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1 Introduction

In the last twenty-five years the field of dispersive PDE has seen incredible advances, from the
well-posedness theory to the blow up analysis, from the study of soliton interactions to partial
results on the “soliton resolution conjecture”. The contribution of Carlos Kenig in this large
body of collective work is staggering. Let us just mention some of the most fundamental results
that he and collaborators produced: [3, 4, 21–23, 26–28, 37–41, 43, 44, 46–50].

In this survey paper we take a different approach. We focus on well-posedness type results
that are generic in nature, more than deterministically obtained. In fact, since the pioneering
work of Bourgain on almost sure (a.s.) global well-posedness of certain dispersive equations via
the invariance of the Gibbs measure [8, 9], a large body of work has been produced based on
the effectiveness of initial data randomization to obtain theorems on existence (and sometimes
uniqueness) of solutions for certain evolution equations on low regime of regularity, a situation
in which deterministic tools often may no longer be suitable. For the purpose of this survey
we can group these theorems in three distinct classes. The first class collects results in which
a local well-posedness is extended to a global one by using the invariance, or sometime almost
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invariance, of a Gibbs type measure. This includes for example [8, 9] and the example that will
be recalled below and studied in [54, 57], see Sections 2 and 3. The second class, see Section 4,
contains problems in which local well-posedness or existence of weak solutions can be obtained
at a very low level of regularity by studying the so called difference equation. The solution w

of the difference equation is such that w = u−W (t)uω
0 , where u and W (t) are respectively the

solution of the original equation and its linear operator, and uω
0 is the random initial data. The

fundamental fact used here is that the initial value problem satisfied by w is more regular than
the one originally given for u and hence deterministic techniques can be used. In this class we
can include, besides [8, 9] already recalled above, the works [14, 15] where the problem is set on a
compact manifolds, [12, 24] where the equation has a discrete spectrum thanks to the presence
of a potential, and [5, 6, 25, 52, 53] where the ambient space is R

d and the randomization
is obtained by reassembling the Fourier transform of the initial data by randomly summing a
partition of unity supported on unit cubes, in other words, randomizing a Wiener decomposition
of the initial data. In this class we will survey in particular [58] for the quintic periodic 3D
NLS, and [55] for the periodic 2D and 3D Navier–Stokes equations. The third class is concerned
with a procedure originally introduced for certain fluid equations by Albeverio and Cruzeiro [1],
see Section 5. In this procedure an invariant measure is associated to the equation at hand
and one shows that on the support of the measure the expectation of the nonlinear part of the
truncated equation is finite uniformly with respect to the truncation parameter. Starting from
here a Galerkin approximation scheme is then set up and a probabilistic convergence argument
is presented via the Prokorov’s Lemma (for compactness) and the Skorokhod’s Lemma (for
convergence of measures). Unfortunately in this procedure uniqueness of solutions is often
difficult to achieve, even in a more probabilistic sense; see e.g. [1, 13, 56, 59]. Below, in
Section 5 we survey our results in [56]. In the same section we survey the work in [11], thus
giving an example of regularization by noise [30] in the context of the inviscid quasi-geostrophic
equation where randomness is injected as a perturbative term in the equation itself.

Before we pass to specific equations and problems we give a precise definition of what we
mean for randomizing initial data. Here we assume that the base space is Hs(Td) for s ∈ R,
but this procedure can be applied also for spaces of Lebesgue type such as the ones used in [54]
for example.

Definition 1.1 Let (gn(ω))n∈Zd be a sequence of complex i.i.d. centered Gaussian random
variables on a probability space (Ω, A, P ). For φ ∈ Hs(T3), let (bn) be its Fourier coefficients,
that is

φ(x) =
∑

n∈Zd

bnein·x,
∑

n∈Zd

(1 + |n|)2s|bn|2 <∞. (1.1)

The map from (Ω, A) to Hs(Td) equipped with the Borel sigma algebra, defined by

ω −→ φω, φω(x) =
∑

n∈Zd

gn(ω)bnein·x (1.2)

is called a map randomization.

Remark 1.2 The map (1.2) is measurable and φω ∈ L2(Ω;Hs(Td)), is an Hs(Td)-valued
random variable. We remark again that such a randomization does not introduce any Hs
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regularization (see Lemma B.1 in [14] for a proof of this fact), indeed ‖φω‖Hs ∼ ‖φ‖Hs . However
randomization gives improved Lp estimates almost surely.

We also observe that for any set Ω̃ ⊂ Ω and any φ ∈ Hs, we can define sets Σ ⊂ Hs such
that

Σ := {φω|ω ∈ Ω̃}

and a measure μ such that

μ(Σ) := P (Ω̃).

2 Almost Sure Global Well-posedness and (almost) Invariance of the Gibbs Mea-
sure

The general strategy for problems in this class is to start with a Gibbs measure defined on a
set of (rough) initial data. Then one first proves, either deterministically [8] or probabilistically
[9, 14], that there is a local flow on this set of data, and then the flow is extended for all times
using the invariance of the measure. Of course this argument needs first to be implemented on
the truncated initial value problem, and then a limit process is activated.

In this section we consider the 1D periodic derivative non-linear Schrödinger DNLS equation
studied in [54]. For this example the general argument outlined above does not work as stated
due to the fact that a gauge transformation needs to be implemented in order to be able to
show that a local flow is available.

We now give some details of how the argument needs to be refined in order to obtain almost
sure global well-posedness for the DNLS, and we refer the reader to the original paper [54] for
a full history of the problem and a complete bibliography.

The periodic initial value problem for DNLS takes the form:
⎧
⎨

⎩
ut − iuxx = λ(|u|2u)x,

u
∣∣
t=0

= u0,
(2.1)

where (x, t) ∈ T × (−T, T ) and λ is real. In this paper we will take λ = 1 for convenience.
DNLS is a Hamiltonian PDE whose flow conserves also mass and energy; i.e., the following are
conserved quantities of time1):

Mass: m(u)(t) =
∫

|u(x, t)|2dx,

Energy: E(u)(t) =
∫

|ux|2dx+
3
2
Im

∫
u2uuxdx+

1
2

∫
|u|6dx,

Hamiltonian: H(u)(t) = Im
∫
uuxdx+

1
2

∫
|u|4dx.

The original motivation for the work in [54] was to prove the invariance of the Gibbs measure
defined in [63] using the mass and the energy defined above. Informally this measure can be
written as

“dν =
1
Z̃

e−E(u)−m(u)du”,

1) In fact, DNLS is completely integrable.
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where Z is a normalizing constant and E and M are defined above. But to make sense of this
measure one needs to use the Gaussian measure [7]

dρ :=
1
Z

e−
∫

T
|ux|2dx−m(u)du

supported in spaces that scale like Hs(T), s < 1
2 , and show that the remaining part of dμ,

namely

e−
3
2 Im

∫
u2uuxdx− 1

2

∫ |u|6dx,

that contains the nonlinear terms of E(u), is in L1 with respect to dρ.
Although in [63] the Gibbs measure was defined, the first step in order to prove invariance

is to show that the equation itself has a well-defined global-in-time flow in the support of the
measure. Unfortunately the well-posedness question for the initial value problem (2.1) is made
complicated by a derivative loss coming from the nonlinearity (|u|2u)x = u2ux + 2|u|2ux, more
precisely from the second term of this sum. To resolve this issue a gauge transformation, that
we recall below, is introduced to remove the bad term 2|u|2ux.

For f ∈ L2(T), let
G(f)(x) := exp(−iJ(f))f(x)

where

J(f)(x) :=
1
2π

∫ 2π

0

∫ x

θ

|f(y)|2 − 1
2π

‖f‖2
L2(T)dydθ. (2.2)

NoteG(f) is 2π-periodic since its integrand has zero mean value. Then for u ∈ C([−T, T ];L2(T))

G(u)(t, x) := G(u(t))(x− 2tm(u)).

Note the L2 norm of G(u)(t, x) is still conserved since the torus is invariant under translation.
We have that

G : C([−T, T ];Hσ(T)) → C([−T, T ];Hσ(T))

is a homeomorphism for any σ ≥ 0 and locally bi-Lipschitz on subsets of C([−T, T ];Hσ(T))
with prescribed ‖u(0)‖L2 .

Then if u is a solution to DNLS (2.1) and v := G(u), then v solves the gauged DNLS
equation GDNLS:

vt − ivxx = −v2vx +
i
2
|v|4v − iψ(v)v − im(v)|v|2v (2.3)

with initial data v(0) = G(u(0)), where

m(v)(t) :=
1
2π

∫

T

|v(x, t)|2dx and (2.4)

ψ(v)(t) := − 1
π

∫

T

Im(vvx)dx+
1
4π

∫

T

|v|4dx−m(v)2. (2.5)

Note that m(v) is conserved in time; more precisely m(v)(t) = 1
2π

∫
T
|v(x, 0)|2dx = m(u), and

that both m(v) and ψ(v) are real. Now we show how the energy E(u) and H(u) transform
under the gauge. We have

H(u) = Im
∫

T

uuxdx+
1
2

∫

T

|u|4dx.
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= Im
∫

T

vvx − 1
2

∫

T

|v|4dx+ 2πm2

=: H (v) (2.6)

and

E(u) =
∫
vxvxdx− 1

2
Im

∫
v2vvxdx+ 2mIm

∫
vvxdx− 1

2
m

∫
|v|4dx+ 2πm3.

If we define

E (v) :=
∫

T

|vx|2dx− 1
2
Im

∫

T

v2vvxdx+
1
4π

( ∫

T

|v(t)|2dx
)( ∫

T

|v(t)|4dx
)
, (2.7)

then E(u) can be rewritten as

E(u) = E (v) + 2mH (v) − 2πm3 =: E(v). (2.8)

Unfortunately while gauging the DNLS equation one looses track of the key features of
the Gibbs measure associated to the original equation since, the gauge transformation mixes
the Fourier coefficients in a way that is hard to control. Our approach in [54] then can be
summarized in the following steps.

Step 1 We consider directly the gauged problem (2.3) and we define a new Gibbs measure
dμ for this problem using its energy truncated(v) in (2.8). Informally

“dμ =
1
Z

e−E(v)−m(v)dv”,

and its support is in spaces that scale like Hs, s < 1
2 . To define this measure as usual we

truncate the initial value problem (2.3) on a frequency window of size N and we work with
the corresponding finite dimensional system. Local well-posedness, independent of N , of this
truncated problem in the support of the measure is not an issue, and in fact randomness is not
necessary2) to establish it. But there are two main difficulties that need to be resolved in order
to define dμ. The first is that the truncated initial value problem coming from (2.3) is no longer
in Hamiltonian form and hence one has to prove directly that its flow preserves volumes. This
is done in Lemma 4.1 in [54]. The second difficulty is that the energy E(vN ), where vN is the
solution to the truncated problem, is no longer invariant. Hence dμN , the truncated version of
dμ, is not invariant. This is contrary to what happens for example in [63], for the un-gauged
truncated initial DNLS problem.

Step 2 In this step we show that E(vN ) is almost conserved and hence dμN is almost invariant.
This is the content of Theorem 4.2 in [54].

Step 3 In this step we put all the ingredients together such as local well-posedness, almost
invariance of the measure and the argument of Bourgain to move from local to global solutions.
Finally we take the limit as N tends to infinity and we also show that although dμN was
only almost invariant, its limit dμ is invariant. This step is the content of the fundamental
Lemma 6.1, Proposition 6.2 and Theorem 6.3 in [58].

Here we give a very schematic rendering of the main idea contained in Lemma 6.1 that
allows us to move from local to global well-posedness. Let us call ΦN the flow of the truncated

2) Here deterministic local well-posedness results of [33] in Fourier Lebesgue spaces FLs,r suffice.
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initial value problem (2.3). Let us assume that the initial data are in a set CN (K) of (truncated)
initial data, contained in the support of the measure, with norms bounded by K, where K is
large. If the initial data of the truncated problem are in CN (K) then one has local well-posed
on a time interval of length δ ∼ K−γ , where γ > 0 is independent of N . Furthermore, from the
definition of dμN from Step 1 one has the large deviation estimate

μN (CN (K)) ≤ e−K2
.

We then fix a large time T and we define the subset of initial data Ω̃N by

Ω̃N :=
{
vN
0 : ΦN (jδ)(vN

0 ) ∈ CN (K), j = 0, 1, . . . ,
[
T

δ

]}
.

Note that Ω̃c
N =

⋃[ T
δ ]

k=0Dk , where

Dk = {vN
0 ; k = min{j : ΦN (jδ)(vN

0 ) ∈ CN (K)c}}

=
[ k−1⋂

j=0

ΦN (−jδ)CN (K))
]
∩ ΦN (−kδ)(CN (K)c). (2.9)

One verifies easily that the sets Dk satisfy

D0 = CN (K)c, Dk = CN (K) ∩ ΦN (−δ)(Dk−1). (2.10)

From the almost conservation of the energy mentioned in Step 2, iterating in k ∈ {0, . . . , [T
δ ]},

one obtains
μN (DK) ≤ ec(δ)N−βK8

μN (DK−1) ≤ ekc(δ)N−βK8
e−cK2

and thus

μN (Ω̃c
N ) ≤

[ T
δ ]∑

k=0

ekc(δ)N−βK8
e−cK2 �

[
T

δ

]
e−cK2 ∼ TKγe−cK2

, (2.11)

for N ≥ N0(T,K). By choosing K ∼ (log T
ε )

1
2 , one has μN (Ω̃c

N ) < ε which implies that for a
fixed T one can find a set of initial data Ω̃N of almost full measure which evolution spans the
whole interval of time [0, T ].

One my wonder though what is the connection between the measure dν in [63] for the DNLS
and the measure dμ above for the GDNLS. We answered this question in [57], by showing that
indeed the two measures are absolutely continuous with respect to each other. We discuss this
in the next section because the topic is relevant on its own terms.

3 Gaussian Measures Under Gauge Transformations

In [57] we prove the absolute continuity of Brownian bridges under certain type of gauge trans-
formations. More precisely we give a proof of the absolute continuity between Gaussian mea-
sures naturally associated with complex Brownian motions and their images under certain
gauge transformations, which could be of anticipative type and hence not under the scope of
Girsanov’s theorem [60]. The general nature of our theorem as well as the ubiquitous role of
gauge transformations in the study of dispersive and wave equations3) should make the type of

3) For many equations gauge transformations are essential to convert the nonlinearity into a better one where

resonant interactions are manageable.
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result in [57] applicable in other situations as well. The motivation arises from the work in [54]
described above on the periodic DNLS. In that work a weighted Wiener measure of the form
μ = Z−1 exp(− ∫

T
N (v)) · ρ, where ρ is the Gaussian measure, is constructed and its invari-

ance established for the associated gauged equation. Here N (v) denotes the nonlinear terms in
the energy E of GDNLS. The question arises as to whether the ungauged measure μ̃ = μ ◦ G,
which is also invariant as we will see below, is also absolutely continuous with respect to ν, the
weighted Wiener measure that was constructed by Thomann–Tzvetkov in [63] directly from the
(ungauged) periodic DNLS. In [57] we answered this question in the affirmative and thus in
particular showed the measure constructed in [63] is indeed invariant under the flow of periodic
DNLS.

There is a vast literature on Gaussian measures under nonlinear transformations both of
non-anticipative and anticipative type (see e.g. [7, 10, 16, 17, 29, 36, 51, 62] and other references
therein). Their general framework however does not fit those gauge transformations we have
in mind. The work of Cambronero–McKean [16] on the periodic KdV and the Miura gauge
transformation — exploited by Quastel and Valkó [61] — is not directly applicable either. The
absolute continuity of Gaussian measures in the context of periodic PDE is an intricate problem
that requires tools from stochastic analysis and probability. It is intimately connected with how
Gaussian measures and their supports transform under gauge transformations as well as other
nonlinear transformation, in the periodic setting. This is a problem with interest in its own
right and the subject of current research.

To recap then, from the previous Section 2, the output from [54] gives the following:

Theorem 3.1 (Almost sure global well-posedness of GDNLS) There exists a set Ω, μ(Ωc) = 0
such that for every v0 ∈ Ω the IVP GDNLS with initial data v0 is globally well-posed.

Theorem 3.2 (Invariance of μ) The measure μ is invariant under the flow Φ(t) of GDNLS.

The last step is going back to the ungauged DNLS equation. By pulling back the gauge,
it follows easily from Theorems 3.1 and 3.2 that we have invariance of the ungauged measure
μ̃ := μ ◦ G.

Recall, μ is a measure on Ω and G−1 : Ω → Ω measurable. The measure μ̃ is defined then
by

μ̃(A) := μ(G(A)) = μ({v : G−1(v) ∈ A})

for all measurable sets A or equivalently — for integrable F — by
∫
Fdμ̃ =

∫
F ◦ ϕdμ.

Theorem 3.3 (Almost sure global well-posedness of DNLS) There exists a subset Σ of the
Fourier–Lebesgue space4) FL 2

3−,3(T) with μ̃(Σc) = 0 such that for every u0 ∈ Σ the IVP DNLS
with initial data u0 is globally well-posed.

Finally we show that the measure μ̃ is invariant under the flow map of DNLS.

Theorem 3.4 (Invariance of measure under DNLS flow) The measure μ̃ = μ ◦ G is invariant
under the DNLS flow.

4) For a definition of Fourier Lebesgue spaces see for example [54]. In particular, FL
2
3−,3(T) scales like H

1
2−(T).
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We are now ready to ask: what is μ̃ = μ ◦ G really? Is it absolutely continuous with respect
to ν, the measure that can be naturally constructed for DNLS by using its energy E,

E(u) =
∫

T

|ux|2dx+
3
2
Im

∫

T

u2uuxdx+
1
2

∫

T

|u|6dx =:
∫

T

|ux|2dx+ K(u)

as done by Thomann–Tzevtkov in [63]?
We know μ̃ is invariant and that the ungauged DNLS equation is globally well-posed almost

surely with respect to μ̃. Treating the weight is easy. The problem is un-gauging the Gaussian
measure ρ.

Hence the question becomes: what is ρ̃ := ρ ◦G? Is its restriction to a sufficiently small ball
in L2 absolutely continuous with respect to ρ? If so, what is its Radon–Nikodym derivative?
We would like to compute ρ̃ explicitly. This turns out to be an intricate problem that requires
tools from stochastic analysis and probability.

3.1 Absolute Continuity of Brownian Bridges Under Gauge Transformations

There is an analytic theory on Gaussian measures under nonlinear transformations both of
non-anticipative and anticipative type (see e.g. [7] and references therein).

This theory is fairly well understood for transformations of the form x + F (x) with F a
transformation from a Banach space (associated to the support of the measure) into a Hilbert
space H, known as the Cameron–Martin space (associate to the construction of measure; H =
Ḣ1 in the case of DNLS above) and whose (Fréchet) derivative F ′ in the direction of H exists
and is ‘nice’, for example F ′|H is Hilbert–Schmidt. But this framework does not fit (directly)
the gauge transformations as the one above. Gauge transformations as the ones used above
are L2 unitary transformations which do not have this I + F form. The work of Cambronero–
McKean on the periodic KdV and the Miura gauge transformation — exploited by Quastel and
Valkó — is not directly applicable either.

To further understand the ungauged measure one should stop thinking about the solution v
as infinite dimension vector of Fourier modes and start thinking instead about v as a (periodic)
complex Brownian path in T (Brownian bridge) solving a certain stochastic process.

We recall that to ungauge we need to define

G−1(v)(x) := exp(iJ(v))v(x),

where J(v) is defined as in (2.2).
It will be important later that J(v)(x) = J(|v|)(x). Then, if v satisfies

dv(x) = dB(x)︸ ︷︷ ︸
Brownian motion

+ b(x)dx︸ ︷︷ ︸
drift terms

.

by Ito’s calculus, and since exp(iJ(v)) is differentiable, we have:

dG−1v(x) = exp(iJ(v))dv + iv exp(iJ(v))
(
|v(x)|2 − 1

2π
‖v‖2

L2

)
dx+ · · · .

Substituting above one has

dG−1v(x) = exp(iJ(v))[dB(x) + a(v, x, ω))dx] + · · · ,
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where

a(v, x, ω) = iv
(
|v(x)|2 − 1

2π
‖v‖2

L2

)
. (3.1)

The fact that exp(iJ(v)) is a unitary operator is crucial. If one could now prove Novikov’s
condition:

E

[
exp

(
1
2

∫
a2(v, x, ω)dx

)]
<∞,

then one could apply Girsanov’s theorem5) to finish off. However, Girsanov’s theorem doesn’t
save the day quite yet. If one reads the theorem carefully one realizes that an important
condition is that a(v, x, ω) is non-anticipative; in the sense that it only depends on the Brownian
motion v(x) up to ‘time’ x and not further. This however is not true in our case. The drift term
a(v, x, ω) in (3.1) involves the L2 norm of v(x) and hence it is anticipative. A different strategy
is needed. We use in fact the conformal invariance of complex Brownian motions, together with
“linearization”. We now give some details.

If W (t) = W1(t)+iW2(t) is a complex Brownian motion, and φ is an analytic function, then
Z = φ(W ) is, after a suitable time change, again a complex Brownian motion. In what follows,
let Z(t) play the role of our complex Brownian motion v(x), and let φ be the exponential
function. For Z(t) = exp(W (s)) the time change is given by

t = t(s) =
∫ s

0

|eW (r)|2dr, dt

ds
= |eW (s)|2,

or equivalently

s(t) =
∫ t

0

dr

|Z(r)|2 ,
ds

dt
=

1
|Z(t)|2 .

We are interested in Z(t) in the interval 0 ≤ t ≤ 2π, and thus we introduce the stopping time

S = inf
{
s;

∫ s

0

|eW (r)|2dr = 2π
}
.

It is important to note that the stopping time S depends only on the real part W1(s) of W (s),
(or equivalently only on |Z|).
If we write Z(t) in polar coordinate Z(t) = |Z(t)|eiΘ(t) we have

W (s) = W1(s) + iW2(s) = log |Z(t(s)| + iΘ(t(s))

and W1 and W2 are real independent Brownian motions. If we define

W̃ (s) := W1(s) + i
[
W2(s) +

∫ t(s)

0

h(|Z|)(r)dr
]

= W1(s) + i
[
W2(s) +

∫ t(s)

0

h(eW1)(r)dr
]
,

where essentially h(|Z|)(·) = |Z(·)|2 − ‖Z‖2
L2 , we then have

eW̃ (s) = G−1(Z)(t(s)).

5) Roughly, Girsanov’s theorem states that if we change the drift coefficient of a given Ito process in an appropri-

ate way, then the law of the process will not change dramatically. In fact the new process law will be absolutely

continuous with respect to the law of the original process and we can compute explicitly the Radon–Nikodym

derivative.
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In terms of W , the gauge transformation is now easy to understand. It gives a complex process
such that:

• The real part is left unchanged.
• The imaginary part is translated by the function J(Z)(t(s)) which depends only on the

real part (i.e., on |Z|, which has been fixed) and in that sense is deterministic.
• It is now possible to use Cameron–Martin–Girsanov’s theorem only for the law of the

imaginary part and conclude.
We can now thus conclude. If η denotes the probability distribution of W and η̃ the

distribution of W̃ we have the absolute continuity of η̃ and η, whence the absolute continuity
between ρ̃ and ρ follows, with the same Radon–Nikodym derivative (re-expressed back in terms
of t).

All in all then we prove that our ungauged measure ν is in fact essentially (up to normalizing
constants) of the form

dμ̃(u) = χ‖u‖L2≤Be−K(u)dρ = dν(u),

the weighted Wiener measure associated to DNLS (constructed by Thomann–Tzvetkov). In
particular we prove its invariance.

We need to remark at this point that the above argument needs to be done carefully for
complex Brownian bridges (periodic Brownian motions) by conditioning properly. Note that
W (s) is a Brownian motion conditioned to end up at the same place when the total variation
time t = t(s) reaches 2π. The time when this occurs is our S. For more details see [57].

4 The Periodic Quintic NLS Equation in 3D and the Periodic Navier–Stokes Equa-
tion in 2D and 3D

In this section we show how, inspired by the original work of Bourgain in [8, 9], one can show
that randomization of the initial data can give the existence of a local flow for data that are
mass or energy supercritical, or in a sense equivalently, the existence of a set of global solutions
with data of infinite mass or energy.

4.1 The Periodic Quintic NLS Equation in 3D

In this subsection we summarize the work in [58]. The quintic NLS in 3D is an energy critical
equation, that is the H1 norm of the solution is invariant with respect to the parabolic scaling
of this equation. In both R

3 [18] and T
3 [35] global well-posedness for initial data in Hs, s ≥ 1

has been proved. On the other hand if the data have infinite energy the problem becomes super-
critical and the question of global well-posedness is still open. In the work we are summarizing
below we demonstrate that for both the focusing and defocusing case, we can equip the energy
supercritical set of data H1−ε(T3) with a certain probability measure such for data in a subset
of almost full measure a local flow is well defined. This is Theorem (4.1) below6). This kind
of statement is similar to that proved in the first part of [9]. In the second part of that paper,
Bourgain was able to extend the result from local to global, ultimately showing that there is
a set of initial data of full measure evolving for an arbitrarily long interval of time. He proved

6) On the other hand one can rephrase this theorem by saying that for a fixed large time T there is a subset Σ

of nonzero measure for which any data in Σ evolves into a solution that lives for the whole interval [0, T ]. This

shows the existence of large data global solutions with infinite energy.
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this using the invariance of the probability measure, which in his case was the Gibbs measure.
Unfortunately in our case the Gibbs measure lives in H−1/2−, a space that is way too rough to
conduct any type of well-posedness analysis, hence we cannot extend a local in time result to
a global one, at least not using the invariance of the measure7). We consider then the Cauchy
initial value problem, ⎧

⎨

⎩
iut + Δu = λu|u|4, x ∈ T

3,

u(0, x) = φ(x),
(4.1)

where λ = ±1. We also stress the fact that here T
3 is a rational torus, in the sense that if

(T1, T2, T3) are the periods along the three directions, then there exists (n1, n2, n3) ∈ Z
3 such

that (T1, T2, T3) · (n1, n2, n3) = 0. This is an important assumption since it implies that the
solution S(t)φ(x) to the linear problem associated to (4.1) is also periodic in time, a fact that
is used heavily. In fact without loss of generality we will assume that (T1, T2, T3) = (1, 1, 1).

Our setting to show almost sure local well-posedness is similar to that of Bourgain in [9].
More precisely, we consider data φ ∈ H1−ε(T3) for any ε > 0 of the form

φ(x) =
∑

n∈Z3

1
(1 + |n|) 5

2
ein·x (4.2)

whose randomization according to (1.2) is

φω(x) =
∑

n∈Z3

gn(ω)
(1 + |n|) 5

2
ein·x. (4.3)

The main result in [58] is on almost sure local well-posedness and can then be stated as
follows,

Theorem 4.1 Let φ as in (4.2). Then there exist s > 1, 0 < δ0 � 1 and r = r(s, α) > 0 such
that for any δ < δ0, there exists Ωδ ∈ A with

P(Ωc
δ) < e−

1
δr ,

and for each ω ∈ Ωδ there exists a unique solution u of (4.1) in the space

S(t)φω +Xs([0, δ))d,

where S(t)φω is the linear evolution of the initial data φω given by (4.3).

One can also reformulate this theorem to prove long time existence of large data with infinite
energy. Namely one can prove the following theorem.

Theorem 4.2 Assume s as above. For fixed T there exists a set ΩT ∈ A with

P(ΩT ) ≥ εT > 0,

and for each ω ∈ ΩT there exists a unique solution u of (4.1) in the space

S(t)φω +Xs([0, T ))d,

where S(t)φω is the linear evolution of the initial data φω given by (4.3).

7) In fact almost sure global well-posedness for energy supercritical solutions for the periodic quintic NLS

equation in 3D is still open.
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Here the space Xs([0, δ))d is a metric space of Sobolev regularity s which definition can be
found in [58], the metric d comes from (4.8) below. We note that this space is not based on the
usual Xs,b defined below, but the proof of Theorem 4.1 and Theorem 4.2 can be performed,
even in easier way, in Xs,1/2. In fact below we will show some estimates in this space in order
to give an idea of the type of arguments that are needed to prove the theorems above.

Definition 4.3 We define the space Xs,b(T × T
3) via its norm:

‖f‖Xs,b :=
( ∑

λ

∑

n∈Z3

|f̂(λ, n)|2(1 + |n|2)s(1 + |λ− |n|2|)2b

)1/2

.

To prove Theorem 4.1 we proceed in two steps. First we consider the initial value problem
⎧
⎨

⎩
ivt + Δv = N (v), x ∈ T

3,

v(0, x) = φω(x),
(4.4)

where

N (v) := λ

(
v|v|4 − 3v

( ∫

T3
|v|4dx

))
(4.5)

with λ = ±1 and φω(x) the initial datum as in (4.3). Introducing the nonlinearity N (v) is
similar to the Wick ordering used in [9] and it is needed in order to exploit the independence
of the random variables as we will see below. To make the notation simpler set

βv(t) = 3
∫

T3
|v|4dx (4.6)

and define
u(t, x) := eiλ

∫ t
0 βv(s)dsv(t, x). (4.7)

We observe that u solves the initial value problem (4.1) with datum φω. Now suppose that one
obtains well-posedness for the initial value problem (4.4) in a certain Banach space (X, ‖ · ‖)
then one can transfer those results to the initial value problem (4.1) by using a metric space
Xd := (X, d) where

d(u, v) := ‖e−iλ
∫ t
0 βu(s)dsu(t, x) − e−iλ

∫ t
0 βv(s)dsv(t, x)‖. (4.8)

We now summarize the steps needed in order to show local well-posedness for the initial
value problem (4.4).

Step 1 We define w := v − S(t)φω(x) and we consider the initial value problem8) satisfied
by w, that is ⎧

⎨

⎩
iwt + Δw = N (w + S(t)φω(x)), x ∈ T

3,

w(0, x) = 0.
(4.9)

The goal is to show that (4.9) can be studied in Xs,1/2 for some s > 1 in spite of the fact that
S(t)φω(x) is in H1−ε for each fixed time.

Step 2 We set up the contraction method by defining the map

Φ(w) = χ[−δ,δ](t)
∫ t

0

S(t− t′)N (w + S(t′)φω(x))dt′,

8) Since we are only interested on the local well-posedness we can just assume that λ = 1.
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where χ[−δ,δ](t) is a smooth characteristic function of [−δ, δ] for δ small. The goal is to show
that

‖Φ(w)‖Xs,1/2 � C + δα‖w‖5
Xs,1/2 (4.10)

and
‖Φ(w1) − Φ(w2)‖Xs,1/2 � δα(‖w1 − w2‖Xs,1/2). (4.11)

We now show two extreme estimates that one has to perform in order to prove (4.10) and (4.11).
The first estimate concern the case when all terms in N (w+S(t)φω(x)) are deterministic, that
is we consider N (w). In this case we can use the arguments in [34] to conclude. In this argument
one uses duality and estimates an integral of six functions by splitting it into two trilinear L2

integrals. One obtains
∥∥∥∥χ[−δ,δ](t)

∫ t

0

S(t− t′)N (w(t′))dt′
∥∥∥∥

Xs,1/2

� δα‖w‖5
Xs,1/2 .

Note that in [34] the authors consider the full quintic nonlinearity, not just N (w(t)), and they
are in a more difficult set up, that is in their case s = 1, the energy critical case. Because of this
critical situation they have to use more subtle spaces than the Xs,1/2, but the basic arguments
are the same.

Next we consider the case when all terms in N (w + S(t)φω(x)) are random, that is we
consider N (S(t)φω(x)). Let us not worry about having to restrict the time interval to [−δ, δ],
which can be taken care of with standard argument later. Let us recall that [45]

∥∥∥∥
∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥

Xs,1/2

� ‖F‖Xs,−1/2 .

Then by duality we need to estimate
∫

T

∫

T3
DsN (S(t)φω(x))k(t, x)dtdx, (4.12)

where Ds is the symbol for the s derivative and k(t, x) ∈ X0,1/2. Let us also assume that k(t, x)
is localized in frequency in a dyadic block of size N and all the other functions are localized in
dyadic blocks of size Ni respectively, and N1 ∼ N >> N2 ≥ N3 ≥ N4 ≥ N5. Also in this case
we pass from the L1 norm in (4.12) to two trilinear expressions in L2 where we match N,N4, N5

and N1, N2, N3. We also assume that |λ− |n|2| � Nα for α < 1/2 since otherwise one can use
Strichartz estimates and the fact that S(t)φω(x) are in better Lp spaces to conclude. Here we
only estimate the square of the second trilinear expression with the operator Ds acting on N1,
which can be written as

∑

λ

∑

n∈Z2

N2s

∣∣∣∣
∑

Sλ,n

gn1(ω)
(1 + |n1|)5/2

ḡn2(ω)
(1 + |n2|)5/2

gn3(ω)
(1 + |n3|)5/2

∣∣∣∣
2

,

where
Sλ,n :=

{
n=n1−n2+n3; n1,n3 �=n2,

λ=|n1|2−|n2|2+|n3|2
}
.

For the second trilinear estimate we can simply use again the argument in [34]. We now change
variables by setting λ− |n|2 = η and we integrate in η, where we recall |η| < Nα. We have

sup
η

∑

n∈Z2

N2s+α

∣∣∣∣
∑

Sη,n

gn1(ω)
(1 + |n1|)5/2

ḡn2(ω)
(1 + |n2|)5/2

gn3(ω)
(1 + |n3|)5/2

∣∣∣∣
2

,
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where
Sη,n :=

{
n=n1−n2+n3; n1,n3 �=n2,
η=|n1|2−|n2|2+|n3|2−|n|2

}
.

Now we use a large deviation estimate and the independence of the random variables to claim
that for ω ∈ Ω̃, with P(Ω̃c) ≤ e−1/δ we can continue with

� δ−m sup
η

∑

n∈Z2

N2s+α

∫

Ω

∣∣∣∣
∑

Sη,n

gn1(ω)
(1 + |n1|)5/2

ḡn2(ω)
(1 + |n2|)5/2

gn3(ω)
(1 + |n3|)5/2

∣∣∣∣
2

dω

� δ−mN2s+αN−5
1 N−5

2 N−5
3 |Sη|,

where
Sη =

{
(n,n1,n2,n3)|n=n1−n2+n3; n1,n3 �=n2,

η=|n1|2−|n2|2+|n3|2−|n|2
}
.

Now we fix n2, n3, we replace n = n1 − n2 + n3 in the quadratic equation and we note that n1

belongs to a plane, hence there are N2
1 many frequencies. We then continue the estimate with

� δ−mN2s+αN2−5
1 N3−5

2 N3−5
3 � δ−mN2s−3+α

and hence we want s < 3−α
2 .

Remark 4.4 We note that the condition n1, n3 
= n2 is used both for the independence of the
random variable and to claim that for fixed n2, n3 the frequency n1 satisfies a linear relationship,
namely 〈n1, n2 − n3〉 = C.

To obtain the full Theorem 4.1 one needs to consider many combinations of random and
nonrandom trilinear estimates but we will not do this here.

4.2 The Periodic 2D and 3D Navier–Stokes Equations: Randomization of the Initial Data and
the Galerkin Approximation Scheme

In this section we explore the consequences of randomizing initial data when we consider the
Navier–Stokes equation. We recall that for this equation both in 2D and 3D existence of global
weak solutions is proved in L2, where the energy is conserved. In 2D uniqueness is also proved.
Here we show that by randomizing the initial data in H−α, for certain α > 0, one can still claim
existence of global weak solutions, and in 2D also uniqueness. Note that in both 2D and 3D
the space H−α is supercritical. Due to the regularization properties of the heat flow and the
fact that we are not using a fixed point theorem, but instead a Galerkin scheme, the estimates
here are softer than the ones in the previous sections, see also [58] and [9]. The estimates used
are in fact more similar to those in [14] for a certain wave equation. Below we recall the set up,
the main results and we give an idea of the proofs.

Consider the initial value problem for the incompressible Navier–Stokes equations given by
⎧
⎪⎪⎨

⎪⎪⎩

∂t�u = Δ�u− P∇ · (�u⊗ �u); x ∈ T
d, t > 0,

∇ · �u = 0,

�u(x, 0) = �f(x),

(4.13)

where f is divergence free and P is the Leray projection into divergence free vector fields given
via

P�h = �h−∇ 1
Δ

(∇ · �h). (4.14)
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We now introduce the diagonal randomization of elements of (Hs(Td))d, which we will apply
to our initial data. This is a multidimensional version of Definition 1.1.

Definition 4.5 (Diagonal randomization of elements in (Hs(Td))d) Let (ln(ω))n∈Zd be a
sequence of real, independent, random variables on a probability space (Ω, A, P ). For �f ∈
(Hs(Td))d, let (�ai

n), i = 1, 2, . . . , d, be its Fourier coefficients. We introduce the map from
(Ω, A) to (Hs(Td))d equipped with the Borel sigma algebra, defined by

ω −→ �fω, �fω(x) =
( ∑

n∈Zd

ln(ω)�a1
nen(x), . . . ,

∑

n∈Zd

ln(ω)�ad
nen(x)

)
, (4.15)

where en(x) = ein·x and call such a map randomization.

The map (4.15) is measurable and �fω ∈ L2(Ω; (Hs(Td))d), is an (Hs(Td))d-valued random
variable. Also we remark again that such a randomization does not introduce any Hs regular-
ization (see Lemma B.1 in [14] for a proof of this fact), indeed ‖�fω‖Hs ∼ ‖�f‖Hs , but it gives
improved Lp estimates almost surely (see Proposition 4.10 below).

Remark 4.6 Since the Leray projection (4.14) can be written via its coordinates

(P�h)j = hj +
∑

k=1,...,d

RjRkhk, (4.16)

where R̂j(φ)(n) = inj

|n| φ̂(n), n ∈ Z
d, one can easily see that the diagonal randomization defined

in (4.15) commutes with the Leray projection P.

Having defined a diagonal randomization, we need few more definitions in order to state
the main results of this paper.

• Let B be a Banach space of functions. The space Cweak((0, T ),B) denotes the subspace
of L∞((0, T ),B) consisting of functions which are weakly continuous, i.e., v ∈ Cweak((0, T ),B)
if and only if φ(v(t)) is a continuous function of t for any φ ∈ B∗.

• If (X(Td))d denotes a space of vector fields on T
d, we simply denote its norm by ‖ · ‖X .

• We introduce an analogous notation to that of Constantin and Foias in [20]. In particular
we write

H = the closure of {�f ∈ (C∞(Td))d|∇ · �f = 0} in (L2(Td))d,

V = the closure of {�f ∈ (C∞(Td))d|∇ · �f = 0} in (H1(Td))d,

V ′ = the dual of V.

• We introduce some notation for the inner products in some of the spaces introduced above.
Given two vectors �u and �v in R

d we use the notation

〈�u,�v〉 = �u · �v. (4.17)

In (L2(Td))d we use the inner product notation

(�u,�v) =
∫
�u(x) · �v(x)dx. (4.18)

In (Ḣ1(Td))d we use the inner product notation

((�u,�v)) =
d∑

i=1

(Di�u,Di�v). (4.19)



918 Nahmod A. R. and Staffilani G.

• Finally we introduce the trilinear expression

b(�u,�v, �w) =
∫
�ujDj�vi �widx =

∫
〈�u · ∇�v, �w〉dx. (4.20)

Also we note that when �u is divergence free, we have

b(�u,�v, �w) =
∫
〈∇(�v ⊗ �u), �w〉dx. (4.21)

We introduce the following definition:

Definition 4.7 Let �f ∈ (H−α(Td))d, α > 0, ∇ · �f = 0, and of mean zero9). A weak solution
of the Navier–Stokes initial value problem (4.13) on [0, T ], is a function �u ∈ L2

loc((0, T );V ) ∩
L∞

loc((0, T );H) ∩ Cweak((0, T ); (H−α(Td))d) satisfying d�u
dt ∈ L1

loc((0, T ), V ′) and
〈
d�u

dt
,�v

〉
+ ((�u,�v)) + b(�u, �u,�v) = 0 for a.e. t and for all �v ∈ V, (4.22)

lim
t→0+

�u(t) = �f weakly in the (H−α(Td))d topology. (4.23)

Theorem 4.8 (Existence and Uniqueness in 2D) Fix T > 0, 0 < α < 1
2 and let �f ∈

(H−α(T2))2, ∇ · �f = 0 and of mean zero. Then there exists a set Σ ⊂ Ω of probability 1
such that for any ω ∈ Σ the initial value problem (4.13) with datum �fω has a unique global
weak solution �u in the sense of Definition 4.7 of the form

�u = �u�fω + �w, (4.24)

where �u�fω = etΔ �fω and �w ∈ L∞([0, T ]; (L2(T2))2) ∩ L2([0, T ]; (Ḣ1(T2))2).

Theorem 4.9 (Existence in 3D) Fix T > 0, 0 < α < 1
4 and let �f ∈ (H−α(T3))3, ∇ · �f = 0,

and of mean zero. Then there exists a set Σ ⊂ Ω of probability 1 such that for any ω ∈ Σ
the initial value problem (4.13) with datum �fω has a global weak solution �u in the sense of
Definition 4.7 of the form

�u = �u�fω + �w, (4.25)

where �u�fω = etΔ �fω and �w ∈ L∞([0, T ]; (L2(T3))3) ∩ L2([0, T ]; (Ḣ1(T3))3).

We now summarize the steps needed for the proofs of the main Theorems 4.9 and 4.8.

Step 1 Set �u�fω = etΔ �fω. As we did in the previous section, instead of solving for �u we solve
for �w where

�w = �u− �u�fω ,

and hence �w solves a difference equation of type
⎧
⎪⎪⎨

⎪⎪⎩

∂t �w = Δ�w − P∇(�w ⊗ �w) + c1[P∇(�w ⊗ �g) + P∇(�g ⊗ �w)] + c2P∇(�g ⊗ �g),

∇ · �w = 0,

�w(x, 0) = 0,

(4.26)

where �g = �u�fω .

9) This is assumed without loss of generality. Since the mean is conserved, if it is not zero, one can replace the

solution with the solution minus the mean. This new function will satisfy an equation with a first order linear

modification which does not effect the estimates.
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Step 2 We show that in a set of almost full measure the function �u�fω satisfies certain
estimates that are in fact not valid for the heat flow of a nonrandomized function in H−α. For
example we have these estimates:

Proposition 4.10 Let T > 0 and α ≥ 0. Let r ≥ p ≥ q ≥ 2, σ ≥ 0 and γ ∈ R be such that
(σ + α− 2γ)q < 2. Then there exists CT > 0 such that for every �f ∈ (H−α(Td))d

‖tγ(−Δ)
σ
2 etΔ �fω‖Lr(Ω;Lq([0,T ];Lp

x) ≤ CT ‖�f‖H−α , (4.27)

where CT may depend also on p, q, r, σ, γ and α.
Moreover, if we set

Eλ,T,�f,σ,p = {ω ∈ Ω : ‖tγ(−Δ)
σ
2 etΔ �fω‖Lq([0,T ];Lp

x) ≥ λ}, (4.28)

then there exists c1, c2 > 0 such that for every λ > 0 and for every �f ∈ (H−α(Td))d

P (Eλ,T,�f,σ,p) ≤ c1 exp
[
−c2 λ2

CT ‖�f‖2
H−α

]
. (4.29)

Proof For t 
= 0, using the notation �h(x) = 〈−Δ〉−α
2 �f(x) and recalling the notation defined

in (4.15) we have

tγ(−Δ)
σ
2 etΔ �fω(x) = tγ(−Δ)

σ
2 〈−Δ〉α

2 etΔ〈−Δ〉−α
2 �fω(x)

= tγ
∑

n∈Zd

|n|σ(1 + |n|2)α
2 e−t|n|2 �̂hω(n)en(x)

� Jσ + Jσ+α, (4.30)

where for
β ∈ {σ, σ + α} (4.31)

we introduced Jβ as follows:

Jβ = tγ−
β
2

∑

n∈Zd

t
β
2 |n|βe−t|n|2 �̂hω(n)en(x).

In order to estimate Jβ , we observe that t
β
2 |n|βe−t|n|2 ≤ C, which together with two appli-

cations of Minkowski’s inequality, followed by a standard large deviation estimate, implies the
first inequality in the following estimate:

‖Jβ‖Lr(Ω;Lq([0,T ];Lp
x)) ≤ Cr

∥∥∥∥

( ∑

n

|tγ− β
2 �̂h(n)en(x)|2

) 1
2
∥∥∥∥

Lq([0,T ];Lp
x)

= Cr

∥∥∥∥
∑

n

t2γ−β|�̂h(n)en(x)|2
∥∥∥∥

1
2

L
q
2 ([0,T ];L

p
2
x )

≤ Cr,p‖�h‖L2

( ∫ T

0

(
1

tβ−2γ

) q
2
) 1

q

= Cr,p,q‖�h‖L2T
1
q + 2γ−β

2 , (4.32)

as long as
(β − 2γ)

q

2
< 1, (4.33)
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which is for our range (4.31) of β satisfied under the assumption that (σ + α− 2γ)q < 2. Now
the estimate (4.27) follows from (4.30), (4.32) and (4.31).

To prove estimate (4.29) one uses the Bienaymé–Tchebishev’s inequality as in Proposi-
tion 4.4 in [14]. �

Step 3 We show that if �g satisfies certain estimates, such as for example those in Step 2 for
�u�fω in an interval of time [0, T ], then the energy for the initial value problem (4.26)

E(�w)(t) := ‖�w(t)‖2
L2 + c

∫ t

0

∫

Td

|∇ ⊗ �w|2dxds

is bounded for all t ∈ [0, T ]. To prove this step we need to use the Duhamel principle on (4.26)
near t = 0, and the classical energy estimates for the Navier–Stokes equation when t is far from
zero, this is Theorem 5.1 in [55]. The tricky part in implementing these estimates at these two
regimes is that one has to first show that the solutions obtained via the Duhamel principle and
weak solutions are equivalent, at least under certain conditions for �g. This is the content of
Lemma 4.2 in [55].

Step 4 Once one proves the boundedness for the energy of �w, assuming certain conditions on
�g, a Galerkin scheme is implemented and a weak solution is obtained on an arbitrary interval
of time. This is Theorem 6.1 in [55].

Step 5 One then defines the set

Ej := {ω ∈ Ω| ‖�u�fω‖∗ > 2j}
where ‖ · ‖∗ contains all the norms that need to be bounded for �u�fω in order to implement the
steps above for the difference equation (4.26) with �g = �u�fω . Large deviation estimates such as
the one in Proposition 4.10 gives that

P (Ej) ≤ c1 exp
[
−c2 22j

CT ‖�f‖2
H−α

]
,

hence if Σ = ∩Ec
j it follows that P (Σ) = 1 and the conclusion10) of Theorems 4.8 and 4.9 hold.

5 Global Flows for Random Surface Quasi-geostrophic Equations

In this section we consider the surface quasi-geostrophic equation SQG where randomness is
injected into the system via the data or via a random diffusion term. We discuss the work
in [56] about the invariance of the associated Gaussian measure and global existence of weak
solutions in the first case, and the work in [11] exhibiting a “regularization by noise” effect and
proving the existence of pathwise unique global solutions in the second.

5.1 Invariant Measure and Longtime Weak Solutions to the Inviscid Modified SQG Equation

In this section we summarize the results in [56] where an inviscid modified surface quasi
geostrophic equation mSQG is considered and randomness is injected into the system via the
data. We prove invariance of the associated Gibbs measure and global existence of weak solu-
tions.

10) What we described is the procedure to obtain global weak solutions, for the uniqueness result in Theorem 4.8

see Theorem 7.1 in [55].
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The mSQG equation is also an active scalar equation describing the transport of the scalar
valued function θ = θ(x, t) : T

2× [0,∞) → R under the velocity field u, which itself is related to
θ now via a regularized Biot–Savart law. More precisely, the mSQG equation that we consider
in this paper is given as follows:

⎧
⎨

⎩
θt + (u · ∇)θ = 0, x ∈ T

2 and t > 0,

u = R⊥|D|−δθ,
(5.1)

where δ > 0, and R⊥ := ∇⊥(−Δ)−1/2 = ∇⊥|D|−1 denotes the Riesz transform. Here ∇⊥ =
(−∂x2 , ∂x1).

When δ = 1 the equation (5.1) coincides with the 2D Euler equation with θ representing the
vorticity ω. When δ = 0 the equation (5.1) coincides with the inviscid surface quasi geostrophic
SQG equation. For 0 < δ < 1 the relation between the velocity u and the function θ is less
singular than in the case of the SQG equation, but more singular than in the case of the 2D
Euler equation, see [56]. Note that the inviscid SQG equation is one derivative less regular than
the 2D Euler equation.

In the paper [56] we use probabilistic tools to obtain a global flow in Hs(R2), s < −3 + δ,
for any 0 < δ ≤ 1, for the mSQG equation (5.1) in the support of a Gaussian measure ρ, which
is left invariant under the flow. In particular, the approach of [1] in the context of mSQG is
implemented as follows:

(1) We work with the streamline formulation of the equation, whose (sufficiently) smooth
solutions still conserve ‘enstrophy’ (see below). Then we consider the infinite Gaussian measure
ρ constructed with respect to this enstrophy.

(2) We rewrite the streamline formulation of the equation in terms of an orthonormal L2

basis as an infinite ODE system, for which we analyze the coefficient corresponding to the
nonlinear term, with the goal of obtaining an expectation estimate that will allow subsequent
probabilistic analysis. For this part we will give more details below.

(3) We introduce an approximate system of ODE, which is still an infinite system, but which
has truncated nonlinear term. We show that each of these systems has a global flow and leaves
the Gaussian measure ρ invariant.

(4) Finally we perform a probabilistic convergence argument, which gives a global flow for
the streamline formulation of the equation in the support of the Gaussian measure ρ.

To state the result precisely we need to introduce some notation. First we introduce the
streamline function ϕ for our equation (5.1) so that u = ∇⊥ϕ. Such streamline function ϕ is
related to θ via ϕ = |D|−1−δθ. We find it convenient to rewrite the streamline formulation in
terms of the regularized stream function ψ introduced via

|D|δϕ = ψ. (5.2)

Then the regularized streamline formulation that we work with reads as follows:
⎧
⎨

⎩
ψt + |D|−1(u · ∇)|D|ψ = 0,

u = ∇⊥|D|−δψ.
(5.3)
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Below we will abbreviate the nonlinearity in (5.3) by

B(ψ, ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ. (5.4)

We recall that for classical solutions to (5.1) the SQG enstrophy ‖θ‖L2 is conserved in time.
We also note that, thanks to (5.2), we have that ψ is mean zero. Consequently, the homogeneous
and inhomogeneous Sobolev spaces restricted to our space of solutions coincide. We therefore
take the Sobolev norm

‖f‖2
Hs(T2) :=

∑

k∈Z2,k �=0

|k|2s|f̂(k)|2,

and we introduce the spaces

Xσ :=
⋂

s<σ

Hs.

Similarly, we slightly abuse notation by defining the associated path space by

C([0, T ] : Xσ) :=
⋂

s<σ

C([0, T ] : Hs).

Since both of these spaces are defined as nested intersections, they inherit the natural subspace
topology.

Finally, it follows from the definitions of ψ and ϕ and the conservation of ‖θ‖L2 for solutions
θ of (5.1) that ‖ψ‖H1 is formally conserved in time. It is this conservation of ‖ψ‖H1 that gives
rise to the Gaussian measure ρ that we informally write as

“dρ(ψ) :=
1
Z

∏

k∈Z2,k �=0

exp(−2|k|2|ψk|2)dψk”, (5.5)

where dψk := dxkdyk is the Lebesgue measure on C associated to the variable ψk = xk +
iyk ∈ C, and Z is the appropriate normalization factor needed to yield a probability measure.
Unfortunately this heuristic expression is not well defined, but it can be made meaningful [7].
With the construction of the Gaussian measure ρ one can state the result that establishes global
flows for the regularized streamline formulation (5.3) of the mSQG equation. More precisely:

Theorem 5.1 Let T > 0 be given. Then there exists a flow Ψ̃(ω, t) defined on a probability
space (Ω̃, F̃ , P̃ ) with values in C([0, T ] : X−2) such that for P̃ -almost every ω ∈ Ω̃,

Ψ̃(ω, t) = Ψ̃(0, ω) +
∫ t

0

B(Ψ̃(ω, τ ))dτ, (5.6)

where B is as in (5.4), as well as a Gaussian measure ρ supported on X−2 which is invariant
with respect to Ψ̃(t, ω), i.e., for all measurable F : X−2 → R and t ∈ [0, T ],

∫

Ω̃

F (Ψ̃(ω, t))dP̃ (ω) =
∫

X−2
F (ψ)dρ(ψ). (5.7)

In this survey we decided to give details only on the expansion of (5.3) explicitly into an
infinite system of ODEs in the Fourier frequencies, and on showing that the Hs-norm of the
nonlinearity of the equation is finite in L2

ρ provided that s < −2. Informally, this calculation
shows that X−2 is the smallest space with respect to which the system (5.3) is closed in ρ-
expectation. Moreover this estimate is a key ingredient of the compactness argument used to
construct the random flows and to obtain the main result. We will only outline the steps of the
proof of the main result in Theorem 5.1.
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5.1.1 An Infinite System of ODE and the Expectation of Its Nonlinear Term

Write ψ =
∑

k∈Z2 ψkek, where {ek} is an orthonormal basis of L2(T2), and rewrite the modified
streamline formulation (5.3) in terms of coefficients with respect to this orthonormal basis as
follows:

dψk

dt
= Bk(ψ, ψ),

where Bk denotes the coefficients of the nonlinearity B

B(ψ, ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ (5.8)

in this basis.
We calculate the coefficients Bk for k 
= 0 to be

Bk =
∑

h+h′=k,h,h′ �=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′

=
1
2

( ∑

h+h′=k,h,h′ �=0

|k|−1|h′|−δh⊥ · h′|h|ψhψh′ +
∑

h+h′=k,h,h′ �=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′

)

=
1
2

∑

h+h′=k,h,h′ �=0

|k|−1(h⊥ · h′)(|h′|−δ|h| − |h|−δ|h′|)ψhψh′ ,

where in the above we symmetrized the sum using the divergence-free structure with an eye
towards minimizing the number of positive factors of |h| and |h′|. This gives

Bk = −1
2

∑

h �=0,k

(
h⊥ · k|k|

)
(|k − h|−δ|h| − |h|−δ|k − h|)ψhψk−h =:

∑

h �=0,k

αk,hψhψk−h.

Notice that one can readily check that αk,h = αk,k−h for all k, h ∈ Z
2.

The subsequent analysis depends strongly on controlling the expectation of the nonlinearity
in a rough Sobolev space. We then have the following crucial proposition:

Proposition 5.2 Let 0 < δ ≤ 1. Then B given by (5.8) satisfies

B ∈ L2
ρ(H

s, Hs) for all s < −2.

Proof We need to show that expectation of the expression ‖B(ψ)‖2
Hs is finite. Using the

expectations of the moments as well as the fact that αk,h = αk,k−h, we first have that

Eρ(‖B‖2
Hs) =

∑

k �=0

|k|2s
∑

h,h′ �=0

αk,hαk,h′Eρ(ψhψk−hψ̄h′ ψ̄k−h′)

= 2
∑

k �=0

|k|2s
∑

h,h′ �=0

αk,hαk,h′

|h|2|h− k|2 (δh,h′ + δh,k−h′)

= 4
∑

k �=0

|k|2s
∑

h,h′ �=0

α2
k,h

|h|2|h− k|2 . (5.9)

We focus first on establishing that the inner sum in this last expression converges11). Substi-
tuting our expression for αk,h in (5.9) we have

∑

h �=0,k

α2
k,h

|h|2|h− k|2 �
∑

h �=0,k

(|k − h|−δ|h| − |h|−δ|k − h|)2
|h− k|2

11) This is precisely the step that fails in the classical inviscid SQG model with δ = 0.
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�
∑

h �=0,k

|h− k|−2δ(|h| − |k − h|)2
|h− k|2

+
∑

h �=0,k

(|h|−δ − |h− k|−δ)2(|h| − |k − h|)2
|h− k|2

+
∑

h �=0,k

|h|2(|k − h|−δ − |h|−δ)2

|h− k|2

:= S1 + S2 + S3. (5.10)

In estimates on S1 and S2 we utilize the immediate consequence of the triangle inequality:

||h| − |k − h|| ≤ |k|. (5.11)

Then, for any δ > 0, the sum S1 can be bounded from above as follows:

S1 ≤
∑

h �=0,k

|k|2
|k − h|2+2δ

� |k|2.

Next, utilizing (5.11) and decomposing S2 = Slo
2 + Shi

2 depending on whether |h| is less that or
greater than 2|k| respectively, and using Lemma 4.1 in [56] we have that

S2 �
∑

|h|≤2|k|,h �=0,k

|k|2
|h|2δ|k − h|2 +

∑

|h|≤2|k|,h �=0,k

|k|2
|k − h|2+2δ

+
∑

|h|≥2|k|,k �=0

δ2|k|4|h|−2−2δ

|h− k|2

� |k|2 + |k|2−2δ.

Decomposing S3 similarly into ‘high-low’ and again applying Lemma 4.1 in [56], we have

S3 �
∑

|h|≤2|k|,h �=0,k

|h|2
|h|2δ|k − h|2 +

∑

|h|≤2|k|h �=0,k

|h|2
|k − h|2+2δ

+
∑

|h|≥2|k|,k �=0

|h|2δ2|k|2|h|−2−2δ

|h− k|2

� |k|2 + |k|2−2δ.

The maximum amount of smoothness imposed on k from evaluating these sums is comparable
to |k|2. Therefore, the expectation at the beginning of the calculation can be estimated by

Eρ(‖B‖2
Hs) �

∑

k

|k|2s+2, (5.12)

which is finite provided we choose s < −2. �

5.1.2 Outline of the Proof of Theorem 5.1

As we did in the previous sections we indicate below the main steps of the proof.

Step 1 We introduce the Nth approximate flow ΨN (t, ψ) as the solution of the Cauchy
problem ⎧

⎨

⎩
∂tΨN (t) = BN (ΨN (t),ΨN (t)),

ΨN (0, ψ) = ψ.
(5.13)

If we let V N satisfy the finite dimensional system
⎧
⎨

⎩
∂tV

N (t) = BN (V N , V N ),

V N (0, ψ) = ΠNψ,
(5.14)
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then the flow ΨN can be decomposed into

ΨN (t, ψ) = V N (t,ΠNψ) + Π⊥
Nψ, (5.15)

that is, the dynamics of the approximate flows are only nontrivial on finite dimensional sub-
spaces. The N -th approximate ΨN still conserve H1 and are divergence free. If we denote the
ek-component of ΨN by ΨN

k , then Lemma 5.1 in [56] states that for fixed T > 0, there exists
a unique flow ΨN (t, ψ) solving (5.13) for all t ∈ [0, T ] with ΨN

k (t, ψ) ∈ C([0, T ],C) and which
leaves the measure ρ invariant.

Step 2 In order to construct random flows from the (essentially) finite-dimensional deter-
ministic flows, we regard the deterministic flows ΨN (t, ψ) as stochastic processes sampled from
X−2 with state space C([0, T ] : X−2), and introduce the measures νN supported on the infinite
dimensional path space C([0, T ] : X−2) as their laws:

νN (Γ) = ρ({ψ ∈ X−2 : ΨN (ψ, ·) ∈ Γ}), Γ ⊂ C([0, T ] : X−2). (5.16)

Our first goal is to show that the laws νN can be used to construct a measure ν supported
on C([0, T ] : X−2) that will serve as the law of our eventual candidate flows. This follows from
two fundamental tools, a compactness argument and Skorokhod Lemma, as follows.

Prokhorov Lemma states that tightness of (ν(N)) implies (ν(N)) is weakly sequentially
compact12). Tightness means that for each ε > 0, there is a compact subset Kε ⊂ C([0, T ] :
X−2) so that ν(N)(Kε) ≥ 1 − ε uniformly in N .

In [56] we prove that for T > 0 and any s < −2 the family {ν(N)} of measures is tight in
C([0, T ] : Hs) which is obtained by showing that solutions lie in a Hölder-continuous subspace
of C([0, T ] : Hs) that is pre-compact by Sobolev embedding. The proof of tightness crucially
uses invariance, ψ0 ∈ X−2 and Eρ(‖B‖2

Hs) is finite for s < −2. Then for any fixed s < −2,
Prokhorov implies the existence of a subsequence of measures which converges weakly to another
measure νs. A standard diagonalization argument allows one then to extract a weak limiting
measure ν on C([0, T ] : X−2).

Now, Skorokhod Lemma ensures that there is a probability space (Ω̃, F̃ , P̃ ) and random
processes Ψ̃(N)(ω), Ψ̃(ω) with values in C([0, T ] : X−2) so that:

(1) Ψ̃(N)(ω) → Ψ̃(ω) in C([0, T ] : X−2)P-a.s. in ω
(2) ν is the law of Ψ̃, i.e.,

ν(Γ) = P ({ω ∈ Ω̃ : Ψ̃(ω, t) ∈ Γ}) Γ ⊂ C([0, T ] : X−2)

(3) Each ν(N) is the law of Ψ̃(N).

This Ψ̃ is our candidate for the random flow. Note that by construction the laws of Ψ̃(N)

and that of Ψ(N) in the path space C([0, T ] : X−2) are the same.
To conclude the argument we verify that ρ is an invariant measure for the (random) flow Ψ̃

from Skorokhod. In particular we show that ∀F : X−2 → R measurable and t ∈ [0, T ]:
∫

Ω

F (Ψ̃(ω, t))dP̃ (ω) =
∫

X−2
F (ψ)dρ(ψ).

12) i.e., can extract a weakly convergent subsequence
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This in turn implies that Ψ̃ takes values in X−2 a.s. in Ω̃. We also have the following almost
everywhere pointwise equation for Ψ̃N :

Ψ̃N (t, ω) = Ψ̃N (0, ω) +
∫ t

0

BN (Ψ̃N (τ, ω))dτ, a.e. ω ∈ Ω̃.

Finally we take the limit N → ∞ in the truncated equations to show that Ψ̃ satisfies the
equation P -almost surely. By the construction using Skorokhod Lemma, we already have that
Ψ̃N (t, ω) → Ψ̃(t, ω) and Ψ̃N (0, ω) → Ψ̃(0, ω) for each t ∈ [0, T ], a.s. in Ω̃. Hence to show P -a.e.
convergence of the Duhamel term it suffices to show (possibly up to the extraction of another
subsequence) that as N → ∞,

∫

Ω̃

∣∣∣∣
∫ t

0

BN (Ψ̃N (ω, τ ))dτ −
∫ t

0

B(Ψ̃(ω, τ ))dτ
∣∣∣∣dP̃ (ω) → 0.

We refer the reader to [56] for full details.
One may ask about uniqueness; this question is hard. Known deterministic arguments are

not applicable due to the low regularity of the flow. Furthermore, the criteria in the work of
Ambrosio–Figalli [2] is not applicable either since the nonlinearity does not map into H1, the
Cameron–Martin space.

5.2 Unique Global Smooth Solutions for the Inviscid SQG Equation Perturbed by Random
Diffusion

In this section we describe the results obtained in [11] where we consider the surface quasi-
geostrophic equation SQG where randomness is injected into the system via a random diffusion
term behaving like white noise in time. We discuss the effect of “regularization by noise”, that
is noise improving the behavior over a purely deterministic setting [30], and show the existence
of pathwise unique global smooth solutions.

Consider the SQG equation for θ : R×T
2 → R with a random in time diffusion, written as

an Itô stochastic integral:

dθ +R⊥θ · ∇θdt = ν|∇|sθdWt, θ(0) = θ0, (5.17)

where R⊥ = (−R2, R1) and Wt is a standard Wiener process in time. The index 0 < s ≤ 1 and
the constant of diffusion ν > 0 are fixed.

Let A := |∇|2s and let φ(t) be suitably chosen to be of the form:

φ(t) = α+ βt with α > 0 and 0 < β <
ν2

2
, (5.18)

or shifts φ(t− T0) of it, where T0 is fixed.
We work with L2-weighted norms by Ameφ(t)A1/2

; that is on Gevrey-type spaces defined
precisely below. First, recall v ∈ C∞(T2) is in the Gevrey class η > 0 if there existsM > 0, τ > 0
such that

|∂βv(x)| ≤M
(β!)η

τ |β|
for all β, x.

We work with an equivalent characterization given by Foias and Temam in [31] and which
we can state as follows. First, let γ > 0 and ϕ be a continuous real function. Then w :
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[0, T ] × T
2 → R,

‖w(t)‖Γγ
ϕ

:= ‖eϕ(t)A1/2
w(t)‖Ḣγs = cd

( ∑

k∈Zd

|k|2γse2ϕ(t)|k|s |ŵ(k)|2
)1/2

.

Define then the corresponding Gevrey space as

Γγ
ϕ := {f ∈ Ḣγs : ‖f‖Γγ

ϕ
<∞}.

From this, one obtains the combined space-time spaces

C0
T Γγ

ϕ := {f ∈ C0([0, T ],Γγ
ϕ) : ‖f‖C0

T Γγ
ϕ
<∞}.

In [11] we prove the following theorem.

Theorem 5.3 (Main Theorem) Let 1
s < σ < 2 and θ0 ∈ Ḣσs be given with θ̂0(0) = 0 and

‖eαA1/2
θ0‖Ḣσs =: E <

ν2

2
(5.19)

for some α > 0. Then there exists β = β(ν,E) < E such that for 0 < ε < α we obtain a
pathwise unique, global solution θ ∈ C0Ḣσs with probability

P (α, ε, ν, E) ≥ 1 − e−2 (α−ε)β

ν2 .

In particular, for any p0 ∈ (0, 1) and E > 0 given, there exist ν > 0 and α > 0 such that
if the initial data θ0 satisfy (5.19) for these values we obtain a path-wise unique global solution
with likelihood at least p0.

A key idea to prove the theorem is to transform the equation into a pathwise deterministic
equation; that is an equation for which for each instance of the Brownian motion t → Wt(ω)
we have a deterministic equation with diffusion. Such transformation is motivated by the use
of the geometric Brownian motion in [32]. More precisely, if we set

Γ(t) := e−ν|∇|sWt ,

then, by Itô calculus, we have that

dΓ = −ν |∇|s ΓdWt +
1
2
ν2 |∇|2s Γdt,

so for u(t) := Γ(t)θ(t)

du = −Γ(R⊥Γ−1u · ∇Γ−1u)dt− 1
2
ν2 |∇|2s

udt,

and hence ⎧
⎨

⎩
∂tu+ Γ(R⊥Γ−1u · ∇Γ−1u) = −1

2ν
2 |∇|2s u,

u(0) = u0 = θ0.
(5.20)

Remark 5.4 If we denote by

B(f, g) := Γ(R⊥Γ−1f · ∇Γ−1g),

and we normalize by switching to the variable

v := |∇|σs eφ(t)A1/2
u,
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so that

û(t, j) = e−φ(t)|j|s |j|−σs v̂(t, j),

and

‖v̂(t, j)‖�2j
= ‖v(t)‖L2 = ‖eφ(t)A1/2

u(t)‖Ḣσs ,

then the nonlinearity reads

B̂(u, u)(t, k) =
∑

j∈Z2\{0}

(k − j) · j⊥
|k − j|σs |j|1+σs e−νWt[|k|s−|k−j|s−|j|s]eφ(t)[−|k−j|s−|j|s]v̂(k − j)v̂(j).

Our strategy entails establishing local well-posedness for the transformed initial value prob-
lem (5.20), and prove energy estimates in the Gevrey spaces introduced above. Armed with
these we then proceed to show global existence of solutions in this pathwise deterministic set-
ting by an iteration that carefully intertwines the local theory with the energy estimates and
relies on the following probability estimate for Brownian motion:

For α, β > 0, the probability that the process W (t)−βt > α in finite time is given by e−2αβ.

This implies that for our specific choice of φ(t) = α + βt above — for suitable β ∼ ν2

(diffusion constant), the condition φ(t)− νWt ≥ 0 holds globally on an exponentially large set.
Finally, at the very end, we come back to the original equation, to obtain our main theorem.

Let us start with our local well-posedness result for (5.20).

Proposition 5.5 Let T0 > 0 and I ⊂ R be an open interval with T0 ∈ I. Assume φ(t)−νWt ≥
0 for t ∈ I, and φ(T0) = α.

Fix σ > 0 with 1
s < σ < 2. Then for initial data u0 with eφ(T0)A

1/2
u0 ∈ Ḣσs (and û0(0) =

013)) there exist T > 0, depending only on the norm of the initial data, and a unique solution
u ∈ C0(I ∩ [T0, T0 + T ],Γσ

φ) of (5.20).

Remark 5.6 The condition that s ≤ 1 is crucial in our proof of Proposition 5.5 to absorb the
propagators e−νWt|∇|s using the exponential weights of our Gevrey spaces. We also use that
φ(t) − φ(τ ) = β(t− τ ) and β < ν2

2 .

On the other hand, given φ(t) − νWt ≥ 0 for all t ∈ [T0, T ], the following bilinear bounds
on [T0, T ] easily follow:

|〈eφ(t)A1/2
B(w,w), eφ(t)A1/2

Aw〉L2 | � ‖eφ(t)A1/2
w‖Ḣσs‖eφ(t)A1/2

w‖2
Ḣ(σ+1)s . (5.21)

Relying on (5.21) we can then establish the necessary energy estimates:

Proposition 5.7 Assume σ ∈ ( 1
s , 2) and let u be a local solution on [T0, T ] of (5.20) that is

bounded in C0([T0, T ],Γσ+1
φ ). Assuming that φ(t) − νWt ≥ 0 and that

‖eφ(T0)A
1/2
u(T0)‖Ḣσs ≤ ν2

2
− β,

for t ∈ [T0, T ] we have

‖eφ(t)A1/2
u(t)‖Ḣσs ≤ ‖eφ(T0)A

1/2
u(T0)‖Ḣσs .

13) Note that
∫

udx = constant so WLOG can assume mean zero.



Randomness and Nonlinear PDE 929

Armed with Propositions 5.5 and 5.7 we can then show the existence of pathwise unique
global solutions to equation (5.20). Namely in [11] we show that for σ ∈ ( 1

s , 2), and initial data
u0 satisfying

‖u0Γσ
α+ε

‖ = ‖e(α+ε)A1/2
u0‖Ḣσs ≤ ν2

2
− β (5.22)

for some α > 0, ε > 0 and 0 < β < ν2

2 , if we let φ(t) := α + βt, then with probability at

least 1 − e−2 αβ

ν2 there exists a pathwise14) unique global solution u ∈ C0([0,∞),Γσ
φ) to (5.20).

Moreover, the mapping

t �→ ‖u(t)‖Γσ
φ

= ‖eφ(t)A1/2
u(t)‖Ḣσs (5.23)

is pathwise monotonically decreasing.
In short, we show that for any size E of initial data and any probability p ∈ [0, 1), for a

sufficiently large parameter ν and sufficiently smooth initial data (i.e., α sufficiently large) we
obtain global solutions with probability at least p.

The energy estimates above require finiteness of a higher norm than the one for which they
give monotonicity, which means we have to control two levels of regularity; i.e., in order to show
that the Γσ

φ norm is monotonically decreasing on a given time interval, we have to guarantee
that the Γσ+1

φ norm remains finite on that same interval. But this cannot be done using just
Proposition 5.5 since a priori the higher energy norm will only be controlled for a shorter amount
of time. The key point here is that — thanks to our Gevrey setting — we can achieve what
we need by just an ε loss in regularity: ‖v‖Γρ

γ
≤ ‖v‖Γρ

γ+δ
, and ‖v‖Γρ+1

γ
≤ δ−1 ‖v‖Γρ

γ+δ
for any

δ, γ, ρ > 0. Then iteratively (losing a fraction of the original ε at every step) we are able to
demonstrate the argument.
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