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ABSTRACT. We construct asymptotically flat, scalar flat extensions of Bartnik data
(X,~, H), where v is a metric of positive Gauss curvature on a two-sphere ¥, and
H is a function that is either positive or identically zero on ¥, such that the mass
of the extension can be made arbitrarily close to the half area radius of (X, ).

In the case of H = 0, the result gives an analogue of a theorem of Mantoulidis
and Schoen [13], but with extensions that have vanishing scalar curvature. In the
context of initial data sets in general relativity, the result produces asymptotically
flat, time-symmetric, vacuum initial data with an apparent horizon (%, ), for any
metric v with positive Gauss curvature, such that the mass of the initial data is
arbitrarily close to the optimal value in the Riemannian Penrose inequality.

The method we use is the Shi-Tam type metric construction from [19] and a
refined Shi-Tam monotonicity, found by the first named author in [16].

1. INTRODUCTION

Let ¥ be a two-sphere. Given a Riemannian metric v and a function H on I, the
Bartnik quasi-local mass [3] of the triple (3,7, H) can be defined as

(1.1) m, (3,7, H) =inf {m(M,g)|(M,g) is an admissible extension of (X,v, H)}.

Here m(-) is the ADM mass [2], and an asymptotically flat Riemannian 3-manifold
(M, g) with boundary OM is an admissible extension of (2, v, H) if

i) ¢ has nonnegative scalar curvature;

ii) OM with the induced metric is isometric to (X,7) and, under the isometry,
the mean curvature of OM in (M, g) equals H; and

iii) (M, g) satisfies certain non-degeneracy condition that prevents m(M, g) from

being arbitrarily small; for instance, it is often required that (M, g) contains no

closed minimal surfaces (enclosing M), or M is outer-minimizing in (M, g).

We refer readers to [1, 10, 14] for discussion on the numerous variations in the defi-
nition of Bartnik mass, and the recent progress on reconciling them.

Let K, denote the Gauss curvature of (2,v). If K, > 0, by the work of Nirenberg
[17] (and also Pogorelov [18]), (3,7) admits an isometric embedding into R? as a
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convex surface, unique up to rigid motions. Let Hy be the mean curvature of such
an isometric embedding. In [19], as a key step in their proof of the positivity of the
Brown-York mass [6, 7], Shi and Tam proved the following:

Theorem 1.1 (Shi-Tam [19]). Suppose K., > 0. Identify ¥ with the image of the
isometric embedding of (X,7) in R® and write the Euclidean metric g, = dr?* + g,
on E that is the exterior of 3. Here g, is the induced metric on the surface 3, that
is r-distance away from ¥ in (E,g,). Given any function H > 0 on X, there is a

unique function u > 0 on E such that the metric g, = u*dp® + g, is asymptotically
flat and

e g, has zero scalar curvature;
e the mean curvature of ¥ = OF in (E, g,) equals H; and
o the ADM mass m(E, g,) satisfies

1
E q.) < — [ (Hy— H)do,
w(B.0.) < o= [ (t~ H)do

where do is the area measure on (3,7).

Consequently, since (E,g,) is foliated by a 1-parameter family of surfaces {X,},>o
with positive mean curvature, it follows that

™

(1.2) m,(5,~, H) < Si /Z(HO — H)do

regardless of the non-degeneracy condition iii) used in the definition of m_(X,~, H).

In this paper, we apply the method of Shi-Tam in [19] and its variation by the first
named author in [16] to exhibit suitable extensions of (3,7, H) such that the ADM
mass of these extensions is controlled by |X|,, the area of ~.

Theorem 1.2. Let v be a metric with K, > 0 and H be a positive function on X.
Given any € > 0, there exists an asymptotically flat manifold (M, g), diffeomorphic
to X x [1,00), such that

i) g has zero scalar curvature;
i) OM with the induced metric is isometric to (X,7) and the mean curvature of
OM in (M, g) equals H under the isometry;
iii) (M, g) is foliated by a 1-parameter family of closed surfaces with positive mean
curvature; and
iv) the mass of (M, g) satisfies
=l

. < —_— .
(1.3) m(M,g) < |2+

Consequently, the Bartnik mass of (X,v, H) satisfies

’2"}/
1.4 m_ (2,7, H) </ —.
( ) B( 777 ) — 16
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Theorem 1.2 also holds if H is identically zero. We state this case separately since
the extensions in this setting represent time-symmetric, vacuum initial data with
apparent horizon boundary.

Theorem 1.3. Let v be a metric with K, > 0 on X. Given any € > 0, there exists
an asymptotically flat manifold (M, g), diffeomorphic to ¥ X [1,00), such that

i) g has zero scalar curvature;
ii) OM with the induced metric is isometric to (X,v) and OM has zero mean
curvature in (M, g);
iii) the interior of (M, g) is foliated by a 1-parameter family of closed surfaces
with positive mean curvature; and
iv) the mass of (M, g) satisfies

%]

1.5 M, g) <4/ — :
(15 m(M,g) < 1/ 20 4o
Consequently, the Bartnik mass of (X,7,0) satisfies
Xl
1. b <4/ —.
( 6) mB( 7,}/7 0) — 167T

We give two important remarks regarding Theorems 1.2 and 1.3.

Remark 1.1. In [13], Mantoulidis and Schoen proved the following result: if v is a
metric on ¥ such that A\;(—=A, + K,) > 0, where A, is the Laplacian of (X, ), then
given any € > 0, there exists an asymptotically flat manifold (M,,, g,,¢) such that

a) g,,s has nonnegative scalar curvature, and has strictly positive scalar curvature
somewhere;

b) OM,,, with the induced metric is isometric to (3,7) and the mean curvature
function of OM,,, in (M,,, g,,s) equals 0;

c) (M,,s,9,,¢) is foliated by a 1-parameter family of closed surfaces with positive
mean curvature, and (M,,,,9,,s), outside a compact set, is isometric to a
spatial Schwarzschild manifold with mass m; and

d) m(M,,,,g,,s) = m satisfies

/Xl
1. — .
(1.7) m <A\ Tor +€

In the context of the Bartnik mass, Mantoulidis-Schoen’s result shows

‘Elv
1. m_ (X < —
( 8) B( 7770) —_ 16

under the assumption \(—A, + K,) > 0.

Comparing Theorem 1.3 with Mantoulidis-Schoen’s theorem, one sees Theorem 1.3
proves (1.8) under a much stronger assumption K, > 0. However, the extension
(M,,s, 9,,¢) in [13] has positive scalar curvature somewhere, while (M, g) in Theorem
1.3 has identically zero scalar curvature.
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In the context of initial data sets in general relativity, Theorem 1.3 produces asymp-
totically flat, time-symmetric, vacuum initial data with an apparent horizon (3, )
whenever K., > 0 such that the mass of the initial data is arbitrarily close to the
optimal value in the Riemannian Penrose inequality [5, 9].

Remark 1.2. In light of [13], the bound (1.4) on m (X, ~, H) for a positive H is well
expected and is known among experts (see [10, 14] for instance). This is because the

manifold (M,,,g,,s) from [13] is “almost” an admissible extension of (X,v, H > 0),
except the mean curvature of OM,,, in (M,,4,9,,s) is zero. Thus, if one enlarges the

class of admissible extensions in the definition of m,(X,~, H) by replacing condition
ii) with a condition

ii) M with the induced metric is isometric to (X,7) and H > Hyy,

and denotes the resulting Bartnik mass by m,(X,~, H), then (M,,, g,,,) would be a
legitimate admissible extension of (X, v, H) and hence, by (1.7), one will have

- %]
(1.9) m,(X,y, H) < Tor
The geometric meaning of “H > Hyy/” used in condition ii) can be found in [15].
Naturally one would like to know if m (X, v, H) agrees with m, (X, v, H). We refer
readers to the recent work of Jauregui [10] and McCormick [14] for results pertinent
to this question.

Evenifm_ (3,7, H) = m,(X, v, H), we note Theorem 1.2 reveals more information
than (1.4). This is again because the extension (M, ¢) in Theorem 1.2 has zero scalar
curvature. Suppose K, > 0, if one shrinks the class of admissible extensions in the
definition of m, (X, ~, H) by replacing condition i) with a condition

i) ¢ has zero scalar curvature

and denotes the resulting Bartnik mass by mg (3,7, H), then Theorem 1.2 still applies
to show
(1.10) my (3,7, H) < 2,

B — vV 167
On the other hand, as the metric (M,,,g,,s) has strictly positive scalar curvature
somewhere, it is not clear if the result in [13] could imply (1.10).

In the definition of m,(-), it is indeed natural to restrict the class of admissible
extensions of (X,v, H) to extensions with identically zero scalar curvature. It was
conjectured by Bartnik [3] that, under suitable assumptions on (v, H), a minimizer
(M, g) achieving m (X, v, H) exists and is a static vacuum initial data set. For this
reason, it is reasonable to consider the revised variational problem of minimizing mass
over extensions with zero scalar curvature. Besides Theorem 1.1 of Shi-Tam, prior
results on estimating the Bartnik mass by constructing scalar flat extensions using
PDE methods were also given by Lin and Sormani [11].
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We end this section by comparing estimate (1.4) and (1.2). By the classic Minkowski
inequality, if ¥ is a closed convex surface in R? with intrinsic metric v and mean cur-

vature Hy, then
1 )Y
L / Hydo > /2l
81 Jx 47

1 2
Thus, if H > 0 is relative small, i.e. if — / H do < &, then
81 s 167

1 X
111 = [ (Hy—H iy pialiy
(1.11) 57 ) o= H)do> /7

In this case, (1.4) is an estimate sharper than (1.2). On the other hand, if H is close
to Hy, then (1.2) represents a better estimate.

2. PrROOF OF THEOREMS 1.2 AND 1.3

For simplicity, replacing (v, H) with (c*y,c™H) for a constant ¢ > 0, we may
assume ||, = 4.
We first prove Theorem 1.2 in which H is a positive function on 3. Suppose K, > 0.
Let {g(t)}o<t<1 be a fixed smooth path of metrics on ¥ satisfying
(i) g(0) =+, g(1) is a round metric;
(ii) Ky4 >0,V t € [0,1]; and
(iii) trg(t)g’(t) =0,Vte [O, 1].
(Existence of such a path can be given by the proof of [13, Lemma 1.2] for instance.)
It follows from conditions (i) and (iii) that g(1) = o, a standard round metric on %
with area 4m.
Given any 0 > 0, let
ts = tg(p) : [1, OO) — [0, 1]
be a smooth function such that

(2.1) ts(1) =0, and ts(p)=1, Vp>1+0.
Define
(22) 9s.p = g(t5<p))7 pE [17 OO)

In what follows, we suppress the notation ¢ and denote g5, by g,. {9,}1<p<c0 1S @
smooth family of metrics on ¥ satisfying

(2.3) g1=7,and g, =0, Vp>1+0.
On N = [1,00) x X, consider a background metric

(2.4) 9" =dp* + p’g,.

Let N5 = [1+,00) x X, then

(2.5) g" = dp* + p*c = g,, on Nj,

where g, is the standard Euclidean metric.



6 Pengzi Miao and Naqing Xie

For each p, let H® and A® denote the mean curvature and the second fundamental
form of ¥, = {p} x T in (N, g*) with respect to a%, respectively. Then

1

(2.6) H>=2p~" + §tr9p (0,90) = 2p™",
where we used (iii). Given any function u = u(p,z) > 0 on N, following Bartnik [4]
and Shi-Tam [19], we consider the metric
(2.7) gu = u’dp® + p’g,.
The induced metric from g, on 1, which is identified with ¥, is ¢ = 7. If H, denotes
the mean curvature of ¥, in (N, g,), then
(2.8) H,=u"H">0.

The following claim follows directly from results in [19] and [8].
Proposition 2.1. Given the pair (v, H) on X, there exists a function u > 0 on N
such that

e g, = u*dp* + p*g, has zero scalar curvature, and
e H,=H at X = ON.

Moreover, u — 1 as p — oo and (N, g,) is asymptotically flat and is foliated by
{3, 1<p<oo with positive mean curvature.

Proof. We recall the PDE that u needs to satisfy so that g, has zero scalar curvature.
Let g, = p®g,. By [19, Equation (1.10)] (also see [8, Equation (5)]),

1
(2.9) H’0u = w*Agu— Kz u® + 3 (H")? + |Ab|§p + 28pr] u.
Since H” > 0 and K 3, = p 2K, > 0 for every p, a positive solution u with an initial
condition uly = H'H® exists on [1,T] x X for all T > 0 by [8, Proposition 2]. Since

¢ is the Euclidean metric on Nj, the claim on the asymptotic behavior of u follows
from [19, Theorem 2.1]. O

Let u be given in Proposition 2.1, (IV, g,) is an admissible extension of (X,v, H).
By definition,
(2'10) mB (27 f}/? H) S m(gu)'

We want to estimate m(g,) in terms of data at ¥;,5 = ONs. Initially, we could
apply [19, Lemma 4.2] to have

(2.11) / (H* — H,) do, is monotone nonincreasing in p € [1 + §, 00),
2p

where do, is the area measure on (X,, p?g,). Also, by [19, Theorem 2.1],

(2.12) lim i/ (H° — H,)do, = m(g,).

p—o0 8T
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Thus,
1 b
m(g,) < [y (H” — H,)doyys
(2.13) i '
= (1 + 5) - S Hu d01+6~

8 Siis

Since H, > 0, omitting the term involving H,, one has
m(g,) < 1496.

However, this estimate is not sufficient to show (1.3).

To verify (1.3), we make use of a refined monotonicity property concerning (N, g,,)-
The next proposition is essentially a restatement of results from [16, Proposition 1
and Equation (56)].

Proposition 2.2 ([16]). Given any constant r > 0, let B, = R3\ {|z| < r}. Let
gy = dp? + p*o denote a background Euclidean metric on E.. On E,, let u > 0 be a
function such that the metric g, = u*dp* + p*o has zero scalar curvature and hence
is asymptotically flat. Let H, = 2p~'u"" be the mean curvature of S, = {|z| = p} in
(Er, gu). Then, for any constant m € (—oo, %7"],

1
(2.14) m(g,) <m+ —/ (2r 'N — H,)N do,
s Sy

where N = /1 — sz As a result, by minimizing its right side over m, one has

S| 1 i
2.1 < — 11— H :

1
’ 2

Proof. Given any m € (—oo, 7], consider a background Schwarzschild metric

1
1—2m
p

(2.16) ¢ = dp* + po

on E,. Let H?, be the mean curvature of S, in (E,, ¢%,). By [16, Proposition 1],

(2.17) / (H° — H,)N(p) do, is monotone nonincreasing in p € [r, 00),
Sp
where N(p) = /1 — 27m, and

(2.18) lim _/s (Hb, — H,)N(p)do, = m(g,) — m.
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Thus, by (2.17), (2.18) and the fact H:, = 2p~'N(p),

(%§m+— H,)N do,
(2.19)
=m+ — (27’_1]\7 H,)N do,.
8T

Denote the right side of (2.19) by q)(m), ie

1
(2.20) ®(m) =m +rN? — (—/ H, dar) N

8 Sy
Since N? =1 — 22 one can rewrite ®(m) as

1 2 2
2.21 () N — — H, do, 1— H, do, .
22 em =gy [ SWU o) < <87rr/ 0>]
Minimizing ®(m) over m € (—oo, 57"], one has

222 o) 3 1= (& [ man) |

This explains (2.15). O

Remark 2.1. A monotonicity generalizing (2.17) with the background Schwarzschild
metric replaced by a general static metric can be found in [12].

We resume to prove (1.3). Applying Proposition 2.2 to (Ng, g,), we have

2
|1 2145] 1
2.23 u) < b e
( ) m(gy) < 167 167|145 Bis o

Omitting the term involving H,, we conclude from (2.23) that

Ziss| 1
160 2

Since 0 can be arbitrarily small, (1.3) follows from (2.24) and rescaling. Theorem 1.2
is proved.

(2.24) m(g.) < ~(1+46).

Next, we prove Theorem 1.3 in which H = 0. In this case, to obtain a solution u
satisfying Proposition 2.1, one needs to solve (2.9) with an initial condition u|y = oo.
While this might be achieved by following the proofs in [4, 19], we revise our choice
of {g,} to apply a result of Smith [20, 21] which imitates the horizon in a spatial
Schwarzschild manifold. More precisely, given any small 6 > 0, we modify the choice
of ts(p) in (2.1) by re-defining it so that

{m@%=a if 1 <p<1+ 36
ts

(2.25) () =1. ifp>1+6.
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With this choice of t5(p), define g, = g(ts(p)) as in (2.2). Then {g,},>1 satisfies

g =1, if1<p<1+350,
(2.26) {gpza, it p>1+3.

On N = [1,00) x X, consider the background metric ¢° = dp* + pg,. Applying [20,
Main Theorem], there exists a function u of the form

(2.27) w=

1—

l Y
p
where v > 0 is a smooth function on N, independent on p in [1,1+ %6], such that the
metric
gu = u’dp* + p°g,
has zero scalar curvature. This (V, g,,) satisfies Proposition 2.1 with H = 0. The rest

of the proof is then identical to that following Proposition 2.2 above. This proves
Theorem 1.3.

Remark 2.2. In Theorems 1.2 and 1.3, the assumption K, > 0 is imposed to have
Ky > 0, which is to guarantee the existence of the solution  to (2.9).

Remark 2.3. By (iii) and (2.2), equation (2.9) on [1,00) x ¥ takes an explicit form of

2(%)2]11,
g \ P

1 ,|dg
1+ =p? =

(2.28) 2p0,u = u*Agu— Ky u’® + S

On [1 4+ §,00) x X, it reduces to
(2.29) 20 0,u = u*Aju+ (u — u),
which is the equation in [19, Example 1].
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