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Abstract—Advanced metering infrastructure (AMI) is a crit-
ical part of a modern smart grid that performs the bidirectional
data flow of sensitive power information such as smart metering
data and control commands. The real-time monitoring and
control of the grid are ensured through AMI. While smart
meter data helps to improve the overall performance of the
grid in terms of efficient energy management, it has also made
the AMI an attractive target of cyberattackers with a goal
of stealing energy. This is performed through the physical or
cyber tampering of the meters, as well as by manipulating
the network infrastructure to alter collected data. Proper
technology is required for the identification of energy fraud. In
this paper, we propose a novel technique to detect fraudulent
data from smart meters based on energy consumption patterns
of the consumers by utilizing deep learning techniques. We also
propose a method for detecting the suspicious relay nodes in
the AMI infrastructure that may manipulate the data while
forwarding it to the aggregators. We present the performance
of our proposed technique, which shows the correctness of the
models in identifying the suspicious smart meter data.

Index Terms—Advanced metering infrastructure; cybersecu-
rity; smart grid; smart meter; energy-theft detection; machine
learning.

I. INTRODUCTION

The traditional power grids have transformed into smart
grids by the rapid integration of technologies. The AMI
infrastructure has revolutionized the management and devel-
opment of power systems by providing newer means of data
exchange. Digital smart meters, which are one of the most
essential parts of the AMI infrastructure, collect electricity
consumption data and report it to the utility company. They
can collect fine-grained consumption data, as well as report
events of malfunctions, misconfigurations, and tampering.
However, they have several vulnerabilities that are exploited
by cyberattackers to manipulate the collected data. Several
penetration tests have revealed the vulnerabilities in smart
meters [1], [2]. FBI reported an organized attempt for energy
theft that may have cost over 400 million dollars annually
to a utility company [3].

An energy fraud can manipulate the smart meter data
in two ways: they consume more energy while report less
and they report more energy for particular meters to gain
secondary benefits from the utility. The data manipulation is
done by physical tampering such as unauthorized tapping,
bypassing the meters, firmware manipulation, as well as

cyberattacks against the AMI infrastructure that is utilized to
transfer data. The non-technical loss (NTL) in power grids
is mainly due to electricity theft fraud, billing irregularities,
and unpaid bills [4]. One of the biggest challenges for any
utility company is the detection and prevention of electricity
energy theft.

Machine learning techniques have been widely used to
analyze big data such as consumer data collected by smart
meters. They have great potentials in creating models of
energy consumption behavior of different customers and
detecting any anomaly in the upcoming recorded data. In
this work, we utilize the benefits of deep learning to model
the patterns of energy usage and identify any suspicious
data based on the trained models. We also propose a novel
technique to identify the malicious relay nodes in the AMI
infrastructure that may be involved in the manipulation of
smart meter data in terms of data integrity attacks.

The main contributions of this paper include:
1) An unsupervised machine learning model to dis-

tinguish different consumer bases according to the
amount of electricity usage.

2) A deep learning approach to predict the authenticity of
the incoming data recorded by smart meters.

3) An algorithmic approach to identify the malicious relay
nodes that may participate in data alteration because
of being compromised.

4) A thorough evaluation of the trained models using real-
world data in detecting fraudulent data.

The rest of this paper is organized as follows: Section II
gives an overview of AMI, and how it is used, as well
as its security issues and security requirements. We discuss
related works in Section III. We present our threat model
in Section IV. In Section V, we present an overview of the
technologies to solve the security issues, as well as tech-
niques to prevent energy theft. We present a comprehensive
taxonomy of the technologies proposed in the literature. We
discuss data collection and pre-processing step in Section VI.
Our experimental results are presented in Section VII. We
conclude the paper in Section VIII.

II. BACKGROUND

This section briefly overviews different aspects of AMI.
We present an overview of the users of AMI infrastructure,
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Fig. 1. A typical AMI infrastructure.

as well as the security requirements, attacker types, and
threatened components of the AMI.

A. Overview of AMI

Advanced Metering Infrastructure is a network of devices
that record, store, and transmit the energy usage data. It
provides a suitable link between the end users and electric
power utility. The AMI is an upgrade of Advanced Meter
Reading (AMR) system [5], where smart meters play the
most important role in collecting data [6].

B. AMI Communication Infrastructure

Fig. 1 shows a commonly used AMI communication
architecture in smart grid, which is generalized from [7],
[8]. AMI generally comprises the following components [9]:

• Smart Meter: The smart meter collects and transmits
the meter consumption data periodically to the control
center. This fine-grained data helps to monitor and op-
timize the power consumption. A smart meter generally
consists of three main components: (i) a meter to record
the energy generated or consumed, (ii) a computer
to process and store the data temporarily, and (iii) a
network device to connect to the network.

• Gateway/Access Points: The gateway functions as an
interface between the smart meter and the control center
located at the utility. It forwards the control commands
sent by the control center and meter reading data
collected by smart meters. It often acts as an aggregator
of data when there are privacy concerns of fine-grained
appliance-specific data [10].

• Control Center: The control center receives the real-
time metering information from the network, stores it
and performs data processing to generate the control
commands to monitor and regulate the power genera-
tion, transmission, and distribution throughout the grid.

• Communication Network: The communication net-
work can be a wide area network (WAN), neighborhood
area network (NAN), or home area network (HAN),
which facilitates the bidirectional communication path
among the entities of AMI.

III. RELATED WORKS

The defense techniques in AMI are broadly divided into
two categories: (i) passive defense, and (ii) active defense.
Passive defense includes techniques such as key management
between different parties in the AMI infrastructure network,
secure routing protocols, secure data aggregation, secure
network architecture, etc. Active defense techniques are
deployed to detect attacks against the AMI infrastructure in a
timely manner. Different types of intrusion detection systems
(IDS) are such examples. In the literature, classification-
based detection, state-based detection, and game-theory-
based detection techniques have been explored.

Among all the detection techniques for energy theft,
classification-based detection technique is one of the most
widely used techniques. This technique is defined as the load
profile classification of power consumption of a customer
or a group of customers over a period of time based on
the pattern of historical consumption. The basic procedure
for classification-based energy-theft detection consists of
different steps such as data acquisition, data pre-processing,
feature extraction, model training, classification with pa-
rameter optimization, and finally, pinpointing the suspicious
customer meters. The main idea of this methodology is to
distinguish abnormal energy usage patterns from all energy
usage patterns. Machine learning techniques are basically
discussed as classification-based techniques in fraud detec-
tion in AMI.

In [11], Jumale et al. discussed the various machine
learning algorithms and what would be more accurate in
the prevention and detection of NTL with smart meter. The
authors in [12] proposed a novel methodology for electricity
tampering detection that uses the information obtained from
the smart meter, in order to automate the detection and
localization process. The smart metering infrastructure and
intelligent substation are considered in the topology, which
are essential for the proposed electricity theft detection.

McLaughlin et al. proposed both supervised and un-
supervised classification techniques to create a power
measurement-based anomaly detection in power usage of
customers [13]. They used Naive Bayes Classification for
supervised method and k−means algorithm for the unsuper-
vised technique.

Joker et al. proposed a supervised technique based on
support vector machine (SVM) classifier to detect suspicious
users of electricity [14]. They utilized a combination of
pattern recognition and transformer meter data to find out
the suspicious meters. Depuru et al. [15] utilized an SVM
classifier to find irregularities in customer consumption pro-
file. Their classifier had a 98% accuracy but was based on a
comparatively small training set of only 440 instances of data
records. Nagi et al. also utilized SVM to detect fraudulent
data in smart meter data [16]. They used two main features
from the dataset, which were the energy consumption data
and credit worthiness rating of the consumers. A distributed
IDS for the smart grid was proposed in [17]. The IDS is
deployed in each layer. Support vector machines (SVM) and



artificial immune algorithms are adopted for learning and
classifying.

Costa et al. proposed an ANN-based classifier to get
a 50% improvement over traditional fraud detection tech-
niques [18]. However, none of these works perform the
analysis of consumer data that has varying usage patterns
during different times of the day. In our work, we not only
train our classifier based on the customer type and their usage
patterns during different times of the day, but also find out
the suspicious network nodes that may manipulate the data
while forwarding it to the data collector.

IV. THREAT MODEL

We discuss the threat model in AMI in this section. We
provide an overview of different types of attackers, their
motives, and their targets in the AMI.

A. Attackers in AMI

Energy theft is one of the main motives for attacking the
AMI. There are different types of attackers, such as curious
and malicious eavesdroppers, intrusive data management
agencies, greedy customers, and active attackers. There are
three broad categories of attackers who are motivated to
commit the energy theft [19]:
• Customers: Customers have been the primary adver-

saries with an aim to steal power. The tampering of ana-
log meters is very common in developing countries due
to the poor infrastructure, poverty, greed, and irregular
metering and distributions systems. Users in developed
countries steal power due to their greed, showy nature,
and to hide illegal activities that utilize electricity from
the grid.

• Organized crime: Professional hackers exploit the ex-
tended computing and network features in modern AMI
to steal energy by creating complex software and hard-
ware tools. They commit the crime in large scale on
behalf of rogue end users who want to obtain illegal
monetary benefits or interrupt the demand-response
service of the utility.

• Utility company insiders: Dishonest or disgruntled em-
ployees in the utility companies may take part in
the modification of data in the AMI. They may have
monetary motives or simply sabotage the grid to harm
the reputation of the utility company itself.

B. Targets of Threats

The main targets of attackers are the smart meters, the
communication network, and the data collector. The tech-
niques for attacking them, as well as the motivations, are
discussed here in brief.

1) Smart meters: Smart meters are the most attacked
components in the AMI. As smart meters are end cyber
devices, users without sufficient specialized knowledge about
the software and hardware properties can achieve tampering
of the usage data [20]. Because of the inadequate physical
tamper protections, the hackers may be able to interrupt
timely collection of measurement or inject false data to the

metering equipment. The hackers can capture the optical port
used to communicate with smart meters and set a reader
device on this port to capture the other password for other
protocols after opening the meter [19].

2) Communications network: Usage data may be tam-
pered after recording or during transmission in a smart grid
by compromising the intermediate devices on the path of a
smart meter data to the control center. Distributed denial of
service (DDoS) attack is also common attacks against the
devices in AMI, which can be launched by compromising a
number of smart meters. The main purpose of DDoS attacks
in AMI is to attack data collector, which prevents the normal
communication between WAN and NAN [21].

3) Data collector: Data collectors may have remote dis-
connect functions, which can be exploited by attackers to
create power outages [21]. It can be performed by installing
malicious software on the data collector by using the weak-
nesses of network or abusing privileges by internal staff.
After that, information such as IP addresses of smart meters
is collected and remote disconnect command is sent to the
target meters. Another way is to send the wrong command to
the collectors because of wrong measurement data reported
by the compromised meters.

V. DEFENSE TECHNOLOGY

In this section, we discuss the methodology of the pro-
posed fraud detection technique in AMI data. We detect the
fraudulent meters that present anomalous data, as well as the
network nodes that may be responsible for the data being
detected as anomalous. The detection is divided into two
main parts: (i) anomaly detection in the meter data using a
deep learning approach, and (ii) detection of any relay node
that may have participated in the alteration of the data.

A. Anomaly Detection Technique

Our anomaly detection technique consists of two stages.
The first stage is an unsupervised method to cluster all
meters having similar consumption patterns. Once they are
clustered, a second stage of classification is applied within
each cluster.

1) Unsupervised Technique: In our dataset, we have the
energy consumption of users of different categories. For
example, small household users have comparatively low
consumption throughout the day, whereas businesses, such
as corporate offices, manufacturing factories, etc. have higher
consumption patterns. We first create clusters of users with
similar consumption behavior. We run k−means algorithm
on our dataset, which provides us with such clusters based on
the amount of electricity consumed and the time of the data
recording. We run k−means for different values of k, i.e.,
different number of clusters and choose the best one based on
the minimum sum of the squared distance of the data points
from corresponding centroids. The sum of squared distance
is calculated as follows:

SumOfSqDist =

k∑
m=1

∑
tmi
∈Km

(Cm − tmi)
2
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Fig. 2. Deep neural network with different layers.

Where k is the number of clusters, Km is the set of all
data points within a cluster, and Cm is the center for the
corresponding cluster.

2) Supervised Technique: Within each cluster, we create
a dataset for training our supervised classifier. In the dataset,
we manually altered some consumption data not to match
the proper consumption pattern. A ‘label’ attribute was
introduced to the dataset, which identifies whether a data
record is anomalous or legitimate.

We trained the classifier based on a multi-layer percep-
tron with different numbers of hidden layers with different
numbers of neurons in each layer, and find the best possible
model for the training purpose. We used ‘relu’ as the activa-
tion function, ‘adam’ solver for weight optimization, which
is a gradient-based optimizer. The learning rate was kept
‘constant’, the value of alpha was set at 1e−4. We ran the
model for a maximum of 200 epochs or until convergence,
where in each epoch, the input samples are shuffled. In
Fig. 2, we present an overview of the deep neural network,
where there are multiple hidden layers. The input layer has
three attributes: the day of the year, the time of the day when
the data is collected, and the consumption value. The output
layer defines whether a data record corresponds to normal
or anomalous.

B. Suspicious Node Detection

The Next phase in our solution is the detection of sus-
picious nodes on the routes of the meter data. We assume
that the smart meters are connected with other meters in
a mesh topology, where intermediate nodes (meters) relay
the data collected by its child node to the upper level, as
shown in Fig. 1. The data is ultimately delivered to a local
collector/aggregator, which in turn forwards the data to the
control center in the utility company. Different routes may
be chosen to deliver different data from a particular meter. If
the intermediate nodes are compromised, they can be used
to alter the legitimate meter data to launch an attack. Some
malicious nodes may deliberately perform attacks on some
other nodes. The compromised or malicious nodes can alter
the meter data coming from other nodes. This is performed
through bypassing the integrity protection schemes, if any.

Attack Model: In our attack model, we consider two
strategies of a malicious node in the mesh AMI network:

1) Changing any data going through itself.
2) Changing only selective data to attack particular nodes.
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Fig. 3. A mesh network of AMI.

In the first strategy, an attacker will alter any data that is go-
ing through it to be delivered to the collector. This maximizes
the goal of the attacker to create damage to the reputation
of other members of the network. However, this may yield
more chances of being detected as a malicious/compromised
node. To prevent detection, a malicious node can alter the
data incoming from certain other nodes, which is the second
strategy of the attacker. We propose two different algorithms
to detect the malicious nodes in both the strategies. We
first collect all the data from all the meters in a particular
network for a particular time period. Some of the data for
a particular meter may be detected as suspicious by the
smart detection system based on the fusion of supervised and
unsupervised techniques discussed earlier. Fig. 3 presents a
simple mesh network consisting of such meters who transmit
some suspicious data towards the collector.

Algorithm 1 Suspicious Node Detection Algorithm
1: procedure ASSIGNSCORE()
2: for each meter i do
3: malScore[i] := 0 . initialize malice scores of all

meters with 0.
4: end for
5: for each meter i do
6: for each data d[i] within time period T do
7: path := GETPATHFROMCOLLECTOR(i, d[i])
8: for each intermediate node n on path do
9: if d[i] is a malicious data then

10: malScore[n] := malScore[n] + 1
11: end if
12: end for
13: end for
14: end for
15: end procedure
16:
17: procedure ISLEGITNODE(malScore, i)
18: probMalicious := malScore[i]/totDataCnt[i]
19: if probMalicious > THRESHOLD then
20: return FALSE
21: end if
22: return TRUE
23: end procedure

We propose Algorithm 1 to deal with the attacks of the
first type, where an attacker tries to alter any data that passes
through it. The algorithm calculates the score of the nodes
of being suspicious (malScore), based on how frequently



Algorithm 2 Suspicious Node Detection Algorithm
1: procedure CALCMALPROB()
2: for each meter i do
3: for each other meter j do
4: for all data d[j] within time period T do
5: if i is on path of d[j] then
6: onPathCnt[i][j] := onPathCnt[i][j] + 1
7: end if
8: if d[j] is suspicious then
9: suspCount[j] := suspCount[j] + 1

10: end if
11: end for
12: prPath[i][j] := onPathCnt[i][j]/totDatCnt[j]
13: prMal[j] := suspCount[j]/totDatCnt[j]
14: prMalRel[i][j] := prPath[i][j]× prMal[j]
15: end for
16: end for
17: end procedure
18:
19: procedure ISLEGITNODE(prMalRel, i, j)
20: if prMalRel[i][j] > THRESHOLD then
21: return FALSE
22: end if
23: return TRUE
24: end procedure

they appear on the path of malicious data. We assume that
the network architecture is known to the control center, as
well as the path for each data up to the local collectors are
known. The idea is that if a relay node appears on the paths
of a number of bad data, there is a good chance for the node
being compromised or malicious. The algorithm presents the
methodology of pinpointing the suspicious nodes in the AMI
network. If a node has more score for transmitting (relaying)
malicious data than legitimate data, it shows a better chance
of having been compromised and manipulating the data it
is relaying. We calculate a probability, probMalicious, for
each node based on their scores and the total number of
data flowing through it (totDataCnt), and check it against
a threshold value to mark it as legitimate or malicious.

Algorithm 2 finds out the malicious nodes in the case
where an attacker targets specific nodes in the network.
We calculate the count (onPathCnt) of a node being on
the path of all other nodes. suspCount is the count of
a node being on paths of other nodes where the other
nodes have transmitted suspicious data. We, first, calculate
the probability of node i being on the path of node j
(prPath[i][j]). Then we calculate the probability of the data
of j of being malicious. Next, the probability of node i of
being a malicious relay for node j’s data, prMalRel[i][j],
is calculated. If the calculated probability is greater than a
certain threshold (e.g., 50%), we consider i as an attacker
for node j.

Example Case Study: We implemented both the algo-
rithms in Python and observe their performance. Table I
shows an example input file for the algorithms, which
corresponds to the mesh network in Fig. 3. Algorithm 1
first assigns the score of maliciousness for all the meter
nodes, then tells whether a node is malicious or not based

TABLE I
SAMPLE INPUT FILE

Meter ID Data ID Path Anomalous?
1 1 1 7 11 16 1
1 2 1 7 12 16 0
1 3 1 7 11 16 1
2 1 2 7 11 16 0
... ... ... ...
2 4 2 7 12 13 15 16 1
... ... ... ...

TABLE II
DATA STRUCTURE

Meter ID Encoded Date/Time Energy Consumption (kW-h)
1727 19548 0.140
1727 19601 0.138
... ... ...
1862 22028 1.536

on a threshold. This algorithm works for the case where a
malicious node tries to alter any data that goes through it. In
our case, the algorithm returned node 7 and 9 as malicious
ones. Algorithm 2, on the other hand, works in the cases
where the malicious intermediate nodes target particular
other nodes and alter their data. Both algorithms act fast for
different network sizes. We created synthetic networks of up
to 300 nodes. Both the algorithms take 1-10 ms depending
on the network size.

VI. DATASET

In this section, we discuss the dataset collection and
preparation methods in detail. First, we discuss the data
collection, then we explain the data modification, and finally,
we discuss the data preprocessing methods for our proposed
fraud detection techniques.

A. Data Collection

We collected the electricity consumption data collected by
smart meters of several households and businesses. The data
is provided by the Irish Social Science Data Archive Center.
We consider more than 1 million data records in building our
machine learning models. Each data record has three main
attributes, namely meter ID, date/time of collection, and the
energy consumption data in kW-h. Each meter collects data
every 30 minutes.

The first 3 digits of the date/time field denote a day starting
from Jan 1, 2009. So the dataset contains data for 999 days
starting from that particular day. The last 2 digits denote the
time of the day when the data was collected. The values
of these 2 digits vary from 01 to 48, where 01 means the
data collected after the first half an hour of the day, that is,
the data is collected at 00:30 hrs. 02 means the data for the
second half an hour, that is, the data collected at 01:00 hrs,
and so on.

Table III shows the structure of our modified dataset that
we use for our unsupervised and supervised techniques. We
parsed the ‘Date/Time’ attribute and took the first three digits
and performed the modulo operation with 365 to get the
day of the year. The date and time are not continuous-
valued attributes, rather they are categorical values, which
required one hot encoding. This essentially created several
new attributes for the dataset.



TABLE III
DATA USED FOR CLASSIFICATION

Meter ID Day of Year Time of Day Energy Consump-
tion (kW-h)

1860 54 1:30 am 0.140
1860 55 1:30 am 0.138
... ... ... ...
1860 180 3:30 pm 1.536
1860 180 4:00 pm 1.742
... ... ... ...
1610 258 1:30 am 10.536
... ... ... ...
1610 265 3:30 pm 12.647
... ... ... ...

B. Data Preprocessing

As we said earlier, we scrape data for 180 days at a
time for 120 customers. This provided us with a dataset of
180× 48× 120 = 1, 036, 800 data records to work with. We
manipulate the consumption data for our classification pur-
pose. We assume that consumers consume more electricity
from 10 am to 4 pm, which is the typical peak hour. On
the other hand, electricity consumption is relatively lower
between 12 am to 6 am. During the other times, consumption
is average. Again, a business consumer, such as an industry,
consumes much more electricity than a regular household.
We adjust the data for different records manually according
to our assumptions mentioned earlier.

We found any missing records corresponding to any partic-
ular time, and used the average of the preceding and succeed-
ing record to fill in the missing value. We also consider the
z−score of the consumption value according to the formula
x ← x−µ

σ so that the variables possess approximately zero
mean, which in practice, reduces computational cost while
training the models.

For supervised classification, we manually modified some
consumption values to create malicious entries in the dataset.
We modified the existing data according to the pattern of a
meter for seven continuous recorded data. In other words,
to convert a particular data to malicious, it was changed
to a value greater or less than the maximum or minimum
values of the seven data points including the preceding and
succeeding three data. We also added a ‘label’ attribute that
signifies the legitimacy of the data. We choose 70% of the
whole dataset as the training dataset and the remaining 30%
as the test dataset.

C. Feature Selection

For the unsupervised clustering, we chose the time and
the energy consumption value (kW-h), so that we can differ-
entiate between different types of consumers. Each cluster
gives us a group of meter IDs that share similar trends in
energy consumption. Once the clustering is done, we use the
data records within each cluster to train our MLP classifier
separately. We use the day, time, consumption value, and the
label as our training attribute.

VII. RESULTS

In this section, we present a thorough evaluation of the
machine learning model that was trained with the dataset.

TABLE IV
CONFUSION MATRIX

Predicted
Negative

Predicted
Positive

Total

Actual
Negative

TN=231077 FP=13988 245065

Actual
Positive

FN=28720 TP=26215 54935

Total 259797 40203 300000

A. Unsupervised Model Evaluation

With the unsupervised k−means technique we obtained
best results in terms of the sum of squared errors of data
points from their centroids for the value of k = 7.

B. Supervised Model Performance

TruePositiveRate(TPR) =
TP

TP + FN
= 0.4772

FalsePositiveRate(FPR) =
FP

FP + TN
= 0.057079

precision =
TP

TP + FP
= 0.652066

recall = TPR = 0.4772

f1 = 2× precision× recall

precision+ recall
= 0.551094

accuracy =
TP + TN

TP + TN + FP + FN
= 0.85764

We train and test our multi-layer perceptron model for
each different clusters provided by the unsupervised tech-
nique. We combine the results from each of the trained
models afterward. We obtain the real inspections and clas-
sified inspections by the classifier for four result types: true
negative, false positive, false negative, and true positive.
We show the confusion matrix for one of the clusters in
Table IV. Other clusters show similar results, so we skip
them here. Because the dataset is basically an unbalanced
dataset, we calculate the precision, recall, and f1 scores
for the confusion matrices. As the results show, the model has
a very low false positive rate of about 5.7% and accuracy of
85.7%. The overall performance of the model is impressive.

VIII. CONCLUSION

AMI in smart grids is a very important part, which is
always a target of cyber criminals for various purposes
including energy theft. The Cyber defense for AMI to detect
and prevent these vulnerabilities is always a challenging
task. In this paper, we presented a novel technique utilizing
unsupervised and supervised machine learning techniques
to detect suspicious data. We also devised an algorithmic
approach to find out suspicious nodes in the AMI network
that may be responsible for data manipulation while forward-
ing energy consumption data from smart meters. Evaluation
results show that the techniques perform well in detecting
anomalous data, as well as malicious nodes in the network.
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