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Abstract (1459/2000 characters)

Patterns of neural activity that occur spontaneously during sharp wave-ripple events (SWRs) in
the hippocampus are thought to play an important role in memory formation, consolidation and
retrieval. Typical studies examining the content of SWRs seek to determine whether the identity
and/or temporal order of cell firing is different from chance. Such “first-order” analyses are focused
on a single time point and template (map), and have been used to show, for instance, the
existence of preplay. The major methodological challenge in first-order analyses is the
construction and interpretation of different chance distributions. In contrast, “second-order’
analyses involve a comparison of SWR content between different time points, and/or between
different templates. Typical second-order questions include rigorous tests of experience-
dependence (replay) that compare SWR content before and after experience, and comparisons
or replay between different arms of a maze. Such questions entail additional methodological
challenges that can lead to biases in results and associated interpretations. We provide an
inventory of analysis challenges for second-order questions about SWR content, and suggest
ways of preventing, identifying, and addressing possible analysis biases. Given evolving interest
in understanding SWR content in more complex experimental scenarios and across different
timescales, we expect these issues to become increasingly pervasive.
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Introduction

The hippocampus spontaneously generates spike sequences whose firing order corresponds to
the order observed during behavior. These ordered spike sequences occur during specific time
windows identified by sharp waves in the stratum radiatum of the CA1 region, along with fast
ripple oscillations in the CA1 pyramidal layer (hence known as sharp wave-ripples, SWRs;
Buzsaki 2015). SWRs and their temporally ordered activity are not only a strikingly beautiful
phenomenon, but also provide an important neural systems-level access point into understanding
higher-order cognitive and mnemonic processes such memory encoding, consolidation and
planning. Experimental studies have shown impairments in learning and performance of various
memory tasks when SWRs are disrupted (Girardeau et al. 2009; Ego-Stengel and Wilson 2010;
Jadhav et al. 2012; Michon and Kloosterman 2019). In parallel, computational models illustrate
how SWRs may contribute to the learning and performance of such tasks (Sutton 1990; Johnson
and Redish 2005; Mattar and Daw 2018) motivating further work that increasingly relies on
identifying SWR content under various conditions. Here, by SWR content we mean not simply
aggregate properties such as the number or duration of SWRs, but “what is being replayed”: the
structured spiking patterns during SWRs, such as the activation of specific ensembles and
temporal orderings. These patterns have been associated with particular events, trajectories, and
experiences, motivating a growing body of work that seeks to identify and decode SWR content.

Early studies of SWR content were mostly concerned with demonstrating the statistical
robustness of particular kinds of non-randomness in SWR activity (see Tingley and Peyrache, this
issue, for an excellent review). Although this seemingly straightforward issue is far from trivial (as
we will discuss below; see also Foster, 2017), it is now established beyond doubt that SWR
activity is structured in ways that deviate robustly from chance. However, the status quo is largely
facing different questions: to what extent is SWR activity shaped by experience? Does SWR
activity transform or prioritize particular experiences to serve specific cognitive or network
benefits, e.g. by preferentially replaying salient experiences, trajectories less or more travelled,
and/or conversely forgetting or suppressing other experiences? Does the presence of some
specific set of factors dramatically change SWR content? These questions come with additional
complexity in the data analysis, in that it is no longer sufficient to simply demonstrate that SWR
activity is more structured relative to some notion of chance.

As experimental and theoretical interest in probing SWR content continues to evolve, we see a
corresponding need for analysis methods that are appropriate for increasingly complex and subtle
questions. The objective of this paper is to facilitate the analysis of SWR content by organizing
questions about SWR content into a rudimentary taxonomy. A key feature of this taxonomy is the
distinction between first-order questions, which rely on determining whether and how SWR
content is different from chance, and second-order questions, which seek to establish whether
SWR content differs between two or more conditions, such as time points or arms of a maze.
Then, we will provide an inventory of challenges in data analysis specific to second-order
questions, and point to some possible ways to diagnose, prevent, and address them.



First-order vs. second-order replay analysis

Figure 1a diagrams the distinction between first-order and second-order SWR content questions.
First-order questions (cyan rectangles) are concerned with a single set of SWR events and a
single template (depending on the question, a template may be a list of cells or ensembles, a set
of tuning curves, or a specific ordering of cells); no comparison between multiple templates or
between different sets of SWRs is required. First-order questions have sought to establish, for
instance, that there is sequential order in SWR content similar to an environment that has yet to
be explored (“preplay”, Dragoi and Tonegawa 2011, 2013; Farooq et al. 2019); that sequential
activity can be in forward and reverse order compared to the place cell order experienced during
behavior (Foster and Wilson 2006, Diba and Buzsaki 2007); that SWR content can be of a remote
environment (i.e. one that the animal is not currently in, Karlsson and Frank 2009). These first-
order content and order detection questions remain important, requiring careful consideration of
assumptions built into the null hypotheses, particularly the shuffle/resampling methods, to
determine whether the observed sequence activity is unexpected by chance. Such first-order
issues have been recently discussed in several papers (Silva et al. 2015; Foster 2017; Farooq et
al. 2019) and we will review them briefly in the next section.
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Figure 1: Schematic illustration of two conceptual distinctions in replay analysis: first-order
vs. second-order questions about replay content (A) and ensemble reactivation vs.
sequence replay (B). A: First-order questions (cyan boxes) test whether a given activity
pattern (e.g. which cells, what order) is distinct from chance. First-order questions are
concerned with a single set of SWR events and a single template. In contrast, second-
order questions compare replay content between multiple data sets (e.g. time 1 and time
2, purple boxes), templates (e.g. track A and track B, red boxes) or both. Typical second-
order questions include determining whether post-experience SWR content better
resembles activity during behavior compared to pre-experience content, and whether the
left arm of a maze is more frequently (re)activated than the right arm. B: Both first-order
and second-order questions about SWR content can be categorized as focusing on which
cells participate, while ignoring temporal order (ensemble reactivation, left), and/or as
focusing on what order these cells are active (sequence replay, right). Typical ensemble
reactivation questions include determining if a given pair or ensemble of cells is more co-



active than expected by chance (a first-order question) or which of multiple possible
ensembles is more active (e.g. “blue” vs “green” cells, a second-order question); typical
sequence replay questions include determining if firing order is different from chance (a
first-order question), and determining which of two firing orders is more prevalent (a
second-order question).

Second-order questions include comparisons between different experimental conditions (red
rectangles in Figure 1a) and/or time points (purple rectangles). For example, when viewed this
way, establishing whether SWR content reflects replay of prior experience is a second-order
question that requires comparing SWR content at two different time points: prior to, and following
experience (Wilson and McNaughton 1994). Other typical second-order questions include asking
whether the left or a right arm of a T-maze is preferentially expressed during SWRs (Gupta et al.
2010; Singer and Frank 2013; Carey et al. 2019), whether there is an increase in replay in the
presence or absence of reward (Singer and Frank 2010; Ambrose et al. 2016); whether
pharmacological and/or genetic manipulations affect SWR content (Suh et al. 2013; Middleton et
al. 2018), and so on. These second order questions face additional scrutiny that requires
accounting for an additional set of potential confounds. A major goal of this paper is to identify
challenges in detecting and interpreting second-order patterns in replay and to suggest some
practical advice.

First-order replay analysis

The main question at stake in a first-order SWR analysis is determination of whether activity in a
given SWR (or set of SWRs, taken together) is different from a chance distribution. Activity may
differ from chance in a number of ways, such as in which cells are active (for instance, particular
pairs, ensembles, etc. may be more likely to be co-active than by chance), and in whether the
temporal ordering of some set of cells is different from chance (Figure 1b). The choice of which
chance distribution(s) to compare the observed data to (typically “shuffles” in a resampling
procedure) directly determines the interpretation and level of specificity of the conclusion that can
be drawn from a first-order analysis. In the literature, the term “replay” does not have a consistent
technical definition. Some studies consider the (re)activation of specific cells, pairs or ensembles
without any specific temporal ordering as replay, whereas others use the term reactivation to
distinguish it from temporally ordered (sequential) activity. In this review, we try to be as explicit
as possible in distinguishing ensemble reactivation, which can occur without any temporal order
but does not preclude it, and sequence replay, which has a temporal order, but may additionally
involve activity in a specific ensemble. In places, however, we will use the term “replay”
nonspecifically to include either or both of these types of SWR structure.

This distinction between ensemble reactivation (“which cells”) and sequence replay (“temporal
order”) illustrated in Figure 1b is important from several interrelated but distinct perspectives:
neural, psychological, and analytical. Neurally, different kinds of structure in SWR activity will
likely be read out differently depending on the downstream circuitry. Several studies have shown
relationships between SWR content in the hippocampus and spiking activity in putative
populations of readout neurons (ventral striatum: Lansink et al. 2009, Sosa et al. 2019; prefrontal



cortex: Jadhav et al. 2016; Shin et al. 2019; Todorova and Zugaro 2019; entorhinal cortex:
Olafsdottir et al. 2016, but see Trimper et al. 2017; lateral septum: Tingley and Buzsaki 2019;
auditory cortex: Rothschild et al. 2016; ventral tegmental area: Gomperts et al. 2015). However,
these correspondences generally take the form of a general statistical model that does not reveal
what specific features of hippocampal SWR activity are most important for downstream neurons.
For instance, it is currently not known how accurately postsynaptic neurons distinguish between
forward and reverse SWR sequences (but see Gutig and Sompolinsky 2006 for a proposed
mechanism for how single neurons may do so). Alternatively, some structures, such as the lateral
septum (Tingley and Buzsaki 2019), may only care about the strength and size of the SWR-
associated population activity. In general, the problem of determining what features of SWRs
matter is an important overall challenge in the replay field, and will need to be confronted with
complementary lines of inquiry (see Box 1 for some promising directions). When considering
different analysis issues and methods, such as those discussed in this review, it is important to
keep in mind that the choice of analysis method should ultimately be informed by the features of
SWR activity that are neurophysiologically or behaviorally meaningful.

Box 1: Ground Truth for replay?

Spiking activity during sharp-wave ripples (SWRs) exhibits a diverse array of structured patterns,
including the systematic co-activation of particular subsets of cells (pairs and ensembles,
“ensemble reactivation”), and temporal ordering that matches that observed during behavior
(“sequence replay”). Analysis of SWR activity aim to determine whether such patterns are different
from what could be expected by chance; however, they cannot, by themselves, decide which
patterns are physiologically or behaviorally relevant. “Grounding” SWR content is an important but
difficult problem that may be pursued by, among others, the following approaches:

e Approach 1: determine what SWR content features are read out by downstream single
neurons and brain structures. For extra-hippocampal neurons that show a statistically
reliable change in activity following SWRs, a number of analysis strategies may be used to
determine that neuron’s preferred SWR pattern, or more generally, its tuning to SWR
activity. Ideally, candidate readout neurons would be positively identified as receiving
hippocampal input (e.g. with opto-tagging), and show temporal relationships with SWRs
that reflect a genuine readout rather than merely correlation. Since SWR activity is
potentially dynamic and high-dimensional, a range of appropriate dimensionality reduction
techniques may need to be employed to characterize readout. Different neurons and brain
structures may be “tuned” to different SWR features, applying different projections or
decision boundaries to the input. For instance, lateral septum neurons may respond
preferentially to an “overall activity” dimension (Tingley & Buzsaki 2019), whereas ventral
striatal neurons may respond preferentially to activity associated with reward (Lansink et al.
2008).

e Approach 2: trigger disruption or stimulation on specific SWR content features and observe
the neural/behavioral consequences. Real-time detection of specific SWR features can be
used for a variety of interventions that causally test the importance of such features. For
instance, selectively disrupting forward or reverse replay may reveal distinct behavioral
impairments associated with each. Recording in putative readout areas while artificially
triggering SWRs, and inhibiting synaptic terminals in triggered on SWRs occurring, can
provide complementary evidence that a given neuron or area in fact performs a readout.




A second reason to care about different kinds of structure in SWR activity is that such differences
may be associated with distinct cognitive and/or mnemonic processes. For example, temporally
structured sequence replay may be better suited to signaling multimodal, temporally organized
episodic events for which encoding and initial retrieval are supported by the hippocampus (we
note, however, that it is currently unclear whether the content of replay is in fact episodic; the
relationship between SWRs and the subjective experience of retrieval or mental time travel
remains to be established.) Conversely, ensemble reactivation that is not explicitly ordered in
time, but does involve a consistently co-active set of cells may be appropriate for retrieval of
specific cues, spatial contexts, and semantic information that lacks a clear temporal component.
Sequence replay and ensemble reactivation are in principle not mutually exclusive, either: for
instance, the phenomenon of remapping suggests that distinct contexts are associated with
specific ensembles (“maps”), in which multiple distinct temporally organized experiences can
occur (Nadel 2008; Colgin et al. 2008; Kubie and Fenton 2019). Thus, a given SWR may involve
both the reactivation of a specific ensemble (indicating a specific context) and a specific ordering
of cells (indicating a specific trajectory or experience). Plausibly, the neural mechanisms
underlying both these components are distinct to some degree, and certain experimental
manipulations may have effects on only one, but not the other.

Finally, in terms of analysis, the distinction between the reactivation of cells and their temporal
order is important because the appropriate analysis method depends on the phenomenon of
interest. Cell reactivation (e.g. Pavlides and Winson 1989; Singer & Frank 2009), pairwise co-
activation methods (e.g. Wilson and McNaughton 1994; Kudrimoti et al. 1999; Cheng & Frank,
2008; Singer et al. 2013; McNamara et al. 2014) and PCA/ICA-based ensemble reactivation
studies (e.g. Peyrache et al. 2009; Benchenane et al. 2010; van den Ven et al. 2016) are agnostic
towards temporal order. These methods also typically apply a fixed time window to measure co-
activity in cells and ensembles, neglecting temporal compression across different brain states.
While asymmetries in pairwise cross-correlograms can capture temporal relationships (Skaggs &
McNaughton 1996; Euston et al.; Giri et al. 2019), as the template used to evaluate the order of
firing is expanded to three (Nadasdy et al. 1999) or more neurons (Lee and Wilson 2002; Louie
and Wilson 2001; Foster and Wilson 2006), the methods become increasingly sensitive to
temporal structure. All of these approaches require careful consideration of the null hypothesis
(shuffles) to compare the results to, and may give false positives based on factors such as firing
rate differences (discussed in more detail below); but if the analysis is carried out appropriately
then results can be interpreted cleanly in terms of either “which cells” or “what order” cause the
non-random structure detected in the data.

How do current analysis methods detect reactivation and/or sequential replay? In this issue,
Tingley & Peyrache (2020) review the various methods used to detect replay in ensembles and
sequences and the statistics associated with each. In the present review, we focus our attention
particularly on sequence replay methods that capture the order of firing across populations of
neurons.

There are several popular metrics for quantifying sequence replay: the rank order (Spearman)
correlation (Foster and Wilson 2006; Diba and Buzsaki 2007; Wang et al. 2015), the replay score



(“radon transform”) introduced by Davidson et. al. (2009), and the linear weighted correlation (Wu
and Foster 2014; Grosmark et al. 2016; Farooq et al. 2019) -- though other methods continue to
undergo development (Maboudi et al. 2018; Makevicius et al. 2018; Rubin et al. 2019). These
metrics ostensibly capture sequential activity, but can also be affected by factors unrelated to
temporal order. This is because for any of these metrics, the key question becomes: what is the
appropriate null distribution against which we should compare the data? Each shuffling method
is based on assumptions about what random data ought to look like. If the data deviates from
these assumptions then the null hypothesis can be rejected. However, rejection of the null
hypothesis may be due to aspects of these assumptions that are not directly related to the
sequential firing of cells during replay. We will next highlight several instances of this general
issue.

For example, the spike-id shuffle randomizes the cell identity for each spike in a candidate SWR
event (e.g. Wang et al. 2014), creating a surrogate dataset in which the overall firing patterns
during the event are preserved, but each neuron is equally likely to fire any given spike from the
onset to offset of this event. Therefore this null hypothesis can potentially be rejected if the
distribution of inter-spike intervals of neurons deviates from uniformity, as is known to be the case
(e.g. Ranck, 1973).

The cell-id shuffle (randomizing the cell identity for each train of spikes in a candidate event; used
in Diba and Buzsaki 2007; Foster and Wilson 2006) further controls for the statistics of neurons’
observed firing patterns (e.g. burstiness, inhibition of return), but otherwise assumes that neurons
fire independently of each other during ripple events. By randomizing the order of neurons, which
also randomizes which neurons are co-firing in a given time window, this null hypothesis may be
rejected by non-uniform co-activity, as well as non-random sequential activity. Thus, it tests
against ensemble reactivation and sequence replay simultaneously, which may or may not be
desirable. Moreover, it does not readily lend itself to Bayesian decoding analysis because, similar
to the spike-id shuffle, it does not preserve non-uniformity in the firing rates of neurons (e.g.
Mizuseki & Buzsaki, 2013).

The circular place-field shuffle (circularly shifting each tuning curve by a different random amount;
used by Grosmark et al. 2016) also allows that neurons’ spike-train statistics should be preserved
but assumes that their preferred firing locations are randomly dispersed. Importantly, this shuffle
does not assume continuity in place-fields; surrogate place-fields can represent locations that
start at the end of a track and reprise on the other side of the track. Therefore, this null hypothesis
can be rejected if there is an uneven distribution of place-fields across the track, or the shape of
place-fields observes specific relationships to the maze, as has been reported in several studies
(Mehta et al. 1997; Hollup et al. 2001; Dupret et al. 2010).

Other surrogate methods first separate candidate events into distinct time bins, prior to shuffling.
After binning, the circular column cycle shuffle (used by Davidson et al. 2009; Silva et al. 2015)
shifts the decoded (posterior) positions in candidate bins by random amounts, thus controlling for
the limited variance of decoded position in each bin, but assumes that all maze positions are
equally likely to be reprised in any given time bin. Similar to the place-field shuffle, it allows that



decoded locations can be discontinuous across the end/beginning of tracks in the null distribution,
which does not happen in real data. Therefore, this null hypothesis can be rejected if the decoded
positions in candidate events are not uniformly distributed along the track and/or have specific
skewed relationships to the end/start of tracks.

The pooled time-swap shuffle (also introduced by Davidson et al. 2009) randomizes the decoded
position across all the candidate replay events in the dataset. Thus, it assumes that the decoded
position in a given bin is random, but maintains the overall distribution of decoded positions across
all observed bins. The within-event time-swap (used by Farooq et al. 2019) shuffles the decoded
position bins in each candidate event separately (rather than across events), thus more
conservatively preserving the overall statistics of decoded positions in each event. Yet, both of
these time-swap shuffles assume that any decoded position bin is equally likely to follow any other
decoded position in the null case—an assumption that is violated when neurons fire continuously
in bursts that span multiple time bins (Ranck, 1973).

For each of these shuffles, there are further experimenter decisions and criteria that can affect
the data and null distributions. These include, but are not limited to, the percentage and/or number
of active cells, duration of events, the choice of time bin, the average or maximum jumps between
bins allowed, and how empty bins are handled (e.g. is the posterior probability uniform or zero
across all positions in such bins and are they ignored in shuffles if they fall in the first or last bins),
a point which is often not explicitly noted in methods sections. Another critical point to keep in
mind is that if multiple templates are being independently evaluated (e.g. for forward vs. reverse,
and for each of several maze arms), there is a greater chance of false positives due to multiple-
hypothesis testing (see also Silva et al. 2015). It is therefore important that the surrogate data
following shuffles is treated similarly to real data and tested against each template to determine
null hypothesis replay scores. Additionally, further properties of the data, aside from the factors
already mentioned, can yield deviations from null distribution due to unintended reasons. For
example, serial-position effects, such as biases for SWRs to be initiated by place-cells encoding
the current and/or rewarded locations (as opposed to random locations along the track), could
produce deviations from shuffle distributions that randomize decoded locations. Likewise,
stationary events (SWRs with content that is fixed in one location), would qualify as “replay” under
some metrics (e.g. “replay score”) but not others (e.g. “weighted correlation”). One reasonable
solution to manage these issues is to consider combinations of measures (e.g. weighted
correlation, and mean jump distance) at different thresholds (Foster 2017; Silva et al. 2015).

In summary, the main message from the above considerations is that many replay analysis
methods can be sensitive to both which cells are active, and to their temporal order. Depending
on the choice of shuffle(s), data may deviate from the null distribution due to factors that are not
related to the sequential firing patterns during SWRs. In these cases, it is important to avoid
interpreting the results as necessarily being due to one particular factor, such as sequential order.
In the next section, we consider “second-order” questions that compare replay content across
different conditions, such as “is there more replay in sleep after experience than in sleep before?”
These questions inherit all the above issues related to the choice of shuffle and associated
interpretations, and additionally entail another layer of analysis issues, which we will discuss.



Second-order replay analysis

A typical second-order sequence replay question is of the form: is sequence A replayed more
frequently and/or more strongly than sequence B? Second-order questions go beyond the
existence proof required of first-order questions (does reverse replay/remote replay/etc. exist?)
to comparing the relative prevalence or strength of sequential structure across different
conditions. Thus, the question “does reverse replay exist?” is a first-order question, whereas
comparing the relative strengths of forward and reverse replay (Diba and Buzsaki 2007; Ambrose
et al. 2016) is a second-order question. Other common second-order questions include comparing
replay of different segments of a maze environment, or of replay after versus before an
experience.

Forward vs. reverse sequences. Such comparisons began almost immediately after the
observation of awake replay (Foster and Wilson, 2006). Diba and Buzsaki (2007) compared the
relative prevalence of forward (positively-correlated) and reverse (negatively-correlated)
sequences both before and after runs across the track. Forward sequences were found to be of
upcoming trajectories prior to a run, suggestive of planning, while reverse sequences were
observed after consumption of reward at the end of the run, suggestive of reward processing.
Extending this work, Ambrose et al. (2016) directly compared templates for outgoing and incoming
trajectories under high-reward, low-reward, and no-reward conditions on a linear track. They
found that increasing the amount of reward on every trial produced an increase in the relative
amount of reverse vs. forward sequences, supporting the proposed role of reverse replay in
reward processing (Foster and Wilson, 2006). Olafsdottir et al. (2017) examined the relative
prevalence of different trajectories during short pauses in the task versus long pauses that likely
reflect disengagement from the task, and found that forward sequences were more prevalent in
short pauses when the animal was engaged in the task. On the other hand, Davidson et al (2009),
found that when the animal stopped in the middle of a track and could resume running in either
of two directions, there was no correlation between sequence replays and the trajectories taken
by the animal. Similarly, Shin et al. (2019) reported a strong correspondence between forward
sequences and upcoming trajectories, and reverse sequences and completed paths--except at
choice points. In a remarkable study, Xu et al. (2019) demonstrated that while forward sequences
corresponded to the upcoming trajectory of the animal from its current position, reverse
sequences frequently originated at remote locations and propagate towards reward sites,
highlighting the special role of reward processing in reverse sequences, and planning in forward
sequences. Pfeiffer and Foster (2013) examined these questions in open field 2D trajectories,
where place-fields are omnidirectional (so that forward vs. reverse sequences are not
distinguishable) and found that SWR sequences more closely matched upcoming trajectories
rather than replays of past trajectories, consistent with a proposed role for replay in planning (Diba
and Buzsaki 2007). Interestingly, Stella et al. (2019) found that in the absence of a reliable goal,
SWRs instead reflect random-walk trajectories through the 2D open field.

In summary, while many of these studies differed regarding the relative prevalence of forward vs.
reverse sequences across all trajectory sequences, there appears to be an emerging consensus
that forward sequences benefit immediate planning while reverse sequences are modulated by



recent reward. Nevertheless, it is important to keep in mind that these forward and reverse replays
are not mutually exclusive (Davidson et al. 2009). Indeed, Wu and Foster (2014) found that
forward, reverse, and mixed replays frequently stitched together to form spatially consistent
trajectories, and the “shortcut” sequences in Gupta et al. (2010) may result from the juxtaposition
of spatially contiguous forward and reverse events. Ultimately, both types of sequences likely aid
the animal in evaluating the reward structure of an environment to benefit future spatial decisions.

The main question for these analyses involved comparing whether a temporal event was better
matched to one template (e.g. run from left-to-right) or to a second template (run from right-to-
left) in either forward or reverse. Though there are several different ways to perform such a
comparison (Diba and Buzsaki 2007, Davidson et al. 2009, Wu and Foster 2014), evaluation in
these studies has generally been straightforward because (1) the templates compared (forward
and reverse) are balanced -- that is, subjects run through each template trajectory an equal
number of times -- and (2) they are applied to the same SWR data. Yet, even this relatively simple
case is not immune to possible biases due to different numbers or different properties of cells in
each of the templates (discussed in the next section).

Sequences at time-1 vs time-2. A different second-order question is a comparison of sequences
that occur at different time points. A salient example of this type of question is preplay vs. replay,
which requires comparing sequences before experience with sequences following experience.
Such a comparison between two time points circumvents potential confounds from shuffling
methods alone, although the quantification will still depend on the choice of shuffle. As a result,
all investigators agree that replay in post-task sleep is stronger than preplay in sleep before the
task, although by exactly how much is still under investigation and debate (Silva et al. 2016;
Farooq et al. 2019).

Further examples of this kind of question focus on the conditions under which replay at one time
is enhanced relative to replay at other times. For example, Singer et al. (2009) observed increased
SWR reactivation of place-cells following rewarded trials, compared to unrewarded trials,
indicating an important role for reward processing during these events. Note, however, that
because reverse and forward sequences were not detected or separated in this study, it is
unknown if this role is exclusive to reverse replay (Foster and Wilson 2006; Ambrose et al. 2016).
In an alternation task on a W-shaped maze, Singer et. al. (2013) reported increased SWR
reactivation of place-cells prior to correct trials vs. incorrect trials. This provided support for the
role of replay in planning and effective execution of upcoming routes, though this study similarly
did not examine forward and reverse sequences, to determine whether forward sequences alone
could account for the planning component (Diba and Buzsaki, 2007). In a recent study, Ting et al
(2019) found that reverse replay decreases in frequency with time on the maze, whereas forward
replay increases in frequency during this same period, indicating that SWR content can indeed
change dynamically with experience.

Time-1 vs time-2 comparisons are similar to forward vs. reverse questions because they use the
same templates for analysis, but are distinct because the templates are applied to the analysis of




different data (e.g. pre vs. post-task). While this approach has clear benefits, it does also introduce
some possible issues, which we discuss in the section below.

Replay of track-1 vs. track-2. The more complicated version of second-order sequence analysis
involves comparing replay of different tracks or mazes, on which the animals potentially have
different amounts of experience, different behavior, and different numbers of place fields. For
example, Olafsdottir et al. (2015) observed greater sequence preplay of an arm of the T-maze
that the animal was cued to enter, compared to the uncued arm, indicating anticipation of the
future path during SWRs. Wu et al. (2017) examined different regions of a linear track after
delivering electric shocks when the animal entered one of the segments. They found more replay
of the shock zone that the animal actively avoided, in comparison to a control region at the
opposite end of the track that the animal also avoided, but that represented less danger. Xu et al.
(2019) compared replays of different arms of a multi-arm maze. Remarkably, the arm that was
replayed varied according to the cognitive demands of the task. In reference memory at the choice
point, where the animal needed to remember the rewarded arms, forward replays tended to
predict the upcoming path. On the other hand, during working memory on the same maze, when
the animal needed to remember previously visited arms, the previously-visited arm was replayed
in reverse. The observations in these studies provide strong support for the flexibility of
hippocampal sequences in supporting cognition and decision making (see also Mattar and Daw
2018).

However, other second-order examinations present findings that are more challenging to
reconcile with this simple picture. In the first study of its kind to question the relationship between
experience and replay, Gupta et al. (2010) found that when rats were rewarded on only the left
arm of a continuous T-maze, they replayed the opposite (right) arm more often than if they
alternated between left and right. This is in conflict with an experience-driven account of replay,
which would predict that the more frequently chosen arm should be replayed more. In a free-
choice variant of this task, where the animal could choose whether to run for a water reward if
thirsty, or a food reward if hungry, Carey et al. (2019) remarkably found that replay was biased
toward the arm less visited, even in rest before the actual task. In their recent study, Xu et al.
(2019) saw that when the animal was at the reward site and simply had to return back to the
choice point, replays tended propagate starting remotely from the choice point over to the animal’s
current location, and in reverse. These types of trajectory sequences do not fit readily within the
planning/reward framework and present a challenge to simple models of the cognitive or
computational benefits of sequence replay.

Overall, the above types of second-order comparisons are more complex than the previous
forward/reverse comparisons because they require different templates for each of the arms. This
introduces possible biases due to differential electrode sampling (different numbers of cells
recorded, cells with different firing rates, etc.) and behavioral sampling of the environment (when
the animal’s behavior involves an experiential bias towards a subset of the environment, e.g. by
spending more time, running through it faster, etc). We discuss such biases in the next section.



Framework for issues in second-order sequence analysis

A number of potential analysis and interpretation issues arise when addressing seemingly
straightforward A vs. B or time-1 vs time-2 questions comparing replay under different conditions.
In general, under these conditions the detection and scoring of replay is susceptible to biases that
are unrelated to underlying sequential content, but may nevertheless result in differences between
observed replay of A vs. B. These false positives can lead to incorrect interpretations of results.
Fortunately, these biases can be prevented or minimized by experimental design and careful
analysis. In addition, some diagnostics are available to determine if these biases are occurring so
that the interpretation can be modified accordingly. We conceptualize these biases within an
overall conceptual framework for replay generation (Figure 2):
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Figure 2: Framework for identifying issues in second order sequence analysis. Underlying “true”
sequences (top, shown here as linear changes in position over time, though non-linear changes can be
similarly represented) occur on either of two maps (A, green shading; B, blue shading). These are
unobservable “ground truth” sequences that the data analysis seeks to recover. True sequences are
postulated to generate observable spiking activity (shown in the rasterplots) through sequence tuning
curves, which relate an internal position signal to firing rate, and are also not directly observable. True
sequence content may differ between time points (t = 1 shown in the left column vs. t = 2 shown on the
right) and between maps (A vs. B). Such analyses are inherently restricted because they sample neural
activity from a finite number of cells (electrode sampling, left), and sample behavioral tuning curves
(firing rate as a function of position, used to determine the sequence template) based on finite behavioral
data (behavioral sampling, illustrated by the noisy tuning curves on the right). Sequence tuning curves,



electrode sampling, and behavioral sampling may all differ between time points and/or maps, potentially
resulting in biases in resulting sequence scores.

In this framework, the hippocampus maps any given environment with a set of true behavioral
tuning curves, which describe the relationship between locations in that environment and the
firing rates of neurons. These are not directly observable for two reasons. First, any given
experiment records from only a limited number of neurons (cell sampling). Second, tuning curve
estimates are inherently based on finite and variable behavioral sampling of locations in the
environment, and are therefore susceptible to various covariates and confounds. For example,
animals may spend more time at some locations rather than others. Their running speeds and
acceleration can also vary, not only according to the spatial configuration in the maze
environment, but because of behavioral factors such as familiarity, anxiety, or expected reward.
Furthermore, there are nonstationarities in the true tuning curves (e.g. emerging, drifting, and
expanding place fields), yet the experimenter must average over multiple trials to obtain tuning
curve estimates. Thus the observed tuning curves are inherently imperfect approximations of true
behavioral tuning curves.

Likewise, in our framework observed sequences of spikes (rasterplots in Figure 2) during
candidate replays arise from true sequences generated by the brain from a set of true sequence
tuning curves, which are also not directly observable. The true sequence tuning curves are
presumably translated by the brain from the true behavioral tuning curves and are therefore
related but not necessarily identical to them; for instance, instantaneous firing rates during SWRs
can differ from those during behavior (Csicsvari et al. 1999). Moreover, the sequence tuning
curves presumably represent “mental” time travel through space, as opposed to physical travel
during experience. As such, they may substantially differ from those obtained from behavioral
sampling. The spikes during SWRs are nevertheless analyzed by comparison with the observed
behavioral tuning curves, resulting in sequence scores. We note that because of uncertainty
regarding the transformation between behavioral and sequential tuning curves, initial studies often
used non-linear metrics for quantifying replay (e.g. Spearman rank-order correlation coefficients),
whereas studies using Bayesian decoding methods assume identical sequence and behavioral
tuning curves with interchangeable firing rates (Davidson et al. 2009 and others). In our
framework, we remain agnostic concerning the nature of this transform.

This conceptual framework allows us to highlight a number of possible biases that are particularly
relevant when the analyses involve second-order questions about sequences, which we discuss
in turn below:
(1) Electrode sampling from limited numbers of place cells
(2) Imperfect estimates of behavioral tuning curves, which can arise from (2a) non-uniform
behavioral sampling of the environment, and (2b) drift in place cell tuning over time
(3) Changes in the sequence tuning curves
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Figure 3: Schematic illustration of bias in second order sequence analysis due to unequal
electrode sampling. Following the general flow introduced in Figure 2, unobservable underlying
sequences (top) generate sequences of spiking activity (rasterplots) across two different hippocampal
maps (equivalently, different arms of a maze). Differences in the number of recorded neurons between
the two maps (here: five cells for map A, green; three cells for map B, blue) will result in differences in
the sequence scores for the two maps, even though there is no underlying difference in replay content.

Biases in cell sampling. In the scenario illustrated in Figure 3, limited sampling of neurons
results in an unequal distribution of place cells recorded for two maps (A and B; these could be
different arms of a maze or two different environments entirely; 5 cells for map A, 3 cells for map
B in this example). It may be that the different cell counts arise from random chance (shot noise),
or that units representing one map are more noisy and/or less isolated. As the number of recorded
cells increases, the magnitude of this bias will decrease correspondingly. However, the non-linear
nature of Bayesian decoding methods, where posterior probabilities from spiking neurons are
multiplied together, means that a small difference in the number of recorded cells can lead to
large differences in decoded output, even when there is no underlying difference in replay content.

Alternatively, it may be that different cell counts result not from finite sampling but from inherent
differences in the number of cells representing maps A and B. Such differences could be important
(i.e. larger rewards associated with maze A, resulting in increased density of place fields (e.g.



Dupret et al. 2010), or they may be trivial (e.g. maze B may be smaller in size). Increased replay
as a consequence of such underlying differences in place field density may or may not be
functionally important, but is conceptually distinct from increases in replay that result from other
factors not associated with place field density, such as memory prioritization and recall bias.

Regardless of how a difference in number of recorded place fields comes about, in the null case
when the true replay distribution has equal sequence frequency and strength for both A and B,
the observed spike trains will appear unequal: the 5 ordered cells for A result in higher replay
scores than the 3 ordered cells for B (right panel). Taken in isolation, this difference in replay
scores may be (incorrectly) interpreted as replay content favoring A over B.

Biases in behavioral sampling. In addition to unequal sampling of neurons, differences in the
animal’s behavior under two conditions introduces concerns that require careful consideration.
Even if the true neuronal representation is similar in two mazes, if the animal spends more time
in A, the experimenter’s reconstructed template for B will be more noisy simply because less data
was available, which in turn can lead to corresponding bias in replay analysis. Other potential
sources of unequal behavior between different conditions include differences in running speed or
acceleration through maze locations and the degree of path stereotypy.
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Figure 4: Schematic illustration of bias in second order sequence analysis due to unequal
behavioral sampling. Following the general flow introduced in Figure 2, unobservable underlying
sequences (top) generate sequences of spiking activity (rasterplots) across two different hippocampal
maps (equivalently, different arms of a maze). Differences in the data used to estimate tuning curves for
the two maps, such as the number of trials and/or the amount of trial-to-trial variability in behavior, can
result in “clean” tuning curves for one map (green tuning curves) and “noisy” tuning curves for another
map (blue tuning curves). Note that for the noisy blue map tuning curves the sequence of tuning curve
peaks is now in a different order (red dots), resulting in differences in the sequence scores for the two
maps, even though there is no underlying difference in replay content.

As an example of the above possibilities, under the null scenario depicted in Figure 4, A and B
maps are represented by an equal number of cells, but the quality of their observed tuning curves
is different: messy, multipeaked fields for B, clean, unimodal fields for A. The true behavioral
tuning curves are not systematically different for A and B (left panel); rather, the behavioral tuning
curves for B can deviate from the true tuning curves due to factors such as differences in
behavioral sampling (e.g. 50 trials for A, 5 trials for B), differences in the animal’s behavior (e.g.
more consistent runs in A, compared to stoppages or changing running speeds in B, etc.), and



differences in nonspatial cues influencing place cell activity between the arms. In a similar way to
Figure 3 above, this difference in the observed tuning curves between the A and B maps will lead
to a difference in replay scores for A and B because the noisier “B” template is now out of order
(note red dots). This difference may be incorrectly interpreted as a difference in replay content.
Furthermore, for questions that require trial-unique analysis of replay content (e.g. in a reward
devaluation or replanning scenarios where the key manipulation can only be done once)
behavioral sampling bias remains a particular concern.

Non-stationary tuning curves. A different source of bias in replay content that arises from
imperfect behavioral tuning curve estimates relates to temporal drift, i.e. the known tendency for
at least some cells to change their place tuning over time (Mankin et al. 2012, Ziv et al. 2013,
Rubin et al. 2015), particularly in new environments (Frank et al. 2004). This problem is further
compounded by instabilities in unit recordings, during which electrode drift or cell attrition can
affect the isolation distance and cluster quality of a unit over time. Imagine that behavioral tuning
curves are estimated from an initial task epoch and first applied to sequences that occur shortly
after (Figure 5, left; “time 1”). In this case, the behavioral tuning curves are a good match for the
true tuning curves. However, if the same behavioral tuning curves are used for analyzing
sequences that occur some time later (“time 2”) the true tuning curves may have shifted (Figure
5, right) causing a difference in observed replay score even in the absence of a difference in true
underlying sequences.

If this scenario seems far-fetched, consider that van der Meer et al. (2017) showed clear
differences in decoding accuracy when decoding trials that were 1 vs. 10 trials apart. Additionally,
observed tuning curves are known to change over time as a result of several factors, such as
experience-dependent place field expansion (Mehta et al. 1997), look-ahead at decision points
(Johnson and Redish 2007), rapid switching between multiple maps (Fenton et al. 1998; Jackson
et al. 2007; Dvorak et al. 2018) and the presence of different gamma rhythms (Bieri et al. 2014).

On the other hand, for instances in which “time 1” and “time 2” are closer together (e.g. rewarded
versus unrewarded trials, or correct versus error trials), examining the reactivation or co-activation
probabilities of place cells or ensembles (i.e. “what cells”) can potentially provide the desired
information without the need to evaluate their temporal sequences per se (e.g. Singer and Frank
2009; Singer and Frank 2013).
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Figure 5: Schematic illustration of bias in second order sequence analysis due to non-stationary
tuning curves. Following the general schematic introduced in Figure 2, unobservable underlying
sequences (top) generate sequences of spiking activity (rasterplots), illustrated here for a single map.
Behavioral tuning curves are estimated from an initial task epoch and first applied to sequences that
occur shortly after (“time 1”). In this case, the behavioral tuning curves are a good maitch for the true
tuning curves. However, if the same behavioral tuning curves are used for analyzing sequences that
occur some time later (“time 2”) the true tuning curves may have shifted (note the difference in the true
tuning curves and the behaviorally observed tuning curves, highlighted in yellow). Thus, outdated tuning
curves are used for replay scoring, leading to a reduction in observed replay score even in the absence

of a difference in true underlying sequences.

Changes in sequence generation tuning curves. A final source of bias can arise from
differences or changes over time in the true sequence tuning curves. In our generative framework,
sequence tuning curves underlie the instantaneous firing rates that occur during SWRs. Figure 6
illustrates the possibility that for map A (green), the sequence generation tuning curves are more
precise than for map B (blue), resulting in larger sequence scores for map A. This could occur,
for instance, because of differences related to deep vs. superficial areas of the CA1 pyramidal
cell layer (Mizuseki et al. 2011). However, it presents an even more significant concern when
comparing replay across time points that might be accompanied by changes in the excitability of
cells. For example, neuromodulatory changes between awake and sleep states, or across the
sleep/circadian cycle, can potentially affect the likelihood of cells to fire during SWRs, and their



true sequence tuning curves will vary accordingly across time points. Furthermore, as noted
above, the decoded posterior probabilities during SWRs are sensitive to the number of co-active
cells. Thus changes in SWR excitability alone can also impact replay scores.
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Figure 6: Schematic illustration of bias in second order sequence analysis due to non-stationary
sequence tuning curves. Unobservable underlying sequences (top) generate sequences of spiking
activity (rasterplots) across two different hippocampal maps (equivalently, different arms of a maze). The
tuning curves for the generation of map A sequences (green), may be more precise than those for the
generation of map B sequences (blue; note wider tuning curves whose peaks are now out of order, red
dots). As a consequence, the generated sequences for map B are now out of order compared to the
behaviorally observed tuning curves, resulting in lower sequence scores for map B.

Relevance of these biases for ensemble reactivation measures. In some instances,
investigators may simply be interested in second-order questions involving cells or cell
ensembles, rather than temporal sequences. While we have highlighted these issues and
potential biases with regards to sequence analysis, it is important to recognize that they also



factor into reactivation analyses using pairwise or PCA/ICA ensemble analyses for second-order
questions. For example, less sampled regions of a maze, or fewer sampled neurons inherently
result in poorer estimates for the co-activation patterns of neurons. For ensemble analyses in
particular, because these methods typically involve a predetermined time-bin, temporal
compression between behavior and replay presents an additional significant issue. Since many
ensembles are most activated during SWRs, the common approach is to actually use SWR
activity during immobility and sleep, rather than activity during behavior alone, to define the
ensembles, and then to examine their instatement post-hoc during the behavior and/or sleep
periods. That neurons contribute both positive and negative weights, and that reactivation
strength can also take positive and negative values introduce other points worthy of careful
consideration. Finally, it should also be kept in mind that correlation methods measure
coordinated changes in firing rates and are therefore affected not only by global activity but also
by global silences, such as during DOWN states (Mochol et al. 2015), LOW states (Miyawaki et
al. 2016) or infra-slow oscillations (Watson, 2018). If these silent or low-activity periods vary
across the periods under comparison, they will inevitably produce further confounds.

Strategies for diagnosis and prevention of second-order sequence
analysis issues

We believe that the above biases resulting from unequal sampling of place cells and unequal
estimates of tuning curves are pervasive. It is rare that animal behavior is exactly equal across
an environment. So, what is a replay researcher to do? We suggest two main categories: bias
minimization, which can occur by experimental design and analysis, and bias diagnostics, to
determine what biases exist so that the interpretations can be appropriately qualified. Strategies
for bias minimization include:

e In experimental design, take steps to promote equal behavioral sampling of the
environment wherever possible. This can include thinking not only about ensuring that the
animal samples different locations as equally as possible, but also about when and how
(under what behavioral conditions) the animal samples these locations.

e In analysis, subsample numbers of trials to equalize them for the different locations of
interest. For instance, if there are 50 A trials and 10 B trials, subsample the A trials to
make the A-B comparison more equitable. Below a certain number, however, decoding
accuracy will likely drop; for instance, van der Meer et al. (2017) found that decoding
accuracy dropped substantially when less than 5 trials were used to construct tuning
curves for decoding.

e If uneven numbers are cells are recorded in the conditions to be considered, a similar-
sized section of the environment (e.g. length of track) should be compared against each
other. This approach will therefore avoid inequalities arising from cell sampling, while
preserving more important inequalities that may be due to differences in the true
behavioral tuning curves, such as a higher density of place-fields in one condition versus
the other.

e Future replay scoring methods should be able to take into account not only the mean firing
rate in turning curves, but also the uncertainty in that measure. This would help mitigate



biases due to unequal sampling that underlies mean firing rate estimations for different
locations. The commonly used Bayesian decoding framework for replay analysis (Zhang
et al. 1998; Brown et al. 1998) uses a Poisson process limited to a mean firing rate (1) for
each location, discarding information about the amount of data this mean estimate was
derived from (more uncertain for low sampling, less uncertain for high sampling). Ghanbari
et al. (2019) show that incorporating uncertainty in this sense improves decoding accuracy
of reaching movements based on motor cortex data; a similar approach will likely be fruitful
for hippocampal data under limited sampling conditions. Unit isolation and stability on an
event-by-event basis could likewise be incorporated into a more comprehensive
probabilistic framework.

e Future replay scoring methods should also aim to avoid the conflation between how strong
a replay is (which should be independent of the number of cells) and how much
evidence/uncertainty there is about that estimate (which does depend on the number of
cells). Current methods such as z-scoring relative to a shuffled distribution mix these two
together.

e Alternate methods based on a probabilistic framework such as Hidden Markov Models
(Maboudi et al. 2018; Chen et al. 2016) can be valuable for incorporating uncertainties
regarding the factors mentioned above, since in these methods, observation states and
transition matrices are constructed from the distributions observed in the data in a
template free manner. These methods can also be helpful when constructing a template
from place cells is not desirable, for example, during one-trial learning or non-spatial
behaviors.

Diagnostics for detection of replay content bias include:

e Compute a cross-validated decoding error on behavioral data where a true correct answer,
such as the subject’s position in space, is available. Importantly, the decoding error on
data not included in the training set (=the data from which the decoder is obtained) is
sensitive to all biases discussed above (van der Meer et al. 2017). Thus, this error can be
used to obtain a null hypothesis for replay content given that the true underlying replay
distribution is uniform, i.e. it can reveal the replay content differences that would be
expected from experimental biases unrelated to true replay content.

e Generative models of replay can generate spike sequences from a specific model of
ground truth. Such synthetic data can then be used to quantify the expected bias due to
the various factors discussed above (e.g. limited behavioral sampling of true underlying
tuning curves; different numbers and/or firing rates of place cells). Of course, the
relevance of the results from such a model is proportional to how accurately the synthetic
data captures the properties of real data; ongoing development of such generative models
of replay is likely to be a fruitful area of research for multiple reasons.

Conclusion

The temporally compressed sequential firing patterns of hippocampal neurons during sharp-wave
ripples have rightfully sparked widespread fascination and captured the interest and attention of



researchers with a broad range of scientific interests. This is due to the potential role of
hippocampal sequences not only in learning and memory, but also in complex decision making,
planning and imagination. Furthermore, recent years have seen (1) the emergence of a productive
interaction with reinforcement learning and artificial intelligence systems that incorporate replay
(Mnih et al. 2015; Mattar and Daw 2018), (2) the development of behavioral paradigms and
fMRI/MEG analysis methods to study not only reinstatement, but also sequential replay in humans
(Kurth-Nelson et al. 2017; Liu et al. 2019), and (3) the development of real-time causal
interventions targeting SWRs and SWR content (Girardeau et al. 2009; Ego-Stengel and Wilson
2010; Jadhav et al. 2012; Ciliberti et al. 2017; Fernandez-Ruiz et al. 2019).

These different lines of work drive current questions about SWR content in increasingly complex
experimental designs, such as those involving larger and more richly structured spatial
environments with multiple possible trajectories, representation of not only the self but other
agents, and multi-faceted non-spatial behavior. The continuing evolution of wireless and recording
technologies further enable the exploration of larger environments, and longer continuous
recordings. As these developments push the boundaries of replay questions, potential issues,
such as unequal behavioral sampling in large complex environments, and temporal drift in longer
duration recordings, become increasing concerns. These are likely to be combined with closed-
loop approaches that will modify SWRs and their underlying sequence tuning curves. Yet, as we
have argued here, these concerns are already prevalent today, even in seemingly innocuous
settings such as comparing two arms of a maze or two different time points. there is ample
potential for biases in replay analysis that can lead to erroneous inferences. While the potential
for confounds and biases are pronounced, by careful experimental design, and consideration of
the assumptions underlying null hypotheses, these issues can be understood and reasonably
managed.

References

Ambrose, R. E., Pfeiffer, B. E., & Foster, D. J. (2016). Reverse Replay of Hippocampal Place
Cells Is Uniquely Modulated by Changing Reward. Neuron, 91(5), 1124-1136.
doi:10.1016/j.neuron.2016.07.047

Bendor, D., & Wilson, M. A. (2012). Biasing the content of hippocampal replay during sleep.
Nature neuroscience, 15(10), 1439-44. doi:10.1038/nn.3203

Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory
and planning. Hippocampus, 25(10), 1073—188. doi:10.1002/hip0.22488

Carey, A. A., Tanaka, Y., & van der Meer, M. A. A. (2019). Reward revaluation biases
hippocampal replay content away from the preferred outcome. Nature Neuroscience, 22(9),
1450-1459. doi:10.1038/s41593-019-0464-6



Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: a
potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14(2), 147-53.
doi:10.1038/nn.2732

Cheng, S., & Frank, L. M. (2008). New experiences enhance coordinated neural activity in the
hippocampus. Neuron, 57(2), 303—13.doi:10.1016/j.neuron.2007.11.035

Ciliberti, D., & Kloosterman, F. (2017). Falcon: a highly flexible open-source software for closed-
loop neuroscience. Journal of Neural Engineering, 14(4), 045004.

Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended
experience. Neuron, 63(4), 497-507. doi:10.1016/j.neuron.2009.07.027

Diba, K., & Buzsaki, G. (2007). Forward and reverse hippocampal place-cell sequences during
ripples. Nature Neuroscience, 10(10), 1241-2. doi:10.1038/nn1961

Dragoi, G., & Tonegawa, S. (2010). Preplay of future place cell sequences by hippocampal
cellular assemblies. Nature, 469(7330), 397-401. Retrieved from
http://dx.doi.org/10.1038/nature09633

Dragoi, G., & Tonegawa, S. (2013). Distinct preplay of multiple novel spatial experiences in the
rat. Proceedings of the National Academy of Sciences of the United States of America, 110(22),
9100-5. doi:10.1073/pnas.1306031110

Dupret, D., O'Neill, J., Pleydell-Bouverie, B., & Csicsvari, J. (2010). The reorganization and
reactivation of hippocampal maps predict spatial memory performance. Nature Neuroscience,
13(8), 995-1002. doi:10.1038/nn.2599

Dvorak, D., Radwan, B., Sparks, F. T., Talbot, Z. N., & Fenton, A. A. (2018). Control of recollection
by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLoS biology, 16(1),
e2003354.

Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity
during rest impairs spatial learning in the rat. Hippocampus, 20(1), 1-10. doi:10.1002/hip0.20707

Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory
sequences in prefrontal cortex during sleep. Science, 318(5853), 1147-50.
doi:10.1126/science.1148979

Farooq, U., Sibille, J., Liu, K., & Dragoi, G. (2019). Strengthened Temporal Coordination within
Pre-existing Sequential Cell Assemblies Supports Trajectory Replay. Neuron, 103(4), 719—
733.e7. doi:10.1016/J.NEURON.2019.05.040



Fernandez-Ruiz, A., Oliva, A., de Oliveira, E. F., Rocha-Almeida, F., Tingley, D., & Buzsaki, G.
(2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445),
1082-1086. doi:10.1126/SCIENCE.AAX0758

Foster, D., & Wilson, M. (2006). Reverse replay of behavioural sequences in hippocampal place
cells during the awake state. Nature, 440, 680-683.

Foster, D. J. (2017). Replay Comes of Age. Annual Review of Neuroscience, 40(1), 581-602.
doi:10.1146/annurev-neuro-072116-031538

Ghanbari, A., Lee, C. M., Read, H. L., & Stevenson, I. H. (2019). Modeling stimulus-dependent
variability improves decoding of population neural responses. bioRxiv, 146415.

Girardeau, G., Benchenane, K., Wiener, S. |., Buzsaki, G., & Zugaro, M. B. (2009). Selective
suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222—
3. doi:10.1038/nn.2384

Gomperts, S. N., Kloosterman, F., & Wilson, M. A. (2015). VTA neurons coordinate with the
hippocampal reactivation of spatial experience. elLife, 4, 321-352. doi:10.7554/eLife.05360

Grosmark, A. D., & Buzsaki, G. (2016). Diversity in neural firing dynamics supports both rigid and
learned hippocampal sequences. Science, 351(6280), 1440-1443.
doi:10.1126/science.aad1935. arXiv: arXiv:1011.1669v3

Gupta, A. S., van der Meer, M. A. A, Touretzky, D. S., & Redish, A. D. (2010). Hippocampal
replay is not a simple function of experience. Neuron, 65(5), 695-705.
doi:10.1016/j.neuron.2010.01.034

Gutig, R., & Sompolinsky, H. (2006). The tempotron: a neuron that learns spike timing—based
decisions. Nature Neuroscience, 9(3), 420—-428. doi:10.1038/nn1643

Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B., & Moser, E. I. (2001). Accumulation of
hippocampal place fields at the goal location in an annular watermaze task. J Neurosci, 21(5),
1635-1644.

Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-
wave ripples support spatial memory. Science, 336(6087), 1454—8. doi:10.1126/science.1217230

Johnson, A., & Redish, A. D. (2005). Hippocampal replay contributes to within session learning in
a temporal difference reinforcement learning model. Neural Networks, 18(9), 1163-71.
doi:10.1016/j.neunet.2005.08.009



Joo, H. R., & Frank, L. M. (2018). The hippocampal sharp wave—ripple in memory retrieval for
immediate use and consolidation. Nature Reviews Neuroscience, 19(12), 744-757.
doi:10.1038/s41583-018-0077-1

Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus.
Nature Neuroscience, 12(7), 913—8. doi:10.1038/nn.2344

Kloosterman, F., Layton, S. P., Chen, Z., & Wilson, M. A. (2014). Bayesian decoding using
unsorted spikes in the rat hippocampus. Journal of neurophysiology, 111(1), 217-27.
doi:10.1152/jn.01046.2012

Kubie, J. L., Levy, E. R. J., & Fenton, A. A. (2019). Is hippocampal remapping the physiological
basis for context? Hippocampus.

Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during
slow wave sleep. Neuron, 36(6), 1183—1194. doi:10.1016/S0896-6273(02)01096-6

Leutgeb, S., Leutgeb, J., Barnes, C., & Moser, E. (2005). Independent codes for spatial and
episodic memory in hippocampal neuronal ensembles. Science, 309, 619-623. Retrieved from
http://www.sciencemag.org/content/309/5734/619.short

Louie, K., & Wilson, M. A. (2001). Temporally Structured Replay of Awake Hippocampal
Ensemble Activity during Rapid Eye Movement Sleep. Neuron, 29(1), 145-156.
doi:10.1016/S0896-6273(01)00186-6

Maboudi, K., Ackermann, E., de Jong, L. W., Pfeiffer, B. E., Foster, D., Diba, K., & Kemere, C.
(2018). Uncovering temporal structure in hippocampal output patterns. elLife, 7, e34467.

Mackevicius, E. L., Bahle, A. H., Williams, A. H., Gu, S., Denisenko, N. I., Goldman, M. S., & Fee,
M. S. (2019). Unsupervised discovery of temporal sequences in high-dimensional datasets, with
applications to neuroscience. elife, 8, e38471.

Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012).
Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of
Sciences of the United States of America, 109(47), 19462—7. doi:10.1073/pnas.1214107109

Mattar, M. G., & Daw, N. D. (2018). Prioritized memory access explains planning and
hippocampal replay. Nature Neuroscience, 21(11), 1609-1617. doi:10.1038/s41593-018-0232-z

McNamara, C. G., Tejero-Cantero, A., Trouche, S., Campo-Urriza, N., & Dupret, D. (2014).
Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence.
Nature neuroscience, 17(12), 1658.



Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric
expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the
United States of America, 94(16), 8918-21.

Michon, F., Sun, J.-J., Kim, C. Y., Ciliberti, D., & Kloosterman, F. (2019). Post-learning
Hippocampal Replay Selectively Reinforces Spatial Memory for Highly Rewarded Locations.
Current Biology, 29(9), 1436—1444.

Middleton, S. J., Kneller, E. M., Chen, S., Ogiwara, |., Montal, M., Yamakawa, K., & McHugh, T.
J. (2018). Altered hippocampal replay is associated with memory impairment in mice
heterozygous for the Scn2a gene. Nature neuroscience, 1.

Mizuseki, K., & Buzsaki, G. (2013). Preconfigured, skewed distribution of firing rates in the
hippocampus and entorhinal cortex. Cell Reports, 4(5), 1010-1021.

Mizuseki, K., Diba, K., Pastalkova, E., & Buzsaki, G. (2011). Hippocampal CA1 pyramidal cells
form functionally distinct sublayers. Nature neuroscience, 14(9), 1174-81. doi:10.1038/nn.2894

Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., & Buzsaki, G. (1999). Replay and time
compression of recurring spike sequences in the hippocampus. J Neurosci, 19(21), 9497-9507.

Nadel, L. (2008). The hippocampus and context revisited. In Hippocampal place fields (pp. 3—15).

O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: reactivation of
waking experience and memory. Trends in neurosciences, 33(5), 220-9.
doi:10.1016/j.tins.2010.01.006

Olafsdottir, H. F., Barry, C., Saleem, A. B., Hassabis, D., & Spiers, H. J. (2015). Hippocampal
place cells construct reward related sequences through unexplored space. elife, 4, e06063.
doi:10.7554/eLife.06063

Olafsdottir, H. F., Carpenter, F., & Barry, C. (2016). Coordinated grid and place cell replay during
rest. Nature Neuroscience, 19(6), 792—794. doi:10.1038/nn.4291

Olafsdottir, H. F., Carpenter, F., & Barry, C. (2017). Task Demands Predict a Dynamic Switch in
the Content of Awake Hippocampal Replay. bioRxiv. Retrieved from
http://www.biorxiv.org/content/early/2017/08/04/172098

Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state
on the activity of these cells during subsequent sleep episodes. J Neurosci, 9(8), 2907-2918.

Peyrache, A., Khamassi, M., Benchenane, K.,Wiener, S. |., & Battaglia, F. P. (2009). Replay of
rule-learning related neural patterns in the prefrontal cortex during sleep. Nature neuroscience,
12(7), 919-26. doi:10.1038/nn.2337



Rothschild, G., Eban, E., & Frank, L. M. (2017). A cortical-hippocampal—cortical loop of
information processing during memory consolidation. Nature neuroscience, 20(2), 251.

Rubin, A., Geva, N., Sheintuch, L., & Ziv, Y. (2015). Hippocampal ensemble dynamics timestamp
events in long-term memory. elLife, 4, 723—-727. doi:10.7554/elLife. 12247

Rubin, A., Sheintuch, L., Brande-Eilat, N., Pinchasof, O., Rechavi, Y., Geva, N., & Ziv, Y. (2019).
Revealing neural correlates of behavior without behavioral measurements. Nature
communications, 10(1), 1-14.

Shin, J. D., Tang, W., & Jadhav, S. P. (2019). Dynamics of Awake Hippocampal-Prefrontal Replay
for Spatial Learning and Memory-Guided Decision Making. Neuron.

Silva, D., Feng, T., & Foster, D. J. (2015). Trajectory events across hippocampal place cells
require previous experience. Nature Neuroscience, 18(12), 1772—1779. doi:10.1038/nn.4151

Singer, A. C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Hippocampal SWR activity
predicts correct decisions during the initial learning of an alternation task. Neuron, 77(6), 1163—
73. doi:10.1016/j.neuron.2013.01.027

Suh, J., Foster, D. J., Davoudi, H., Wilson, M. A., & Tonegawa, S. (2013). Impaired Hippocampal
Ripple-Associated Replay in a Mouse Model of Schizophrenia. Neuron, 80(2), 484—493.
doi:10.1016/j.neuron.2013.09.014

Sutton, R. S. (1990). First results with Dyna, an integrated architecture for learning, planning and
reacting. Neural Networks for Control, 179.

Tingley, D., & Buzsaki, G. (2019). Routing of Hippocampal Ripples to Subcortical Structures via
the Lateral Septum. Neuron.

Todorova, R., & Zugaro, M. (2019). Isolated cortical computations during delta waves support
memory consolidation. Science, 366(6463), 377-381.

Trimper, J. B., Trettel, S. G., Hwaun, E., & Colgin, L. L. (2017). Methodological caveats in the
detection of coordinated replay between place cells and grid cells. Frontiers in systems
neuroscience, 11, 57.

van der Meer, M. A. A., Carey, A. A., & Tanaka, Y. (2017). Optimizing for generalization in the
decoding of internally generated activity in the hippocampus. Hippocampus, 27(5), 580-595.
doi:10.1101/066670



Wang, Y., Romani, S., Lustig, B., Leonardo, A., & Pastalkova, E. (2014). Theta sequences are
essential for internally generated hippocampal firing fields. Nature Neuroscience, 18(2), 282-288.
doi:10.1038/nn.3904

Wilson, M. A. & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories
during sleep. Science, 265(5172), 676-9. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/8036517

Wu, C.-T., Haggerty, D., Kemere, C., & Ji, D. (2017). Hippocampal awake replay in fear memory
retrieval. Nature neuroscience, 20(4), 571.

Xu, H., Baracskay, P., O'Neill, J., & Csicsvari, J. (2019). Assembly Responses of Hippocampal
CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-
Arm Maze. Neuron, 101(1), 119-132.e4.

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., . . . Schnitzer, M. J.
(2013). Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience, advance
on. doi:10.1038/nn.3329



3. Future perspectives

e [Caleb] - Talk about the idea of self consistency as a way of distinguishing between noise
and not-noise.
[ J

We have been discussing time-compressed sequences in the context of a particular conceptual
model of how memories might be formed and recalled by the hippocampus. Specifically, our
assumption has been that the template that is developed during behavior — during activity of
place cells — is the primary definition for the model or cognitive map encoded by the
hippocampus. Activity during sharp-wave ripple bursts are then evaluated based on their
consistency with this map. Learning or memory related dynamics are defined relative to this map.
Specifically, learning might be expressed as a change in the expression of place cell activity or
dynamics in the structure of activity during sharp wave ripples measured via decoding using the
place cell map. This consistency across hippocampal modes is not the only way that experience
or learning might impact neural activity within the hippocampus. In particular, decoding-based
techniques are incapable of evaluating changes in the model or cognitive map expressed by the
hippocampus during sharp wave ripples without having measured place cell activity. Recently,
alternative approaches based on latent variable models and unsupervised learning have
demonstrated that it is possible to construct a model of hippocampal activity

Place cell map change

Ripple map change

Consistency between replay events
In the process of establishing the existence of replay, it became clear that some sharp wave
ripples involved patterns that seemed very disordered relative to the structure of ensemble firing
in the context(s) in which neural activity had been observed. As a consequence of the presence
of noise events, subsequent papers which have carried out second-order analyses of the replay
phenomenon have often limited their analysis to a subset of events which were deemed to be
“true” replay events.

e Statistical modeling of replay content: given activity at time t-1, 2, etc.. how well can we
predict activity at time t? Can then ask how that model changes with experience, etc

e [Matt] Generative model of replay: useful to synthesize ideas in a way that produces
measurable benchmarks (% prediction accuracy) and useful testbeds for identifying
biases (how many cells do we need to detect replay consistently, etc.)

e |s there a way of doing the first-order replay analysis based on generative model
comparison? For example, can we ask whether there is an optimal monotonic
transformation of the place field map that explains a large fraction of the events during
SWR better than chance firing rates?



e Tuning curve instability / multidimensional tuning (could be a box? Not sure how this fits
in.)
e Closed-loop manipulations.

Key terms and definitions

SWR

MUA
Encoding
Decoding
Tuning curve




Outtakes (NOT to be included in
submitted manuscript!)

For instance, the “jump-distance” method first identifies replay events if over some minimum
interval of time, decoded location does not jump more than a certain distance. If this method is
applied without further selection, such as needing to travel a certain minimum distance overall,
replay detections could result from decoding that stays in one place (same ensemble being active
over time; no temporal order required). Other events may be detected because they do have
some temporal order, such that simply reporting a number of detected events will contain
contributions from both underlying phenomena. In such cases,

Conceptually, such “mixed” methods may classify a given replay event or data set as significantly
different from random, but leave the underlying reason open.

Replay definition:

In practice, the influence of experience on SWR content is often implicitly assumed, justifying the
use of the term “replay” to mean “any form of SWR activity that bears a non-random relationship
to experience”, and we will adopt this usage in the rest of the paper.

State of the art:

e Rodent replay studies are generally event-based, because replay is associated with
punctate SWR events and we potentially care about single event content (don’t just want
to average; note this is a contrast with typical human replay studies, which for the time
being don’t take an event-based approach).

e FEvent-based analysis depends on a set of experimenter choices and parameters that are
important and ongoing foci of methods development (see Box 2) but we don’t focus on
them here



Box 2: Detecting replay events

Two overall approaches: either (1) detect candidate events based on LFP
properties (+MUA) and then only analyze those, or (2) analyze entire epochs
with e.g. moving window and optionally apply further selection based on LFP

Issues with approach (1):

Issues with approach (2):

How to deal with thresholds
Use one LFP or multiple
Spiking content doesn’t always align with SWR envelope in LFP

Tvoicallv more narameter choices. e.a. iumbp distance

Tingley & Peyrache review the many possible methods of detecting whether replay is
different from chance, which regardless of the actual method used (e.g. template,
decoding, pairwise) generally relies on comparison with resampled/shuffled data.

Shuffles are a crucial, necessary starting point for many studies, but we want to go beyond
saying simply “shuffle passed”. We discuss 2 instances: (1) distinguishing between which
cells are active vs. in what order they are active, and (2) comparing replay across multiple
places (times)

First order issues

First-order issues in replay include:

Which cells are co-active vs. sequential order
What are the right shuffles

Non-binary sequence scoring/showing distributions
Showing absence of replay

Categorical replay decisions

2c: changes in replay in tail vs. mode/mean of distribution

Hypothetically, experimental manipulations such as reward & reward prediction errors,
motivational shifts may affect the full distribution of replay events, or only the tails. (I don’t
fully understand this, but | think the converse question would be - if we assumed that some
small subset of the maze was replayed more faithfully, how would we be able to detect
that increased replay scores were limited to a specific subset of space?)



van der Meer et al. Second-order sequence analysis

2d: showing absence of replay

e Dirift in tuning curves could underlie failure to detect replay
e Mention in Box 1?
e (Easier to compare replay during A with B).

(Figure XXb). Detecting such structure requires a different analysis approach that is sensitive to
temporal order [such as rank order correlation between time of activation and place field location,
or linear regression fits of decoder output over time]. Of course, experimentally observed replay
may be a combination of these possibilities, i.e. single replay events may involve both specific
subsets of co-active neurons that are also ordered in time.

Ensemble reactivation vs Sequence replay

Neural activity during replay can be structured in multiple, distinct ways. A prominent distinction
is between which ensembles are active on the one hand, and whether their firing order is
preserved. Figure XX below illustrates these scenarios. In the left panel, there are two distinct
groups of neurons that tend to be co-active: in any single SWR event, one or the other group, but
not both, is active. In this case, observed replay activity clearly deviates from a null hypothesis
based on single-cell SWR participation probability. Similarly, metrics such as correlating the
activity of all cells in a given event with an activity template provides a measure of replay content
that is not sensitive to temporal order. (as is common in fMRI multi-voxel pattern analyses but
also used in other methods such as calcium imaging.) These “non-temporal” measures have in
common that they treat the activity during a replay event as a single time window (bin) and thus
are insensitive to temporal patterns within events.

34



In contrast, activity during replay in not contingent on whether the same cells reactivate across
events, or if participation is random, but only requires that the firing pattern is structured in time

In considering scenarios that result in apparently different
An important, totally different way in which replay content differences between A and B may be

observed is not because of the experimental biases above, but because the true underlying
distribution of tuning curves is actually different (Figure XXd):
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Such non-uniform tuning curve distributions commonly occur near reward sites, around doorways,
and in other situations (CITE). The resulting difference in the density/number of tuning curves will
bias replay detection, but the interpretation is now importantly different from the situation where
replay content bias resulted from unequal experimental sampling of tuning curves. Specifically, if
replay content is systematically biased (e.g. towards reward sites) in a way that is explained by
an underlying difference in tuning curves, then replay cannot be said to have transformed ongoing
experience (behavior?); its content is faithfully reflecting the already-biased encoding of that
experience. In contrast, claiming that a replay content bias results from a transformation of
experience (e.g. replaying rewarded experiences more often than non-rewarded experience)
requires showing that this content bias cannot be explained by differences in tuning curves.



