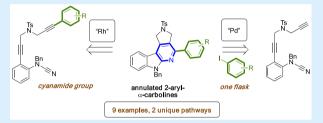


pubs.acs.org/OrgLett Letter

Metal-Catalyzed Cyclotrimerization Reactions of Cyanamides: Synthesis of 2-Aryl- α -carbolines

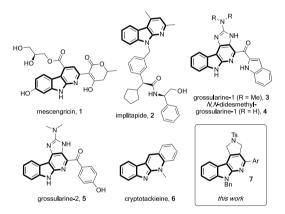
Kyle M. Medas, Robert W. Lesch, Friendship B. Edioma, Sean P. Wrenn, Vincent Ndahayo, and Seann P. Mulcahy*

Cite This: Org. Lett. 2020, 22, 3135-3139


ACCESS I

III Metrics & More

Article Recommendations


SI Supporting Information

ABSTRACT: The synthesis of annulated 2-aryl- α -carboline heterocycles is described using transition metal catalysis. A linear strategy is described that uses Rh(I) catalysis to form the α -carboline scaffold by [2+2+2] cyclotrimerization. Alternatively, a tandem catalytic approach using a Pd(II) precatalyst afforded the same target molecules by mediating a Sonogashira reaction and a [2+2+2] cyclotrimerization in the same reaction flask. In each case, nine different 2-aryl- α -carbolines have been prepared in high to modest isolated yields.

he challenge of forming multiple bonds or multiple rings $oldsymbol{\perp}$ in a single reaction flask has attracted the attention of organic chemists because of the advantages such reactions might have in terms of synthetic efficiency and atom economy. Several approaches to solving this problem, including strategic retrosynthetic disconnections, biomimetic synthesis, and cascade or multicomponent reactions, have invariably accelerated complex molecule construction. 1-4 A common feature of many of these methods involves the strategic use of transition metals in the development of new reaction methodologies. $^{5-9}$ Our group has been interested in the use of transition metal catalysis for the construction of elaborate pyridine-containing heterocycles, which are often important pharmacophores in drug discovery. In particular, we have disclosed Rh(I)- and Pd(0)-catalyzed methods for the synthesis of β -carboline heterocycles.^{10–12} While β -carbolines have attracted interest from both the academic organic chemistry community and the pharmaceutical industry, investigations involving their α -carboline isomer are much rarer. In this Letter, we describe two new methods for the construction of complex α -carbolines using transition metal catalysis.

 α -Carbolines are pyrido[2,3-b]indoles whose core scaffold is present in several natural products and bioactive pharmaceuticals. For example, mescengricin (1) is a neuronal cell-protecting substance, ¹³ while implitapide (2) is a microsomal triglyceride transfer protein inhibitor used to treat atherosclerosis. ¹⁴ Other α -carboline structures include the grossularines 3–5, which are cytotoxic against human and mouse tumor cells, ¹⁵ and cryptotackieine 6, which has antiplasmodial activity against chloroquine-resistant strains of *Plasmodium falciparum* (Figure 1). ¹⁶ α -Carbolines 3–6 are unique in that they contain additional fused rings that pose a higher level of complexity from a synthetic standpoint. In fact, very few structure—activity studies have been performed on annulated α -carbolines due to

Figure 1. Naturally occurring α -carbolines.

a lack of reaction methodology to access them. Most current methods, while robust and high-yielding, typically involve the coupling of two smaller fragments to build the α -carboline core that precludes the simultaneous formation of additional ring annulations. Thus, we hypothesized that we could adapt our initial work on the synthesis of β -carbolines to the α -isomer to access these structures.

In this work, we have adopted a retrosynthetic strategy that makes use of an intramolecular [2+2+2] cyclotrimerization^{21–24} reaction in the last step of the synthesis to form the annulated pyrido[2,3-b]indole ring.^{25,26} This approach

Received: March 10, 2020 Published: April 7, 2020

required us to prepare an intermediate that contained two alkyne units and a cyanamide functional group. This follows closely our own precedent for using dialkynyl nitrile intermediates for [2+2+2] cyclotrimerizations, $^{10-12}$ but with the added challenge of introducing a highly reactive and hydrolytically unstable cyanamide as a key intermediate. The use of cyanamide intermediates in [2+2+2] cyclotrimerization reactions was recently described for an intermolecular reaction between an alkynyl nitrile and an exogenous alkyne using a nickel(0) catalyst, 27 providing good precedent for our strategy. While this is the only example of a [2+2+2] methodology toward α -carbolines, only a few substrates were reported. By contrast, our approach offers the advantage of rapid synthesis using microwave irradiation that is amenable to further diversification under mild conditions.

The synthesis of the cyanamide intermediate is described in Scheme 1. We began by protecting the commercially available

Scheme 1. Synthesis of the Diynyl Cyanamide Substrate and Rh(I)-Catalyzed [2+2+2] Cyclotrimerization

2-iodoaniline with a benzyl group via reductive amination. Installation of the first alkyne unit proceeded smoothly via Sonogashira coupling²⁸ to afford the internal alkyne **10**.

Remarkably, this reaction could be performed on a gram scale with no interference from the free amino groups. Introduction of a propargyl group, however, proved more challenging. Using propargyl alcohol as a reagent under Mitsunobu conditions²⁹ gave a complex mixture that was inseparable from impurities via column chromatography. Luckily, selective deprotonation of the sulfonamide N-H followed by alkylation with propargyl bromide afforded the terminal alkyne 11 in good yield. Direct incorporation of the cyanamide functional group by NCS/Zn(CN)2 was unsuccessful and led to modest yields with an appreciable amount of recovered starting material.³⁰ We did not want to use the highly toxic reagent cyanogen bromide, 31 so we ultimately decided to perform a two-step procedure involving urea formation and dehydration with trifluoromethanesulfonic anhydride. 32 This sequence led to the formation of cyanamide 13 in good overall yield. Cyanamide 13 was stable and could be stored under an inert atmosphere at 4 °C for months without decomposition. With cyanamide intermediate 13 in hand, we used Tanaka's standard conditions²⁵ to perform the [2+2+2] cyclotrimerization. Under microwave irradiation at

120 °C, annulated α -carboline **14** could be isolated in good yield after just 20 min. A screen of seven different solvents was performed, which identified chloroform as the ideal solvent (see Table S1 for the full details).

We recognized that cyanamide 13 was a privileged intermediate that could be further functionalized at the terminal alkyne position via Sonogashira coupling. The resulting internal alkynes 16a-i that would result could then undergo [2+2+2] cyclotrimerization to yield a diverse collection of 2-aryl-substituted annulated α -carbolines 17a-i. Table 1 summarizes this strategy using nine different

Table 1. Two-Step Synthesis of 2-Aryl- α -carbolines via Sequential Palladium and Rhodium Catalysis

entry	iodoarene 15a-i	yield of 16a-i (%) ^a	yield of 17a-i (%) ^b
a		88	96
b	I—CN	94	90
С	ı—√cı	95	87
d	I CI	89	91
e	I—CF ₃	88	69
f	I—(92	66
g	I————OMe	79	88
h	I—OMe	97	96
i	I——F	96	98

^aStandard conditions: 1.0 equiv of **13**, 1.1 equiv of **15a–i**, 5 mol % Pd(PPh₃)₂Cl₂, 10 mol % CuI, 10 mol % PPh₃, 2:1 Et₃N/DMF (0.04 M), 60 °C, 1 h. ^bStandard conditions: 1.0 equiv of **16a–i**, 5 mol % Rh(COD)₂BF₄, 5 mol % SEGPHOS, CHCl₃ (0.01 M), microwave irradiation, 120 °C, 300 W, 20 min.

commercially available iodoarenes. The Sonogashira reaction proceeds smoothly in all cases to afford the internal alkyne as an isolable intermediate, as long as the reaction is monitored closely by TLC (*vide infra*). Employing the standard cyclotrimerization conditions resulted in the 2-aryl-substituted annulated α -carbolines in excellent yields. The yields of this strategy are generally high across a range of functional groups. Especially notable is the benzonitrile substituent (entry b), which did not interfere in the [2+2+2] cyclotrimerization.

During this proof-of-principle study, we noticed the tendency for the Sonogashira couplings to give mixed results depending on the length of the reaction. We ultimately discovered that leaving the reaction mixture to stir for longer periods of time at high temperatures led to the formation of α -carbolines 17a-i, which reduced the overall yield of the Sonogashira product but conveniently gave the ultimate target. This was not surprising to us, because we also observed this tandem catalysis in the preparation of β -carbolines. Because this unexpected side reaction offered us an opportunity to

further shorten the synthesis of these substrates, we wanted to determine whether such tandem palladium catalysis could be used in the construction of the same set of α -carbolines in Table 1. Such a strategy is novel because the product will result only if a single catalyst can perform more than one unique chemical reaction.

We chose 2-iodonaphthalene as a model substrate for identifying reaction conditions suitable for this transformation, which are summarized in Table 2. Conventional heating of

Table 2. Optimization of the Reaction of the Tandem Pd-Catalyzed [2+2+2] Cyclotrimerization^a

onterv	catalyst (5 mol %)	solvent	yield of 17a (%)
entry	, , ,		, , ,
1	$PdCl_2(PPh_3)_2$	CHCl ₃	19
2	$PdCl_2(PPh_3)_2$	MeCN	19
3	$PdCl_2(PPh_3)_2$	DMF	30
4	$PdCl_2(PPh_3)_2$	PhCH ₃	11
5	$PdCl_2(PPh_3)_2$	dioxane	31
6	PdCl ₂ (PPh ₃) ₂	pyridine	10
7	$PdCl_2(PPh_3)_2$	Et ₃ N/DMF (2:1)	24
8 ^b	$Pd(dba)_2$	Et ₃ N/DMF (2:1)	26
9 ^b	$Pd(PPh_3)_4$	Et ₃ N/DMF (2:1)	21
10 ^b	PdCl ₂	Et ₃ N/DMF (2:1)	29
11 ^b	$Pd_2(dba)_3$	Et ₃ N/DMF (2:1)	30
12 ^b	$Pd(OAc)_2$	Et ₃ N/DMF (2:1)	16
13 ^b	$PdCl_2(MeCN)_2$	Et ₃ N/DMF (2:1)	8
14 ^b	Xphos Pd G2	Et ₃ N/DMF (2:1)	21
15 ^b	PdCl ₂ (PPh ₃) ₂	Et ₃ N/DMF (2:1)	46
$16^{b,c}$	$PdCl_2(PPh_3)_2$	Et ₃ N/DMF (2:1)	36
17^{b-d}	PdCl ₂ (PPh ₃) ₂	Et ₃ N/DMF (2:1)	73
18 ^e	PdCl ₂ (PPh ₃) ₂	Et ₃ N/DMF (2:1)	decomposition
			•

^aAll reactions were performed for 30 min under microwave irradiation at 80 °C and 300 W (0.015 M). ^bWith 10 mol % PPh₃. ^cAt 90 °C. ^dFor 60 min. ^cConventional heating to 80 °C.

these reaction mixtures resulted in decomposition of the starting material, so we focused on reducing the reaction time using microwave irradiation. Reaction solvents other than a 2:1 Et₃N/DMF mixture resulted in poor isolated yields. In addition, Pd(0) precatalysts resulted in yields that were lower than those with Pd(II) precursors. Finally, the addition of 10 mol % PPh3 resulted in an increase in the yield of 16a, with the optimal condition found after heating for 60 min (entry 17). Optimization of the reaction time provided a balance among complete consumption of the starting material, formation of the cyclized product from the Sonogashira intermediate, and prevention of decomposition. Interestingly, when substrate 13 was subjected to the microwave irradiation at 90 °C for 30 min without the addition of an exogenous aryl iodide, α -carboline 14 was formed in only 34% yield, suggesting that terminal alkynes are poor substrates for the [2+2+2] cyclotrimerization reaction.

Using the optimized conditions, we subjected cyanamide precursor 13 to tandem catalysis with each of the iodoarene substrates 15a-i in a multicomponent reaction. These results are summarized in Table 3. Low yields were obtained with a few substituents, in particular the benzonitrile (17b) and

Table 3. Substrate Scope of the Tandem Pd-Catalyzed [2+2+2] Cyclotrimerization

entry	iodoarene	yield of 17a-i (%) ^a
a		73
b	I—CN	11
с	I —⟨CI	41
d	I CI	30
e	I—√CF ₃	34
f	<u> </u>	47
g	I—————OMe	20
h	I—OMe	62
i	I——F	36

"Standard conditions: 1.0 equiv of 13, 1.1 equiv of 15a-i, 5 mol % Pd(PPh₃)₂Cl₂, 10 mol % CuI, 10 mol % PPh₃, 2:1 Et₃N/DMF (0.015 M), 60 °C, microwave irradiation for 1 h, 90 °C, 300 W, 1 h.

anisole (17g) derivatives. Modest to good yields were obtained for the other substrates, which include both electron-donating and electron-withdrawing substituents. These results indicate that, while tandem palladium catalysis is an attractive route to some substrates, the isolated yields are more variable than those of the analogous Rh(I)-catalyzed pathway.

In summary, we have developed two new routes to 2-aryl-substituted annulated α -carbolines using transition metal catalysis. These methods demonstrate that Rh(I) and Pd(II) precursor complexes can mediate reactions that lead to elaborate pyridine-containing heterocycles via [2+2+2] cyclotrimerization reactions. The functional group tolerance of these pathways is better for the stepwise sequence under Rh(I) catalysis than the Pd(II)-catalyzed one-pot procedure. However, the tandem catalytic pathway provides a short alternative route to these densely functionalized heterocycles. Research efforts in this area will continue with an increase in the functional group and architectural diversity of the target molecules.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00891.

Experimental procedures and accompanying analytical data (¹H and ¹³C NMR, IR, and MS) for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Seann P. Mulcahy – Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island

02918, United States; o orcid.org/0000-0003-4444-5119; Email: smulcahy@providence.edu

Authors

- **Kyle M. Medas** Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
- Robert W. Lesch Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
- Friendship B. Edioma Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
- Sean P. Wrenn Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States
- Vincent Ndahayo Department of Chemistry and Biochemistry, Providence College, Providence, Rhode Island 02918, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c00891

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Research reported in this Letter was supported by a National Science Foundation grant (RUI 1565987) to S.P.M. and by the Jean Dreyfus Lectureship for Undergraduate Institutions program of The Camille & Henry Dreyfus Foundation. Research reported in this Letter was also supported in part by the Rhode Island Institutional Development Award (IDeA) Network of Biomedical Research Excellence from the National Institute of General Medical Sciences of the National Institutes of Health under Grant P20GM103430. The authors also thank Dr. Tun-Li Shen at Brown University for HR-MS measurements and Dr. Al Bach at the University of Rhode Island for ¹⁹F NMR measurements.

REFERENCES

- (1) Fogg, D. E.; dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. *Coord. Chem. Rev.* **2004**, 248, 2365.
- (2) Tietze, L. F. Domino Reactions in Organic Synthesis. *Chem. Rev.* **1996**, *96*, *115*.
- (3) Mayer, S. F.; Kroutil, W.; Faber, K. Enzyme-initiated domino (cascade) reactions. *Chem. Soc. Rev.* **2001**, *30*, 332.
- (4) Nicolaou, K. C.; Chen, J. S. The art of total synthesis through cascade reactions. *Chem. Soc. Rev.* **2009**, *38*, 2993.
- (5) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Sausalito, CA, 1999.
- (6) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. *Chem. Soc. Rev.* **2004**, *33*, 302.
- (7) Mueller, T. J. J. Metal Catalyzed Cascade Reaction; Springer-Verlag: Berlin, 2006; p 339.
- (8) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis. *Chem. Rev.* **2005**, *105*, 1001.
- (9) Ramachary, D. B.; Jain, S. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. *Org. Biomol. Chem.* **2011**, *9*, 1277.
- (10) Mulcahy, S. P.; Varelas, J. G. Three-step synthesis of an annulated β -carboline via palladium catalysis. *Tetrahedron Lett.* **2013**, *54*, 6599.

- (11) Saliba, B. M.; Khanal, S.; O'Donnell, M. A.; Queenan, K. E.; Song, J.; Gentile, M. R.; Mulcahy, S. P. Parallel Strategies for the Synthesis of Annulated Pyrido[3,4-b]indoles via Rh(I)- and Pd(0)-Catalyzed Cyclotrimerization. *Tetrahedron Lett.* **2018**, *59*, 4311.
- (12) Varelas, J. G.; Khanal, S.; O'Donnell, M. A.; Mulcahy, S. P. Concise Synthesis of Annulated Pyrido[3,4-b]indoles via Rh(I)-Catalyzed Cyclization. *Org. Lett.* **2015**, *17*, 5512.
- (13) Kim, J.-S.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Structure of mescengricin, a novel neuronal cell protecting substance produced by *Streptomyces griseoflavus*. *Tetrahedron Lett.* **1997**, 38, 3431
- (14) Ueshima, K.; Akihisa-Umeno, H.; Nagayoshi, A.; Takakura, S.; Matsuo, M.; Mutoh, S. Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western diet: involvement of the inhibition of postprandial triglyceride elevation. *Biol. Pharm. Bull.* **2005**, 28, 247.
- (15) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. Total synthesis of grossularines-1 and -2. *J. Org. Chem.* **1995**, *60*, 5899.
- (16) Bracca, A. B.; Heredia, D. A.; Larghi, E. L.; Kaufman, T. S. Neocryptolepine (Cryptotackieine), A Unique Bioactive Natural Product: Isolation, Synthesis, and Profile of Its Biological Activity. *Eur. J. Org. Chem.* **2014**, 2014, 7979.
- (17) Wadsworth, A. D.; Naysmith, B. J.; Brimble, M. A. A review of the synthesis of α -carbolines. *Eur. J. Med. Chem.* **2015**, 97, 816.
- (18) Vera-Luque, P.; Alajarin, R.; Alvarez-Builla, J.; Vaquero, J. J. An Improved Synthesis of α -carbolines under Microwave Irradiation. *Org. Lett.* **2006**, *8*, 415.
- (19) Kumar, A. S.; Nagarajan, R. Synthesis of a-Carbolines via Pd-Catalyzed Amidation and Vilsmeier-Haack Reaction of 3-Acetyl-2-chloroindoles. *Org. Lett.* **2011**, *13*, 1398.
- (20) Hung, T. Q.; Dang, T. T.; Janke, J.; Villinger, A.; Langer, P. Efficient synthesis of α and δ -carbolines by sequential Pd-catalyzed site-selective C-C and twofold C-N coupling reactions. *Org. Biomol. Chem.* **2015**, *13*, 1375.
- (21) Chopade, P. R.; Louie, J. [2 + 2+2] Cycloaddition Reactions Catalyzed by Transition Metal Complexes. *Adv. Synth. Catal.* **2006**, 348, 2307.
- (22) Dominguez, G.; Perez-Castells, J. Recent advances in [2 + 2+2] cycloaddition reactions. *Chem. Soc. Rev.* **2011**, *40*, 3430.
- (23) Amatore, M.; Aubert, C. Recent Advances in Stereoselective [2+2+2] Cycloadditions. Eur. J. Org. Chem. 2015, 2015, 265.
- (24) Varela, J. A.; Saa, C. Recent advances in the synthesis of pyridines by transition-metal-catalyzed [2+2+2] cycloaddition. *Synlett* **2008**, 2008, 2571.
- (25) Tanaka, K.; Shirasaka, K. Highly Chemo- and Regioselective Intermolecular Cyclotrimerization of Alkynes Catalyzed by Cationic Rhodium(I)-Modified BINAP Complexes. *Org. Lett.* **2003**, *5*, 4697.
- (26) Witulski, B.; Alayrac, C. A highly efficient and flexible synthesis of substituted carbazoles by rhodium-catalyzed inter- and intra-molecular alkyne cyclotrimerizations. *Angew. Chem., Int. Ed.* **2002**, *41*, 3281.
- (27) Wang, G.; You, X.; Gan, Y.; Liu, Y. Synthesis of δ and α -Carbolines via Nickel-Catalyzed [2 + 2+2] Cycloaddition of Functionalized Alkyne-Nitriles with Alkynes. *Org. Lett.* **2017**, *19*, 110.
- (28) Sonogashira, K.; Tohda, Y.; Hagihara, N. Convenient synthesis of acetylenes. Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, and bromopyridines. *Tetrahedron Lett.* 1975, 16, 4467.
- (29) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Preparation of esters of phosphoric acid by the reaction of trivalent phosphorus compounds with diethyl azodicarboxylate in the presence of alcohols. *Bull. Chem. Soc. Jpn.* **1967**, 40, 935.
- (30) Kuhl, N.; Raval, S.; Cohen, R. D. Synthesis of Cyanamides via a One-Pot Oxidation-Cyanation of Primary and Secondary Amines. *Org. Lett.* **2019**, *21*, 1268.
- (31) Yu, J.-T.; Teng, F.; Cheng, J. The Constuction of X-CN (X = N, S, O) Bonds. *Adv. Synth. Catal.* **2017**, 359, 26.

(32) Larraufie, M.-H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E. The Cyanamide Moiety, Synthesis and Reactivity. *Synthesis* **2012**, *44*, 1279.