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ABSTRACT

Stopping origami in arbitrary fold states can present a chal-
lenge for origami-based design. In this paper two categories of
kirigami-based models are presented for stopping the fold motion
of individual creases using deployable hard stops. These models
are transcrease (across a crease) and deploy from a flat sheet.
The first category is planar and has behavior similar to a four-
bar linkage. The second category is spherical and behaves like a
degree-4 origami vertex. These models are based on the zero-
thickness assumption of paper and can be applied to origami
patterns made from thin materials, limiting the motion of the
base origami pattern through self-interference within the orig-
inal facets. Model parameters are based on a desired fold or di-
hedral angle, as well as facet dimensions. Examples show model
benefits and limitations.
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1 INTRODUCTION

Some origami-based applications call for the fold motion to
stop at a predetermined state (e.g., for positioning optical compo-
nents). The facet interference technique in partially folded states
is a valuable blocking method for stopping motion in a desired
fold state [1]. Facet interference cannot be implemented within
an arbitrary pattern since it requires non-flat foldability. The di-
mensions and alignment of facets must be such that facets inter-
fere in a desired fold angle [2]. Generally, patterns only allow
for alterations to the fold pattern along the edges of the pattern.
These changes can prove useful for single-degree of freedom pat-
terns but become increasingly complex when a pattern has mul-
tiple degrees of freedom.

Kirigami is similar to origami, but includes both folding and
cutting of paper. Cuts can be made to a preexisting origami pat-
tern to change its original characteristics or develop entirely new
patterns. Similar to kirigami are mechanisms commonly used
in pop-up books, which also involve folding and cutting of pa-
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per [3]. Recently, kirigami has found a number of applications,
such as in the design of metamaterials [4].

This work presents four models, within two categories, for
deployable hard stops within an origami pattern using kirigami.
The models in the first category are similar to a pop-up book
mechanism that deploys out of a plane. The models in the second
category exhibit characteristics of a spherical linkage, employing
a degree-4 vertex. Each hard stop model is developed across a
crease and bounded by the facets adjacent to that crease, so as to
reside within an origami pattern. Each model is defined, includ-
ing equations for calculating hard stop model parameter values.
Examples showing benefits and limitations of these models are
also included.

2 BACKGROUND

This work adapts methods for blocking motion in origami
and the art of kirigami to develop hard stop models for origami
patterns. Additional background in the areas of motion blocking
and kirigami is given below.

2.1 Blocking Motion

For origami patterns to stop moving in a desired configura-
tion, a blocking mechanism must be introduced to reduce the pat-
terns range of motion. Facet interference is a common technique
for producing a hard stop to motion in a desired fold state [1] and
utilizes self-interference of adjacent facets within an origami pat-
tern [2]. Foschi and Tachi [2] outline a technique for determining
which facet within a degree-4 origami vertex will block motion
and how to design for a desired stop angle between facets. They
also give an example of how their technique can be used in a
multi-faceted origami pattern.

Establishing hard stops to motion becomes more challeng-
ing when an origami pattern has multiple degrees of freedom or
does not allow adjacent facets to completely interfere. A mech-
anism built upon such a pattern cannot use facet interference to
stop motion.

Ku [5] outlines a thickness based method for creating a hard
stop in motion within an origami-based crease. This method re-
quires removing material along one or both sides of the crease in
such a way to allow motion along a given axis, but block motion
at a desired angle. Thus, this method utilizes the thickness of the
material being used. Many thick-folding techniques exhibit this
behavior [6].

Shemenski and Trease [7] show an example of a deployable
flasher with strings used as hard stops to stop motion in a partially
folded state. They also show an example of a hard stop built into
a hinge and discuss how it can be used between adjacent facets
as both a joint and a hard stop.

2.2 Kirigami

As an adaptation on traditional origami, kirigami, the art of
folding and cutting paper, has ridden in the wake of origami
to gain similar notoriety. Kirigami shares many advantages
of origami, such as planar manufacturing and scalability [8].
Kirigami has been used to create metamaterials [4], lattice struc-
tures for sandwich boards [9], and bandages with increased flex-
ibility [10]. These and other existing kirigami techniques remove
portions of material, rather than cutting slits. In contrast to cur-
rent modeling practices for origami, the cuts in kirigami can pro-
vide motion that need not be modeled as a spherical mechanism.

Pop-up mechanism [3] or pop-up origami [11] are two
terms used synonymously with kirigami. Pop-up mechanisms are
widely used in creative mechanisms which deploy from sheets
of paper. Like origami, these mechanisms can be modeled us-
ing kinematics to define their motion, allowing for analysis and
definitions of similar deployable mechanisms [3].

3 PLANAR TRANSCREASE HARD STOP MODELS

A planar transcrease hard stop (PTHS) is a deployable hard
stop that is formed across an origami crease. PTHSs are planar
double-slit mechanisms [3] that can be modeled as a four-bar
kinematic linkage. Rather than deploying from a fully folded
state like a pop-up book mechanism, a PTHS deploys from an
unfolded state. This section provides general and flat-foldable
models for a PTHS and corresponding limitations. Since these
models originate from a plane, they are equivalent to those of a
change-point mechanism.

3.1 General Planar Transcrease Hard Stop

The general PTHS model can be realized by adding two slits
through a crease between two adjacent facets, stretching between
creases b and d, as shown in Figure 1. The initial crease and
facets become the base of the PTHS model. The newly created
facets, B and C, act as links with joints at creases b, ¢, and d.
Folding the base facets, A and D, toward each other deploys the
hard stop. At a desired angle, facet B interferes with facet A,
blocking relative motion between facets A and D. This result-
ing hard stop to motion creates a partially folded fold state with
a given dihedral angle, which is the angle between the normal
vectors of adjacent facets [12].

Figure 2 shows the parameters for a general PTHS model,
namely the dihedral angle (p;) and model lengths (L;, Ly, L3,
L4). The general PTHS model may have an arbitrary shape or
angle with respect to the base crease a, as long as creases b, c,
and d remain parallel to a. The lengths are defined in the plane of
motion, perpendicular to the creases. Such a mechanism is kine-
matically equivalent to this model. Three independent parameter
values need to be selected to define the model. The two remain-
ing parameter values are found using
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FIGURE 1. General PTHS model in (a) unfolded and (b) partially
folded fold states. A and D are base facets. The base crease or gutter is
denoted by a. B and C are the facets of the PTHS model.
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which is derived using the law of cosines. The dihedral angle can
be between 0° and 180°.

One advantage of the PTHS model is that it scales easily.
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FIGURE 2. Parameters for a General PTHS model in (a) unfolded
and (b) partially folded fold states.

can be used to define the PTHS model. The first, R;;, relates
model lengths in the base facets (L;, L;). The second non-
dimensional ratio, R3j, relates the angled links (Lp, L3). As
above, a value is first selected for p,. Values for one length and
one ratio are also selected. The remaining parameter values are
found using equations (1), (3), (4) and

_ 2R3, + (2R12+ 1) (1 —cos py)
2Ry —cospg+1

R 5)

3.2 Flat-Foldable Planar Transcrease Hard Stop

A special case of the general PTHS model is the flat-foldable
planar transcrease hard stop (FF-PTHS) model. For this model,
shown in Figure 3, creases a and c¢ are constrained to be coin-
cident in the unfolded state. This constraint requires that L; =
L4 and Ly = L3, removing two model parameters. Further, this
makes it possible for the FF-PTHS model to be deployed to
create a partially folded state, while also being able to be flat-
foldable, with creases a and ¢ remaining coincident during mo-
tion. A trade-off of using this constraint is that it reduces the
dihedral angle range to be 0° to 90°.
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FIGURE 3. Parameters for a FF-PTHS model in (a) unfolded and (b)
partially folded fold states.

Calculating the model parameter values is much simpler for
this model than for the general PTHS model, because R3; = 1.
This allows equation (5) to reduce to be

Ry =cosp; (forR3 =1) (6)

This simplified model requires only two independent parameter
values: p; and either L; or L,. The remaining length is found R;»
given in equation (3).

3.3 Limitations

The parameters for both PTHS models are limited by the
dihedral angle. For the general PTHS model, as p; approaches
0°, Lz and L4 approach L; and L,, respectively. Conversely, as
pa approaches 180°, L3 reaches a limit of L; 4 L, and L4 rapidly
approaches a length of 0. This rapid approach causes the general
PTHS model’s efficiency to decrease quickly past 90°. For the
FF-PTHS model, L, approaches infinite length as p; approaches
90°. Additionally, both PTHS models are limited by the size of
the base facets the hard stop model is formed from.
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FIGURE 4. General STHS model in (a) unfolded and (b) partially
folded fold states. A and D are base facets. The base crease or gutter is
denoted by a. B and C are the facets of the STHS model.

4 SPHERICAL TRANSCREASE HARD STOP MODELS

A spherical transcrease hard stop (STHS) is a deployable
hard stop that is formed across an origami crease. STHSs are
single-slit spherical mechanisms [3] that act like a degree-4
origami vertex deploying from a plane. This section provides
general and simplified models for a STHS and corresponding
limitations.

4.1 General Spherical Transcrease Hard Stop

The general STHS model can be realized by adding a
degree-4 origami vertex laying over a crease between two facets,
as shown in Figure 4. A cut is made from tip to tip of creases b to
c and c to d. Folding the base facets, A and D, toward each other
deploys the hard stop. At a desired angle, facet B interferes with
facet A, blocking relative motion between facets A and D. This
resulting hard stop to motion creates a partially folded fold state
with a given dihedral angle.

Figure 5 shows the parameters for a general STHS model ,
namely the dihedral angle (p,;) and vertex angles (0;, 6>, 65, 04,
05). Like the general PTHS model, three independent parameter
values need to be selected to define the model. The three remain-
ing parameter values are found using
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FIGURE 5. Parameters for a General STHS model in (a) unfolded
and (b) partially folded fold states.
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with the last being derived from the spherical law of cosines.

For this model the dihedral angle can be between 0° and
180°. The shape of the kirigami facets is arbitrary, only being
required to fit within the corresponding base facets. The figures
in this paper show angled (Figure 4) and circular (Figures 5 and
6) examples.
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FIGURE 6. Parameters for a P-STHS model in (a) unfolded and (b)
partially folded fold states.

By specifying an angle between facets A and C and between
facets C and D, one has the necessary parameters for defining
a spherical triangle originating from the center of the degree-
4 vertex of the transcrease hard stop model. Using the spheri-
cal trigonometric laws of sines and cosines in conjunction with
equations (7) through (9), one or both of the newly defined angles
can be used as additional independent parameters to find model
parameter values. These angles would replace vertex angles as
independent parameters.

4.2 Perpendicular Spherical Transcrease Hard Stop
A special case of the general STHS model greatly simplifies
the calculation of vertex angles by implementing specific con-
straints. This model is called the perpendicular spherical tran-
screase hard stop (P-STHS) model and the corresponding pa-
rameters are shown in Figure 6. The constraints for this model
are that 64 = 90° and 05 = 90°. These constraints lead to a sim-
plified value of 63 = p,; as calculated by inserting the 84 and 65
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constraint values into equation (9). These constraints cause the
P-STHS model to always be perpendicular to the base facets.

To calculate the parameter values of the P-STHS model,
only a single independent parameter value needs to be defined.
This parameter is usually the dihedral angle, p;. Equations (7)
and (8) are used to find the last parameter values of 6; and 6,.

4.3 Limitations

The most noticeable limitation of the general STHS model
is that it is more complex than the general PTHS model. This is
due to the complexities of spherical trigonometry. Much of this
difficulty is removed for the P-STHS model by setting specific
constraints.

As the dihedral angle approaches 0° or 180°, the hard stop
approaches the limits of the model. At 0°,

0+6:=60+6,=m (10)

which causes facets A and B to interfere and facets C and D to
interfere, resulting in a fully folded degree-4 vertex. At 180°,

0,+6,=6,+063=nm (11

which causes the hard stop facets, B and C, to interfere with both
facets A and D. This results in an unfolded state with a flap that
is fully folded.

Like the PTHS models, the parameter values of STHS mod-
els are dependent on the size of the base facets the model is
formed from. This is especially important near the model lim-
its, where one or two vertex angles begin to rapidly decrease in
size.

5 EXAMPLES

Two examples were created to show specific benefits of us-
ing this model. Corresponding limitations are also shown. Since
these are models, prototypes were built using thin materials that
require no adaptation for thickness. The first example shows how
these models can be used to block motion within an origami pat-
tern. The second example shows the range of possible dihedral
angles from these models.

5.1 Motion Blocking Demonstration

The purpose of a hard stop is to block motion once a specific
position or angle is reached. These transcrease hard stop models
can be implemented directly into origami patterns because of the
zero-thickness assumption of paper. For this example, we use a
muira-ori pattern which has two flat states: fully unfolded and

(@

(b)

©

FIGURE 7. Muira-ori pattern containing transcrease hard stops based
on the FF-PTHS model in (a) fully unfolded, (b) fully folded, and (c)
partially folded/blocked states. The blocked state (c) is held in place
under external loading.

fully folded. Each hard stop in this model is based on the FF-
PTHS model for its simplicity and for its dual deployable, fully-
foldable nature.

As shown in Figure 7a, hard stops are placed in multiple
adjacent facets directly across the crease, each having the same
parameter values. The parameter values used were rho; = 60°,
Ly =2, and L, = 4. Figures 7a and b show the muira-ori pattern in
its original folded states. Figure 7c shows each PTHS deployed,
blocking the origami pattern from reaching its fully folded state.
Each moves perpendicular to the crease it is across, yet is cut
parallel to the other creases.
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This example shows that these transcrease hard stop models
can be used to develop hard stops that block motion within an
origami pattern. Further, this example shows that the FF-PTHS
model allows for 3 states as shown in the three portions of Fig-
ure 7. This is a specific benefit of the FF-PTHS model.

Since these are models and not fully realized design tech-
niques, a complete stop to motion is not guaranteed. This can
be seen in Figure 7c, where the flexibility of paper allows for
the transcrease hard stops to bend before fully blocking motion.
Further, this flexibility requires an external load to keep the tran-
screase hard stops held in the partially folded state.

5.2 Angle Range Demonstration

Brigham Young University’s block Y’ on the mountain east
of campus has become a symbol of the university. The shape of
the Y’ has numerous different angles as shown in Figure 8a.
We use this shape to show the range of angles for the transcrease
hard stop models outlined. The P-STHS model was used because
it is more efficient past 90° than the PTHS models and easier to
calculate than the general STHS model.

The block Y’ was constructed from a continuous strip of
material. The material was split along the mirror line in Fig-
ure 8a, creating two separate open loops. These narrower strips
were segmented with creases so the length of each facet is equal
to the length of the corresponding line segment as shown in Fig-
ure 8. Depending on the available space, one or two hard stops
were added to each crease using the P-STHS model. The dihedral
angle, py, of each hard stop corresponds with the angle between
the line segments. Figure 9 shows the physical prototype in open
and closed positions.

This example shows the range of angles that can be real-
ized using these transcrease hard stop models, included dihedral
angles of 60°, 90°, 120°, and 150°. Additionally, this example
demonstrates that the shape for the STHS model can be arbitrary.
Straight cuts were selected for ease of prototyping. The circles at
the center of each vertex depicted in Figure 8 were removed to
accommodate the thickness of the material in the physical proto-

type.

6 DISCUSSION

Each deployable transcrease hard stop model is formed
within two base facets, making shape flexible. Each model can
be easily scaled. Since paper has approximately zero thickness,
these models can be implemented directly in paper, such as in
origami patterns. These models can be applied multiple times in
a crease or in multiple creases of an origami pattern, as shown in
the first example above.

The visual rendering of each category of models resemble a
different type of structural support. The PTHS models look like a
strut, that spans between the two base facets. The STHS models

Side View of Unfolded Material

General Dimension

10
Paio

~

(a) (b)

FIGURE 8. (a) The lengths and angles of the block Y. (b) One half of
the block Y shown from the side with a mapping of the facet lengths and
crease angles. All the creases have two P-STHSs to distribute the load,
except for the top two creases which have insufficient space.

look like a rib, commonly used to reduce bending of thin an-
gled walls. This models could be adapted to create methods for
designing physical deployable transcrease hard stops that fulfill
these structural purposes.

These deployable transcrease hard stop models are particu-
larly valuable in origami patterns with multiple degrees of free-
dom. Using these models provides localized blocking within the
pattern which can be fabricated simultaneously with the pattern
itself, without adding additional material. The examples shown
in Figure 7 and Figure 9 utilize this benefit.

The majority of model examples shown in this paper are per-
pendicular to the base crease. This does not need to be the case,
as shown in Figure 4 and in the first example. Any hard stop ori-
entation can be used as long as the conditions outlined for each
model are satisfied.

7 CONCLUSION

This paper has presented four models for deployable tran-
screase hard stops, separated into two categories. For each cate-
gory, a general and special case model were outlined. The mod-
els presented are theoretical, though they can be used directly in
origami patterns, due to the near zero thickness attribute of paper.
Examples are given in paper-like materials, which show specific
benefits and limitations of these transcrease hard stop models.
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FIGURE 9. BYU block Y designed using the P-STHS model in its
open and closed positions. The shape is closed by pulling on a wire
passing through each strip. The images are scaled to fit the page.

Future work will develop these models into methods and
techniques that can be used for designing deployable transcrease
hard stops for use in origami-based applications. This work will
include mathematical adaptations of these models for thickness,
strength and flexibility analysis, and discussion on designing to
counteract motion challenges, such as singularities. This work
also shows promise for extension to curved surfaces for use in
developable mechanisms [13]. Additionally, work could be done
to compare the suitability of methods developed from these mod-
els under static and dynamic loading.
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