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Abstract

We construct a finite element discretization and time-stepping scheme for the incompressible
Euler equations with variable density that exactly preserves total mass, total squared density,
total energy, and pointwise incompressibility. The method uses Raviart-Thomas or Brezzi-
Douglas-Marini finite elements to approximate the velocity and discontinuous polynomials to
approximate the density and pressure. To achieve exact preservation of the aforementioned
conserved quantities, we exploit a seldom-used weak formulation of the momentum equation
and a second-order time-stepping scheme that is similar, but not identical, to the midpoint
rule. We also describe and prove stability of an upwinded version of the method. We present
numerical examples that demonstrate the order of convergence of the method.

1 Introduction

This paper considers the incompresible Euler equations with variable density on a bounded domain
Ω ⊂ R

n, n ∈ {2, 3}. These equations seek a velocity field u, density ρ, and pressure p such that

ρ(∂tu+ u · ∇u) = −∇p, in Ω× (0, T ), (1)

∂tρ+ div(ρu) = 0, in Ω× (0, T ), (2)

div u = 0, in Ω× (0, T ), (3)

u · n = 0, on ∂Ω× (0, T ), (4)

u(0) = u0, ρ(0) = ρ0, in Ω, (5)

where u0 : Ω → R
n and ρ0 : Ω → R are given, div u0 = 0, and u0 · n = 0 on ∂Ω. The aim of this

paper is to construct a finite element method for (1-3) that exactly conserves

∫

Ω
ρ dx,

∫

Ω
ρ2 dx,

∫

Ω
ρu · u dx, (6)

and the incompressibility constraint div u = 0 at the (spatially and temporally) discrete level.
Several authors have considered related tasks in the past. Guermond and Quartapelle [16] have

constructed a spatial discretization of the incompressible Navier-Stokes equations that preserves
the three invariants (6) in the limit of vanishing viscosity. However, their temporal discretization
does not preserve total (kinetic) energy nor total squared density. Moreover, the incompressibility
constraint is only satisfied in a weak sense, and their construction relies on an evolution equation
for

√
ρu – a quantity that lacks physical meaning. Another method that is closely related to ours
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is the H(div)-conforming finite element spatial discretization of the incompressible Euler equations
with constant density studied in [18, 25]. When ρ ≡ 1, our spatial discretization reduces to the one
used there, and our temporal discretization reduces to the midpoint rule used in [25]. Lastly, the
form of the momentum equation that we discretize in our method bears some resemblance to the
one used in [23] for the compressible rotating shallow water equations, but with ∂t(ρu) appearing
rather than ∂tu.

More broadly, conservative numerical methods for incompressible flow—with and without vari-
able density—have received considerable attention over the last several decades. Energy conserva-
tion is widely considered to be important when performing simulations over long time spans, and
many efforts have been devoted to achieving exact conservation of energy and other invariants for
inviscid flow at the discrete level [2, 3, 9, 15, 24, 26, 27, 30, 32]; see the introduction of [26] for
a more detailed history. Even schemes that do not preserve energy are, by and large, designed
with energetic considerations in mind, since energy growth is tantamount to instability [22]. The
role played by the incompressibility constraint div u = 0 is equally important. Often it is enforced
weakly [22, 30] or in a least squares sense [19, 28], but doing so can give rise to numerical artifacts.
For example, finite element methods that violate pointwise incompressibility often violate pressure-
robustness; the numerically computed velocity and pressure both change when a force ∇φ is added
to the right-hand side of the momentum equation, even though only the pressure should change [20].
In contrast, exactly divergence-free finite element methods are automatically pressure-robust [20].
Inexact enforcement of incompressibility can also interfere with the design of energy-conserving
schemes, since proofs of energy conservation often rely on vector calculus identities that hold only
for solenoidal vector fields. Finally, enforcing div u = 0 weakly has the added disadvantage that
div u may be far from zero on coarse meshes. For these reasons, there is growing interest in methods
that enforce incompressibility pointwise [10, 12, 13, 18, 21, 31].

Despite the above considerations, we are not aware of any methods for the incompressible
Euler equations with variable density that enforce incompressibility pointwise and conserve energy
exactly at the spatially and temporally discrete level. Several schemes for (1-3) have been designed
that enforce incompressibility approximately and adopt fractional step methods for the temporal
discretization [1, 4, 8, 16, 17, 29]. These methods often update the velocity field by constructing a
tentative, non-solenoidal velocity field, and then projecting onto a space of discretely divergence-
free vector fields. Many of these methods are energy-stable, but not energy-conserving [16, 17,
29].

To motivate our numerical method, we first use the identity

ρu · ∇u = ∇(ρu · u)− u× (∇× (ρu))− (u · ∇ρ)u− 1

2
ρ∇(u · u)

and equations (2-3) to write (1) in the form

∂t(ρu) +∇(ρu · u)− u× (∇× (ρu))− 1

2
ρ∇(u · u) = −∇p, (7)

Next, we multiply (7), (2), and (3) by test functions v, σ, and q, respectively, and integrate by
parts. Using the identity

∫

Ω
(∇(w · u)− u× (∇× w)) · v dx =

∫

Ω
w · (v · ∇u− u · ∇v) dx, if div u = 0, (8)

and u · n|∂Ω = 0,
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we arrive at the following observation. For every smooth vector field v satisfying v · n|∂Ω = 0 and
every pair of smooth scalar fields σ and q, the solution (u, ρ, p) of (1-5) satisfies

〈∂t(ρu), v〉+ a(ρu, u, v)− 1

2
b(v, u · u, ρ) = 〈p, div v〉, (9)

〈∂tρ, σ〉 − b(u, σ, ρ) = 0, (10)

〈div u, q〉 = 0, (11)

where 〈u, v〉 =
∫
Ω u · v dx for vector fields u and v, 〈f, g〉 =

∫
Ω fg dx for scalar fields f and g, and

a(w, u, v) = 〈w, v · ∇u− u · ∇v〉,
b(w, f, g) = 〈w · ∇f, g〉.

Note that (9-11) can alternatively be derived from Hamilton’s principle of least action; we refer the
reader to [14] for details.

One advantage of the formulation (9-11) is that the conserved quantities (6) are straightforward
consequences of two basic properties of the trilinear forms a and b. Namely, a is alternating in its
last two arguments,

a(w, u, v) = −a(w, v, u), (12)

and b is alternating in its last two arguments when its first argument is divergence-free:

b(w, f, g) = −b(w, g, f) if divw = 0 and w · n|∂Ω = 0. (13)

With these properties in mind, we take σ = 1 in the density equation (10) to deduce conservation
of total mass:

d

dt

∫

Ω
ρ dx = 〈∂tρ, 1〉 = b(u, 1, ρ) = 0.

If instead we take σ = ρ in (10) and use (13), we deduce conservation of total squared density:

d

dt

1

2

∫

Ω
ρ2 dx = 〈∂tρ, ρ〉 = b(u, ρ, ρ) = 0.

Finally, taking v = u in the momentum equation (9) gives conservation of total (kinetic) energy:

d

dt

1

2

∫

Ω
ρu · u dx = 〈∂t(ρu), u〉 −

1

2
〈∂tρ, u · u〉

= 〈p, div u〉 − a(ρu, u, u) +
1

2
b(u, u · u, ρ)− 1

2
〈∂tρ, u · u〉

= 0.

Here, we have used the fact that div u = 0, a is alternating in its last two arguments, and (10)
holds. Our numerical method will inherit these conservation laws by using discretizations of a and
b that satisfy analogues of (12) and (13).

2 Spatial Discretization

In this section, we propose a finite element spatial discretization of (9-11).
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Let Th be a triangulation of Ω. We denote by Eh the set of interior (n − 1)-dimensional faces
in Th (edges in two dimensions). For each integer s ≥ 0 and each simplex K ∈ Th, we denote by
Ps(K) the space of polynomials of degree at most s on K. We denote

H0(div,Ω) = {u ∈ L2(Ω)n | div u ∈ L2(Ω), u · n = 0 on ∂Ω}

and
H̊(div,Ω) = {u ∈ H0(div,Ω) | div u = 0}.

Our numerical method will make use of three approximation spaces: a space Uh ⊂ H0(div,Ω)
for the velocity u, a space Fh ⊂ L2(Ω) for the density ρ, and a space Qh ⊂ L2∫

=0
(Ω) = {q ∈ L2(Ω) |∫

Ω q dx = 0} for the pressure p. For the velocity, we use either the Raviart-Thomas space

RTs(Th) = {u ∈ H0(div,Ω) | u|K ∈ Ps(K)n + xPs(K), ∀K ∈ Th}

or the Brezzi-Douglas-Marini space

BDMs+1(Th) = {u ∈ H0(div,Ω) | u|K ∈ Ps+1(K)n, ∀K ∈ Th},

where s ≥ 0 is an integer. For the pressure, we use the zero-mean subspace of the discontinuous
Galerkin space

DGs(Th) = {f ∈ L2(Ω) | f |K ∈ Ps(K), ∀K ∈ Th}.
For the density, we use DGm(Th), where m ≥ 0 is an integer (not necessarily equal to s). In
summary,

Uh ∈ {RTs(Th), BDMs+1(Th)}, (14)

Fh = DGm(Th), (15)

Qh = DGs(Th) ∩ L2∫
=0(Ω). (16)

We also denote by Wh the (infinite-dimensional) space of vector fields on Ω that are piecewise
smooth with respect to Th.

On an edge e = K1 ∩K2 ∈ Eh, we denote the jump and average of a scalar function f ∈ Fh by

JfK = f1n1 + f2n2, {f} =
f1 + f2

2
,

where fi = f |Ki
, n1 is the the normal vector to e pointing from K1 to K2, and similarly for n2. To

define the jump and average of a vector field u ∈ Wh, we fix a choice of normal vector n for each
edge e ∈ Eh. Next, we determine K1 and K2 so that e = K1 ∩K2 and n points from K1 to K2, and
we define

JuK = u1 − u2, {u} =
u1 + u2

2
.

We define trilinear forms ah : Wh × Uh × Uh → R and bh : Uh × Fh × Fh → R by

ah(w, u, v) =
∑

K∈Th

∫

K
w · (v · ∇u− u · ∇v) dx+

∑

e∈Eh

∫

e
(n× {w}) · Ju× vK ds,

bh(u, f, g) =
∑

K∈Th

∫

K
(u · ∇f)g dx−

∑

e∈Eh

∫

e
u · JfK{g} ds.
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The trilinear forms ah and bh are well known: ah has been used in discretizations the incompress-
ible Euler equations with constant density [18, 25], and bh is a standard discontinous Galerkin
discretization of the scalar advection operator [6].

To understand these definitions, observe that if u ∈ H0(div,Ω), f is piecewise smooth with
respect to Th, and g is smooth, then

−
∫

Ω
f div(gu) = −

∑

K∈Th

∫

K
f div(gu) dx

=
∑

K∈Th

(∫

K
(u · ∇f)g dx−

∫

∂K
(u · n)fg ds

)

=
∑

K∈Th

∫

K
(u · ∇f)g dx−

∑

e∈Eh

∫

e
u · JfKg ds

=
∑

K∈Th

∫

K
(u · ∇f)g dx−

∑

e∈Eh

∫

e
u · JfK{g} ds,

where the last line holds because g is smooth. This shows that bh(u, σ, ρ) and bh(v, u ·u, ρ) are con-
sistent discretizations of −

∫
Ω σ div(ρu) dx and −

∫
Ω(u ·u) div(ρv) dx =

∫
Ω ρ∇(u ·u) ·v dx. Likewise,

if w and u are smooth, div u = 0, u · n|∂Ω = 0, and v ∈ H0(div,Ω) ∩Wh, then
∫

Ω
(∇(w · u)− u× (∇× w)) · v dx =

∑

K∈Th

∫

K
(∇(w · u)− u× (∇× w)) · v dx

=
∑

K∈Th

(∫

K
w · (v · ∇u− u · ∇v) dx+

∫

∂K
(w · v)(u · n) ds

)

=
∑

K∈Th

(∫

K
w · (v · ∇u− u · ∇v) dx+

∫

∂K
(n× w) · (u× v) ds+

∫

∂K
(v · n)(w · u) ds

)

=
∑

K∈Th

∫

K
w · (v · ∇u− u · ∇v) dx+

∑

e∈Eh

∫

e
(n× w) · Ju× vK ds+

∑

e∈Eh

∫

e
v · Jw · uK ds

=
∑

K∈Th

∫

K
w · (v · ∇u− u · ∇v) dx+

∑

e∈Eh

∫

e
(n× {w}) · Ju× vK ds,

where the last line holds because w and u are smooth and v·n is continuous across element interfaces.
This shows that ah(ρu, u, v) is a consistent discretization of

∫
Ω (∇(ρu · u)− u× (∇× (ρu))) · v dx.

The trilinear forms ah and bh possess several properties that play an essential role in the
conservative nature of our numerical method. First, ah is alternating in its last two arguments:

ah(w, u, v) = −ah(w, v, u), ∀(w, u, v) ∈ Wh × Uh × Uh.

Second, using integration by parts, one checks that bh is also alternating in its last two arguments
if its first argument is divergence-free:

bh(u, f, g) = −bh(u, g, f), ∀(u, f, g) ∈ (Uh ∩ H̊(div,Ω))× Fh × Fh. (17)

As a consequence, we have

ah(w, u, u) = 0, ∀(w, u) ∈ Wh × Uh, (18)

bh(u, f, f) = 0, ∀(u, f) ∈ (Uh ∩ H̊(div,Ω))× Fh. (19)
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We are now ready to define our semidiscrete numerical method. We first describe the simplest
version of the method, which includes no upwinding and exactly preserves total mass, total squared
density, total energy, and pointwise incompressibility. It seeks uh(t) ∈ Uh, ρh(t) ∈ Fh, and ph(t) ∈
Qh such that

〈∂t(ρhuh), vh〉+ ah(ρhuh, uh, vh)−
1

2
bh(vh, uh · uh, ρh) = 〈ph, div vh〉, ∀vh ∈ Uh, (20)

〈∂tρh, σh〉 − bh(uh, σh, ρh) = 0, ∀σh ∈ Fh, (21)

〈div uh, qh〉 = 0, ∀qh ∈ Qh. (22)

Here, f ∈ Fh denotes the L2-orthogonal projection of f ∈ L2(Ω) onto Fh:

〈f, gh〉 = 〈f, gh〉, ∀gh ∈ Fh.

Our use of uh · uh rather than uh · uh in (20) is motivated by energetic considerations. As will be
seen in Proposition 2.2, energy conservation is deduced by taking vh = uh and σh = uh · uh as test
functions in (20-21) and combining the two equations. The naive alternative—taking σh = uh · uh
in (21)—is generally not possible unless it happens that uh · uh ∈ Fh.

Remark 2.1. If either

(m ≥ 2s and Uh = RTs(Th)), or (m ≥ 2s+ 2 and Uh = BDMs+1(Th)), (23)

then uh · uh = uh·uh. Indeed, uh belongs to the divergence-free subspace of Uh ∈ {RTs(Th), BDMs+1(Th)},
which consists of piecewise polynomial vector fields of degree at most s (if Uh = RTs(Th)) or s+ 1
(if Uh = BDMs+1(Th)) [5, p. 116]. Thus, uh · uh|K ∈ Pm(K) for every K ∈ Th if (23) holds. In
particular, uh · uh = uh · uh in the lowest-order version of this finite element method (s = m = 0
and Uh = RT0(Th)). If the condition (23) is violated, the computation of uh · uh is not a signif-
icant expense since it can be computed element by element. Note that an analogous projection
of the squared fluid velocity appears in other conservative numerical methods for fluids; see, for
instance, [23, p. 14].

As with most finite element methods for advection-dominated problems, solutions of (20-22) can
often exhibit unphysical oscillations if upwinding is not incorporated into the discretization [11].
If upwinding is desired, we propose the following generalization of (20-22): Seek uh(t) ∈ Uh,
ρh(t) ∈ Fh, and ph(t) ∈ Qh such that

∑

e∈Eh

∫

e

(
αe(uh)(n× JρhuhK) · Juh × vhK +

βe(uh)

2|uh · n|2
(uh · n)(vh · n)Juh · uhK·JρhK

)
ds

+〈∂t(ρhuh), vh〉+ ah(ρhuh, uh, vh)−
1

2
bh(vh, uh · uh, ρh)− 〈ph, div vh〉 = 0, ∀vh ∈ Uh, (24)

〈∂tρh, σh〉 − bh(uh, σh, ρh) +
∑

e∈Eh

∫

e
βe(uh)JσhK · JρhK ds = 0, ∀σh ∈ Fh, (25)

〈div uh, qh〉 = 0, ∀qh ∈ Qh. (26)

Here, {αe}e∈Eh and {βe}e∈Eh are nonnegative parameters which may depend on uh. Standard
choices for αe and βe are [6, 25]

αe(uh) = c1
uh · n
|uh · n|

, βe(uh) = c2|uh · n|, c1, c2 ∈
[
0, 12

]
,
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where the choice c1 = c2 = 1
2 corresponds to full upwinding. To understand why, observe that if

βe(uh) =
1
2 |uh · n|, then

(uh{ρh}+ βe(uh)JρhK) · n1 =

{
ρh1uh · n1 if uh · n1 > 0,

ρh2uh · n1 if uh · n1 < 0,

so the upwinding in (25) has the effect of replacing {ρh} with its upwind value (either ρh1 or ρh2)
in the expression (17) for bh(uh, σh, ρh). The effect of choosing αe(uh) = 1

2
uh·n
|uh·n|

is similar. Note

that an additional term involving βe has been added to the momentum equation (24) to counteract
any energy imbalance introduced by the terms involving βe in the density equation (25). When
ρh is constant, the terms involving βe vanish, and we recover the momentum upwinding strategy
proposed in [25].

2.1 Properties of the Spatial Discretization

Although (26) imposes incompressibility weakly, our choice of finite element spaces (14-16) ensures
that the velocity field determined by (24-26) is divergence-free pointwise.

Proposition 2.1. For every t, div uh ≡ 0.

Proof. Since Uh ∈ {RTs(Th), BDMs+1(Th)} and
∫
Ω div uh dx =

∫
∂Ω uh · nds = 0, we have div uh ∈

DGs(Th) ∩ L2∫
=0

(Ω) = Qh, so we may take qh = div uh in (26).

The following proposition shows that the numerical method (24-26) exactly preserves total mass,
total energy, and, if βe = 0, total squared density.

Proposition 2.2. For every t, we have

d

dt

∫

Ω
ρh dx = 0, (27)

d

dt

∫

Ω
ρ2h dx ≤ 0, with equality if βe = 0, ∀e ∈ Eh, (28)

d

dt

∫

Ω
ρhuh · uh dx = 0. (29)

Proof. Taking σh ≡ 1 in (25) gives

d

dt

∫

Ω
ρh dx = 〈∂tρh, 1〉 = bh(uh, 1, ρh)−

∑

e∈Eh

∫

e
βe(uh)J1K · JρhK ds = 0.

Taking σh = ρh in (25) and invoking (19) gives

d

dt

1

2

∫

Ω
ρ2h dx = 〈∂tρh, ρh〉 = bh(uh, ρh, ρh)−

∑

e∈Eh

∫

e
βe(uh)JρhK · JρhK ds ≤ 0.
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To prove (29), we take vh = uh in (24) and invoke the definition of the L2-projection to write

d

dt

1

2

∫

Ω
ρhuh · uh dx

= 〈∂t(ρhuh), uh〉 −
1

2
〈∂tρh, uh · uh〉

= 〈ph, div uh〉 − ah(ρhuh, uh, uh) +
1

2
bh(uh, uh · uh, ρh)−

∑

e∈Eh

∫

e

1

2
βe(uh)Juh · uhK · JρhK ds

− 1

2
〈∂tρh, uh · uh〉.

The first two terms above vanish by (26) and (18). The last three terms vanish according to the
density evolution equation (25). It follows that (29) holds.

2.2 Inhomogeneous Boundary Conditions

Let us discuss how to handle more general boundary conditions than (4). Suppose that the bound-
ary condition u · n = 0 is replaced by u · n = g, where g : ∂Ω × (0, T ) → R is a given function
satisfying

∫
∂Ω g ds = 0 for every t. Assume that the sets Γ−(t) = {x ∈ ∂Ω | g(x, t) < 0} and

Γ+(t) = {x ∈ ∂Ω | g(x, t) > 0} do not vary with t. Then we must prescribe the values of ρ on Γ−,
leading to boundary conditions

u · n = g, on ∂Ω,

ρ = θ, on Γ−,

where θ : Γ− × (0, T ) → R is a given positive function. To handle these boundary conditions, we
note that the identity (8) becomes

∫

Ω
(∇(w · u)− u× (∇× w)) · v dx =

∫

Ω
w · (v · ∇u− u · ∇v) dx+

∫

∂Ω
gw · v,

if div u = 0 and u · n|∂Ω = g. By accounting for the extra term above, and by accounting for
boundary terms in the density equation, we arrive at the following spatial discretization:

〈∂t(ρhuh), vh〉+ ah(ρhuh, uh, vh)−
1

2
bh(vh, uh · uh, ρh) +

∫

∂Ω
gρhuh · vh ds = 〈ph, div vh〉, ∀vh ∈ Uh,

〈∂tρh, σh〉 − bh(uh, σh, ρh) +

∫

Γ−

gθσh +

∫

Γ+

gρhσh = 0, ∀σh ∈ Fh,

〈div uh, qh〉 = 0, ∀qh ∈ Qh.

Here, ρh(t) and ph(t) are sought within Fh, and Qh, respectively, whereas uh(t) is sought within
Uh+w(t), where w(t) : Ω → R

n is a vector field satisfying w ·n = g on ∂Ω (or a suitable interpolant
thereof).

3 Temporal Discretization

We now propose a temporal discretization of (24-26). To reduce notational clutter, we supress the
subscript h when referring to functions that belong to finite element spaces in this section. We also
suppress the subscript h on ah and bh.
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Our temporal discretization seeks u1, u2, . . . ∈ Uh, ρ1, ρ2, . . . ∈ Fh, and p1, p2, . . . ∈ Qh such that
for every k and every (v, σ, q) ∈ Uh × Fh ×Qh,

∑

e∈Eh

∫

e
αe(uk+1/2)(n× J(ρu)k+1/2K) · Juk+1/2 × vK ds

+
∑

e∈Eh

∫

e

βe(uk+1/2)

2|uk+1/2 · n|2
(uk+1/2 · n)(v · n)Juk · uk+1K · Jρk+1/2K ds (30)

+

〈
ρk+1uk+1 − ρkuk

∆t
, v

〉
+ a((ρu)k+1/2, uk+1/2, v)−

1

2
b
(
v, uk · uk+1, ρk+1/2

)
− 〈pk+1, div v〉 = 0,

〈
ρk+1 − ρk

∆t
, σ

〉
− b(uk+1/2, σ, ρk+1/2) +

∑

e∈Eh

∫

e
βe(uk+1/2)JσK · Jρk+1/2K ds = 0, (31)

〈div uk+1, q〉 = 0, (32)

where ∆t > 0 is a time step, uk+1/2 =
uk+uk+1

2 , ρk+1/2 =
ρk+ρk+1

2 , and

(ρu)k+1/2 =
ρkuk + ρk+1uk+1

2
. (33)

In the case where αe = βe = 0 for every e ∈ Eh, the scheme reduces to
〈
ρk+1uk+1 − ρkuk

∆t
, v

〉
+ a

(
(ρu)k+1/2,

uk + uk+1

2
, v

)

−1

2
b

(
v, uk · uk+1,

ρk + ρk+1

2

)
− 〈pk+1, div v〉 = 0, ∀v ∈ Uh (34)

〈
ρk+1 − ρk

∆t
, σ

〉
− b

(
uk + uk+1

2
, σ,

ρk + ρk+1

2

)
= 0, ∀σ ∈ Fh (35)

〈div uk+1, q〉 = 0, ∀q ∈ Qh. (36)

Remark 3.1. Just as in Remark 2.1, we have uk · uk+1 = uk · uk+1 if (23) holds, since then
uk · uk+1|K ∈ Pm(K) for every K ∈ Th.

Notice that the temporal discretization proposed above is similar, but not identical, to the
midpoint rule. The key difference is that uk · uk+1 appears rather than uk+1/2 · uk+1/2. It is
well known that in the case of constant density, the midpoint rule can be used to construct energy-
preserving schemes if the nonlinear term in the momentum equation is discretized in skew-symmetric
form [25]. Here, in the variable density setting, the midpoint rule does not preserve energy, but
replacing uk+1/2 · uk+1/2 with uk · uk+1 as we have done above rectifies this. A proof is given below
in Proposition 3.2.

3.1 Properties of the Temporal Discretization

By our choice of finite element spaces, we again have exact incompressibility of the discrete solution.

Proposition 3.1. For every k, div uk ≡ 0.

Proof. Take q = div uk+1 in (32).

The next proposition shows that the fully discrete scheme (30-32) enjoys the same conservative
properties as the semidiscrete scheme (24-26). In particular, it is unconditionally stable for any
αe, βe ≥ 0, and it exactly preserves total mass, total energy, and, if βe = 0 for every e ∈ Eh, total
squared density.
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Proposition 3.2. For every k, we have

∫

Ω
ρk+1 dx =

∫

Ω
ρk dx, (37)

∫

Ω
ρ2k+1 dx ≤

∫

Ω
ρ2k dx, with equality if βe = 0, ∀e ∈ Eh, (38)

∫

Ω
ρk+1uk+1 · uk+1 dx =

∫

Ω
ρkuk · uk dx. (39)

Proof. Taking σ ≡ 1 in (31) gives

∫

Ω

ρk+1 − ρk
∆t

dx =

〈
ρk+1 − ρk

∆t
, 1

〉
= b

(
uk + uk+1

2
, 1,

ρk + ρk+1

2

)
= 0.

Taking σ =
ρk+ρk+1

2 = ρk+1/2 in (31) and invoking (19) gives

1

2

∫

Ω

ρ2k+1 − ρ2k
∆t

dx =

〈
ρk+1 − ρk

∆t
,
ρk + ρk+1

2

〉

= b

(
uk + uk+1

2
,
ρk + ρk+1

2
,
ρk + ρk+1

2

)
−

∑

e∈Eh

∫

e
βe(uk+1/2)Jρk+1/2K · Jρk+1/2K ds

= −
∑

e∈Eh

∫

e
βe(uk+1/2)Jρk+1/2K · Jρk+1/2K ds

≤ 0.

To prove (39), we first observe the identity

1

2

∫

Ω

ρk+1uk+1 · uk+1 − ρkuk · uk
∆t

dx =

〈
ρk+1uk+1 − ρkuk

∆t
,
uk + uk+1

2

〉
−1

2

〈
ρk+1 − ρk

∆t
, uk · uk+1

〉
.

Next, we invoke (30) and the definition of the L2-projection to write

〈
ρk+1uk+1 − ρkuk

∆t
,
uk + uk+1

2

〉
− 1

2

〈
ρk+1 − ρk

∆t
, uk · uk+1

〉

=

〈
pk+1, div

(
uk + uk+1

2

)〉
− a

(
(ρu)k+1/2,

uk + uk+1

2
,
uk + uk+1

2

)

+
1

2
b

(
uk + uk+1

2
, uk · uk+1,

ρk + ρk+1

2

)
− 1

2

〈
ρk+1 − ρk

∆t
, uk · uk+1

〉

− 1

2

∑

e∈Eh

βe(uk+1/2)Juk · uk+1K · Jρk+1/2K ds.

The first two terms above vanish by (32) and (18). The last three terms vanish according to the
discrete density evolution equation (31). It follows that (39) holds.

Remark 3.2. The definition (33) plays no role in the proof of Proposition 3.2. Thus, the conclu-

sions (37-39) remain valid if (33) is replaced, for instance, by (ρu)k+1/2 =
(
ρk+ρk+1

2

)(
uk+uk+1

2

)
,

(ρu)k+1/2 = ρkuk or (ρu)k+1/2 = ρk+1uk+1.
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s h−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate ‖ph − p‖L2(Ω) Rate
1 6.29 · 10−1 3.80 · 10−1 8.51 · 10−1

0 2 3.18 · 10−1 0.98 2.22 · 10−1 0.77 3.74 · 10−1 1.18
4 1.58 · 10−1 1.01 1.11 · 10−1 1.01 1.81 · 10−1 1.05
8 7.72 · 10−2 1.03 5.08 · 10−2 1.12 8.85 · 10−2 1.04
1 2.11 · 10−1 1.21 · 10−1 2.66 · 10−1

1 2 1.18 · 10−1 0.84 4.56 · 10−2 1.40 1.66 · 10−1 0.68
4 3.02 · 10−2 1.97 1.64 · 10−2 1.47 4.20 · 10−2 1.98
8 1.23 · 10−2 1.29 7.45 · 10−3 1.14 1.74 · 10−2 1.27
1 3.55 · 10−2 2.30 · 10−2 7.57 · 10−2

2 2 3.99 · 10−3 3.15 3.90 · 10−3 2.56 7.81 · 10−3 3.28
4 5.54 · 10−4 2.85 4.36 · 10−4 3.16 1.01 · 10−3 2.95
8 9.53 · 10−5 2.54 5.25 · 10−5 3.05 1.45 · 10−4 2.80

Table 1: L2-errors in the velocity, density, and pressure at time T = 0.5 without upwinding.

s h−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate ‖ph − p‖L2(Ω) Rate
1 5.97 · 10−1 3.82 · 10−1 1.00 · 100

0 2 3.00 · 10−1 0.99 2.04 · 10−1 0.91 4.21 · 10−1 1.25
4 1.60 · 10−1 0.90 1.06 · 10−1 0.94 2.09 · 10−1 1.01
8 8.20 · 10−2 0.97 5.32 · 10−2 0.99 1.02 · 10−1 1.04
1 1.89 · 10−1 8.06 · 10−2 2.83 · 10−1

1 2 5.05 · 10−2 1.90 2.12 · 10−2 1.93 8.28 · 10−2 1.77
4 1.28 · 10−2 1.98 5.95 · 10−3 1.83 2.15 · 10−2 1.95
8 3.28 · 10−3 1.96 1.57 · 10−3 1.92 5.41 · 10−3 1.99
1 2.28 · 10−2 1.48 · 10−2 7.35 · 10−2

2 2 3.06 · 10−3 2.89 2.83 · 10−3 2.39 7.46 · 10−3 3.30
4 3.77 · 10−4 3.02 3.74 · 10−4 2.92 9.28 · 10−4 3.01
8 4.84 · 10−5 2.96 5.14 · 10−5 2.86 1.17 · 10−4 2.99

Table 2: L2-errors in the velocity, density, and pressure at time T = 0.5 with upwinding.

4 Numerical Examples

4.1 Convergence Tests

To test the performance of the numerical method (30-32), we used it to approximate the solution
of (9-11) on the square Ω = (−1, 1)× (−1, 1) with initial conditions

u(x, y, 0) = (− cos(πx/2) sin(πy/2), sin(πx/2) cos(πy/2)),

ρ(x, y, 0) = 2 + sin(xy).

We used the finite element spaces Uh = RTs(Th), Fh = DGs(Th), and Qh = DGs(Th) ∩ L2∫
=0

(Ω)

with s ∈ {0, 1, 2} on a uniform triangulation Th with maximum element diameter h = 2−j , j =
0, 1, 2, 3. We used a small time step ∆t = 0.00625 to ensure that temporal discretization errors were
negligible, and we measured the L2-error in the computed solution (uh, ρh, ph) at time T = 0.5.
The “exact” solution was obtained with s = 2, h = 2−5, and ∆t = 0.00625. Tables 1-2 show the
results for two choices of the parameters αe, βe: αe = βe = 0 (no upwinding) and αe(u) =

u·n
2|u·n| ,

βe(u) =
1
2 |u ·n| (upwinding). When using upwinding, the errors converged at the optimal rates 1, 2,

and 3, respectively, for polynomial degrees s = 0, 1, 2. In the absence of upwinding, the convergence
rates for s = 1 were lower (closer to first order than to second order). These observations are
consistent with those of [18, 25], where the case of constant density is considered.
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∆t−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate ‖ph − p‖L2(Ω) Rate
2 7.64 · 10−3 2.90 · 10−2 4.47 · 10−2

4 2.27 · 10−3 1.75 8.35 · 10−3 1.80 1.37 · 10−2 1.70
8 6.03 · 10−4 1.91 2.19 · 10−3 1.93 3.63 · 10−3 1.92
16 1.77 · 10−4 1.76 5.52 · 10−4 1.99 9.23 · 10−4 1.97

Table 3: Convergence with respect to ∆t of the L2-errors in the velocity, density, and pressure at
time T = 0.5 without upwinding.

∆t−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate ‖ph − p‖L2(Ω) Rate
2 7.64 · 10−3 2.90 · 10−2 4.47 · 10−2

4 2.27 · 10−3 1.75 8.35 · 10−3 1.80 1.37 · 10−2 1.70
8 5.99 · 10−4 1.92 2.19 · 10−3 1.93 3.62 · 10−3 1.92
16 1.58 · 10−4 1.92 5.52 · 10−4 1.99 9.19 · 10−4 1.98

Table 4: Convergence with respect to ∆t of the L2-errors in the velocity, density, and pressure at
time T = 0.5 with upwinding.

Figure 1 plots the squared density errors |1−F (t)/F (0)|, F (t) =
∫
Ω ρh(t)

2 dx, for the simulations
in Tables 1-2 that used h = 1

4 . As expected, squared density decayed monotonically with upwinding
and remained constant (up to roundoff errors) without upwinding. Total mass and energy errors
(not plotted) remained below 10−13 in these experiments, both with and without upwinding.

To test the convergence of the method with respect to ∆t, we repeated the above experiment
with s = 2, h = 2−4, and ∆t = 2−j , j = 1, 2, 3, 4. The results in Tables 3-4 suggest that the method
converges at a second-order rate with respect to ∆t, both with and without upwinding.

4.2 Rayleigh-Taylor Instability

As a second test, we simulated the Rayleigh-Taylor instability on a rectangle Ω = (−1/2, 1/2) ×
(−2, 2) with initial conditions

u(x, y, 0) = (0, 0),

ρ(x, y, 0) = 2 + tanh

(
y + 0.1 cos(2πx)

0.1

)
.

For this test, we added a gravitational forcing term 〈(0,−g)ρk+1/2, v〉, g = 10, to right-hand side
of the momentum equation (30). We used the upwind scheme with a time step ∆t = 0.01 and
finite element spaces Uh = RT0(Th), Fh = DG1(Th), and Qh = DG0(Th) ∩ L2∫

=0
(Ω) on a uniform

triangulation Th with maximum element diameter h = 2−j , j = 4, 5, 6. Plots of the density at
various times t are shown in Figures 2-4. The simulations at different resolutions agree with one
another qualitatively. In the absence of upwinding, the simulation is corrupted by unphysical
oscillations; see Figure 5.

For comparison, we simulated the same Rayleigh-Taylor instability with the spatial discretiza-
tion introduced in [16], adapted to the inviscid setting. This method seeks uh(t) ∈ Ũh, ρh(t) ∈ F̃h,
and ph(t) ∈ Q̃h such that

〈σh∂t(σhuh), vh〉+ 〈ρhuh · ∇uh, vh〉+
1

2
〈uh div(ρhuh), vh〉 = 〈f, vh〉 − 〈∇ph, vh〉, ∀vh ∈ Ũh, (40)

〈∂tρh, θh〉+ 〈uh · ∇ρh, θh〉+
1

2
〈ρh div uh, θh〉 = 0, ∀θh ∈ F̃h, (41)

〈div uh, qh〉 = 0, ∀qh ∈ Q̃h, (42)
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Figure 1: Squared density errors |1 − F (t)/F (0)|, F (t) =
∫
Ω ρh(t)

2 dx, for the simulations in
Tables 1-2 that used h = 1

4 . Total mass and energy errors (not plotted) remained below 10−13 in
these experiments, both with and without upwinding.

where σh =
√
ρh, f = (0,−g)ρh, and Ũh, F̃h, and Q̃h are finite-dimensional subspaces of {u ∈

H1(Ω) | u · n = 0 on ∂Ω}, H1(Ω), and H1(Ω) ∩ L2∫
=0

(Ω), respectively. We chose

Ũh = {u ∈ CG2(Th)n | u · n = 0 on ∂Ω},
F̃h = CG1(Th),
Q̃h = CG1(Th) ∩ L2∫

=0(Ω),

where CGs(Th) = {q ∈ C0(Ω) | q|K ∈ Ps(K), ∀K ∈ Th}. We discretized (40-42) in time with the
midpoint rule and added streamline-upwind Petrov-Galerkin (SUPG) stabilization terms [7] to (40-
41) to mitigate spurious oscillations. Note that Guermond and Quartapelle [16] propose a more
sophisticated temporal discretization (a fractional step method), but we adopted the midpoint rule
here for simplicity. Figure 6 shows the results obtained with h = 2−5 and ∆t = 0.01. The two
methods under comparison produce qualitatively similar results for t < 1, and begin to deviate
somewhat as t increases; compare Figures 3 and 6.

In Figures 7-9, we compare the conservation properties of our method (both with and without
upwinding) to (40-42). All of the methods under consideration preserve total mass (not plotted)
to machine precision. Without upwinding, our method preserves total squared density to machine
precision, and with upwinding it dissipates total squared density slightly more slowly than (40-42)
does. Our method preserves total energy to machine precision both with and without upwinding,
and the L2-norm of div uh drifts slightly but remains below 10−13. In contrast, with (40-42), the
energy drifts somewhat and ‖ div uh‖L2(Ω) drifts considerably.

It is worth noting that the methods under comparison above have similar computational com-
plexity. On the triangulations with h = 2−4, h = 2−5, and h = 2−6, our method uses 22,607,
90,722, and 360,768 degrees of freedom, respectively, whereas (40-42) uses 20,864, 82,884, and
329,604 degrees of freedom, respectively.
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Figure 2: Density contours at t = 0.8, 0.95, 1.1, 1.25 in the Rayleigh-Taylor instability simulation
with h = 2−6.
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Figure 3: Density contours at t = 0.8, 0.95, 1.1, 1.25 in the Rayleigh-Taylor instability simulation
with h = 2−5.
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Figure 4: Density contours at t = 0.8, 0.95, 1.1, 1.25 in the Rayleigh-Taylor instability simulation
with h = 2−4.
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Figure 5: Density contours at t = 0.8, 0.95, 1.1, 1.25 in the Rayleigh-Taylor instability simulation
with h = 2−5 and no upwinding.
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Figure 6: Density contours at t = 0.8, 0.95, 1.1, 1.25 in the Rayleigh-Taylor instability simulation,
obtained using (40-42) with h = 2−5.
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Figure 7: Squared density errors |1 − F (t)/F (0)|, F (t) =
∫
Ω ρh(t)

2 dx, in the Rayleigh-Taylor
instability simulation.
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Figure 8: Energy errors |1 − E(t)/E(0)|, E(t) =
∫
Ω

(
1
2ρh(t)uh(t) · uh(t) + ρh(t)gy

)
dx, in the

Rayleigh-Taylor instability simulation. (The curves labelled (40-42) appear nonsmooth because
the sign of 1− E(t)/E(0) changes from negative to positive near t = 0.)
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Figure 9: L2-norm of the divergence of the velocity field in the Rayleigh-Taylor instability simula-
tion.

5 Conclusion

We have constructed a numerical method for the incompressible Euler equations with variable
density that exactly preserves total mass, total squared density, total energy, and pointwise in-
compressibility at the spatially and temporally discrete levels. The method achieves second-order
accuracy in time, and allows for the use of high-order finite elements to achieve high-order accuracy
in space. An upwinded version of the method was also described and proved to be stable. Numerical
tests illustrated its convergence order and its performance on a simulation of the Rayleigh-Taylor
instability.
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