CAPACITY, QUASI-LOCAL MASS, AND SINGULAR
FILL-INS
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ABSTRACT. We derive new inequalities between the boundary ca-
pacity of an asymptotically flat 3-manifold with nonnegative scalar
curvature and boundary quantities that relate to quasi-local mass;
one relates to Brown—York mass and the other is new. We argue
by recasting the setup to the study of mean-convex fill-ins with
nonnegative scalar curvature and, in the process, we consider fill-
ins with singular metrics, which may have independent interest.
Among other things, our work yields new variational characteriza-
tions of Riemannian Schwarzschild manifolds and new comparison
results for surfaces in them.

1. INTRODUCTION

The Riemannian (“time-symmetric”) case of the Penrose Conjecture
[29] was settled in different forms by Huisken—Ilmanen [15] and by
Bray [4]. The latter, specifically, proved the following relation between
the ADM mass [3] of an asymptotically flat manifold and the Hawking
quasi-local mass [14] of its apparent horizon:

Theorem (Riemannian Penrose Inequality, [4, Theorem 1]). Let (M3, g)
be complete, asymptotically flat, with nonnegative scalar curvature and
an outer minimizing horizon ¥ (possibly disconnected) with area |3

and ADM mass mapyn (M, g). Then

[ 1X]
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6 = apm(M, g) (1.1)
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Equality holds if and only if, outside X, (M, g) is isometric to a Rie-
mannian half-Schwarzschild manifold.

Recall that in the Riemannian setting horizons are closed minimal sur-
faces, and their Hawking mass is the left hand side of (1.1).

Harmonic potentials and the notion of boundary capacity played an im-
portant role in Bray’s work by virtue of the following relation between
ADM mass and boundary capacity:

Theorem (Mass—Capacity inequality, [4, Theorem 9]). Let (M3, g) be
complete, asymptotically flat, with nonnegative scalar curvature and
with horizon boundary Y. Then

Cg<2,M) SmADM(M,g), (12)

with Cy(X, M) as in Definition 1.1. Equality holds if and only if (M, g)
s isometric to a Riemannian half-Schwarzschild manifold.

Definition 1.1 (Capacity). Let (M3, g) be a complete, asymptotically
flat Riemannian manifold with compact boundary 3. Let ¢ : M — R
(the “boundary capacity potential”) be such that

Ayp=0 on M,
p=1 at X, (1.3)
¢ —0 asx — oo.

The boundary capacity ofE C (M, q) is:

Cyl( / |V¢|2dv——/ L pdo, (1.4)

where 1 is the unit normal pointing outside of M. (The second equality
in (1.4) follows from Lemma A.2.)

Before stating the main results in this paper, we first state a corollary
of Theorem 1.5 that needs no new definitions:

Corollary 1.2. Let (M3, g) be complete, asymptotically flat, with non-
negative scalar curvature and horizon boundary X2 that consists of spheres
with positive Gauss curvature. Then:

C,(S, M) < —/Hgo do (1.5)

where do is the induced area form and H,, is the mean curvature of the
isometric embedding of each boundary sphere of ¥ in R3. Equality holds
if and only if (M, g) is isometric to a Riemannian half-Schwarzschild
manifold with mass C,(3, M).
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Remark 1.3 (Mean curvature convention). Suppose % is a hypersur-
face in a Riemannian manifold. Its vector-valued second fundamental
form is defined as ]T(X, Y) = (VxY)* for X,Y tangent to X, where Z*+
1s the normal projection of Z. Its mean curvature vector H is the trace
of I. If v is a unit normal to X2, then the mean curvature with respect
to v is given by H = H(v) = g(—ﬁ, v). Unless stated otherwise, for
hypersurfaces 3 inside an asymptotically flat manifold (with one end—
see Definition A.1), v will be taken to be the unit normal pointing to
the distinguished end. When there is no asymptotically flat manifold,
and 3 is the boundary of a compact manifold (€2, g) (e.g., Sections 3,
4, and in defining A(X,7), /G\(E,y) in Definition 1.4), v will be taken
to be the unit normal pointing outside of §Q.

The isometric embedding used to define Hy, exists since, by [28, 31], all
Riemannian two-spheres with positive Gauss curvature can be uniquely
isometrically embedded into (R?, g). If ¥ does not consist of spheres
with positive Gauss curvature, then one may not be able to isometri-
cally embed X in R3, so the right hand side of (1.5) is not well-defined.
Hence, following [20], we consider the A-invariant instead:

Definition 1.4. Let ¥ be a closed, orientable surface (possibly discon-
nected) endowed with a Riemannian metric . Denote as F(3,7) the
set of compact, connected Riemannian manifolds (3, g) with boundary
such that:

(i) 09, with the induced metric, is isometric to (3,7),
(i) the mean curvature vector of OS2 points strictly inward, and

(iii) R(g) >0, where R(g) is the scalar curvature of g.

Then, define
1
A(X,7) == sup {g  Hodo | (Q.9) € f(E,’V)} :

Let .7%(2, 7v) be the set of compact, connected 3-dimensional (2, g) with
00 = YXoUXy such that (1)-(i1) hold with ¢ in place of 092, (iii), and

(iv) Xg, if nonempty, is an arbitrary minimal surface (possibly dis-
connected).

Correspondingly, define

o 1 o
Ay =sw{ g [ ol @0 € FE).
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Above, H, denotes the mean curvature of 02 with respect to the unit

normal pointing outside of 2. (Note: ]-"O, A were defined for connected
Y in [20], but the same results hold for general ¥; see Appendix B.)

In Definition 1.4, F(X,7) € F(X,7), so A(S,7) < A(Z,~). Nonethe-
less, A(2,7) = A(2,7) by [20, Proposition 5.1] and Proposition B.4.
It was shown in [20, Theorem 1.3] (see also [19]) that A(X,v) < oo
for finite unions of topological spheres. By convention, A(X,v) := —o0
when F(X,v) = (); likewise for 10\, F. Tt was observed in [20, Remark
1.5] that F(X,v) # 0 if ¥ consists of spheres satisfying the spectral con-

dition A\ (—A,+K,) > 0, where K, denotes the Gauss curvature.

Our first main theorem is the following. All asymptotically flat mani-
folds in our work will be asymptotically flat of order 7 > % in the sense
of Definition A.1. Recall Remark 1.3 for mean curvature conventions
in asymptotically flat manifolds.

Theorem 1.5. Let (M3, g) be complete, asymptotically flat, with com-
pact, orientable boundary Y with induced metric v and with nonnegative
scalar curvature. Let ¢ be the boundary capacity potential for Cy(X, M).
Suppose that:

H, < 4V¢| on X, (1.6)
where Hy is the mean curvature of ¥. Then F(X,v) # 0 and:
(1) We have the inequality

2C,(%, M) SA(E,fy)Jri/Hgda. (1.7)
81 Js

(2) If equality holds in (1.7), then X is connected, (M, g) is scalar
flat, and (M, g) is conformally equivalent to a mean-convex han-
dlebody whose boundary is isometric to (X,7) and whose inte-
rior metric is flat. (Recall: handlebodies are compact manifolds

diffeomorphic to the boundary connect sum of finitely many
solid tori (B* x S'), or B3. See [24, Proposition 1].)

(3) If X consists of topological spheres (e.g., M is simply connected)
with constant nonnegative mean curvature, then equality holds
in (1.7) if and only if (M, g) is isometric to the exterior of a
rotationally symmetric sphere in a Riemannian Schwarzschild
manifold.
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We note that (1.6) obviously allows any boundary X with H, < 0, but it
also allows important cases where ¥ has H, > 0; for instance, the theo-
rem applies to every coordinate sphere in a Riemannian Schwarzschild
manifold (see Section 7.1), as well as to small perturbations.

Regarding the capacity C,(2, M) and the boundary mean curvature
H,, H. Bray and the second author proved the following:

Theorem ([5, Theorem 1]). Let (M3, g) be complete, asymptotically
flat, with nonnegative scalar curvature and connected boundary . As-
sume M is diffeomorphic to R3\ Q, where Q is a bounded domain with
connected boundary. Then

B L
<4/ -= — 2 .
Co(2, M) < 16 1+ 167 . H;do |, (1.8)

where |X| and Hy are the area and mean curvature of ¥. Furthermore,
equality holds if and only if (M, g) is isometric to the exterior region of
a rotationally symmetric sphere outside the horizon in a Riemannian

Schwarzschild manifold.

If ¥ is minimal, then the right side of (1.8) reduces to the Hawking
mass of ¥. It is worth comparing (1.8) and (1.7):

(i) The inequality in (1.7) becomes an identity on every coordinate
sphere in the (doubled) Riemannian Schwarzschild manifold,
while (1.8) becomes an identity only on spheres that are in the
exterior region of the Riemannian Schwarzschild manifold.

(i) In (1.8), it is assumed that 3 is connected because the proof in
[5] made use of weak solutions to the inverse mean curvature
flow developed by Huisken—Ilmanen [15]. However, Theorem 1.5
imposes no topological assumptions on (M, g) and ¥ is allowed
to be disconnected.

(iii) In the case that both estimates (1.7) and (1.8) apply, (1.7) is
a better estimate when X is a round sphere and H, is not a
constant, by Holder’s inequality. On the other hand, if H, =0
and ¥ has positive Gauss curvature, (1.8) gives better estimate
by the Minkowski inequality in R3.

Theorem 1.5 has a corollary that relates to Szegd’s theorem, which we
recall here (see, e.g., [30, section 3.4]): if ¥ C R? is a closed surface
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bounding a convex domain 2, then

1
Copo(Z,R*\ Q) < —/Hg0 do, (1.9)
& »
with equality if and only if ¥ is a round sphere. We obtain:

Corollary 1.6. Let (M3, g) be complete, asymptotically flat, with non-
negative scalar curvature, and no boundary. Suppose Q0 C M 1is a
bounded domain with boundary ¥ consisting of spheres with positive
Gauss curvature, and mean curvature satisfying 0 < H, < 4|V |, with
¢ as in (1.3). Then:

C,(5, M\ Q) < i/Hgo do. (1.10)
8T Js

where Hgy, is the mean curvature of the isometric embedding of each
component of 3 in (R3, go). Equality holds in (1.10) if and only if ¥ is
a round sphere and (M, g) is isometric to (R3, o).

This corollary essentially replaces R? in Szegd’s theorem with an asymp-
totically flat manifold, and the convexity assumption on ¥ is replaced
by a mean curvature condition. Without the positive Gauss curvature
assumption on ¥, one still has C,(X, M \ Q) < A(X, ), with equality
corresponding to the rigidity case of Theorem 1.5 and the rigidity of
= |5 Hydo = A(3,) [20, Theorem 1.4].

Corollaries 1.2 and 1.6 are a special case of Theorem 1.5, in view of the
following result of Y.-G. Shi and the third author [32], which proves
that

AX,y) = 8%/21-]90 do (1.11)

for spheres (X, ) of positive Gauss curvature whose isometric embed-
ding into (R?, go) has mean curvature H,:

Theorem ([32, Theorem 1]). Let (Q3,g) be a compact, connected Rie-
mannian manifold with nonnegative scalar curvature, and with compact
mean-convexr boundary 33, which consists of spheres with positive Gauss
curvature. Then,

Hgdag/ H, do (1.12)
=0 oy

for each component ¥y C 3, ¢ =1,..., k. Moreover, equality holds for
some £ =1,... k if and only if O has only one component and (2, g)
is isometric to a domain in R3.
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Note that, by a slight abuse of notation, the right hand side of (1.5) in
Corollary 1.2 equals one-half times the Brown—York quasi-local mass
8, 9] (another important notion of mass that we use in our paper)
evaluated on the horizon boundary. Recall its definition:

Definition 1.7 (Brown-York mass). Let (Q3,g) be a compact, con-
nected Riemannian manifold with compact boundary ¥ that consists

of spheres with positive Gauss curvature. The Brown—York mass of
(33;9, g) is defined to be:

1
mpy (2;8, g) == o /(Hgo — H,)do, (1.13)
>

where do is the area form of the metric v induced on X, H, is the
mean curvature of 3 C (2, g) computed with respect to the unit normal
pointing outside of ), and Hy,, is the mean curvature of the isometric
embedding of each component of (3,7) into (R3, go).

Given the aforementioned results, one wonders whether the capacity
and the various notions of mass (ADM, Hawking, Brown—York) fit into
one picture. We recall: An inequality between Brown—York mass and
Hawking mass has been established in [33, 26]. (See also [21]). On
the other hand, if ¥ are large coordinate spheres bounding compact
domains in asymptotically flat manifolds, the Brown—York mass will
converge to the ADM mass by [12]. On the other hand, there can be
no a priori inequality between the Brown—York mass of ¥ and ADM
mass. This can be seen as a consequence of the work of R. Schoen
and the first author [22] on the Bartnik quasi-local mass; see Section
7.3.

Thus, while there is no a priori relation between the right hand sides of
(1.2), (1.5), our second main theorem in this paper succeeds in giving a
“localization” of Bray’s capacity bound, (1.2), thus relating boundary
capacity to Brown—York mass of far outlying equipotential spheres. For
simplicity, we first present this localization, which is of independent
interest, in the form of a corollary to the main theorem:

Corollary 1.8. Let (M3, g) be complete, asymptotically flat, orientable,
with nonnegative scalar curvature, and compact boundary ¥ with non-

positive mean curvature. Let ¢ be the boundary capacity potential in
(1.3), and

u=3(2-¢), .= {u=c}.
There exists ¢y € (3,1) so that, for all ¢ € [y, 1), X¢ is an embedded
sphere with positive Gauss and mean curvatures. If (). is the compact
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domain bounded by ¥ and X, then
cHCH(E, M) < mpy (X Qs 9) (1.14)

for any ¢ € [co,1). Equality holds for some c if and only if (M,g) is
1sometric to the exterior region of a Riemannian Schwarzschild with
horizon ¥, in which case equality holds for all c.

The right hand side of (1.14) is the Brown—York mass of 3. and, by
(35, 12], it converges to mapy (M, g) as ¢ — 1. This recovers Bray’s
capacity inequality (1.2).

Our second theorem, which implies Corollary 1.8, is:
Theorem 1.9. Let (M3, g) be complete, asymptotically flat, orientable,
with nonnegative scalar curvature, and compact boundary ¥ with non-

positive mean curvature. Let ¢ be the boundary capacity potential in
(1.3), and

u=1(2-9¢), .= {u=c}.
Let ¢ € (3,1) be a regular value of u so that:
H, > —4|Vlogu| on %, (1.15)

where Hy is the mean curvature of ¥.. Then
1
¢ CH(E, M) < A(Be, ve) — 8_/ H,do; (1.16)
T Y.

here, . is the area form of the metric v. induced on X..

If ¥ is a sphere with positive Gauss and mean curvatures, then equality
holds in (1.16) if and only if (M, g) is isometric to the exterior region
of a Riemannian Schwarzschild manifold with horizon 3.

We also wish to point out that estimates on suitable equipotential sur-
faces in static asymptotically flat manifolds were given by Agostiniani—
Mazzieri [2].

We conclude the introduction by listing some further results we ob-
tained on the boundary capacity of sets in the Schwarzschild manifolds
(M, gm) of mass m > 0:

m\ 4
My =R\ {0}, g = (1+3-) g0

where gy denotes the flat Euclidean metric on R?. They are related to
some well-known results in R3.
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Before we state the next result, let us fix some notation. In the follow-
ing, if Q2 is a domain in R? containing the origin with 9Q = ¥, then M=
denotes the set M, \ © in the Schwarzschild manifold (M, gi).

We will generalize the following classical Poincaré—Faber—Szego capac-
ity inequality on R? (see, e.g., [30, p.17]). If ¥ is the boundary of a
compact domain €2, then

Cpo (B, R\ Q) > (?) : (1.17)
where || is the volume of 2, with equality if and only if Q2 is a geodesic

ball. In the case of Schwarzschild manifolds, we have:

Theorem 1.10. Let X be a closed surface bounding a domain with the
horizon g in a Schwarzschild manifold (M, gn) with mass m > 0.
Let 3* be the unique rotationally symmetric sphere in (M, gm) which
encloses a domain with Xg with the same (signed) volume as ¥.. Then

Cyn (B, M) = Cy, (S%, M,)); (1.18)

here, M= C M,, is exterior of ¥, and similarly for M=", ¥*. Equality
holds in (1.18) if and only if ¥ = ¥*.

Using this together with Theorems 1.5 and 1.10, one can obtain some
new comparisons between the Brown—York masses of certain domains
in Schwarzschild and their rotationally symmetric counterparts. See
Corollaries 7.3 and 7.4 for more details.

Remark 1.11. By examining its proof in Section 7, one can see that
Theorem 1.10 remains true for rotationally symmetric asymptotically
flat manifolds that can be foliated by isoperimetric hypersurfaces. See
6, 11] for some sufficient conditions on the existence of such a foliation.

The organization of the paper is as follows. In Section 2, we prove a
special case of Corollary 1.2 to motivate our approach. This leads us
to consider fill-ins similar to those in F(X,v) but whose metric need
not be smooth. Singular fill-ins will be discussed in detail in Section
3. In some cases, one can consider singular fill-ins with less stringent
conditions. This will be discussed in Section 4. In Section 6, we prove
Theorems 1.5, 1.9 and their corollaries. In Section 7, we prove Theorem
1.10 for Schwarzschild manifolds and some interesting corollaries. In
Section 7.3 we give some useful examples that help illustrate our results.
To obtain the rigidity parts of Theorems 1.5 and 1.9, we need a result in
function theory, which is given in Section 5. We believe this result is of
independent interest in the study of overdetermined elliptic PDE.
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2. MOTIVATING OUTLINE

As motivation for the tools developed later in this paper, let us give an
outline of the proof of Corollary 1.2 to Theorem 1.5.

Consider the boundary capacity potential ¢ : M — (0,1) from (1.3)
and, then, consider the conformal compactification

96 = d'g (2.1)
Let (9%, g4) denote the metric completion of (M?, g).

Claim. () is the compactification of the asymptotic end of M to a point,
and gy is a Riemannian metric with reqularity WP, p > 6, which is
(locally) smooth away from an interior point singularity.

This is shown in Section 6. The presence and effect of singularities on
the arguments we are about to explain is an issue we will have to un-
derstand in detail, but (for the purposes of this motivating discussion)
let us see how to proceed assuming that (€2, gs) is smooth. The scalar
curvature of R(gys) is:

R(gs) = 8¢~ (=0g¢ + §R(9)9) = ¢~ R(g) > 0. (2.2)
By (1.6), the mean curvature of ¥ with respect to gy is
Hy, =42¢ >0, (2.3)

where v is the unit normal of ¥ C (M, g) pointing outside of M.
Applying [32, Theorem 1] to (€2, g,), together with (2.3):

/ ¢ dO’g / dO’g / dO'g
b b)) )Y

for¢ =1,...,k, where Hy, denotes the mean curvature of the isometric
embedding of ¥,, with its induced metric, into (R3 g5). Summing
over { = 1,...,k, integrating by parts using (1.3) and the decay from
Lemma A.2, we get

167 C,(%, )—/ 3¢dg<z/ 4 dog,

which is precisely (1.5).

Suppose, now, that equality holds for (1.5). We’re in the rigidity case of
(32, Theorem 1] above. This already implies that £ = 1 and that (€2, g,)
is isometric to a connected domain (2, gp) in R3. Moreover, we may
assume that ) contains a point p that corresponds to oo in (M, g). By
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Theorem 5.1, one can show (€2, g») is isometric to a Euclidean ball with
center at p. This will imply that (M, g) is a Riemannian Schwarzschild
manifold outside the horizon. The details will be given in the proof of
the general case in Section 6.

3. SINGULAR FILL-INS

Motivated by our discussion in Section 2, one would like to study met-
rics such as g4 from (2.1), which may be singular at a point. For later
purposes, we also will consider metrics which may not be smooth on a
more general subset. Hence we consider the following:

Definition 3.1 (Singular fill-ins). Let ¥ be a closed, orientable man-
ifold of dimension n — 1 with n > 3 (possibly disconnected) endowed
with a smooth Riemannian metric v. A smooth compact manifold €2
with boundary, endowed with an L*™ Riemannian metric g is said to be

a (possibly) singular fill-in of (X,7) if
(i) g is C* locally away from a compact subset sing g C '\ 0€;
(ii) 092, with the induced metric, is isometric to (X,7);
(iii) the mean curvature of O is positive; and
(iv) R(g) > 0 on 2\ singg.
Recall that an L>° Riemannian metric g on a smooth compact manifold(-
with-boundary) is a measurable section g of the space of positive defi-

nite symmetric 2-tensors, so that ¢ gy < g < cgo, g-a.e., for a smooth
background metric gy and a ¢ > 1.

As in the case n = 3, if g is smooth, then we say that (€,g) is a
(smooth) fill-in of (X, ).

Remark 3.2. In this section the mean curvature of OS2 is computed as
in Remark 1.3, with v being the unit normal pointing outside of ().

A singular fill-in (£2, g) of (3, ) is said to satisfy condition (C) if sing g
is a disjoint union of compact sets P, () that satisfy:

(a) P is a smoothly embedded two-sided compact hypersurface
without boundary,

(i) near P, g can be expressed as

g= dt® + g+(t, 2)
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for smooth coordinates (t,z) € (—a,a) x P, a > 0, where
g+, g— are defined and smooth on ¢t > 0, ¢ < 0, and

9-(+,0) = g.(-,0);

(i) the mean curvatures H,, H_ of the unit normal 2 at P
with respect to g., g_, satisty H, < H_.

(b) @ is a disjoint union of compact sets Q1, ..., Qy such that, for
eachk=1,...,N

(i) g is in WP in a neighborhood of Q) (with respect to a
smooth background metric);

(ii) Qx has codimension at least ¢, with ¢, > (2 — pik)_l >

0, in the sense that limsup,_, e *|Q(€)], < 0o; |Qr(€)],
denotes its volume.

Here and below A(e) is the set {dist,(A4,-) < e}. If € is small enough,
P(e) = (—e,€) x P.

We want to prove the following:

Theorem 3.3. Let ¥ be a closed, orientable manifold of dimension
n—1, n > 3, endowed with a Riemannian metric . Suppose (2", g) is
a singular fill-in of (X,7) satisfying condition (C) with P,Q mentioned
in that condition. Then for any § > 0, there is a smooth metric h on

Q such that (Q, h) is a fill-in of (X,7) and

/th0'>/Hd0'—

Moreover, if g is not Ricci flat at some point in Q\sing g, or H_ > H,
somewhere on P, then there is a smooth metric h on € such that (Q, h)

is a fill-in of (3,~) with

/tha>/Hgd0.
% b

In particular, if n = 3, then

i H do < A(X,7) (3.1)
8

with equality only if g is flat outsz'de singg and Hy = H_ along P.

Remark 3.4. (i) We are primarily interested in the 3-dimensional
case, n = 3, in which case, in condition (C)(b) above, ¢ =
2 = p>6andl =3 = p > 3. Also, { < n is automatic.

Moreover, we have £ > 5. It is unclear if one can relax the

condition to allow ¢ 1. However see Proposition 4.1 below.
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(ii) The condition on P is necessary for Theorem 3.3 to hold true.

One can construct examples which do not satisfy the condition
on P and that (3.1) fails. See Section 7.

(iii) The inequality in Theorem 3.3 follows from a smoothing proce-
dure that combines ideas from [16, 25] that are now well-known
among the experts. The rigidity statement requires studying the
effects of the boundary mean curvature and nontrivial interior
Ricci curvature (Lemma 8.8), which is a novel part of our work.

In some cases, the fill-in metric g is actually smooth when equality is
attained in (3.1). More precisely,

Proposition 3.5. Let (Q3, g) be as in Theorem 3.8 with n = 3, and so
that it attains equality in (3.1). Then g extends smoothly (after perhaps
a change of smooth structure) across:

(1) P, if P is homeomorphic to union of spheres,
(2) Q, if Q consists of isolated point singularities,
(3) Q, if g is Lipschitz.

Ifsing g consists of only such singularities, then X is connected, sing g =
0, and (Q, g) is a mean-convexr handlebody with flat interior.

Proof. If equality is attained in (3.1), then H, = H_ on P by Theorem
3.3, and g is flat outside P. By [25, p. 1180-1181], g extends smoothly
across P that are spheres with H, = H_. Likewise, g is smooth across

@ which consists of isolated points by [36], and also smooth across @
if ¢ is by [34, Theorem 6.1].

If all the singularities in sing g are as above, then (Q, g) € F(X,v) and
the result follows verbatim from [20, Theorem 1.4]. O

To prove Theorem 3.3, we need to approximate g by smooth metrics
with suitable properties. Let singg = P U @ as in the theorem, as-
suming that ) = @, with p := py, £ := ¢;. The general case can be
proved similarly. Let b be a smooth background metric on €. Cover
@ by finitely many coordinate neighborhood Uy, ..., Uy with U}, is in
the interior of Q and PN (UY_,Uy) = ). Let Uy, be an open set in
so that @) OUN+1 =0 and Q = UkN:JrllUk. Let ¢, be a partition of unity
with supp(¢,) C Uy. By [16, Lemma 3.1], for each 1 < k < N, there
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is a smooth function € > p; > 0 in Uy such that for small € > 0:

pr = €in Q(e/2) N Uy, and pr = 0 in Uy \ Q(€);

2
0pi] + €l ] < C (32)

for some C' independent of € and k. Here dp;, and 9?p, are derivatives
with respect to the Euclidean metric.

Lemma 3.6. There is €9 > 0 such that if ¢ > € > 0, there is a smooth
metric g. on 0 such that

(i) g. = g outside P(e) U Q(¢), and ¢ 'g. < g < cg. for some
constant ¢ > 0 independent of €;

(ii) the WP norm with respect to b of g. in Q(¢) is less than c, for
some constant ¢ > 0 independent of €;

(iii) |Vege| < ¢ in P(e), and for z € P,

|R(ge)|(2,t) < c for % < |t| < e
—c+ e ?(H-(z) — Hi(2))

< R<g€>(27t) < ce? fOT _ 46_020 <t< %; (33)
&2 2
—c SRt <o for g < < i

for some constant ¢ > 0 independent of €.

Proof. In the following ¢ > 0 always denote a constant independent of
€. Its meaning may vary from line to line. First assume ¢; > 0 be small
enough so that P(2¢0)NQ(2¢y) = 0 and P(2¢y) UQ(2¢) is disjoint from
the boundary .

By [25, Prop. 3.1], by choosing a possible smaller ¢, > 0, then for any
0 < € < €, one can find a metric g, such that g. = g outside P(e), g.
is smooth in P(ep), |°Vgc|s < cin P(ep) such that the scalar curvature
R(g.) in P(e) satisfies (3.3) with g, in place of g, for all z € 3.

Next we want to modify g, near (). Let v, be the partition of unity
mentioned before the lemma. Let ¢* := 1),g and for 1 < k < N,

@@= [ Tledp@nemdy (34
Here

¢ : R" — [0, 00) is smooth, spt ¢ C By)5(0), / p=1, (3.5)
and A > 0 is a constant independent of ¢ and k, which is small enough
for x — x — Ap(x)y from (3.4) to be a diffeomorphism.
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Finally, define

N
e =Y G+ (3.6)
k=1

We have, e.g., from [34, Lemma 4.1], that for a possibly smaller ¢y > 0,
then for € € (0, €],

. =  except on Qo)
ctg. <g<cg onf) (3.7)
WP norm of g, in Q(e) is less than c.

for a constant ¢ > 0 that is independent of ¢ > 0. Combining this with
the properties of g, we see that g. satisfies the required properties of
the lemma. U

In order to understand the effect of the Ricci tensor and H_ — H,
we also introduce the following. Fix zp € Q\ (¥ Usingg) and r > 0
small enough that 5r < inj (7o) (the injectivity radius of g at ) and
B (z9) N (X Using g) = 0.

Choose €5 > 0 be sufficiently small in the above so that

(Pleo) U Qleo)) N B (o) = 0. (3.8)
Let x : [0,00) — [0, 00) be a smooth nonincreasing function with
x=1on[0,1], x =0 on [2,00), [\'|* < Cx, (3.9)

with C some absolute constant. Set:
h := x(disty (-, 20) /r)Ric(ge) = x(disty(-, zo)/r)Ric(g); (3.10)

because g. = g outside P(€) U Q(e). Here Roic(g) is the traceless part
of the Ricci tensor of g, etc.

For 7 > 0, define

Ger = Ge — Th.
If 7 is small enough, independent of €, then g., also satisfies Lemma
3.6 with g, replaced by g., with constants c¢ being independent of €, 7
provided they are small enough. Observe that the Sobolev constants
in the Sobolev inequality for g. and g., are uniformly bounded.

Let px be as in (3.2) and ¢, be the partition of unity on Uy, ..., Uy
mentioned above. Let

N
1= Y i
k=1

Then n =1 on Q(e/2) and n = 0 outside Q(e).
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Lemma 3.7. The following statements hold.

(i) There is a > 0 such that if 79, €9 > 0 are small enough so that if
€ € (0,6, 7 € (0,70], € < 72, then for any Lipschitz function

u on ()
/llﬁ(gw)u2 dvy, . (3.11)
Q
- [ Rightdu, +ce? [ (H~ Hoidu,,
Q\(P()UQ(e)) P(355¢%)

n-2
o 2n_ "
+ %7’/ X|Ric(g)|2u2 dvg, . — e / un=2 duvg,
By, (z0) Q(e)UBY,.(x0)
- CT% / ’vge,‘ru|2 dvge,‘/—?
Q

for ¢ > 0 which is independent of €, 1.

(ii) There is > 0 such that if 19, €9 > 0 are small enough so that if
€ € (0,6, 7 € (0,79], € < 72, then for any Lipschitz function
u >0 on Q with u|apg = 0,

1
2
/ R(gG,T)u dvge T Z —CT |:/ |vge Tu|2 dvge T:| Y (312)
for ¢ > 0 which is independent of €, 7.

Proof. First we prove (3.11). Since n = 0 outside Q(¢) and g. = ¢
outside P(e) UQ(€). We have

/R(gw)u2 dvg, . (3.13)
Q
- / ,r]R(g@T)/u’z d/Uge,‘r + / (1 - n)R(gE,T)u2 dvge,r
Q(e) QN\Q(e)
— [ Rlgydu,+ [ aR@)dn+ [ (Rlg) - Blg)tde,,
P(e) © Jaw B j
:?,A ::"B :TrII

+ / R(g)u® dv,.
Q\(P()LQ(e))

Here we have used the fact that P(e) U Q(e) is disjoint from B, (o).



Capacity, quasi-local mass, singular fill-ins 17

First, we have

I, — / R(g)? dv,, (3.14)
P(e)

> —c/ u? dvg, + 62/ (H_ — H)u®dv,,
P(e) P(2/400)

n—2

2 2n n
> —cen [/ un—2 dfug6} + 62/ (H_ — H{)u*dv,,,
P(e) P(55¢2)

400

where we have used Lemma 3.6(iii).

Next, we have

N
Ip = / nR(ge) dvg, = 6_1/ Zpkl/}kR(ge)UQ dv,, . (3.15)
Q(e) Q(

) k=1
We estimate each term separately. Recall that, in each coordinate chart
Ug, k=1,..., N,
R(ge) = (96)71 * 8Fe + (ge)il * e x Fea

where the partial derivatives are with respect to Euclidean coordinates,
I'. denote the Christoffel symbols of g. in these coordinates, and the “x”
notation above stands for linear combinations of the form g7 d,.[(T'¢)3, ],

J(Le)s,(Te)w,, respectively. Using this expression, we can estimate
each term of (3.15) by integrating by parts.

For k > 0, we have:

et / prbe R(ge)u® du,, (3.16)
Q(e)

= / pri[(9e) T+ T 4 (ge) ™ # Te x T Ju? duy,
UrNQ(e)

> e [ (€ 10g.]+ 100 + ulYullog.]) du,
UrNQ(e)

2 1 2 2 2n_ n
—c {E_H_(" 2 (1+ /’Q_l)ﬁ(” p)é} [/ un=2 d”"ge]
U

kNQ(e)
— cm/ |Vg.u
UkNQ(e)

where we have used the generalized Holder inequality, (3.7), |I'¢| =
O(]0gc|), and the fact that @ has co-dimension at least ¢ and Lemma
3.6(i1). Here and below, ¢ > 0 is a constant independent of €, 7, k.

Vv

2 dvg,,
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The meaning of ¢ may change from line to line. Summing (3.16) over
k=1,...,N, we get

n—2

2n n
Iz > —CTé/ IV ,.ul? dv,, — cr? {/ un—2 dvge} (3.17)
Q(e) Q(e)

if €@ < 72, K = 72, where a is of (2 — 2)¢ and —1+ (& — ) which is
positive.

We now proceed to estimate II from (3.13). To do so, let’s recall:

Lemma ([7, Proposition 4]). Let (2™, g) be a smooth Riemannian man-
ifold. If g = g + h with |h|, < %, then the scalar curvatures satisfy:

R(g) — R(g) = —div,(divy(h)) + Agtryh — (h,Ric(g)), + F
where |F| < C (|Vh|? + |h|4|V?h|, + |Ric(g)||h]2) and C depends only
on n. Here V s the covariant derivative with respect to g.

Hence, for small 7, we have
R(ger) = R(g) + 7divy(div,(h)) + 7(h, Ric(g)), + E,
on BY (z¢) where |E;| < er?, with ¢ independent of ¢, 7. Moreover,
dvg, . = (1 + Es) dv,

on BY (zg), where |Es| < 72, with ¢ independent of €, 7, because the
perturbation tensor h from (3.10) is traceless. Moreover, since

Ric(g) = Ric(g) — 2 R(9) = (Ric(g) — 3R(9)9) + 52 R(g)g.
and the first term of the right hand side is divergence-free, we have
div, div, h = div, Ric(g)(V,x, -) + =2 divy(xV4R(g)).

Using the fact that h, its derivatives, and Ric(g) are bounded by a
constant independent of €, 7 in Bf.(zg), for any x € (0,1) we have

In = / (R(ger) — R(g))d® do,,. (3.18)
BY{,.(w0)

/ (R(g) + 7div,div, h + 7(h, Ric(g)), + E1)(1 + Eg)u2 dv,
Bgr(mo)

v

7'/ (div, div,h + (h, Ric(g)),)u® dv, — 072/ u? dv,
B (z0) Bj, (z0)

> 7'/ Y| Ric(g)|?u? dv, — 072/ u? dv,
B, (x0) Bf (x0)
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e [ WVl VoRiclg)] + XV, R(9)) dv,
BZT o

> (e [ Rl dv, k7 [ (9, uP e,
Bf,(z0) B

1 (z0)

—o(T* + KT) / u” duy,
Bj,(wo)

> Z/ X|Roic(g)|2u2 dv, — T3 / |ngu|2 dvg, . — et /
2 J B4, (@0) BY, (a0) BY, (x0)

if we take Kk = T%, where ¢ continues to denote a constant independent
of €, 7, provided 7y is small enough.

Altogether, (3.13), (3.14), (3.17), (3.18) imply (3.11).
Now let’s prove (3.12). As before, R(g) > 0 outside sing g, u > 0, so

/ R(gG,T)u dvgs,ﬂ' 2 / R(g€>u dvge +/ nR(gf)u dvge
Q P(e) Q(e)

— IV, —IVp
T / (R(ger) — R(g)udv, .. (3.19)
B, (o) B
v

Arguing as for I4 in (3.14), we can estimate

n—2 1
2

2 .

dvge} ;

n+2 2n_ 2n n+2
IVy > —ce2n [/ un—2 dvge] > —ce 2n l/ Vg.u
P(e) Q
(3.20)

we used the Sobolev inequality for functions with value zero boundary
value on €2, together with Lemma 3.6(i).

Arguing as for Iz in (3.15), (3.16), we have, for each k =1,..., N:

e ! / Pk R(ge)u duy, (3.21)
Q(e)

> —¢ [(e_1|8ge| +10g*)u + |V u
UrNQ(e)

10g. |] dvg,

n—2

_qont2 1 nt2 2 2n_ on
—c [e PO 4 o P)e} [/ un—2 dvge:|
UrNQ(e)

Vv

2
u dvgz,r )
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2 2n 2 2 ;
> —cT un—2 du,, + |V g ul” du,,
UrNQ(e) UpNQ(e)

if €/ < 72, where §8 is the minimum of —1 + (%2 — %)6, (3 - %)E and
(&2 — %)E which is positive. Thus, relaxing Uy N Q(€) to © and using
the Sobolev inequality for functions with value zero boundary value on

2 together with Lemma 3.6(i), we find that

2
IVy > —cr2 {/ﬂ |V u 2dvg€] : (3.22)

with ¢ independent of €, 7.

Finally, arguing as we did for IV in (3.18), we get:

2
V > —cr [/ \VgE,Tu|2dvgm} : (3.23)
Q
Thus, (3.12) follows from (3.19), (3.20), (3.22), (3.23), and Lemma
3.6(i). This completes the proof of Lemma 3.7. O

Proof of Theorem 3.3. Fix xy € Q \ sing g and choose r > 0 and con-
struct g. . as above. Let 7; € (0,1), 7, — 0. Define ¢; > 0 so that

€, el <72 (3.24)

where «, 8 are as in Lemma 3.7. For notational simplicity, set g; :=
Geiri- Let ¢, = 4(n — 1)/(n — 2). By Lemma 3.7(i), using Sobolev
inequality, we conclude that if ¢ is large enough, then

/ Vgu
Q

for some A > 0 for all ¢ for any smooth function with compact support
in 2. By standard arguments, there is 7y > 0 such that for all i =

>+ ¢, R(gi)u® dv,, > )\/ IV, ul*dv,, (3.25)
Q

19,40 + 1,... there is a smooth u; > 0 solving
—Agiui + ﬁR(QZ)UZ =0 in Q,

u; =1 on 2. (3.26)

Hence u?/ (n=2) gi is a smooth metric on 2, has scalar curvature every-
where equal to zero, induces the same metric as g; on X = 92, and the
mean curvature of ¥ with respect to g; satisfies

H gy, = Hy +2(n — 1), (3.27)

where v is the unit outward normal of g. The theorem follows from the
following lemma because xy,r are arbitrary. 0
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Lemma 3.8. Let u; be as in the proof of Theorem 3.3, we have:

(i) liminf; (infg %ui) > 0, where v is the unit outward normal
of 3 with respect to g.

(ii) If g is not Ricci flat at xo, or if H_. > H. somewhere in P,
then [;, 24do > 0 if i is large enough.

Proof. (i) Let f, denote the positive part of a function f, i.e., f} =
max{f,0}. Multiply (3.26) by v; = (u; — 1); and integrate by parts.
Using Lemma 3.7(ii) we have that for large i

2
/\/ V0 dv,, < / |Vgivi|2+4&:2l)R(gi)vi2 dv,, < cr; {/ Vg, 03] dvgz]
Q Q Q

for some ¢ > 0 independent of 7, where A > 0 is the constant in (3.25).

Hence
1
) 2
/|Vgivi| dvg, | <ecm.
Q

By the Poincaré-Sobolev inequality, we have:

lim [ [(u; —1)4]*dv, = 0. (3.28)

1—00 0
In particular, the L? norms [, u? dv,, are uniformly bounded. Recall
that, by (3.7), g; = g near 3. Consider a collar V' near ¥, without loss
of generality V' = 3 x [0, 1], where the metric g is of the form dt* + hy;
here ¢ denotes the distance from ¥ and h; denotes a smooth metric on
Y x {t}. Hence, by the mean value inequality and Schauder boundary
estimates, limsup,_, [|us]|c2(v) < 00.

If (i) were false, then by Arzela-Ascoli we could to pass to a subsequence
that converges in C'(V) to a function ue on V. If Lus () < 0 at
some Ty, € 2, by (3.28) us < 1 on V since the L? topology is weaker
than C', so this is impossible. Hence (i) is true.

(ii) Suppose fz %ui do < 0 for infinitely many . We may suppose this
is true for all ¢ large enough. We want to prove that g is Ricci flat at xq
and H_ = H, on P. First note that since u; = 1 on X, by the Sobolev
inequality, we have

n—2

2n n
(/ uz'n_QdUgi> <c (/ |V, us2dv,, + 1)
Q Q
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here we have used the fact that cg; < ¢ < ¢ !g; for some ¢ > 0
independent of 1.

Multiplying (3.26) by u;, integrating by parts, and using using u; = 1
on X, Lemma 3.7(i) we have,

OZ/%uida
b

= /Q ]Vgiui\Q + cnR(gi)u? dvy,

> / R(g)u? dv,, + 0_16;2/ (H_ — H)u? dv,,
Q\(P()UQ(e)) P(

1 2
T00¢)

. 1
+ %Tl/ X|Ric(g)|2u2 dvg, + (1 — CTf)/ \Vgiuilz dvg,
B, (x0) Q

n—2

3 2n_ n
— 1/ / ul? do,,
Q(e)UBg, (z0)

> [ Rightdvg +c7'e? [ (H~ Houtdo,
Q\(P(e)uQ(e)) P(

1 2
100¢)

. 1
+ %Tz/ X|Ric(g)|2u? dvg, + (1 — CTf)/ |Vgiui]2 duvy,
By, (o) Q

ol

— cT; (3.29)
Since R(g) > 0 outside sing g, H, < H_ on P, we have
lim [ |V,wl|*dv, = 0. (3.30)
1—00 Q

By the Sobolev inequality on u; — 1, and the Harnack inequality, we
find that, after passing to a subsequence, u; — 1 locally uniformly
away from P U Q. Therefore, (3.29) further implies that R(g) = 0 on

Q\ (PUQ), Ric(g)(x9) = 0. Hence g is Ricci flat on .

[t remains to prove H, = H_ along P. Note that on P(¢y) = (—¢o, €9) X
P, c(dt*+h) < g; < c}(dt?+h) for some ¢ > 0 independent of 7, where
h is the induced metric of ¢ = g, = g_ on P. Let doj, be the volume
form of h on P. Since u;(z,€y) — 1 uniformly on {eg} x P,

eiQ/ (H_ — H)u dv,,
P(g5€7)

>cie 2 ot H —H 2
>cr€; (H_ D) (2)ui(z, t)dop(z)dt
0 z€EP
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c
:EIO P(H, — Hy)ui(z, e0)doy,

cac? [ e [ = HOEE ) = o) )
/(H ~H,)doy — cae / / 2(2. 1) — u2(z, eo))|don (2)dt

>0, / (H_ — H,)doy — 26,7 / o / ( / \uﬁtui\(z,s)ds) don(2)dt
P 0 2eP \Jo

202/(1{_ — H,)doy, — 63/ (/ |u;0pu;| (2, s)ds> dop(z).
P 2ep \Jo

where ¢, ¢y, c3 > 0 are constants independent of i. By (3.30), Sobolev
inequality applied to u; — 1 we conclude that fQu dvg, is uniformly
bounded. By (3.30) and the Schwarz inequality, we conclude that
Lo (Jo° lui0us|(2, s)ds) don(z) — 0, as @ — oo. Combine this with
(3.29), we conclude that H_ = H, along P. O

4. ISOLATED SINGULARITIES IN DIMENSION THREE

In Theorem 3.3, the metric is assumed to satisfy condition (C). In
particular, in dimension three the metric is assumed to be WP, p > 3,
near codimension-three singularities. However, the conclusion of the
theorem is still true in dimension three for isolated point singularities
with the weaker assumption that the metric is L as in Definition 3.1.
Namely, we have the following:

Proposition 4.1. Let (Q3,g) be a singular fill-in of (Z,v) such that
H (sing g) < oco. Then F(X,7) # 0, and

L H do < A(Z, 7). (4.1)
8

If equality holds in (4.1), then singg =0, ¥ is connected, and (), g) is
a mean-convex handlebody with a flat interior.

Remark 4.2. The proposition is not true if the metric is not L>. Let
m > 0, and consider M = B(1) \ {0} in R3, with metric given by

g =dp* + ¢'r’hg
where ¢ =1 — 3=, hg is the standard metric of the unit sphere, and r,

p are related by dp = ¢*dr with p = 0 when r = sm. Then (M, g) is

1sometric to a portion ro > 1 > %m (for some rq) of the Schwarzschild
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manifold with negative mass —m. By the computations in Section 7.1,
we see that the conclusion in the proposition is false for (M, g) if viewed
as a potential “singular fill-in” of a round sphere. On the other hand,
near the singular point p = 0,
3(1+0(p3))ho.

Hence the metric is not bounded below (thus, not L) near the singular
point, so it is not an admissible singular fill-in per Definition 3.1.

g =dp*+cp

The proof we give relies on the idea behind the class F of fill-ins; see
Definition 1.4. The unprescribed minimal surfaces at the boundary
will, essentially, be used to “hide” the singular points.

Proof of Proposition 4.1. The result is trivial when sing g = (), so let’s
assume that singg # 0. We will explicitly construct an element of

o

F(X2,7); thus, F(X,~) is also nonempty by Proposition B.4.

Let 1 be the Greens function for the Laplacian on (23, g) with Dirichlet
boundary data on 02, and ¢ (z) — oo as disty(x,singg) — 0. We
note that such Greens functions exist for g with isolated L*> point
singularities; see, e.g., [17]. Moreover, ¢ € C2 (2 \ sing g) and

¢ tdist,(-,sing g) ! <9 < edist,(-,sing g) !, x € Q, (4.2)
where ¢ depends on the original metric g.
Define g. = (1 + ey))?g. Note that
lim H;, = H, uniformly on X (4.3)

e—0

and, since R(g) > 0 on 2\ singg,
R(g.) > 0 on )\ sing g. (4.4)
Fix a family of disjoint open neighborhoods of the points in singg

(one for each point) labeled {Up,} esingg, S0 that each U, C M \ X is
diffeomorphic to a 3-ball.

Claim. Let p € singg. There exists ®, : R*\ B1(0) — U, \ {p}, which
is a diffeomorphism, and a constant ¢, > 1 such that

C]:,igo S (I)p*/g\e S Cp,ego- (45)

Here, gy is the flat Euclidean metric.
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Proof. Let (y', 4% y?) be coordinates near p such that p = (0,0,0) and
U, ~ B;(0). We'll take the inversion z := |y|™* to be our diffeomor-
phism. By (A.1) we have g < go, so by (4.2) and (A.12),

0,7 ge = (L+ e 0 @) D, "g < (1 + cefa]) '@, go = ¢'(ce + || ™) go-
The reverse inequality follows similarly. U

Claim. For small € > 0, there exists a surface (possibly disconnected)
T C Upesing gU, that is minimal with respect to g., and such that there is
a single component ' of Q\T. that contains ¥.. Moreover, V' Nsing g =
0, so the metric completion of (S, gloy) is an element of F(X,7).

Proof. By employing the low regularity excision lemma in [18, Lemma
6.1] and standard geometric measure theory we find, for each p € sing g,
a compact g.-area minimizing element of [0U,| € Hy(U,\{p};Z), which
does not contain {p}. Let’s denote it T}, ., with spt T. C U, \ {p}. From
geometric measure theory,

spt Ty \ OU, is smooth. (4.6)

By a straightforward area minimization comparison argument and the
locally uniform convergence g. — g on U, \ {p}, we know that

ltn | spt Ty J5, = 0. (47)
where | - |5, denotes area with respect to g..

Denote W, := {z € U, : dist,(x;0U,) < 7}, where 7 > 0 is small.
First, we show that spt T}, N (W, 2, \ W,,-) = 0 provided ¢ > 0 is small
(depending on 7). If this were not the case, then for a sequence €; \, 0
we’d be able to choose points z,; € spt T, N (W2, \ Wp7) on our
area minimizing surfaces. By the fact that g, — g locally smoothly in
U, \ {p} and from the monotonicity formula (for minimal surfaces) in
small regions of Riemannian manifolds applied to spt T, N (Wp2r \
W,.+), we find that

lim inf | spt T, |5. > 0,

j
contradicting (4.7). Thus spt T, N (Wy2, \ W,.-) = 0 for small € > 0.
Since W2, \ W, ; disconnects Up, we have:

(1) T, C W, or
(2) T} N Wpar =0,
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for every connected component T ;76 C sptTp.

Case (2) cannot occur for arbitrarily small € > 0: any nontrivial ele-
ment of Hy(U, \ {p};Z) that is supported on U, \ W, has a uniform
lower g.-area bound comparable to the g-area of W, o, (e.g., compare
to the uniformly equivalent setting in B;(0) \ B2 (0)).

Thus, case (1) will hold for every connected component of spt 7, when
e > 0 is small, so spt T, N OU, = 0, so

(4.6) = spt T, is everywhere smooth.

Since T, generates Hy(U,\ {p};Z), it follows that T, . is a multiplicity
one embedded submanifold, so the metric completion of U, \ T}, does
not contain p. The claim follows with T, = Upcging g SPt T)p e U

As a consequence of the claim, the metric completion of (€, g|q/) is an
element of F(X,7), so

1 1 o
— H,do=— H,do < A(X =AX
87T 50 g g 87T oy g 0> ( 7,}/) ( ?7)7

where the last equality follows from Proposition B.4.
Now we study the rigidity case of (4.1).

First, we show R(g) = 0 on Q\sing g. Indeed, whenever R > 0 at some
point, then one can conformally decrease the scalar curvature, while
maintaining scalar nonnegativity, the induced metric on the bound-
ary, and increase the boundary mean curvature pointwise; this would
produce a singular fill-in of (X, ~) that violates (4.1).

Now we’ll show that Ric(g) = 0. Let h € C*°(Sym, T*Q2) be an arbi-
trary smooth symmetric 2-tensor that is supported away from ¥ Using g.
For concreteness, suppose that

{h#0} CcU cc Q\ (X Usingg).
For small £, the symmetric 2-tensors
gt =g —th

are L metrics that are smooth away from sing g. Recall that R(g) = 0
on Q\ sing g, and that R(g;) = 0 near sing g for all small ¢.

Consider the first eigenvalue, A, of —Ay, 4+ £ R(g;) on Q with Dirichlet
boundary conditions: us|y; = 0. Note that Ay > 0, so A\, > 0 for small
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t. In particular, we can find u; € WH(Q), p > 1 arbitrary, and smooth
locally away from sing g, such that

—Agtut + %R(gt)ut =0 in Q (48)
u =1 on 2.

Note that ug = 1 and u; > 0 for small ¢. Thus, fixing p > 3, by the
Sobolev embedding theorem g; = u}g; is a L™ metric on Q for small t.
We claim that (€2,3;) is a singular fill-in of (3, ) for small ¢. Indeed,
sing g; C sing g, gi|s = v, and R(g;) = 0 on Q \ sing ¢g. Finally,

Hj = Hy + 42 u,. (4.9)
This is positive for small ¢, since uy = 1, so, (€2, g;) is a singular fill-in.

Since H,, is assumed to attain equality in (4.1), (4.9) implies

» Luydo <0 (4.10)

for all small ¢, with equality at ¢ = 0. Fix ¢ > 0 and a smooth
background metric g, with

& g < g1 <@g (4.11)

For small » > 0, write U for the r-neighborhood of sing g with respect
to g; . Recall that u; is smooth locally away from sing g. The divergence

theorem on €\ U, (4.8), and (4.10) imply

1 0
0 Z g /Q\Ur(t) R(gt)ut d'Ugt + /aUﬁt) Wgtut dO'gt,

where, in the rightmost surface integral, v, is the normal pointing

outside of U and doy, is the induced area form on 8U7£t), both taken
with respect to g;. Rearranging and bounding |Zu| < |V,ul,

/ " R(g:)us dvg, < 8/ o |vgtut| dog,.
Ut Uy

If dog, denotes the area form induced on U by g, then (4.11) implies

/ o R(g¢)uy dvg, < 52/ " |Vg,ui| dog,,
U U

for a fixed constant ¢, independent of . We now observe that the left
hand side is constant for small enough r, since R(g;) = 0 near sing g,

and the right hand converges to zero for at least one subsequence r; — 0
in view of u; € WP(Q). Therefore:

/R(gt)ut dvgt <0
Q
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for all small ¢, with equality at £ = 0. Recall that

d
[aR(gt)} = divydivy h — A, Try h + (h, Ric(g)),,
t=0

that h = 0 near singg, R(g) = 0 on Q \ singg, and ug = 1. Thus
differentiating the integral of R(g;)u, and setting ¢ = 0, we find that:

/g)(h,Ric(g))Q dvg < 0.

Since we h was arbitrary, we deduce that Ric(g) =0 on 2\ singg. It
follows that sing g = () by [36]. In particular, the result follows from
the smooth case: [20, Theorem 1.4]. O

5. A RESULT IN FUNCTION THEORY

The rigidity statements of Theorems 1.5 and 1.9 will be established
using the following characterization of Euclidean balls in terms of their

Green’s functions, which might be of independent interest; see also [1,
Corollary 2.2]:

Theorem 5.1. Suppose (2, g) is a compact, connected n-dimensional
Riemannian manifold, n > 3, with boundary 3 such that:

(1) There exists an isometric immersion ¢ : (£, g) — R";
(2) there exists ap € Q\ X and a v : Q\ {p} — R such that
Ajgp=00nQ\{p}, v=0at%, v=Ad>"+0(1)
for some A > 0, where d = disty(p, -); and
(3) ¢ satisfies the boundary condition
Zy+cH=-bat %, (5.1)

where H is the mean curvature of ¥ with respect to the unit
normal v pointing outside of 2, and b > 0, ¢ > 0 are constants.

Then (£2, g) is isometric to a Fuclidean ball in R™ with radius v so that

AR —n)r* " +br +c(n—1) = 0.

Proof. Without loss of generality, let «(p) = 0 (the origin of R™). Let
Q = () C R". Let R be the smallest radius so that Bz(0) D Q.
We claim that «(X) N dBg(0) # (. Suppose, by contradiction, that
OBr(0) N¢(X) = 0. Let y € 9By(R) N Q, which is nonempty, and let
q € Q\ ¥ with ¢(q) = y. Since ¢ is an isometric immersion, there is an
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open set B, (y) C ¢(f2), for some r, > 0, because ¢ is a local isometry.
This contradicts the fact that Bz(0) D Q.

Let qo € ¥ with ¢(qy) = yo € OBo(R). Let £ : Br(0) — R be
Ely) = Ayl — AR,

a positive harmonic on Bg(0) \ {0} so that £ = 0 at dBg(0). Then
€ = £o . is also positive harmonic on Q\ . 71(0), € > 0 at X\ 1 (o),
and € — 0o as ¢ — ¢ 1(0). Moreover, £ = Ad>™ + O(1) near p. By
the maximum principle we have E > 1), and hence

D> 2g=A@2-n)R™

On the other hand, by the definition of R as the smallest enclosing
radius, H(qo) > (n — 1)R™'. By (5.1), we conclude that

b= 24+ cH>A2-n)R"" +¢(n—1)R

Hence
0>A2—-n)R* " +bR+c(n—1). (5.2)

Next, let a be a geodesic from p parametrized by arc length defined on
0,2,] so that «([0,,)) C 2\ X and a(t,) € 2. Let

r = inf{t,| a is a geodesic from p} > 0.

Let D(r) denote the union of all geodesics from p with length < r.
This is an open set as it is the image of exp,(B,(0)) and exp, is a local
diffeomorphism. We claim that ¢ is injective in D(r). If (c(a) N e(B)) \
{o} # 0, then () = () because they are straight lines from o. But
¢ is a local isometry, and thus o = . On the other hand, + must be
injective on . So ¢ is injective and «(D(r)) = B,(0), dD(r) = 9B,(0).
Note that » < R. By the definition of D(r) we conclude that there
exists y; € OBy(r) so that y; = ¢(q;) for some ¢; € 0N2. Let

Cly) = Ayl — Ar.

Then ( is positive harmonic in By(r) so that ¢ = 0 on 0By(r). Since
¢ is bijective in D(r), we conclude that ( o ¢ < ¢ in D(r). Then as in
the above argument we have at ¢y,

0< AR —n)r* " +br+c(n—1). (5.3)

Since A > 0, b > 0, the function f(z) = A(2—n)2?> " +bx +c(n—1) is
strictly increasing on (0, 00). Since r < R, by (5.2), (5.3), we conclude
that R = r and is the unique positive root of f(z) = 0 because ¢ > 0.
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It remains to prove D(r) = Q\ 3. If Q\ (XU D(r)) # 0, then there
is ¢ € (Q\X)NID(r), so 1(q) € OB(r). But ¢ is a local isometry, so
L(2) \ Bo(r) # 0, a contradiction. O

Remark 5.2. From the proof of the theorem, without assuming 5%1/} +
cH = —b, we still have (in the notation of the proof)

sup (Z¢ +cH) > A2 —n)R"" +c(n—1)R™",
2

igf (Zv+cH) <AR—n)r' ™" +c(n—1)r "

6. PROOF OF THEOREMS 1.5, 1.9, COROLLARIES 1.2, 1.6, 1.8

We want to apply the results in section 3 to asymptotically flat man-
ifolds with compact boundary. First, we prove Theorem 1.5. Arguing
as in Section 2, the metric completion of (M,9), § := ¢*g, is a smooth
manifold which is diffeomorphic to the one-point compactification €2 of
M, and carries a metric g which is smooth away from a point p € €
that corresponds to M’s infinity.

Lemma 6.1. The metric § extends across p to a WP metric, p > 6.

Proof. Using the inversion y = x/|z|?, p will correspond to the origin
y =0, by (A.12), if we let hy; = g(0,:i,0,5) and g;; = g(0yi, Oy ), then

C 4
0y = (7 + 007y = €1+ O(ll).
Hence g is continuous at the origin. On the other hand,

g  0x* 0 ((5pq 2ypyq) 9,

oyr — Ooyroxr  \[y2  [y[t ) 9z’
Hence
92 i,k 9 Ja,l
6'hiy = (C + A)! (@k - %) (czl - %) (0w + B)
2 i,k 2 Ja,l
= (C+ A)'B <5i - %) (5]1 - %) +(C + A)'sy.
where

[ AL+ lyl - [0, Al + | B + [y] - [0, B| = O(Jy|").
Hence |9,(¢*hi;)| = O(|y|™™"). The results follows since 7 > 3. O
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Proof of Theorem 1.5. Recall that we’ve set
(Q2,9) := metric completion of (M, g).

By Lemma 6.1, g is a WP p > 6, metric on  with singg C {p}. Since
Q) is diffeomorphic to the one-point compactification of M, 092 ~ .
In fact, since ¢ = 1 on X, g induces the same metric, v, on 9Q ~ X as
does g. The scalar curvature of the conformal metric is

R(g) =867 (~=Ay¢ + gR(9)9) = R(g)¢~" = 0 on @\ {p}.
The mean curvature of ¥ with respect to g and the unit normal v
pointing outside of 2 is Hg = —H, + 4%q§ on 0f2, which is positive by
(1.6), so (£2,9) is a singular fill-in of (3,7). Thus, from Theorem 3.3
or Proposition 4.1 and (1.4):

1 1

ANZ, 7)) > — | Hido=— —H,+42¢)d

( ’7)_87T o gao S 89( g T ay¢) o
1

= —— H,d 2C, (X, M

87 Jog g 40 + Cg(> )7

which gives (1.7), and thus (1).

If equality holds in (1.7), then Propositions 3.5 or 4.1 imply that (2, 9)
is a mean-convex handlebody with a flat metric.

Finally, suppose ¥ is a topological sphere. First, assume that equality
holds in (1.7). Then, by the previous paragraph, (£2,9) is a genus-0
mean-convex flat handlebody, i.e., a 3-dimensional ball. As such, it
can be isometrically immersed in (R?, go).

Let ¢ := ¢~ — 1. Note that, by the formula for the transformation of
the Laplacian among the conformal metrics g = ¢g:

Agyp = ¢_5(Ag(¢¢) - ¢Ag¢) = 0.
Moreover,
1 =0 on 0,
P = Cy(X, M) distg(-,p) ' + O(1) near p,
the latter holding in view of Lemma A.2. Finally,
Hj + 4%@& = —H, on 09. (6.1)

Since H, > 0 is a constant, it follows from our characterization of Eu-
clidean balls in Theorem 5.1 that (€2, ) is isometric to a standard round
ball in R? of radius r > 0 for some r > 0. Hence (M, g) is isometric
to (B,(0)\ {0}, (¢ + 1)*go) where go is the standard Euclidean metric.
Using the Kelvin transform, one concludes that (M, g) is Riemannian
Schwarzschild outside of a coordinate sphere, as asserted.
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For the converse implication, see the explicit computation in Subsection
7.1, which shows that the left and right hand sides of (1.7) coincide in
the case of Schwarzschild and coordinate spheres .. 0

Proof of Corollary 1.2. This is Theorem 1.5 with H; = 0 on X. O

Proof of Corollary 1.6. Since Hy, < 4|V¢| on X,
1
2C, (2, M\ Q) <AX,v) + —/ Hgdo
8 »

by Theorem 1.5. The second term of the right hand side is < the first
by H, > 0 and Definition 1.4. The result follows from (1.11).

For the rigidity case, Theorem 1.5 (2) and Theorem 3.3 imply that the
blowdown (M \ €2, 9) is Euclidean. On the other hand, so is the fill-in
(€2, g). We thus have H; = Hj on ¥ by the Cohn-Vossen theorem (see
28]). Plugging into (6.1) we get Hy + 28%1,& = 0 on 0N). It follows from
Theorem 5.1 that (€, g) and (M\, ) are geodesic balls in (R?, gg). O

Proof of Theorem 1.9. We begin by applying the idea to reflect M
through its boundary, as in Bunting—Masood-ul-Alam [10]. Let

w:=1—¢ on M.
Let (M, g) be the mirror image of (M, g) and
(N.h) = (M, g) U (M,§)/ ~,

where ~ denotes the identification of ¥ C M with its mirror image in

—~

M. (Note that h is only Lipschitz across 3.) We denote the infinities

coming from M, M as ooy, 0oz, respectively. Let w be the harmonic
function which is the mirror image of w, i.e., near ¥, we have w(t, z’) =
—w(—t,2’) in exponential normal coordinates (¢,z’) over 3, with t =
disty (2, -). Define u: N — (0,1) to be

u(zx) == {

Note that u(z) — 1 as x — ooy, while u(x) — 0 as x — ocog;. Since
w=w=0onY, (N,uh) is smooth up to (but not across) ¥, Lipschitz
across X, and has scalar curvature

R(u*h) = 8u>(=Apu+ tR(h)u) > 0 on N \ .

(1+w) on M,
(1+w) on M.

N D
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The mean curvatures induced by u*g, u*g on the two sides of ¥, with
respect to the unit normal 1 pointing toward ooy, are

Hy yig = w2 (Hyy + 45 logu) = 4(Hy g — 45-0), (6.2)
Hs, yig = u™*(=Hy,y + 45, log ) = 4(—Hs, g — 45.0). (6.3)

Since Hy, , < 0 with respect to 17,
(62) — (63) — HE,u4g < HZ,u4'§- (64)
With ¢ as in the theorem statement, let N(c) := {u < ¢} C N. Note
that Theorem 3.3 applies to the metric completion of (u*h, N(c)):
(1) By (6.4), we have a (C)(a) singularity on X.

(2) By the asymptotic behavior of ¢ (and u) from Lemma A.2, u*h
can be compactified by adding a point p., that corresponds to
0077, at which u*h has a (C)(b) singularity; see Lemma 6.1.

(3) By the formula for the change in mean curvatures under con-
formal metric changes and assumption (1.15),

Hs(o)utg = ¢ *(Hye)g — 267 5-0) (6.5)

is positive, where Hy), is also computed with respect to the
normal 7). pointing toward oojy.

By the scaling properties of the total boundary mean curvature, and
ON(c) = X(c), we see that Theorem 3.3 implies:
1

ANE(e), 7)) = AM(Z(c), c*e) > — Hy (o)1, ¢'do,
8w 2(c)

2
— AS(e),7e) > — / Hy(o) iy do.  (6.6)
8 2(e)

Together, (6.5), (6.6), imply:

A(X( > 87r/ Hye) g doe — —/C) 5o doe.
We can integrate by parts using (1.3), (1.4) to get:
1
A(X(e),ve) > Hyo) g doe+c 1 Cy(S, M),

- 87T ¥(c)
which is precisely (1.16).

Now suppose that equality holds in (1.16). Then equality also holds in
(6.6), and thus in the invocation of Theorem 3.3 to (u*h, N(c)U{ps}).
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Thus, by Proposition 3.5, u*h is smooth and flat across ooz, though
perhaps not across . Nonetheless, Hy, 4, = Hy ,45 along 3, so

Hy,=0on X, (6.7)
by virtue of (6.4).

Recall that, for the rigidity case, we're additionally assuming >(c) is a
sphere of positive Gauss and mean curvature.

Since equality holds in (6.6) and (X(c), ¢*v,.) has positive Gauss curva-
ture, the results and methods in [32] allow one to attach (N(c),u*h)
to the exterior of a convex set in R?, along (X(c),c*y.), to obtain a

smooth 3-manifold N with piecewise smooth metric g. By the mono-
tonicity formula in [32], we conclude that the manifold has only one

end and zero ADM mass. By [23, Theorem 2], (N, g) is C>* isometric
to (R3, go), i.e., there is a C1 diffeomorphism ® : N — R® so that
®: (N,g) — (R3, go) is a Riemannian isometry. Moreover, ® is smooth
away from ¥ by Myers—Steenrod [27].

We may assume ®(coz;) = 0 (the origin). Note that a%¢ < 0on 2. For

t > 0 small enough, {¢ = 1 — ¢t} is a smooth graph over ¥ contained
in a small neighborhood of ¥. Observe that for any ¢ > 0, there is
to € (0,1) such that if 0 <t < ty, t € (0,t9) = |Hy(t)| < €, where
H,(t) is the mean curvature of {¢ = 1 —t}; here we've used (6.7). Let
D(t) be the domain in N bounded by {¢ =1 — t}.

If R(t) is the radius of the smallest ball centered at the origin and
which contains ®(D(t)), then by Remark 5.2 we have

—1Cy(S, M)(R(t)) >+ LR(t) = 2eR(t)> +C,(Z, M) > R(1).
Conversely, let r(t) be the radius of the largest ball centered at the
origin and contained in ®(D(t)). By Remark 5.2, we similarly have

r(t) > —2er(t)® + Cy(%, M).
Since R(t), r(t) are uniformly bounded, we may send € — 0 and con-

clude that CID(M ) is a ball of radius C,(X, M). As before we conclude
that (M, g) is Riemannian Schwarzschﬂd outside the horizon. U

Proof of Corollary 1.8. The fact that the set of ¢ for which . is a
sphere of positive Gauss and mean curvatures contains an interval of
the form [co, 1), ¢y € (3,1), follows from Lemma A.2. By (1.11),

Yy Ve) — / H,do. = 877/ (Hy, — Hy) do,
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where H,, denotes the mean curvature of >, when embedded, with its
induced metric 7., into (R3, go). O

7. RESULTS IN SCHWARZSCHILD MANIFOLDS AND SOME EXAMPLES

7.1. Some computations. Let (M2, g,,), m > 0, be a (doubled) Rie-
mannian Schwarzschild manifold:

3 3 m\4
M =RN{0}, gn = (1+5-) 50

Here, go is the Euclidean metric on R? \ {0}, and r = r(z) := |z|.
Consider ¥ = {r = ro}, MZ = {r > ry}, for ry € (0,00). The metric y
induced on ¥ is that of a round sphere of radius:

2
m
In the embedding (X,7) < (R3, gg) we have mean curvature
-2
m —
H, =2 (1 + 270) ot (7.2)

The mean curvature H,,, of ¥ in Schwarzschild with respect to the unit
normal pointing to oo is found by a conformal computation to be

-3
m m
H, =21+ — 1— — | rit 7.3
gm (4‘27,0) < 2TO)T0 (7.3)

Therefore,

1 1
g/EHgodU—Fg/zHgmdU:QTo—Fm. (74)

The boundary capacity potential for ¥ C (M=, g,,) is:

2 _
b=— (H%) [1— (1+3) 1] = (ro+ )+ 002,
(7.5)
Thus,
Coun (2, M) =10 + = (7.6)

2
Thus in terms of r4(¥) from (7.1) by solving for r( in terms of rjre2:

sy ra(X) 2m
C, (5, M) = AT (1 +/1— TA@) : (7.7)
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w_»

where + is a “4” when r > %m, and a
by (7.4), (7.6):

when r < %m In any case,

1
A(Z, ) + —/ H, do=2C, (%,M)) (7.8)
87T »

no matter what ry € (0,00) was to begin with.

Remark 7.1. The computations above also work for m =0 and m < 0
with My, :=R3, M,, := R*\ {r < I|m|}, respectively.

7.2. Proofs of Theorem 1.10 and its corollaries.

Proof of Theorem 1.10. We symmetrize as in the proof of the Poincaré—
Faber-Szegd inequality (1.17) (see [30]), but we will use H. Bray’s
isoperimetric inequality in (M,,, g.,) [4] instead of the classical isoperi-
metric inequality in (R3, g). In what follows, for any surface ¥ homol-
ogous to the horizon ¥y C (M, gm) we let |X| denote its area and
V(%) denote the signed volume bounded between ¥, X p.

Let ¢ be the harmonic potential for C, (3, M%), extended as ¢ = 1.
For t € (0,1], let Q; := {¢ > t}, let X; := 0Qy, and V (¢) := V(5,). It
is not hard to see that
d
¥, is an embedded surface, V'(t) = ﬁ for a.e. t € (0,1), (7.9)
P

where do, is the area element of ;. Now let ¥} denote the unique
rotationally symmetric sphere enclosing signed volume V' (t) with Xy
denote by €2 the corresponding annular region with 0€2; = ¥; and
signed volume V(¢). Also define ¢* : M, — [0, 1] by

¢*=ton Xy fort € (0,1], ¢* =1 on Q.
It is not hard to see that ¢* is Lipschitz, and

d *
Vo] =conston 5, V() = [ torte (0.1), (710)
w: V|

where do; is the area element of ¥;. By the coarea formula, (7.10), the
isoperimetric inequality, and Cauchy—Schwarz, we have

/ Vo> d /1 / \Vo*|do} | dt /1 =i dt
U = 1o} =
m o 0 =¥ ' o V(1)
</1 i dt</1< V| d )dt / IVo|*d
< < o = Vg -
0 V'(t) o \Us, t . !
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The right hand side is C,, (3, M=) by (1.4), while the left hand side is
an upper bound for C, (X%, MZ") by the variational characterization
of capacity (see [4, Section 6]). O

Combined with the computation of capacity on rotationally symmetric
spheres in Schwarzschild and (1.8), (1.18) gives upper and lower bound
of C,,, (X, M) :

Corollary 7.2. We have:

ra(X%) _2mH(E*) 5 ra(X) _QmH(E)
5 <1+ 1 —rA(Z*) )gcgm(Z,MM)g 5 <1+ 1 —rA(E) )

where r(X') is the area radius of a surface X', i.e., 4mw(ra(X))* = |¥/|
which is the area of ', and my(-) denotes the Hawking quasi-local mass

[14],
n . ‘E/ / 2
mH(Z ) = 161 167r Hgm do s

with do the induced area element of X' C (M, gm). Moreover, if either
inequality s an equality, then they are both equalities, and X = X*.

Corollary 7.3. Let X be a sphere of positive Gauss curvature bounding
a domain containing with the horizon Xy in a Schwarzschild manifold
(My, gm) with mass m > 0, so that as a surface in R®, ¥ contains
the origin. Suppose that the mean curvature with respect to the unit
normal pointing into M*>:

H, <4|V¢| on %; (7.11)
here, ¢ is the boundary capacity potential of ¥ that corresponds to
Cy,, (3, M>) per (1.3). If* is the unique rotationally symmetric sphere

in (M, gm) that bounds a domain with ¥y with the same (signed) vol-
ume as X2, then

/ (Hy, + H,,) do* < / (H,, + H,,)do. (7.12)
* >

Moreover, equality holds in (7.12) if and only if ¥ = X*.

Proof. From Theorems 1.5, 1.10, and (7.8):
1
oy (Hgo + H,,,)do > 2C,,, (2, MEL)

* 1
>2C, (X5, MZ) = 87r/ (H,, + H,,)do.

The first result follows. Rigidity follows from Theorem 1.10. U
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Another corollary of Theorems 1.9 and 1.10 is the following;:

Corollary 7.4. Let Y be a sphere of positive Gauss curvature bounding
a domain with the horizon Xy in a Schwarzschild manifold (M, gm)
with mass m > 0, and which is weakly outer trapped (its mean curvature
vector points to r = oo) and contains the origin in R3. Let ¢ be the
boundary capacity potential of C,, (3, M) given by (1.3). Set

u=32-9), S.:={u=c}, ce(3,1).

Suppose that ¢ € (%, 1) is a regular value of u and that the equipotential
surface ¥, has positive Gauss curvature and its mean curvature with
respect to the unit normal that points into My satisfies

H,, K > —4|Vlogu| on X.. (7.13)

If ¥ bounds the same (signed) volume with g in M, the rotationally
symmetric sphere X7, then

m

may(5) > (¢t —1) (mL(Z) - 1) B may (25, (7.14)

and equality holds if and only if 3 is the horizon and X, = ¥7. Here
mpy(Y) = o [5(Hy — Hy,)do, for ¥ =3, 3}, respectively.

Proof. This follows like Corollary 7.3 above, except we evaluate the
Brown—York mass of rotationally symmetric spheres using (7.4). O

7.3. Comparing the ADM mass to the A-invariant. We have
been discussing three quantities on an asymptotically flat manifold
(M3, g) with nonnegative scalar curvature with compact boundary X
which is a horizon. Namely, the ADM mass mapy, the capacity C(M, X)
and the quantity A(X,v) where 7 is the induced metric. Bray’s capacity
inequality (1.2) and Theorem 1.5 imply that

| Maby > Cy(X2, M);
In this section we’ll point out how there is no a priori relationship

between the ADM mass of a complete, asymptotically flat manifold
and the A-invariant of its boundary (recall Definition 1.4).

(7.15)

Fist, let m > m’ > 0 and consider the Schwarzschild metrics
m 4 m\*
Gm = (1 + —) 90, G = |1+ 5| 9o,
2r 2r

taken to be defined on M, :=R?\ B,,/2(0), M, :=R*\ {0}, respec-
tively. We can glue these two manifolds together by identifying the
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horizon ¥y = {|z| = m/2} C (M, gm) with the coordinate sphere
¥ =A{lz| =7} C (Myy, gn), where the latter is isometric to Xy. This
is doable because there is a unique such 7’ € (m?/, 00), given by

m'\*
2 2
(1 + 2_7,/> 471'(7“/) = 47r(2m) .

Define
(M,3) = (M, ) U ({m//2 < || < 7'} © Myt gur)/ ~

where the symbol / ~ on the right denotes the boundary identification
Yy =2 ¥/, This is a manifold with a Lipschitz metric which is smooth
and scalar flat away from ¥y, and has minimal boundary ¥%,. By
(7.2), we see that

~ 1 1

mADM(Mvg) =m>m'= 5 ) 8_/ Hgo do = %A<E}I>Pyl) (716)

m ’

H
Here, H,, denotes the mean curvature of ¥}, in R*. Even though g is
not smooth on ', the mean curvature jump on it is such that one may
apply the smoothing method of [25, Proposition 3.1] to the (larger)

rotationally symmetric manifold

(M, gm) U ({0 < 2] <7} C (M, gv))/ =~

where ~ still denotes the identification ¥ = 3’. One obtains rota-
tionally symmetric (M;,g;) that converge smoothly away from Xy to
the original nonsmooth manifold, and, by [25, Lemma 4.2],

lign mADM(]\Zﬁi) = mADM(M> 9);

on the left hand side, m4pys is computed on the end coming from M,,.
By a simple mean convex barrier argument, (M;, g;) contains a horizon
(X4, 7:) whose metric converges smoothly to that of ¥%. Thus

hm HO,i dO'%. = / HQO dO’vl.
H

1 /
Y

Here, Hy; denotes the mean curvature of the isometric embedding of
either ¥ ; or X% into R®. The last two limits allow us to smooth the
manifold giving the counterexample in (7.16).

Remark 7.5. One can arrange for (7.16) to hold with > in the in-
equality by suitably picking m — oo, m' — 0.
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Conversely, [22] shows the existence of asymptotically flat extensions
of horizons (3, ) with positive Gauss curvature, with ADM mass arbi-

trarily close to y/|X|,/167. The classical Minkowski inequality on R?
and [20, Theorem 1.5] imply, for nonround 3, that

/’2’7 1 / 1
H, do= s\ d
167 < 167 Js % 2 (.7, (717)

where H,, is the mean curvature of ¥ when embedded in (R?, go).

Remark 7.6. One can arrange for (7.17) to hold with < in the in-
equality by suitably picking (X,7) to be a long, thin tube.

APPENDIX A. ASYMPTOTICALLY FLAT MANIFOLDS AND CAPACITY

We recall the definition of an asymptotically flat manifold.

Definition A.1. A Riemannian 3-manifold (M, g) is called asymptot-
ically flat (of order T) if there is a compact set K such that M \ K
is diffeomorphic to R® minus a ball and, with respect to the standard
coordinates on R3, the metric g satisfies

gi =0 + O(|z| ™), 0gi = O(|z[7"""), 00gy; = Ol=[77%) (A1)
for some T € (3,1], and the scalar curvature R(g) satisfies
R(g) = O(|=[") (A.2)

for some q > 3. Here O denotes partial differentiation on R3.

In asymptotically flat manifolds of order 7, we have precise control of
the boundary capacity potential from Definition 1.1, (1.4). Namely:

Lemma A.2. If (M3, g) is asymptotically flat of order% <1 <1, then
in BEuclidean coordinates x near infinity,

o(e) = =M Lo e, (A.3)

| ]
for a constant C,(X, M) > 0.

Proof. We'll write Aq for the Euclidean Laplacian and use the notation
u; = O;u, etc. Here and below, C' will denote positive constant which
is independent of z and r. Let ¢y = ar~! — r=17¢, with a,e > 0. Then

Ay = Agth + oyt + kit = —(14+€)(B3+€)r >+ 0(r™37). (A4)

with o;; = Oa(r™7), k; = O1(r~'77). Choosing € < 7, there is R > 0
independent of a so that Ay¢) < 0 on R*\ Br(0). Choose a > 1 so that
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1 > ¢ on the complement of R?\ Br(0) in M. We conclude, from the
maximum principle, that ¢ < 1 < ar~! on M. Similarly, ¢ > —ar1,
giving the required bound on |¢|. By the interior Schauder estimates,
[13, Theorem 6.2] we have

6] < Clal ™, [96] < Cla] 2, 00¢] < Cla] ™.

Extending ¢ to be a smooth function on in a compact set, we may
assume that ¢ is defined in R? so that f = Agp = O(r=3"7) by (A.4)
because A,¢ = 0 near infinity. Let

w(z) = —— / i)y

A R [ — ]

By the decay rate of f, this is well defined and Aqw = 0.

fly) f() f()
Lotya= /Bm(z) =~ 9] dyf/wm PR

[\ [\

=1 =T
N / ') g
JENB, (@08, o0 17—yl
:?IrII

Since |y| > r/2 for y € B, s(x),

d
1| <CrsT / W (A.6)
B, /2 (x) |z — y|
Since outside B, o(), |z —y| > §. Hence
| IIT| < C’r1/ ly| > Tdy < Cr7 . (A7)
R3\Br/2(0)
To estimate II, let
a:=— [ f(y)dy.
R3
Note that @ is a finite number by the decay rate of f. For r = |z| > 1,
a 1 1 1
wi et [ s [ (e ) S
r T JR3\B, 5(0) B, /5(0) lz—yl ||
— TV =V

(A.8)
By direct integration it is easy to see that

IIV|<Cr . (A.9)



42 Christos Mantoulidis, Pengzi Miao and Luen-Fai Tam

Since |r —y| > § for y € B, /5(0), we have

2z y — |yl
/Br/2<0) (Vﬁv\ |z —yl (Ja| + |z — y|)) Fy)dy
(A.10)

By (A.5)-(A.10), we have w = ar~'+O(r~'~7). Thus, by the maximum
principle, w = ¢.

|V | = <Cr ' .

The higher order estimates, again, follow from [13, Theorem 6.2]. This
completes the proof of the lemma. 0

It will often prove to be useful in this paper to invert coordinates on
our asymptotic end. The inversion map is defined to be:

O R\ {0} = R3\ {0}, y = ®(x) = |z| 2. (A.11)

Using the inversion y = x/|z|?, the point co will correspond to the
origin y = 0. Suppose ¢ is a metric outside a compact set of the z-
space in R and g¢;; = ¢(0,i,0,5) such that g;; = ;; + 0;;. Using the
above inversion, let h;; = g(0,i,0,s) and g;; = g(0,i,0,i). Then

hij = |yl ™ {8i + o5 + |72 [4' vy o — 21y (v'y o + vy ou)
1

In particular, if g;; = d;;, then hy; = |y|~*0;;.

APPENDIX B. F(X,7), A(Z,7) FOR DISCONNECTED ¥

We revisit 7, A from [20, Definition 1.2] where ¥ had been assumed
connected for simplicity. We’ll generalize results about F, A from [20)]
to match the revised Definition 1.4 of the current paper.

The following two lemmas generalize verbatim—the connectedness of
> didn’t play a role.

Lemma B.1 (Filling, ¢f. [20, Lemma 2.2]). Suppose (2, g) € F(2,7)
s such that:

(1) ¥y =00\ Xo is nonempty,
(2) R(g) >0 on Xy C 09, and
(3) every component of Xy is a stable minimal 2-sphere.

Then for every 1 > 0, there exists (D, h) € F(S,~) with Hy > H, —n
on its boundary So, which corresponds to %o .
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Lemma B.2 (Doubling, cf. [20, Lemma 2.3]). Suppose (Q,g) € F(Z,7),
and that X = 0Q \ Yo is nonempty. Let D denote the doubling of
across Yy, so that 0D = ¥ UXy,, where Xy, denotes the mirror image
of Xo. For every n > 0 there exists a scalar-flat Riemannian metric h

on D such that (D, h) satisfies:
(1) Yo with the induced metric from h is isometric to (%,),
(2) H, > Hy on Xo, and
(3) H;, > Hy —n on X,

where H, denotes the mean curvature of Xo in (2, g), and Hy, Hj
denote the mean curvatures of Yo, X in (D, h).

Lemma B.3 (cf. [20, Lemma 3.1]). If (Q,g) € F(Z,7)\ F(,7), then
1

87T 90

Proof. Use the doubling lemma (Lemma B.2) to get (D, h) € F(Z,79),
where 3 =X U Y/ ¥ ~ 3, J|s = v, and which has
Hp > H, on X. (B.1)

It will be convenient to split up (X, ) into its connected components:

(E,’}/) = (21771) L U (Ek,%)
Apply the cutting lemma [20, Lemma 2.1] (which didn’t need to be gen-
eralized) k times to (D, h) to isolate the boundary components (X;, ;)
and obtain (€2;,v;) € F(X;,7,), j = 1,..., k, with boundary mean cur-
vatures Hy, j = Hy|x, > Hyls,. Fix j =1,... k. Since ¥; is connected,
20, Proposition 5.1] gives /O\(Ej,%-) = A(X;, ;). Together with (B.1):
o 1 1
A, 5) = MEy ) 2 o~ o, Hy,;doj > g/zj H,yls, doj.

This implies, by the additivity theorem ([20, Theorem 1.2]), that

k k
AX,y) = ZA(Ej,’yj) > Z/ Hyls, doj = / H,do.
= Rl o) a0
The result follows. O

As a direct corollary we get:

o

Proposition B.4 (cf. [20, Proposition 5.1]). A(X,v) = A(2, 7).
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Proof. Take the supremum over F(2,7) \ F(2,7) in Lemma B.3. O

For the sake of completeness, let’s also generalize some auxiliary results
from [20, Section 3], though they’re not currently necessary.

Proposition B.5 (cf. [20, Proposition 3.1]). If ¥ is a finite union of
spheres and ~y is any Riemannian metric on X, then A(X,v) < oo.

Proof. From Proposition B.4, A(2,7) = A(,7). The latter is known
to be finite by combining the additivity theorem [20, Theorem 1.2] with
the finiteness theorem for single 2-spheres [20, Theorem 1.3]. O

Proposition B.6 (Rigidity in F, cf. [20, Proposition 3.4]). If (2, g) €
F(X,v) attains the supremum A(3,7), i.e., if

1 .

— H,do=AZ

871— 50 g a < I ,y)?
then X is connected, (2,g9) € F(X,7), and it’s isometric to a mean-
convex handlebody with flat interior whose genus is that of 3. If ¥ were
a sphere, then (2, g) can be isometrically immersed in (R3, go).

Proof. The fact that (,g) € F(3,) follows from Lemma B.3. The
result follows from the rigidity theorem for F, [20, Theorem 1.4]. [
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