00001

manufacturing perspective but alternative definitions exist in the liter- X . X
. R L . . The matrix on the left has rank(s) = t = 2 and is a solution of Problem
ature (particularly in scientific applications). In Supporting Information . . .
. . . . . . (4) with t = 2 and modularity measure is M, = 4/6 (coverage cov
we provide a perspective on alternative definitions along with their . . .
L (6) = 4/6). Because this is a solution to Problem (4), any alternative con-
advantages and limitations. . . i . .
figuration with t = 2 must have M, <4/6. Upon inspection, one can

indeed see that the number of internal module edges is four and the total
number of edges is m = 6. The identity matrix on the right indicates that
4 | ILLUSTRATIVE EXAMPLE 8 Y €

each node belongs to a module and thus rank(s) = t = 5 and is the solu-

. . . tion of Problem (4) with t = 5 and Ms = O (coverage is cov(s) = 0).
We use a simple graph (see Figure 2) with n = 5 nodes and m = 6

edges to illustrate the concepts. The adjacency matrix A of this
graph is: 5 | OPTIMIZATION FORMULATIONS FOR
THE MODULARITY MEASURE

01101

10100 We proceed to show that the proposed modularity measure can be
A=111010 formulated as a MIQP. To motivate our discussion, we define the

00101

binary variable matrix x €{0, 1}"*" with entries x; ;: = (1 - §; ;). The
10010
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unconstrained modularity measure can be computed by using the

mixed-integer linear program (MILP):

max %;Ai,j(l—xi,j) (5a)
s.t. Xy S Xip + X, J>iij,keV (5b)
x;=0,ieV (5¢)

Xij =Xji,h,jeV. (5d)

The first constraint enforces the logic that, if i and j are in the
same module and i and k are in the same module, then j and k must be
in the same module. The second and third constraints capture basic
logic that follows from the definition of the membership matrix. This
formulation highlights intuitive connections between modularity and
mixed-integer formulations. Unfortunately, this MILP formulation
does not offer direct control on the number of modules (which is

needed to compute measure M,).
To obtain direct control on the number of modules, we propose a

MIQP programming formulation. Here, we define a module (partition)
set C. = {1,

variable matrix x €{0, 1}"** with entries x; , = 1 if node i € Vis in

.., t} with dimension t<n. We define a binary

module k € C and x; , = O otherwise. Importantly, under these defini-
tions, we have that:

5"1}' = zxi,kxj,ky i,jev. (6)
keC

Because of this, the modularity measure M; can be computed by
using the MIQP:

1
m)gx Z—ZAIJZXi'kXi'k (73)
mi,jev keC
sty xk=1, ieV (7b)
keC
> xikz1, keC (7¢)
iev

The first constraint enforces the logic that a node can only belong
to one module while the second constraint ensures that at least one
node is assigned to each module. The MIQP formulation is expected
to be more computationally intensive than the MILP formulation but
it captures the features needed (i.e., enforces the rank constraint). For
simplicity in the discussion, we transform the MIQP into a minimiza-

tion problem with objective — 2 5~ A > XX k.
ijev  keC

6 | CONVEXIFICATION OF MIQP
FORMULATION

We have found that the MIQP (in minimization form) can be cast as a

convex MIQP, which is solvable by modern solvers. To see this, we

define the variable vector Xk = (X1, , X2, ks --» Xn, k)» kK € C and note that

we can rewrite the objective function as:

1 1
ﬂ ZA;JZX,‘*X,‘* = %szi,kAi,ij,k

ijev keC keCi,jev

1 T
= ) XA (8)
2m g

1
= %vec(x)THvec(x)
where H is a block-diagonal matrix of the form:

A
H=1 " ()
A

and vec(x) = (x4, Xa, ..., X¢). We note that H is indefinite because the adja-
cency matrix A is indefinite. However, we note that the entries of vec(x)
are all binary at any feasible solution and thus vec(x)’e = vec(x)'vec(x)
holds (e is a vector of ones of the same dimension as vec(x)). Conse-

quently, we can write the objective function in the equivalent form:
ivet:(x)THvet:(x) -1 (vec(x)T(H +Ip)vec(x) —pvec(x)Te) . (10)
2m 2m

for any positive p € R; and where | is the identity matrix. This equiva-

lence follows from:

%vec(x)THvec(x) = % (vec(x)T(H +Ip)vec(x) —pvec(x)TIvec(x))
= % (vec(x)T(H +Ip)vec(x) —pvec(x)Te)

ok (vec(x)THvec(x) +PVEC(X)T6—pvec(x)Te)

1 T
= %vec(x) Hvec(x).

(11)

As a result, we can always make the coefficient matrix of the
MIQP (H +Ip) positive definite without affecting the solution and thus
make the problem solvable using state-of-the-art solvers. The most
obvious choice for p would be to use the smallest eigenvalue of H (the
smallest eigenvalue of A).

7 | MODELING EXTENSIONS AND OTHER
APPLICATIONS

Mixed-integer programming formulations offer flexibility to impose
requirements that might be of interest from a manufacturing perspec-

tive. For instance, we consider the extended formulation:

1
maxz— ZA"JZX"*XJ?“ (12a)
ijev  keC

sty xx=1, ieV (12b)
keC
> Xz, keC (12¢)

iev
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Dy < Zx,»,kD,» <Dy, keC (12d)

iev
Here, the last constraint imposes module feature constraints. The
quantity D; € R, denotes the feature of each node and D,,Dy€R . are
lower and upper bounds for the features. This constraint can be used
to enforce different module features such as weight, height, and

ki

35

Block diagram representation (top) and graph representation (bottom) for DME process [Color figure can be viewed at

number of nodes in a module. For instance, the number of nodes in a
module can be controlled by using the constraint:
Dy <> ik <Dy, keC. (13)
iev
The proposed formulation can also be extended to impose logic

constraints to force/prevent nodes from being in the same modules
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Equipment
Feed

V-1001
P-1001A/B
Flow Junction
Valve

E-1001
E-1002
R-1001

Flow Junction
Valve

Flow Junction
E-1003

Valve

T-1001
E-1004
E-1005
V-1002
P-1002A/B

Dimension

o N », O N U1 O

Node
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

TABLE 2 Modularity measures and number of alternative
configurations for DME process obtained with rank constraints

(without dimension constraints)

Rank
(t)

o U WN -

Modularity
measure (M,)

1
0.975
0.95
0.925
0.9
0.875

2

2 23
28

30

Number of
configurations

1

18

216
2016
15,120
90,720

14

Solution
time (s)

14.69
14.67
14.77
15.68
15.16
15.10

e Dimension T.A BL E 1 Node labels .and
dimensions for each node in the DME

Valve 1 process

Valve 1

Product 0

Valve 1

T-1002 15

E-1007 2

V-1003 4

P-1003A/B 2

Valve 1

E-1006 2

Valve 1

E-1008 2

Product 0

Valve 1

Flow Junc 0

Flow Junc 0

Flow Junc 0

and can be extended to identify multiple organizations that lead to
the same modularity measure (e.g., by using no-good cuts). In fact,
modern mixed-integer solvers can compute all solutions that give the
same optimal objective value.

We highlight that the proposed modularity measure and MIQP for-
mulation can be used in other applications that go beyond manufactur-
ing. For instance, these tools can be used to identify optimal
configurations for control architectures and optimal decomposition strat-
egies for optimization problems.244¢ In this context, constraints on the
number and size of modules can be used to create balanced configura-

tions (e.g., to handle computational load balancing issues).
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FIGURE 6 Sample modular configurations for DME process for t € [1, 6] [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Modular configuration for baseline DME process obtained under dimension constraints (adapted from Reference 48). Graph
representation (top) and corresponding flowsheet (bottom) [Color figure can be viewed at wileyonlinelibrary.com]

It is important to emphasize that modularity is directly associated to
the partitioning of a graph and, as such, there is no analytical representa-

tion for such a measure. In other words, one needs to specify the

partition of the graph first and then compute the modularity measure.
Because of this, modularity needs to be expressed as an optimization

that implicitly finds a partition of maximum modularity.
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8 | CASESTUDY

We use the proposed modularity measure and MIQP formulation to
identify modular configurations for a dimethyl-ethyl (DME) production
process from methanol.*® Methanol is an intermediate product during
the production of DME from natural gas and thus small modular DME
plants can provide a potential pathway to help recover billions of
cubic feet of natural gas that are currently stranded and flared. The
DME process is intuitively partitioned by practitioners into three func-
tional subsystems: the feed and reactor section, the DME purification
section, and the methanol separation and the recycle section. The pro-
cess flow diagram (PFD) and the subsystems are shown in Figure 4.
We created a block and graph representation for the process. To do
so, we represent each equipment unit and junction as a node and each
flow connection as an edge. The block and graph representations are
shown in Figure 5. We use node dimension as a feature that affects
the system modularity (i.e., this affects transportation). Labels and
dimensions for the nodes are presented in Table 1.

We first computed the unconstrained modularity measure while
ignoring rank (number of modules) and dimension constraints. As
expected, the solution of this problem gives a modularity measure
M, =1 (i.e., all nodes are assigned to one module). We then computed
the modularity measure by spanning the range t € [1, 6] The results
are summarized in Table 2 and a visualization of each configuration is

TABLE 3 Modular configuration for DME process obtained under
dimension constraints

Solution time (s) with Gurobi

Module
Module  Nodes dimension
1 [1,2,3,4,5,6,7,8,9,10, 11, 32, 33] 40
2 [12, 13, 14, 15, 16, 17, 18, 19, 20, 36
21,22,34
3 [23, 24, 25, 26, 27, 28, 29, 30, 31, 35] 29
TABLE 4 Effect of DME process scaling on modularity measure
Scale Measure (M,) Rank (t)
0.3 1.0 1 15.59
0.5 0.95 2 15.25
1 (baseline) 0.925 3 15.36
1.2 0.875 4 15.80
1.5 0.775 5 15.37
1.9 0.75 6 16.05

presented in Figure 6. We can see that, as the number of modules
increases, the modularity measure decreases from M; = 1 to
Mg = 0.875. We thus have that, for a configuration with t = 6, 87.5%
of the edges are inside the modules while 12.5% connect the modules
(the configuration has sparse intermodule coupling).

For every value of t, we computed all possible equivalent con-
figurations (solutions that give the maximum value of M;). We do
this in order to highlight that multiple configurations can give the
same modularity measure. We found that the number of alternative
solutions increases sharply with the increasing number of modules.
This indicates that degeneracy increases with the number of mod-
ules and highlights the combinatorial nature of the problem. This
also indicates that there is significant flexibility to find configura-
tions that satisfy additional requirements (such as dimension
constraints).

We computed the modularity measure by considering dimension
constraints (but ignore rank constraints). Here, we explore the impact
of scaling-up the process and set the minimum dimension of each
module to Dy = 20 and the maximum dimension Dy =40. A visualiza-
tion of the modular configuration is shown in Figure 7 and the associ-
ated node-module membership is shown in Table 3. Here, we also
report the module dimensions Y x;xD; for all k € C. We observe that
the dimension constraints induicet\e/ an organization with t = 3 modules
and the associated modularity measure is M3 = 0.925 (only 7.5% of
the edges connect modules). Interestingly, we can see that the
resulting modular organization is the same as the functional organiza-
tion shown in Figure 4 (with the exception of valves). In fact, if we
found that the modularity measure that result from the functional
organization of Figure 4 is 0.925 and is thus optimal. This highlights
that practitioners use natural logic to modularize systems and that the
proposed modularity measure is intuitive.

We explored the effect of scaling up and down on the modularity
measure by scaling the equipment unit dimensions. Scaling results are

summarized in Table 4. We recall that the baseline measure value is

Solution time (s) with convexification
16.91
16.17
17.67
16.48
16.73
17.01

TABLE 5 Comparison of the number of solutions for problems with and without dimension constraints (DCs)

Rank (t)  Measure (M;) without DCs  Number of configurations without DCs  Measure (M;) with DCs  Number of configurations with DCs
3 0.950 216 0.925 78

4 0.925 2016 0.875 384

5 0.900 15,120 0.775 1920



SHAO anp ZAVALA

M3 = 0.925. As expected, we observe that the number of modules
increases and the modularity measure decreases as we scale up the
process. By scaling the equipment units up by 20% the measure
decreases to M, = 0.875. The modularity measure achieves its ideal
value of M4 = 1 when the baseline process is scaled down by 30%.
This highlights that the modularity measure proposed is consistent
and that dimension constraints can also be used to implicitly control
the number of modules.

The MIQPs were solved using the Gurobi (version 0.6.0) and were
implemented in the Julia-based JUMP modeling framework. We use
GraphPlot and LightGraphs for graph manipulation and visualization.
All nodes needed to reproduce the results can be found in https://
github.com/zavalab/JuliaBox/tree/master/ModularityMeasures. We
solved the MIQP problems by convexifying them directly. To do so,
the minimum eigenvalue of the adjacency matrix A is —2.62 and thus
we used p = 3. We highlight that Gurobi can also automatically con-
vexify the problem (convexification by the user is not needed). We
confirmed that both approaches give the same solutions (Gurobi gives
slightly better times). The solution times obtained are in the range of
14-17 s (these are reported in Table 4).

We computed the number of solutions for problems with dimen-
sion constraints for t = 3, t = 4, and t = 5 and compared against
the number of solutions obtained without dimension constraints. The
results are summarized in Table 5. We can see that for all cases, the
number of solutions is drastically reduced when dimensional con-
straints are added. This highlights the importance of enforcing addi-
tional module features to mitigate the natural degeneracy of
modularity measures. In particular, other modularity measures used in
the scientific literature, such as that of Newman, are degenerate
(i.e., different organizations give the same modularity measure) and
this degeneracy can introduce ambiguity in the analysis. Mixed-
integer programming approaches allow us to systematically explore
the set of feasible solutions.

9 | CONCLUSIONS AND FUTURE WORK
In this work, we propose a modularity measure to guide the analysis,
comparison, and design of modular systems. The proposed measure
seeks to capture desirable features from a manufacturing perspective.
We show that the modularity measure can be computed by solving a
MIQP and that this MIQP can be convexified to enable efficient solu-
tions with state-of-the-art solvers. Moreover, this formulation allows
us to capture logical constraints associated with module dimensions
and node-module membership restrictions. As part of future work, we
are interested in using the proposed measure to guide the synthesis
of systems with desired modularity properties. Moreover, we are
interested in exploring computational strategies to analyze large-scale
graphs.

There exist interesting synergies of the modular design principles
discussed in this work with modular design principles of control archi-
tectures.*? This is because in both cases one is implicitly seeking to

minimize the degree of interaction between modules. Using the
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proposed measure to understand the interplay between modular

design and control is an interesting topic of future work.
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