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We consider the cubic nonlinear Schrödinger equation (NLS) 
in any spatial dimension, which is a well-known example 
of an infinite-dimensional Hamiltonian system. Inspired by 
the knowledge that the NLS is an effective equation for a 
system of interacting bosons as the particle number tends to 
infinity, we provide a derivation of the Hamiltonian structure, 
which is comprised of both a Hamiltonian functional and 
a weak symplectic structure, for the nonlinear Schrödinger 
equation from quantum many-body systems. Our geometric 
constructions are based on a quantized version of the Poisson 
structure introduced by Marsden, Morrison and Weinstein 
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[24] for a system describing the evolution of finitely many 
indistinguishable classical particles.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Hamiltonian partial differential equations (PDEs) are a ubiquitous class of equations 
which arise as models of physical systems exhibiting at least one, and often several, 
conservation laws. While the framework of finite-dimensional Hamiltonian systems was 
initially introduced to formalize Newtonian mechanics, infinite-dimensional Hamilto-
nian systems have since become a vast area of study, comprising an important class 
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of models in diverse areas such as fluid mechanics, plasma physics, and quantum many-
body systems. Establishing a comprehensive mathematical theory of infinite-dimensional 
Hamiltonian systems which is rich enough to accommodate all the physical problems of 
interest seems beyond reach; however, one can make mathematically rigorous sense of 
infinite-dimensional Hamiltonian systems in many interesting cases, see for instance [6]
and [1].

The focus of the present work will be a particular example of an infinite-dimensional 
Hamiltonian PDE, namely, the cubic nonlinear Schrödinger equation (NLS):

i∂tφ + Δφ = 2κ|φ|2φ, φ : Rd → C, κ ∈ {±1}. (1.1)

We will recall the precise Hamiltonian formulation of (1.1) in (1.4) and (1.5) below.
Over recent years, many authors have sought how to understand the manner in which 

the dynamics of the NLS arise as an effective equation. By effective equation, we mean 
that solutions of the NLS equation approximate solutions to an underlying physical 
equation in some topology in a particular asymptotic regime. For example, the NLS 
is an effective equation for a system of N bosons interacting pairwise via a delta or 
approximate delta potential, in the sense that the 1-particle density matrix formed by 
a solution to the NLS is close to the 1-particle reduced density matrix of the system 
in trace norm, with error tending to zero as the number of particles tends to infinity. 
Alternatively, the NLS also arises as an effective equation for water waves, where the 
multiple scales expansion constructed by solving the NLS approximates slowly modulated 
wave packet solutions to the water waves problem in Sobolev norm, with error tending 
to zero as the steepness of the wave packets tends to zero.

In contrast to the vast amounts of activity on the derivation of the dynamics of the 
NLS, to the best of our knowledge, questions about the origins of the Hamiltonian struc-
ture of the NLS have remained unexplored. Indeed, continuing with our two examples 
from the previous paragraph, the N -body Schrödinger problem is well-known to admit a 
description as an infinite-dimensional Hamiltonian system, as are the water waves equa-
tions [44], but we are unaware of work which mathematically demonstrates whether, and 
if so the manner in which, the Hamiltonian structure of the NLS can be interpreted as a 
limit of the Hamiltonian structure of the N -body Schrödinger or water waves problems.

This line of inquiry is not merely aesthetically pleasing. Since the Hamiltonian struc-
ture completely determines an equation’s behavior as a dynamical system, understanding 
how the geometry arises from the underlying physical system is foundational for under-
standing how complex behavior is a limiting effect of the system in a specified scaling 
regime. Furthermore, from the physics’ perspective of connecting field theories, both 
classical and quantum, one often obtains a new field theory by deformation (e.g. first 
and second quantization) of one Hamiltonian structure to another. Ideally, one would like 
to know that this process is reversible, in the sense that a certain scaling limit recovers 
the initial structure. See Remark 1.3 for further elaboration on this point.



4 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054
The Hamiltonian formulation for the NLS has two components: the Hamiltonian 
functional itself and an underlying phase space geometry provided by a weak Poisson 
manifold.6 More precisely, to give the Hamiltonian formulation of the NLS, we endow 
the d-dimensional Schwartz space S(Rd) with the standard weak symplectic structure

ωL2(f, g) = 2 Im

⎧⎨⎩
∫
Rd

dxf(x)g(x)

⎫⎬⎭ , ∀f, g ∈ S(Rd). (1.2)

Letting ∇s denote the symplectic L2 gradient, see Remark 4.12, the symplectic form 
ωL2 induces the canonical Poisson structure

{F,G}L2(·) := ωL2(∇sF (·),∇sG(·)), (1.3)

defined for F, G belonging to a certain sub-algebra AS ⊂ C∞(S(Rd); R), the precise 
description of which we postpone to Proposition 4.13. The solution of the NLS (1.1) is 
then the flow associated to a Hamiltonian equation of motion on the infinite-dimensional 
weak Poisson manifold (S(Rk), AS , {·, ·}L2). More precisely, (1.1) is equivalent to(

d

dt
φ

)
(t) = ∇sHNLS(φ(t)), (1.4)

where

HNLS(φ(t)) :=
∫
Rd

dx
(
|∇φ(t, x)|2 + κ|φ(t, x)|4

)
. (1.5)

The goal of the current work is to derive both the weak Poisson structure and Hamil-
tonian functional constituting the Hamiltonian formulation of the NLS. Providing a 
rigorous definition and derivation of the geometry will pose the bulk of the difficulty in 
this work.

The methods we adopt are guided by the extensive research activity in recent years on 
the derivation of NLS-type equations from the dynamics of interacting bosons. There are 
a number of different approaches to this derivation problem beginning with the influential 
work of Hepp [16], later generalized by Ginibre and Velo [14]. But the one which informs 
our strategy involves the so-called BBGKY hierarchy,7 which is a coupled system of 
linear equations describing the evolution of a system of finitely many interacting bosons, 
see (2.4) below. This approach was pioneered by Spohn [41] in the quantum context of 
the derivation of the Hartree equation in the mean field scaling regime.8 We mention 

6 We refer to Definition 4.1 and Definition 4.5 for definitions of a weak Poisson and weak symplectic 
manifold, respectively.
7 Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy.
8 See also the influential works of Lanford [20,21] on the derivation of the Boltzmann equation.



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 5
the works of Adami, Bardos, Golse, and Teta and Adami, Golse, and Teta [2,3], who 
provided a derivation of the one-dimensional cubic NLS via the BBGKY approach in an 
intermediate scaling regime between the mean field and Gross-Pitaevskii regimes. We also 
mention in particular the works of Erdös, Schlein, and Yau [7–9], who provided the first 
rigorous derivation of the three-dimensional cubic NLS in the Gross-Pitaevskii scaling 
regime via the BBGKY hierarchy, resolving what was a significant open problem, and the 
work of Klainerman and Machedon [18], who incorporated techniques from dispersive 
equations to the study of this problem. There is by now an extensive body of work, 
spanning many years, on deriving the dynamics of the NLS from many-body quantum 
systems. A thorough account of this history would take us too far afield from our current 
goals, and consequently we are not mentioning many important contributions in our very 
brief account. We instead refer the reader to [37] for a general survey and more extensive 
review on the history of the derivation problem and to the more recent lecture notes [36].

To appreciate some of the difficulties involved in our pursuit, it is important to note 
that while the dynamics of a system of N -bosons is described by the linear Schrödinger 
evolution of a wave function, such an equation is not amenable to taking the infinite-
particle limit directly since the wave functions for different particle numbers do not live 
in a common topological space. Consequently, in order to take an infinite-particle limit, 
one performs a non-linear transformation of the N -body wave functions and considers 
sequences of k-particle marginal density matrices whose evolution is governed by the 
BBGKY hierarchy. In particular, there is no clear link between the evolution of the 
N -particle wave function and the NLS each as Hamiltonian dynamical systems. To com-
plicate matters further, the BBGKY hierarchy is no longer an evidently Hamiltonian 
flow.

At the cost of the added complication of working with the BBGKY hierarchy, the 
aforementioned works on the derivation of the one-particle dynamics actually yield the 
following stronger result: the full dynamics of the interacting boson system governed by 
the BBGKY hierarchy converges to dynamics described by the cubic Gross-Pitaevskii 
(GP) hierarchy, which is an infinite coupled system of partial differential equations for 
kernels9 (γ(k))∞k=1 of k-particle density matrices, defined in (2.5) below. The connection 
to the NLS is then as follows: the GP hierarchy admits a special class of factorized 
solutions given by

γ(k) :=
∣∣φ⊗k

〉 〈
φ⊗k

∣∣ , k ∈ N, (1.6)

where φ : I ×Rd → C solves (1.1).
One might conjecture that the BBGKY and GP hierarchies provide the required link 

to understand the derivation of the geometry associated to the Hamiltonian formulation 
of (1.1). In particular, it is natural to wonder whether the BBGKY and GP hierarchies 

9 In this work, we follow the widespread convention of using the same notation for both the kernel and 
the operator.
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are Hamiltonian evolution equations posed on underlying weak Poisson manifolds of 
density matrices,10 and whether the Poisson structure for the infinite-particle setting 
arises in the infinite-particle limit from the Poisson structure for the N -body problem. 
To summarize, one can pose the following questions:

Question 1.1. Can we connect the Hamiltonian structure of the many-body system with 
that of the infinite-particle system in the following sense: can the GP hierarchy be re-
alized as a Hamiltonian equation of motion with associated functional HGP on some 
weak Poisson manifold? Can the Poisson structure and Hamiltonian functional for the 
GP hierarchy be derived in a suitable sense from a Poisson structure and Hamiltonian 
functional at N -particle level?

In the current work, we answer these questions affirmatively and establish, for the first 
time, a Hamiltonian formulation for the BBGKY and GP hierarchies, see Theorem 2.3
and Theorem 2.10 below, and a link between the underlying weak Poisson geometry and 
Hamiltonian functionals in the finite- and infinite-particle settings, see Proposition 2.4.

Our geometric constructions will rely on a special type of weak Poisson structure, 
namely a Lie-Poisson structure, on a space of density matrix ∞-hierarchies, see Sec-
tion 2.2 below. These constructions are motivated by the work of Marsden, Morrison, 
and Weinstein [24] on the Hamiltonian structure of the classical BBGKY hierarchy, which 
relates to the earlier works on the Hamiltonian structure for plasma systems discovered 
in Morrison and Green [32], Morrison [30,31], Marsden and Weinstein [26], Spencer and 
Kaufman [40], and Spencer [39]. We refer to [27] for more discussion on the Hamiltonian 
formulation of equations of motion for systems arising in plasma physics. Our geometric 
perspective for the N -body Schrödinger equation is inspired by taking a “quantized” 
version of the work of [24]. By adapting their work to the quantum setting, we obtain 
the formulae for the Poisson structure for the (quantum) BBGKY hierarchy. Taking 
the infinite-particle limit, which was not considered in [24], we obtain the formula for 
the Poisson structure we use in the infinite-particle setting. We expect that our proofs 
can serve as a blueprint for deriving the Hamiltonian structure of more general infinite-
particle equations arising from systems of interacting classical and quantum particles.

Returning to the setting of the NLS, the fact that the GP hierarchy admits the 
factorized solutions given by (1.6) tells us that the dynamics of the NLS are embedded 
in those of the GP hierarchy. Given that the NLS is a Hamiltonian system and, with our 
affirmative answer to Question 1.1, so is the GP hierarchy, one might ask if there exists 
an embedding of the Hamiltonian structure such that the pullback of this embedding 
yields the NLS Hamiltonian and phase space geometry from that of the GP. In other 
words, one can pose the following question:

10 We will in fact work on a Poisson manifold of density matrix hierarchies.
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Question 1.2. Given our affirmative answer to the previous question, is there then a 
natural way to connect the Hamiltonian formulation of the GP hierarchy with the Hamil-
tonian formulation of the NLS in such a manner so as to respect the geometric structure?

We provide an affirmative answer to this second question by showing, in Theorem 2.12
below, that the natural embedding map taking one-particle functions to factorized den-
sity matrices described in (1.6) is a Poisson morphism between the weak symplectic 
manifold constituting the NLS phase space and the weak Poisson manifold11 constitut-
ing the GP phase space. Moreover, the NLS Hamiltonian, see (1.5) below, is just the 
pullback of the GP Hamiltonian under this embedding, see (2.30) below. In summary, 
the factorization embedding pulls back the GP Hamiltonian structure to that of the 
NLS.

We claim that our work provides a new perspective on what it means to “derive” 
an equation from an underlying physical problem. Indeed, to justify this assertion, we 
highlight some parallels between our results and the aforementioned works of Erdös et 
al. on the derivation of solutions to the NLS equation from the N -body problem. In 
[7–9], solutions to the BBGKY hierarchy with factorized or asymptotically factorized 
initial data are shown to converge to solutions of the GP hierarchy as the number of 
particles tends to infinity. The authors then show that solutions to the GP hierarchy in a 
certain Sobolev-type space are unique.12 Thus, the solution to the NLS equation provides 
the unique solution to the GP hierarchy starting from factorized initial data, thereby 
providing a rigorous derivation of the dynamics of the NLS from (2.2). In the current 
work, we establish the existence of both the underlying Lie algebra and Poisson structure 
associated to a Hamiltonian formulation of the BBGKY hierarchy and prove that in the 
infinite-particle limit, these converge to a (previously unobserved) Hamiltonian structure 
for the GP hierarchy. Moreover, the BBGKY Hamiltonian, defined in (2.16), converges 
to the GP Hamiltonian. Finally, we demonstrate that the Hamiltonian functional and 
phase space of the NLS can be obtained via the pullback of the canonical embedding 
(2.38), thereby providing a derivation of the Hamiltonian structure of the NLS.

Remark 1.1. We note that our work does not address any derivation of the dynamics
of the nonlinear Schrödinger equation from many-body quantum systems in the vein of 
the aforementioned works by Erdös et al. [7–9]. Our current work is complementary to 
those in the sense that it addresses geometric aspects of the connection of the NLS with 
quantum many-body systems, answering questions which are of a different nature than 
those about the dynamics.

Remark 1.2. We view this work as part of broader program of understanding how qual-
itative properties of PDE arise from underlying physical problems, in particular the 

11 We refer to Section 4 for definitions of Poisson morphism and weak Poisson manifold.
12 A new proof of this uniqueness result was later given by Chen et al. in [4].
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importance of the Hamiltonian formalism. Related to this program, we mention the 
works of Fröhlich, Tsai, and Yau [13]; Fröhlich, Knowles, and Pizzo [10]; and Fröhlich, 
Knowles, and Schwarz [12]. While these works concern quantization, mean field theory, 
and the dynamics of the Hartree and Vlasov equations, the interpretation of these equa-
tions as infinite-dimensional Hamiltonian systems and more generally the Hamiltonian 
perspective figures prominently in these very interesting works. We also mention the 
works of Lewin, Nam, and Rougerie [22] and Fröhlich, Knowles, Schlein, and Sohinger 
[11], which derive invariant Gibbs measures for the NLS from many-body quantum sys-
tems, as we believe they are related in spirit to this program.

We conclude by mentioning an application of our current work. In the one-dimensional 
cubic case, for which the corresponding one-dimensional cubic nonlinear Schrödinger 
equation is known to be integrable, we establish in a companion work [28] that there 
exists an infinite sequence of Poisson commuting functionals, which we call energies. 
The Hamiltonian flow associated to the third energy yields the GP hierarchy, and the 
corresponding flows for the sequence of energies yield a “hierarchy of infinite-particle 
hierarchies” which generalizes the Schrödinger hierarchy of Palais [35].

Remark 1.3. As a final inspirational thought for this subsection, we share the suggestion 
of Moshe Flato, which we learned of from [10], that new physical theories obtained in 
the early 20th century developments of Quantum Mechanics, Special Relativity, and 
General Relativity arise from “deformations of precursor theories”. Based on the results 
of the present article, we tentatively supplement Flato’s suggestion with the idea that the 
precursor theory should be recoverable from the new physical theory through a limiting 
procedure.

In the next section, Section 2, we will record the precise statements of our main results, 
which require some additional notation and background. We postpone a subsection on 
the organization of our paper until the end of this next section.

1.1. Acknowledgments

The authors thank Jürg Fröhlich and Philip Morrison for their helpful feedback re-
garding references and past work, which has enhanced the presentation of the article.

2. Statements of main results and blueprint of proofs

We will now state precisely and outline the proofs of our three main results: The-
orem 2.3, Theorem 2.10, and Theorem 2.12. The first two results provide the affir-
mative answer to Question 1.1, establishing the BBGKY hierarchy and GP hierarchy, 
respectively, as Hamiltonian flows. Theorem 2.12 provides the link between the Hamil-
tonian structure for the GP hierarchy and the Hamiltonian structure for the nonlinear 
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Schrödinger equation, answering Question 1.2. Our approach to answering these ques-
tions is to meticulously build a formalism, step-by-step, which renders the desired 
conclusions quite intuitive in hindsight.

We recall the N -body Schrödinger equation, BBGKY hierarchy, and limiting GP 
hierarchy to set the stage for our discussion of the geometry below. It will be useful going 
forward to fix the following notation: for d ≥ 1, we denote the point (x1, . . . , xN ) ∈ RdN

by xN . We let Ss(RdN ) be the subspace of S(RdN ) of Schwartz functions which are 
symmetric in their arguments, that is, for any π ∈ SN

13 we have

Φ(xπ(1), . . . , xπ(N)) = Φ(x1, . . . , xN ), xN ∈ RdN . (2.1)

We call Ss(RdN ) the bosonic Schwartz space, see Definition 4.24 for more details.
Consider the N -body Schrödinger equation

i∂tΦN = HNΦN , ΦN ∈ Ss(RdN ) (2.2)

where HN is the N -body Hamiltonian

HN :=
N∑
j=1

(−Δxj
) + 2κ

N − 1
∑

1≤i<j≤N

VN (Xi −Xj), κ ∈ {±1}. (2.3)

The pair interaction potential has the form VN = NdβV (Ndβ ·), where β ∈ (0, 1), V is 
an even nonnegative function in C∞

c (Rd) with 
∫
R dxV (x) = 1, and VN (Xi−Xj) denotes 

the operator which is multiplication by VN (xi − xj).
The N -body density matrix, associated to the wave function ΦN ∈ Ss(RdN ) is given 

by14

ΨN := |ΦN 〉 〈ΦN | ∈ L(S ′
s(RdN ),Ss(RdN )),

and the reduced density matrix hierarchy

(γ(k)
N )Nk=1 := (Trk+1,...,N (ΨN ))Nk=1

solves the quantum BBGKY hierarchy

13 SN is the symmetric group of order N .
14 L(S′

s(R
dN ), Ss(RdN )) denotes the space of continuous linear maps from symmetric tempered distribu-

tions to symmetric Schwartz functions.
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i∂tγ
(k)
N =

[
−Δxk

, γ
(k)
N

]
+ 2κ

N − 1
∑

1≤i<j≤k

[
VN (Xi −Xj), γ(k)

N

]

+ 2κ(N − k)
N − 1

k∑
i=1

Trk+1

([
VN (Xi −Xk+1), γ(k+1)

N

])
, 1 ≤ k ≤ N − 1

=
[
−Δxk

, γ
(k)
N

]
+ 2κ

N − 1
∑

1≤i<j≤k

[
VN (Xi −Xj), γ(k)

N

]
, k = N,

(2.4)

where we have introduced the notation Δxk
:=
∑k

j=1 Δxj
.

The GP hierarchy is formally obtained from the BBGKY hierarchy (2.4) by letting 
N → ∞. More precisely, a time-dependent family of density matrix ∞-hierarchies Γ(t) =
(γ(t)(k))∞k=1 solves the GP hierarchy if

i∂tγ
(k) = −

[
Δxk

, γ(k)
]

+ 2κBk+1γ
(k+1), ∀k ∈ N (2.5)

with κ ∈ {±1} and

Bk+1γ
(k+1) :=

k∑
j=1

(
B+

j;k+1 −B−
j;k+1

)
γ(k+1), (2.6)

where (
B+

j;k+1γ
(k+1)

)
(t, xk;x′

k)

:=
∫

R2d

dxk+1dx
′
k+1δ(xk+1 − x′

k+1)δ(xj − xk+1)γ(k+1)(t, xk+1;x′
k+1) (2.7)

with an analogous definition for B−
j;k+1 with δ(xj − xk+1) replaced by δ(x′

j − xk+1). 
When κ = 1, we say that the hierarchy is defocussing and for κ = −1, we say that the 
hierarchy is focusing (in analogy with the defocussing and focusing NLS, respectively).

As we outlined in the introduction, our first main results establish that the BBGKY 
hierarchy (2.4) and the GP hierarchy (2.5) are Hamiltonian flows on appropriate weak 
Lie-Poisson manifolds. To do this, we need to define a suitable phase space for the Hamil-
tonian evolution in both the finite- and infinite-particle settings. In particular, we need to 
construct certain Lie-Poisson manifolds of density matrix hierarchies, and we outline this 
construction in the next subsection. We will also establish that the procedure described 
above for obtaining the BBGKY hierarchy from the N -body Schrödinger equation can 
be given by the composition of several natural Poisson maps, thereby establishing the 
existence of a natural Poisson morphism which maps the N -body Schrödinger equation 
to the BBGKY hierarchy.
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2.1. Construction of the Lie algebra GN and Lie-Poisson manifold G∗
N

For each k ∈ N, we let

gk := {A(k) ∈ L(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)},

endowed with the subspace topology of L(Ss(Rk), S ′
s(Rk)). We define a Lie algebra 

(gk, [·, ·]gk
), with Lie bracket defined by[

A(k), B(k)
]
gk

:= k
[
A(k), B(k)

]
, (2.8)

where the right-hand side denotes the usual commutator bracket. We refer to elements 
of gk as k-particle bosonic observables. For N ∈ N, we then define the locally convex 
direct sum

GN :=
N⊕

k=1

gk, (2.9)

and we refer to elements of GN as observable N -hierarchies.
To define a Lie bracket on the space GN , we consider the following natural embedding 

maps. For N ∈ N and k ∈ N≤N , there exists a smooth map

εk,N : gk → gN , (2.10)

which embeds a k-particle bosonic observable in the space of N -particle bosonic operators 
so as to have the filtration property

[ε�,N (g�), εj,N (gj)]gN
⊂ εmin{�+j−1,N},N

(
gmin{�+j−1,N}

)
⊂ gN . (2.11)

Using this filtration property and the injectivity of the maps εk,N , we can now endow 
GN with a Lie algebra structure by defining the bracket

[A,B](k)
GN

:=
∑

1≤�,j≤N
min{�+j−1,N}=k

ε−1
k,N

([
ε�,N

(
A(�)

)
, εj,N

(
B(j)

)]
gN

)
, k ∈ {1, . . . , N}.

(2.12)
Furthermore, the maps {εk,N}Nk=1 induce a Lie algebra homomorphism

ιε,N : GN → gN , ιε,N (AN ) :=
N∑

k=1

εk,N (A(k)
N ), ∀AN = (A(k)

N )k∈N≤N
. (2.13)

In other words, ιε,N maps an observable N -hierarchy to an N -body bosonic observable. 
In Section 5, we will establish several properties of the embedding map, which ultimately 
enable us to prove the following result.
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Proposition 2.1. (GN , [·, ·]
GN

) is a Lie algebra in the sense of Definition 4.14.

Next, we define the real topological vector space

G∗
N :=

{
ΓN = (γ(k)

N )Nk=1 ∈
N∏

k=1

L(S ′
s(Rdk),Ss(Rdk)) : (γ(k)

N )∗ = γ
(k)
N

}
, (2.14)

and we refer to elements of G∗
N as density matrix N -hierarchies. Let AH,N be the algebra 

with respect to point-wise product generated by the functionals in the set

{F ∈ C∞(G∗
N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗

N ;R) : F (·) ≡ C ∈ R}.

We can define a Lie-Poisson structure on G∗
N , given by

{F,G}
G∗

N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]

GN
· ΓN

)
, ∀ΓN ∈ G∗

N , (2.15)

where F, G ∈ AH,N .
To construct the weak Lie-Poisson manifold G∗

N , a good heuristic to keep in mind is 
that density matrices are dual to skew-adjoint operators. The superscript ∗, however, 
does not denote the literal functional analytic dual, but rather denotes a space in weakly 
non-degenerate pairing with GN . The fact that we only have weak non-degeneracy means 
that we will be unable to appeal to classical results on Lie-Poisson structures, see for 
instance Proposition 4.20 below, and instead we will proceed by direct proof to establish 
the following result.

Proposition 2.2. (G∗
N , AH,N , {·, ·}

G∗
N

) is a weak Poisson manifold.

To establish that the BBGKY hierarchy is a Hamiltonian flow on this weak Poisson 
manifold, we need to prescribe the BBGKY Hamiltonian functional

HBBGKY,N (ΓN ) := Tr(WBBGKY,N · ΓN ), (2.16)

where −iWBBGKY,N is the observable 2-hierarchy defined by

WBBGKY,N := (−Δx, κVN (X1 −X2), 0, . . .). (2.17)

We can now state the following theorem, which establishes that the BBGKY hier-
archy admits a Hamiltonian formulation and lays the groundwork for our answering of 
Question 1.1.

Theorem 2.3. Let I ⊂ R be a compact interval. Then ΓN = (γ(k)
N )Nk=1 ∈ C∞(I; G∗

N ) is a 
solution to the BBGKY hierarchy (2.4) if and only if
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d

dt
ΓN = XHBBGKY,N

(ΓN ), (2.18)

where XHBBGKY,N
is the unique vector field defined by HBBGKY,N (see Definition 4.1) 

with respect to the weak Poisson structure (G∗
N , AH,N , {·, ·}

G∗
N

).

2.2. Derivation of the Lie algebra G∞ and Lie-Poisson manifold G∗
∞

Having established the necessary framework at the N -body level, we are now prepared 
to address the infinite-particle limit of our constructions. Via the natural inclusion map, 
one has GN ⊂ GM for M ≥ N . Hence, one has a natural limiting algebra15 given by

F∞ :=
∞⋃

N=1
GN =

∞⊕
k=1

gk.(2.19)

By embedding GN into this limiting algebra, the rather complicated Lie bracket [·, ·]
GN

converges pointwise to a much simpler Lie bracket.
We let Symk denote the k-particle bosonic symmetrization operator, see Defini-

tion 4.30, and we let [·, ·]1 be a certain separately continuous, bilinear map, the precise 
definition of which we defer to Section 5. We establish the following result.

Proposition 2.4. Let N0 ∈ N. For A = (A(k))k∈N , B = (B(k))k∈N ∈ GN0 , we have that

lim
N→∞

[A,B]
GN

= C = (C(k)k∈N , (2.20)

where

C(k) :=
∑
�,j≥1

�+j−1=k

Symk

([
A(�), B(j)

]
1

)
, (2.21)

in the topology of F∞.

The topological vector space given in (2.19) is too small to capture the generator of 
the GP Hamiltonian, defined in (2.29) below. Indeed, the 2-particle component VN(X1−
X2) of the N -body Hamiltonian HN given in (2.3) converges to the distribution-valued 
operator16 δ(X1 − X2) as N → ∞. The operator −iδ(X1 − X2) does not belong to g2
since it does not map Ss(R2d) to itself.

Since we will need our Lie algebra G∞ to contain the generator of the GP Hamilto-
nian functional, this necessitates an underlying topological vector space which includes 

15 This discussion could be formulated more precisely in terms of co-limits of topological spaces ordered 
by inclusion.
16 Not to be confused with operator-valued distribution.
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distribution-valued operators (DVOs). The inclusion of DVOs introduces technical diffi-
culties in the definition of the bracket [·, ·]1. As we will see, the definition of the bracket 
[·, ·]1, involves compositions of distribution-valued operators in one coordinate, which in 
general is not possible. Consequently, we need to find a setting in which we can give 
meaning to such a composition, thus motivating our introduction of the good mapping 
property:

Definition 2.5 (Good mapping property). Let i ∈ N. We say that an operator A(i) ∈
L(S(Rdi), S ′(Rdi)) has the good mapping property if for any α ∈ N≤i, the continuous 
bilinear map

S(Rdi) × S(Rdi) → S ′(Rd)⊗̂S(Rd)

(f (i), g(i))

�→
∫

Ri−1

dx1 . . . dxα−1dxα+1 . . . dxiA
(i)(f (i))(x1, . . . , xi)g(i)(x1, . . . , xα−1, x

′
α, xα+1, . . . , xi),

may be identified with a continuous bilinear map S(Rdi) × S(Rdi) → S(R2d).17

Here and throughout this paper, an integral should be interpreted as a distributional 
pairing, unless specified otherwise. We will denote by Lgmp(S(Rdi), S ′(Rdi)) the subset 
of L(S(Rdi), S ′(Rdi)) of operators with the good mapping property.

Remark 2.6. It is evident that Lgmp(S(Rdi), S ′(Rdi)) is closed under linear combinations 
and therefore a subspace. Note that here and throughout we endow L(S(Rdi), S ′(Rdi))
with the topology of uniform convergence on bounded sets, and we endow Lgmp with the 
subspace topology. To see that Lgmp is a proper subspace of L, consider the multiplication 
operator δ(X2) ∈ L(S(R2d), S ′(R2d)).

The formula for the limiting Lie bracket given in Proposition 2.4 has a greatly sim-
plified form compared to the N -body bracket [·, ·]

GN
due to the vanishing of the higher 

“contraction commutators”. Moreover, as we prove in Appendix B.3, the good mapping 
property gives an appropriate definition to the bracket 

[
A(i), B(j)]

1 as a well-defined 
element of Lgmp(S(Rdk), S ′(Rdk)). Hence, we can take advantage of the good mapping 
property and extend the limiting formula from Proposition 2.4 to a map on a much larger 
real topological vector space G∞ given by the locally convex direct sum

G∞ :=
∞⊕
k=1

gk,gmp, gk,gmp := {A(k) ∈ Lgmp(Ss(Rdk),S ′
s(Rdk)) : A(k) = −(A(k))∗}.

(2.22)

17 We use ⊗̂ to denote the completion of the tensor product in either the projective or injective topology 
(which coincide). See Section 4.3 for further discussion.
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We refer to the elements of G∞ as observable ∞-hierarchies, and the elements of 
gk,gmp as k-particle bosonic observables. The verification of the Lie algebra axioms then 
proceeds by direct computation, and we are able to establish the following result.

Proposition 2.7. (G∞, [·, ·]
G∞

) is a Lie algebra in the sense of Definition 4.14.

Analogously to the N -body setting, our second step is the dual problem of building 
a weak Lie-Poisson manifold (G∗

∞, A∞, {·, ·}
G∗

∞
). If we were in the finite-dimensional 

setting or a “nice” infinite-dimensional setting, such as G∗
∞ being a Fréchet space and 

G∞ being its predual, then this step would follow from standard results (see Section 4.2). 
While G∗

∞ is Fréchet, the predual of G∗
∞ is

{
A = (A(k))k∈N ∈

∞⊕
k=1

L(Ss(Rdk),S ′
s(Rdk) : (A(k))∗ = −A(k)}, (2.23)

which is too large a space for the Lie bracket [·, ·]
G∞

to be well-defined. Therefore, the 
standard procedure for obtaining a Lie-Poisson manifold from a Lie algebra can only 
serve as inspiration.

We define the real topological vector space

G∗
∞ :=

{
Γ = (γ(k))k∈N ∈

∞∏
k=1

L(S ′
s(Rdk),Ss(Rdk)) : γ(k) = (γ(k))∗ ∀k ∈ N

}
, (2.24)

where the topology is the product topology. Using the isomorphism

L(S ′
s(Rdk),Ss(Rdk)) ∼= Ss,s(Rdk ×Rdk), (2.25)

the elements of G∗
∞, which we call density matrix ∞-hierarchies, are infinite sequences of 

k-particle integral operators with Schwartz class kernels K(xk; x′
k), which are separately 

invariant under permutation in the xk and x′
k coordinates.

Let A∞ be the algebra with respect to point-wise product generated by functionals 
in the set

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗

∞;R) : F (·) ≡ C ∈ R}.
(2.26)

We will observe later that, importantly, our choice of A∞ contains the observable ∞-
hierarchy −iWGP , which generates the GP Hamiltonian.

As in the finite-particle setting, the Lie algebra structure on G∞ canonically induces a 
Poisson structure on G∗

∞. This canonical Poisson structure, which is called a Lie-Poisson 
structure, is defined by the Poisson bracket

{F,G}
G∗ (Γ) := iTr

(
[dF [Γ], dG[Γ]]

G
· Γ
)
, ∀Γ ∈ G∗

∞, (2.27)

∞ ∞
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where F, G ∈ C∞(G∗
∞; R) are functionals in the unital18 sub-algebra A∞ and we identify 

the Gâteaux derivatives dF [Γ], dG[Γ] as observable ∞-hierarchies via the trace pairing 
i Tr(·). We will ultimately establish the following result, which provides the underlying 
geometric structure required to address Question 1.1.

Proposition 2.8. (G∗
∞, A∞, {·, ·}

G∗
∞

) is a weak Poisson manifold.

Define the Gross-Pitaevskii Hamiltonian functional

HGP : G∗
∞ → R (2.28)

by

HGP (Γ) := −Tr1
(
Δx1γ

(1)
)

+Tr1,2
(
δ(X1 −X2)γ(2)

)
, Γ = (γ(k))k∈N ∈ G∗

∞, (2.29)

where Tr1,...,j denotes the j-particle generalized trace, see Appendix B.2 for definition 
and discussion. Then we can rewrite HGP as

HGP (Γ) = Tr(WGP · Γ), WGP := (−Δx1 , δ(X1 −X2), 0, . . .), (2.30)

which one should compare with (2.16).

Remark 2.9. Note that −iWGP is an observable ∞-hierarchy, that is, an element of 
G∞. Since we have the convergence −iWBBGKY,N → −iWGP in G∞, as N → ∞, it 
follows that HBBGKY,N → HGP in C∞(G∗

∞; R) endowed with the topology of uniform 
convergence on bounded sets.

We now state our next main result, which addresses the final component of Ques-
tion 1.1:

Theorem 2.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then 
Γ ∈ C∞(I; G∗

∞) is a solution to the GP hierarchy (2.5) if and only if(
d

dt
Γ
)

(t) = XHGP
(Γ(t)), ∀t ∈ I, (2.31)

where XHGP
is the unique Hamiltonian vector field defined by HGP with respect to the 

weak Poisson structure (G∗
∞, A∞, {·, ·}

G∗
∞

).

Remark 2.11. The result of Theorem 2.10 extends, with an almost identical proof, to the 
Hartree hierarchy, and it seems likely that this result should also extend to the quintic 

18 i.e. containing a multiplicative identity.
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GP hierarchy [5] and other variants which account for higher-order particle interactions 
[43].

We now give a geometric formulation of the procedure by which one obtains the 
BBGKY hierarchy from the N -body Schrödinger equation. The results described be-
low will be proved in Section 5.3. To record the Hamiltonian structure for the N -body 
Schrödinger equation, we equip the bosonic Schwartz space Ss(RdN ) with the standard 
symplectic structure and define the Hamiltonian functional

HN (ΦN ) := 1
N

∫
RdN

dxNΦN (xN )(HNΦN )(xN ), ∀ΦN ∈ Ss(RdN ). (2.32)

Then the Schrödinger equation (2.2) can be viewed as a Hamiltonian flow on this weak 
symplectic manifold. We can endow the space L(S ′

s(RdN ), Ss(RdN )) of bosonic density 
matrices with a weak Poisson structure by defining

{F,G}N := iTr1,...,N
(
[dF [ΨN ], dG[ΨN ]]

gN
ΨN

)
, ∀ΨN ∈ L(S ′

s(RdN ),Ss(RdN )),
(2.33)

where dF and dG denote the Gâteaux derivatives, see Definition A.4, of F and G, which 
are smooth real-valued functionals with suitably regular Gâteaux derivatives. Then the 
Poisson bracket {·, ·}N is a Lie-Poisson bracket induced by the Lie algebra of N -body 
bosonic observables with Lie bracket given by [·, ·]

gN
.

There is a canonical map from N -body wave functions to N -body density matrices 
given by

ιDM,N : Ss(RdN ) → L(S ′
s(RdN ),Ss(RdN )), ιDM,N (ΦN ) := |ΦN 〉 〈ΦN | . (2.34)

We will show in Proposition 5.27 that

ιDM,N : (Ss(RdN ), {·, ·}L2,N ) → (L(S ′
s(RdN ),Ss(RdN )), {·, ·}N ),

is a Poisson morphism19 and consequently maps solutions of the Schrödinger equation 
(2.2) to solutions of the von Neumann equation

i∂tΨN = [HN ,ΨN ], (2.35)

where the right-hand side denotes the usual commutator. Defining the Hamiltonian func-
tional

HN (ΨN ) := 1
N

Tr1,...,N (HNΨN ), ∀ΨN ∈ L(S ′
s(RdN ),Ss(RdN )), (2.36)

19 We recall {·, ·}L2,N = N{·, ·}L2 , and see (1.3) for a definition of {·, ·}L2 . We also note that the co-domain 
of this map will be replaced by the appropriate space of N-body density matrices.
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the von Neumann equation (2.35) can be viewed as a Hamiltonian equation of motion 
on the weak Poisson manifold (L(S ′

s(RdN ), Ss(RdN )), {·, ·}N ). We will prove in Proposi-
tion 5.29 that the dual of the map ιε,N given in (2.13) induces a canonical morphism of 
Poisson manifolds, which is precisely the reduced density matrix map, given by

ιRDM,N = ι∗ε,N : g∗N → G∗
N , ιRDM,N (ΨN ) := (Trk+1,...,N (ΨN ))Nk=1 =: (γ(k)

N )Nk=1,

(2.37)
which maps solutions of the von Neumann equation to solutions of the quantum BBGKY 
hierarchy.

2.3. The connection with the NLS

We will now tie together our main results and state the result which provides an 
affirmative answer to Question 1.2. We connect the GP hierarchy to the cubic NLS, each 
as infinite-dimensional Hamiltonian systems, through the canonical embedding

ι : S(Rd) → G∗
∞, φ �→ (

∣∣φ⊗k
〉 〈

φ⊗k
∣∣)k∈N . (2.38)

Although ι is rather trivial in terms of the simplicity of its definition, and for this reason 
we sometimes refer to ι as the trivial embedding, it has the important property of being 
a Poisson morphism (see Definition 4.7 below).

Theorem 2.12. The map ι is a Poisson morphism of (S(Rd), AS , {·, ·}L2) into
(G∗

∞, A∞, {·, ·}
G∗

∞
), i.e. it is a smooth map such that

{F ◦ ι, G ◦ ι}L2(φ) = {F,G}
G∗

∞
(ι(φ)), ∀φ ∈ S(Rd), (2.39)

for all functionals F, G ∈ A∞.

We conclude by discussing why the results described in this section provide “a rigorous 
derivation of the Hamiltonian structure of the NLS”. It is a quick computation to show 
that the pullback of the GP Hamiltonian (2.30) under the map ι, denoted by ι∗HGP , 
equals the NLS Hamiltonian (1.5),20 that is

ι∗HGP = HNLS . (2.40)

Hence, Theorem 2.12, Theorem 2.10 and (2.40) ultimately demonstrate that the Hamil-
tonian functional and phase space of the NLS can be obtained via the pullback of the 
canonical embedding (2.38). Together with the results of Section 5.3, which provide a 
geometric correspondence between the N -body Schrodinger equation and the BBGKY 

20 In particular, as a corollary of Theorem 2.10 and Theorem 2.12, we obtain the well-known fact that if 
φ(t) is a solution to the cubic NLS (1.1), then Γ(t) := ι(φ(t)) is a solution to the GP hierarchy (2.5).
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hierarchy, and Proposition 2.4, which enables us to take the infinite-particle limit of 
our geometric constructions at the N -body level, this provides a rigorous derivation of 
the Hamiltonian structure of the NLS from the Hamiltonian formulation of the N -body 
Schrödinger equation.

2.4. Organization of the paper

Section 4 is devoted to preliminary material on weak Poisson manifolds modeled 
on locally convex spaces, Lie algebras, and tensor products. The reader familiar with 
infinite-dimensional Poisson manifolds and Lie algebras may wish to skip the first two 
subsections upon first reading and instead consult them as necessary during the reading 
of Section 5 and Section 6.

In Section 5, we build the requisite Lie algebra structure for GN and weak Lie-Poisson 
structure for G∗

N , thereby proving Proposition 2.1 and Proposition 2.2. Section 5.1
contains the Lie algebra construction, and Section 5.2 contains the dual Lie-Poisson 
construction. Lastly, in Section 5.3, we show that the familiar maps of forming a density 
matrix from a wave function and taking the sequence of reduced density matrices of a 
density matrix have geometric content. Namely, we prove Proposition 5.27 and Proposi-
tion 5.29, which assert that these maps are Poisson morphisms.

In Section 6, we build the requisite Lie algebra structure for G∞ and weak Lie-Poisson 
structure for G∗

∞, thereby proving Proposition 2.7 and Proposition 2.8. The section is 
broken up into several subsections. Section 6.2 is devoted the Lie algebra construction, 
and Section 6.3 is devoted to the dual Lie-Poisson construction. Finally, we will prove 
Theorem 2.12 in Section 6.4.

Lastly, in Section 7, we prove our Hamiltonian flows results Theorem 2.3 and Theo-
rem 2.10, which assert that the BBGKY and GP hierarchies, respectively, are Hamilto-
nian flows on the weak Lie-Poisson manifolds constructed in the previous sections.

Remark 2.13. In Section 5, Section 6, and Section 7, we will fix the dimension to be one 
for simplicity, but we emphasize that our results hold independently of the dimension.

We have also included two appendices to make this work as self-contained as possible. 
Appendix A contains some background material on locally convex spaces, specifying cer-
tain choices which we make in the current work, which in infinite dimensions can lead to 
non-equivalent definitions. Appendix B is devoted to technical facts about distribution-
valued operators and topological tensor products, which justify the manipulations used 
extensively in this paper. Furthermore, this appendix includes an elaboration on the 
good mapping property, in particular, some technical consequences of it which are used 
in the body of the paper.
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3. Notation

3.1. Index of notation

We include Table 1 as a notational guide for the various symbols which appear in 
this work. In this table, we either provide a definition of the notation or a reference for 
where the symbol is defined. When definitions for these objects may have appeared in the 
introduction, we will give references to where they first appear in subsequent sections.

Table 1
Notation.

Symbol Definition

(xk), xk (x1, . . . , xk)
xm1;mk

(xm1 , . . . , xmk
)

xi;i+k (xi, . . . , xi+k)
dxk dx1 · · · dxk

dxi;i+k dxi · · · dxi+k

N≤i or N≥i {n ∈ N : n ≤ i} or {n ∈ N : n ≥ i}
Sk symmetric group on k elements
S(Rk),S′(Rk) Schwartz space on Rk and tempered distributions on Rk

D′(Rk) distributions on Rk

Ss(Rk),S′
s(R

k) symmetric Schwartz space, Definition 4.24, and symmetric tempered 
distributions

L(E;F ) continuous linear maps between locally convex spaces E and F
L̃(S(Rk),S(Rk)) L(S(Rk), S(Rk)) equipped with the subspace topology induced by 

L(S(Rk), S′(Rk))
L̃(Ss(Rk),Ss(Rk)) analogous to previous definition
dF the Gâteaux derivative of F , Definition A.4
∇ or ∇s the real or symplectic L2 gradients, Definition 4.11 and Remark 4.12
A(π(1),...,π(k)) conjugation of an operator by a permutation, see (4.42)
Sym(f) symmetrization operator for functions, Definition 4.23
Sym(A) symmetrization operator for operators, Definition 4.30
L2

s(R
k) symmetric wave functions, Definition 4.29

B±
i;j , Bi;j contraction operators, Definition 4.34

φ⊗k k-fold tensor of φ with itself, (4.64)
ωL2 symplectic form on L2(Rk), (4.15)
AS see Proposition 4.13 and (5.121)
{·, ·}L2 Poisson bracket on L2(Rk), (4.21)
A

(k)
(j1,...,jk) k-particle extension, (5.5)

gk locally convex space of k-body bosonic observables, (5.1)
(GN , [·, ·]GN

) Lie algebra of observable N-hierarchies, (5.49)
◦r r-fold contraction, (5.30)
(G∗

N ,A∞, {·, ·}G∗
N
) Lie-Poisson manifold of density matrix N-hierarchies, (5.64)

gk,gmp locally convex space of k-body observables satisfying the good 
mapping property, (6.7)

(G∞, [·, ·]G∞ ) Lie algebra of observable ∞-hierarchies, (6.8) and (6.9)
◦β
α contraction operator, Lemma 6.1

(G∗
∞,A∞, {·, ·}G∗

∞
) Lie-Poisson manifold of density matrix ∞-hierarchies, (6.78), 

Definition 6.9 and (6.82)
Tr1,...,N generalized trace, Definition B.5
Trk+1,...,N generalized partial trace, Proposition B.8
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4. Preliminaries

4.1. Weak Poisson structures and Hamiltonian systems

The classical notion of Poisson structure, as can be found in [25], is ill-suited outside 
the Hilbert or Banach manifold setting due to the fact that for a given smooth, locally 
convex manifold M , not every functional in C∞(M, R), the space of smooth, real-valued 
functionals on M , need admit a Hamiltonian vector field. Since we will need to work 
with Fréchet manifolds, an alternative theory is needed. We opt for the notion of a weak 
Poisson structure due to Neeb et al. [33].

We recall that a unital subalgebra A ⊆ C∞(M ; R) contains constant functions and is 
closed under pointwise multiplication.

Definition 4.1 (Weak Poisson manifold). A weak Poisson structure on M is a unital 
subalgebra A ⊂ C∞(M ; R) and a bilinear map {·, ·} : A ×A → A satisfying the following 
properties:

(P1) The bilinear map {·, ·}, is a Lie bracket and satisfies the Leibnitz rule

{F,GH} = {F,G}H + G{F,H}, ∀F,G,H ∈ A. (4.1)

We call {·, ·} a Poisson bracket.
(P2) For all m ∈ M and v ∈ TmM satisfying dF [m](v) = 0 for all F ∈ A, we have that 

v = 0.
(P3) For every H ∈ A, there exists a smooth vector field XH on M satisfying21

XHF = {F,H}, ∀F ∈ A. (4.2)

We call XH the Hamiltonian vector field associated to H.

If Properties 1 - 3 are satisfied, then we call the triple (M, A, {·, ·}) a weak Poisson 
manifold.

We now record some observations from [33] about the definition of a weak Poisson 
structure.

Remark 4.2. 2 implies that the Hamiltonian vector field XH associated to some H ∈ A
is uniquely determined by the relation

{F,H}(m) = (XHF )(m) = dF [m](XH(m)), ∀F ∈ A. (4.3)

21 In the left-hand side of identity (4.2), we use the notation XH to denote the vector field identified as a 
derivation.
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Indeed, if XH,1 and XH,2 are two smooth vector fields satisfying the preceding relation, 
then the smooth vector X̃H := XH,1 −XH,2 satisfies

dF [m](X̃H(m)) = 0, ∀F ∈ A, (4.4)

for all m ∈ M , which by 2 implies that X̃H ≡ 0.

Remark 4.3. For all F, G, H ∈ A, we have that

[XF , XG]H = {{H,G}, F} − {{H,F}, G}
= {H, {G,F}}
= X{G,F}H. (4.5)

Hence, by Remark 4.2, [XF , XG] = X{G,F} for F, G ∈ A. Additionally, the Leibnitz rule 
for {·, ·} implies the identity

XFG = FXG + GXF , ∀F,G ∈ A. (4.6)

Remark 4.4. If A ⊂ C∞(M ; R) is a unital sub-algebra which satisfies Properties 1 and 
2 of Definition 4.1, then (4.6) implies that the subspace

{H ∈ A : XH exists as in 3} (4.7)

is a sub-algebra of A with respect to pointwise product. Hence, it suffices to verify 
Property 3 for a generating subset A0 ⊂ A.

We note that unlike in the finite-dimensional setting, a symplectic form ω : V ×V → R

on an infinite-dimensional locally convex space V need not represent every continuous 
linear functional via ω(·, v), for some v ∈ V . If the form does satisfy such a Riesz-
representation-type condition, we call a symplectic form ω strong, otherwise, we call ω
weak. Analogously, a 2-form ω on a smooth locally convex manifold M is strong (resp. 
weak) if all forms ωp : TpM × TpM → R, for p ∈ M , are strong (resp. weak).

Definition 4.5 (Weak symplectic manifold). Let M be a smooth locally convex manifold, 
and let X (M) denote smooth vector fields on M . A weak symplectic manifold is a pair 
(M, ω) consisting of a smooth manifold M and a closed non-degenerate 2-form ω on M .

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector 
fields on M by

ham(M,ω) := {X ∈ X (M) : ∃H ∈ C∞(M ;R) s.t. ω(X, ·) = dH}. (4.8)

Similarly, we denote the larger Lie algebra of symplectic vector fields on M by
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sp(M,ω) := {X ∈ M : LXω = 0}, (4.9)

where LX denotes the Lie derivative with respect to the vector field X.
With this definition in hand, we see that one has the desired implication analogous to 

the finite dimensional setting, namely that weak symplectic manifolds canonically lead 
to weak Poisson manifolds.

Remark 4.6 (Weak symplectic ⇒ weak Poisson). Let (M, ω) be a weak symplectic man-
ifold. Let

A := {H ∈ C∞(M ;R) : ∃XH ∈ X (M) s.t. ω(XH , ·) = dH}, (4.10)

then

{·, ·} : A×A → A, {F,G} := ω(XF , XG) = dF [XG] = XGF (4.11)

defines a Poisson bracket on A satisfying Properties 1 and 3. If we additionally have that 
for each m ∈ M and all v ∈ TmM , the condition

ω(X(m), v) = 0, ∀X ∈ ham(M,ω) (4.12)

implies that v = 0, then Property 2 is also satisfied. Consequently, the triple (M, A, {·, ·})
is a weak Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Pois-
son structures. This leads to the notion of a Poisson mapping, alternatively Poisson 
morphism.

Definition 4.7 (Poisson map). Let (Mj , Aj , {·, ·}j), for j = 1, 2, be weak Poisson man-
ifolds. We say that a smooth map ϕ : M1 → M2 is a Poisson map, or morphism of 
Poisson manifolds, if ϕ∗A2 ⊂ A1 and

ϕ∗{F,G}2 = {ϕ∗F,ϕ∗G}1, ∀F,G ∈ A2. (4.13)

Remark 4.8. In [33], the authors define a Poisson morphism

ϕ : (M1,A1, {·, ·}1) → (M2,A2, {·, ·}2)

with the requirement that ϕ∗A2 = A1. We drop this requirement in our Definition 4.7.

As an example, we demonstrate that the Schwartz space S(Rk) is a weak, but not 
strong, symplectic manifold. The following analysis also holds for the bosonic Schwartz 
space Ss(Rk) mutatis mutandis, which will be important for our applications in the 
sequel.
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We equip the space S(Rk) with a real pre-Hilbert inner product by defining

〈f |g〉Re := 2 Re

⎧⎨⎩
∫
Rk

dxkf(xk)g(xk)

⎫⎬⎭ . (4.14)

The operator J : S(Rk) → S(Rk) defined by J(f) := if defines an almost complex 
structure on (S(Rk), 〈·|·〉Re), leading to the standard L2 symplectic form

ωL2(f, g) := 〈Jf |g〉Re = 2 Im

⎧⎨⎩
∫
Rk

dxkf(xk)g(xk)

⎫⎬⎭ , ∀f, g ∈ S(Rk). (4.15)

Proposition 4.9. (S(Rk), ωL2) is a weak symplectic manifold.

Proof. S(Rk) is trivially a smooth manifold modeled on itself. Moreover, it is evident 
from its definition that ωL2 is bilinear, alternating, and closed. To see that ωL2 is non-
degenerate, let f ∈ S(Rk) and suppose that

ωL2(f, g) = 0 ∀g ∈ S(Rk). (4.16)

It then follows tautologically that Im {〈f |g〉} = 0. Replacing g by ig, we obtain that 
Re {〈f |g〉} = 0, which implies that 〈f |f〉 = 0, hence f = 0. �

Now given a functional F ∈ C∞(S(Rk); R), the Gâteaux derivative dF [f ] at the 
point f ∈ S(Rk) defines a tempered distribution. We consider the case when dF [f ] can 
be identified with a Schwartz function via the inner product 〈·|·〉Re. The next lemma 
follows by the Lebesgue lemma22 and the same argument used to prove non-degeneracy 
in Proposition 4.9.

Lemma 4.10 (Uniqueness of gradient). Let F ∈ C∞(S(Rk); R) and f ∈ S(Rk). Suppose 
that there exist g1, g2 ∈ S(Rk) such that

〈g1|δf〉Re = dF [f ](δf) = 〈g2|δf〉Re , ∀δf ∈ S(Rk). (4.17)

Then g1 = g2.

Definition 4.11 (Real L2 gradient). We define the real L2 gradient of F ∈ C∞(S(Rk); R)
at the point f ∈ S(Rk), denoted by ∇F (f), to be the unique element of S(Rk) (if it 
exists) such that

22 We use the name Lebesgue lemma to refer to the result that if u1, u2 are two locally integrable functions 
such that u1 = u2 in distribution, then u1 = u2 point-wise almost everywhere.
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dF [f ](δf) = 〈∇F (f)|δf〉Re , ∀δf ∈ S(Rk). (4.18)

We say that F has a real L2 gradient if ∇F : S(Rk) → S(Rk) is a smooth map.

Remark 4.12. Since the Hamiltonian vector field of XF , if it exists, is defined by the 
relation

dF [f ](δf) = ωL2(XF (f), δf), (4.19)

and since XF is unique by the fact that S(Rk) is dense in S ′(Rk), we see that XF (f) =
−i∇F (f). In the sequel, we will use the notation ∇sF := XF , which we refer to as the 
symplectic L2 gradient.

We now use Remark 4.6 to show that the symplectic form ωL2 , which we recall is 
defined in (1.2), canonically induces an L2 Poisson structure on S(Rk).

Proposition 4.13. Define a subset AS ⊂ C∞(S(Rk); R) by

AS :=
{
H : ∇sH ∈ C∞(S(Rk);S(Rk))

}
, (4.20)

and define a bracket {·, ·}L2 on AS ×AS by

{F,G}L2 := ωL2(∇sF,∇sG). (4.21)

Then (S(Rk), AS , {·, ·}L2) is a weak Poisson manifold.

Proof. By Remark 4.6, we only need to check that for every fixed g ∈ S(Rk), the 
condition

ωL2(X(f), g) = 0, ∀X ∈ ham(S(Rk), ωL2) (4.22)

implies that g = 0 ∈ S(Rk). Since ham(S(Rk), ωL2) contains the constant vector fields 
X(·) ≡ f0, for any fixed f0 ∈ S(Rk), we see that by taking X(f) := ig for all f ∈ S(Rk), 
that the condition (4.22) implies that

0 = ω(ig, g) = −2 Im

⎧⎨⎩
∫
Rk

dxk(ig)(xk)g(xk)

⎫⎬⎭ = 2‖g‖2
L2(Rk). (4.23)

Hence, g = 0, completing the proof. �
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4.2. Some Lie algebra facts

In this subsection, we collect some facts about Lie algebras for easy referencing. We 
outline a canonical construction of a Poisson structure on the dual of a Lie algebra, 
which is known as a Lie-Poisson structure. Furthermore, we will outline a construction 
of hierarchies of Lie algebras which will serve as an inspiration for our construction of 
the Lie algebra G∞. We refer the reader to [25,24] for more background and details.

We begin by recording the definition of a Lie algebra for subsequent reference in our 
proofs.

Definition 4.14 (Lie algebra). A Lie algebra is a locally convex space g over the field 
F ∈ {R, C} together with a separately continuous binary operation [·, ·] : g × g → g

called the Lie bracket, which satisfies the following properties:

(L1) [·, ·] is bilinear.
(L2) [x, x] = 0 for all x ∈ g.
(L3) [·, ·] satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (4.24)

for all x, y, z ∈ g.

Remark 4.15. Usually (see, for instance, [34]), a Lie bracket is required to be continuous, 
as opposed to separately continuous. We drop this requirement in this work, due to 
functional analytic difficulties.

Definition 4.16 (Nondegenerate pairings). Let V and W be topological vector spaces over 
the field F , and let

〈·|·〉 : V ×W → F

be a bilinear pairing between V and W . We say that the pairing is V -nondegenerate
(respectively, W -nondegenerate) if the map V → W ∗, x �→ 〈x|·〉 (respectively, W →
V ∗, y �→ 〈·|y〉) is an isomorphism. If the pairing is both V - and W -nondegenerate, then 
we say that the pairing is nondegenerate.

Definition 4.17 (dual space g∗). Let (g, [·, ·]) be a Lie algebra. We say that a topological 
vector g∗ is a dual space to g if there exists a pairing 〈·|·〉 : g × g∗ → F which is 
nondegenerate.

Example 4.18. If g is a reflexive Fréchet space, for instance the Schwartz space S(Rd), 
then taking g∗ to be the topological dual of g equipped with the strong dual topology, 
the standard duality pairing
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g× g∗ → F : 〈x|ϕ〉 = ϕ(x)

is nondegenerate.

A consequence of the existence of a dual space g∗ for a Lie algebra g is the existence 
of functional derivatives, which is crucial to proving that the Lie-Poisson bracket in 
Proposition 4.20 below is well-defined.

Lemma 4.19 (Existence of functional derivatives). Let g be a Lie algebra, and let g∗ be 
dual to g with respect to the nondegenerate pairing 〈·|·〉

g−g∗ . For any functional F ∈
C1(g∗; F), there exists a unique element δFδμ ∈ g such that

〈
δF

δμ

∣∣∣∣δμ〉
g−g∗

= dF [μ](δμ), μ, δμ ∈ g∗. (4.25)

Proof. Let μ ∈ g∗. The Gâteaux derivative of F at μ denoted dF [μ] and defined in 
Definition A.4 is a continuous linear functional on g∗. Hence by the nondegeneracy of 
the pairing, there exists a unique element δFδμ ∈ g such that

〈
δF

δμ

∣∣∣∣δμ〉
g−g∗

= dF [μ][δμ], δμ ∈ g∗. �
We now have the necessary ingredients to define the canonical Poisson structure on the 

dual space g∗, which we call the Lie-Poisson structure, following Marsden and Weinstein 
[23].

Proposition 4.20 (Lie-Poisson structure). Let (g, [·, ·]
g
) be a Lie algebra, such that the Lie 

bracket is continuous, and let g∗ be dual to g with respect to the non-degenerate pairing 
〈·|·〉

g−g∗ . Define the Lie-Poisson bracket

{·, ·} : C∞(g∗;F) × C∞(g∗;F) → C∞(g∗;F) (4.26)

by

{F,G}(μ) :=
〈[

δF

δμ
,
δG

δμ

]
g

∣∣∣∣∣μ
〉

g−g∗

, μ ∈ g∗. (4.27)

Then (C∞(g∗; F), {·, ·}) is a Lie algebra.

Remark 4.21. Note that in the statement of Proposition 4.20, we require that the Lie 
bracket [·, ·]

g
be continuous, not merely separately continuous as in Definition 4.14. Since 

the Lie brackets we consider in Section 5 and Section 6 are only separately continuous, 
we do not use Proposition 4.20 directly, and therefore we have omitted the proof of it. We 
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emphasize, though, that the construction of the proposition inspires our constructions 
in the sequel.

4.3. Bosonic functions, operators and tensor products

We denote the symmetric group on k letters by Sk. For a permutation π ∈ Sk, we 
define the map π : Rk → Rk by

π(xk) := (xπ(1), . . . , xπ(k)). (4.28)

For a complex-valued, measurable function f : Rk → C, we define the map

(πf)(xk) := (f ◦ π)(xk) = f(xπ(1), . . . , xπ(k)). (4.29)

We denote the pairing of a tempered distribution u ∈ S ′(Rk) with a Schwartz function 
f ∈ S(Rk) by

〈u, f〉S′(Rk)−S(Rk). (4.30)

Throughout, we will use an integral to represent the pairing of a distribution and a 
test function. For 1 ≤ p ≤ ∞, we use the notation Lp(Rk) to denote Banach space of 
p-integrable functions with norm ‖ · ‖Lp(Rk). In particular, when p = 2, we denote the 
L2 inner product by

〈f |g〉 :=
∫
Rk

dxkf(xk)g(xk). (4.31)

Note that we use the physicist’s convention that the inner product is complex linear in 
the second entry. Similarly, for u ∈ S ′(Rk) and f ∈ S(Rk), we use the notation 〈u|f〉 to 
denote

〈u|f〉 := 〈u, f̄〉S′(Rk)−S(Rk). (4.32)

Alternatively, the right-hand side may be taken as the definition of the tempered distri-
bution ū.

Definition 4.22. We say that a measurable function f : Rk → C is symmetric or bosonic
if

π(f) = f (4.33)

for all permutations π ∈ Sk.
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Definition 4.23. We define the symmetrization operator Symk on the space of measurable 
complex-valued functions by

Symk(f)(xk) := 1
k!
∑
π∈Sk

(πf)(xk). (4.34)

By duality, we can extend the symmetrization operator to S ′(Rk).

Definition 4.24 (Symmetric Schwartz space). For k ∈ N, let Ss(Rk) denote the subspace 
of S(Rk) consisting of Schwartz functions f with the property that

f(xπ(1), . . . , xπ(k)) = f(xk), (xk) ∈ Rk (4.35)

for all permutations π ∈ Sk.

Definition 4.25 (Symmetric tempered distribution). We say that a tempered distribution 
u ∈ S ′(Rk) is symmetric or bosonic if for all permutations π ∈ Sk,

〈u, πg〉S′(Rk)−S(Rk) = 〈u, g〉S′(Rk),S(Rk), (4.36)

for all g ∈ S(Rk). We denote the subspace of symmetric tempered distributions by 
S ′
s(Rk).

Remark 4.26. It is straightforward to check that Symk is a continuous operator S(Rk) →
Ss(Rk) and S ′(Rk) → S ′

s(Rk). Furthermore, a measurable function f is bosonic if and 
only if f = Symk(f).

Lemma 4.27. We have the identification

S ′
s(Rk) ∼= (Ss(Rk))′. (4.37)

Proof. Let � ∈ (Ss(Rk))′. For all f ∈ Ss(Rk), we have that

�(f) = �(π(f)), π ∈ Sk. (4.38)

Hence,

�(f) = 1
k!
∑
π∈Sk

�(π(f)) = �(Symk(f)). (4.39)

Since Symk is a continuous linear operator on S(Rk), it follows that � ◦ Symk ∈ S ′(Rk). 
Since Symk(π(f)) = Symk(f) for any permutation π ∈ Sk, it follows that � ◦ Symk is 
permutation invariant, hence an element of S ′

s(Rk). �
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Given two locally convex spaces E and F , we denote the space of continuous linear 
maps E → F by L(E; F ). We topologize L(E; F ) with the topology of bounded conver-
gence. For our purposes, we will typically have E, F ∈ {S(Rk), Ss(Rk), S ′(Rk), S ′

s(Rk)}.

Remark 4.28. In the special case where E = F = S(Rk), we will write L̃(S(Rk), S(Rk))
to denote the vector space L(S(Rk), S(Rk)) equipped with the subspace topology induced 
by L(S(Rk), S ′(Rk)). The same statement holds with the Schwartz space replaced by 
the bosonic Schwartz space.

In the case that E = S(Rd) and F = S ′(Rd), the bounded topology is generated by 
the seminorms

‖A‖R := sup
f,g∈R

|〈Af, g〉S′(Rd)−S(Rd)|, ∀A ∈ L(S(Rd),S ′(Rd)), (4.40)

where R ranges over the bounded subsets of S(Rd). An identical statement holds with all 
spaces replaced by their symmetric counterparts. We topologize S ′(RN ) with the strong 
dual topology, which is the locally convex topology generated by the seminorms of the 
form

‖f‖B := sup
ϕ∈B

∣∣∣∣∣∣
∫
RN

dxNf(xN )ϕ(xN )

∣∣∣∣∣∣ , (4.41)

where B ranges over the family of all bounded subsets of S(RN). Note that since S(RN )
is a Montel space, bounded subsets are precompact. An identical statement holds with 
all spaces replaced by their symmetric counterparts.

Definition 4.29 (Symmetric wave functions). For k ∈ N, let L2
s(Rk) denote the subspace 

of L2(Rk) consisting of functions f which are bosonic a.e.

For A ∈ L(S(Rk), S ′(Rk)) and τ ∈ Sk, we define

A(τ(1),...,τ(k)) := τ ◦A ◦ τ−1. (4.42)

Definition 4.30. Given A ∈ L(S(Rk), S ′(Rk)), we define its bosonic symmetrization
Symk(A) by

Symk(A) := 1
k!
∑
π∈Sk

A(π(1),...,π(k)). (4.43)

Definition 4.31 (Bosonic operators). Let k ∈ N. We say that an operator A : S(Rk) →
S ′(Rk) is bosonic or permutation invariant if A maps Ss(Rk) into S ′

s(Rk).
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The analogue of Remark 4.26 holds for the symmetrization of operators in that sym-
metrized operators are indeed operators on the bosonic Schwartz space.

Lemma 4.32. Let k ∈ N. If A(k) ∈ L(S(Rk), S ′(Rk)), then

Symk(A(k)) ∈ L(Ss(Rk),S ′
s(Rk)). (4.44)

Proof. It suffices to show that for any k-particle operator A(k) ∈ L(S(Rk), S ′(Rk)) and 
any permutation σ ∈ Sk, it holds that∫

Rk

dxk

(
Symk(A(k))f

)
(xk)g(σ−1(xk)) =

∫
Rk

dxk

(
Symk(A(k))f

)
(xk)g(xk) (4.45)

for all f ∈ Ss(Rk) and for all g ∈ S(Rk). To this end, observe that∫
Rk

dxk

(
Symk(A(k))f

)
(xk)g(xσ−1(1), . . . , xσ−1(k))

=
∫
Rk

dxk

(
1
k!
∑
π∈Sk

(
A

(k)
(π(1),...,π(k))f

)
(xk)

)
g(xσ−1(1), . . . , xσ−1(k)). (4.46)

By definition (4.42), we have

A
(k)
(π(1),...,π(k))f = πA(k)(π−1f). (4.47)

Therefore,

1
k!
∑
π∈Sk

∫
Rk

dxk

(
A

(k)
(1,...,k)(π

−1f)
)
(xπ(1), . . . , xπ(k))g(xσ−1(1), . . . , xσ−1(k))

= 1
k!
∑
π∈Sk

∫
Rk

dxk

(
A(k)(π−1f)

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))

= 1
k!
∑
π∈Sk

∫
Rk

dxk

(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k)), (4.48)

where, recalling (4.29), the second line follows from a change of variable and the third 
line follows from the assumption that f is symmetric with respect to permutation of the 
coordinates. Since for any fixed σ ∈ Sk, π �→ π−1σ−1 defines a bijection of the group Sk, 
it follows from a change of summation index that

1
k!
∑
π∈S

∫
dxk

(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))
kRk
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= 1
k!
∑
π̃∈Sk

∫
Rk

dxk

(
A(k)f

)
(xk)g(xπ̃(1), . . . , xπ̃(k))

= 1
k!
∑
π̃∈Sk

∫
Rk

dxk

(
A(k)(π̃f)

)
(xπ̃−1(1), . . . , xπ̃−1(k))g(xk)

=
∫
Rk

dxk

(
Symk(A(k))f

)
(xk)g(xk), (4.49)

where the penultimate line follows from the assumption that f is symmetric and a change 
of variable. This concludes the proof. �

The following technical lemma will be useful in the sequel. For definitions and discus-
sion of the generalized trace, see Definition B.5.

Lemma 4.33. Let k ∈ N, and let γ(k) ∈ L(S ′
s(Rk), Ss(Rk)) and A(k) ∈ L(S(Rk), S ′(Rk)). 

Then for any permutation τ ∈ Sk, we have that

Tr1,...,k
(
A

(k)
(τ(1),...,τ(k))γ

(k)
)

= Tr1,...,k
(
A(k)γ(k)

)
. (4.50)

Proof. Let τ ∈ Sk. Now let

γ(k) =
∞∑
j=1

λj |fj〉 〈gj | (4.51)

be a decomposition for γ(k), where 
∑∞

j=1 |λj | ≤ 1, and {fj}∞j=1, {gj}∞j=1 are sequences 
tending to zero in Ss(Rk). In particular, the partial sums

N∑
j=1

λj |fj〉 〈gj | −−−−→
N→∞

γ(k) in L(S ′
s(Rk),Ss(Rk)). (4.52)

Since the map

Tr1,...,k
(
A

(k)
(τ(1),...,τ(k)·

)
: L(S ′(Rk),S(Rk)) → C, (4.53)

is continuous and the inclusion Ss(Rk) ⊂ S(Rk) is trivially continuous, it follows that

Tr1,...,k
(
A

(k)
(τ(1),...,τ(k))γ

(k)
)

= lim
N→∞

Tr1,...,k
(
A

(k)
(τ(1),...,τ(k))

( N∑
j=1

λj |fj〉 〈gj |
))

= lim
N→∞

N∑
λj Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))(|fj〉 〈gj |)

)

j=1
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= lim
N→∞

N∑
j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
. (4.54)

Since fj and gj are both bosonic, we have by definition of the notation A(k)
(τ(1),...,τ(k)) in 

(4.42) that〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
=
〈
τ−1(gj)

∣∣∣A(k)(τ−1(fj))
〉

=
〈
gj

∣∣∣A(k)fj

〉
, ∀j ∈ N. (4.55)

Therefore,

lim
N→∞

N∑
j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
= lim

N→∞

N∑
j=1

λj

〈
gj

∣∣∣A(k)fj

〉

= lim
N→∞

Tr1,...,k
(
A(k)

( N∑
j=1

λj |fj〉 〈gj |
))

= Tr1,...,k
(
A(k)γ(k)

)
, (4.56)

where in order to obtain the ultimate equality, we again use the continuity of the func-
tional Tr1,...,k

(
A(k)·

)
and the convergence of the partial sums. �

We define the usual contraction operator Bi;j appearing in the literature on derivation 
of quantum many-body systems.

Definition 4.34 (The contractions operator Bi;j). Let k ∈ N. For integers 1 ≤ i, j ≤ k

with i �= j, we define the continuous linear operators

B±
i;j : L(S ′(Rk+1),S(Rk+1)) → L(S ′(Rk),S(Rk)) (4.57)

by defining the Schwartz kernel of B+
i;j(γ(k+1)) by the formula

B+
i;j(γ

(k+1))(xk;x′
k) :=

∫
R

dyδ(xi − y)γ(k+1)(x1;j−1, y, xj;k;x′
1;j−1, y, x

′
j;k),

for all (xk, x
′
k) ∈ R2k. Similarly, we define the Schwartz kernel of B−

i;j(γ(k+1)) by the 
formula

B−
i;j(γ

(k+1))(xk;x′
k) :=

∫
R

dyδ(x′
i − y)γ(k+1)(x1;j−1, y, xj;k;x′

1;j−1, y, x
′
j;k),

for all (xk, x
′
k) ∈ R2k We define the continuous linear operator

Bi;j : L(S ′
s(Rk+1),Ss(Rk+1)) → L(S ′

s(Rk),Ss(Rk))
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by

Bi;j := B+
i;j −B−

i;j . (4.58)

Given two locally convex spaces E and F , we denote an23 algebraic tensor product of 
E and F consisting of finite linear combinations

n∑
j=1

λjej ⊗ fj , ej ∈ E, fj ∈ F (4.59)

by E ⊗ F . We note that since the spaces we deal with in this paper are nuclear, 
the topologies of the injective and projective tensor products coincide. Hence, we can 
unambiguously write E⊗̂F to denote the completion of E⊗F under either of the afore-
mentioned topologies.

Given locally convex spaces Ej and Fj for j = 1, 2 and linear maps T : E1 → E2 and 
S : F1 → F2, and a tensor product

B : E1 × E2 → E1 ⊗E2, (4.60)

the notation T ⊗ S denotes the unique linear map T ⊗ S : E1 ⊗F1 → E2 ×F2 such that

(T ⊗ S) ◦B = T × S. (4.61)

Note that the existence of such a unique map is guaranteed by the universal property of 
the tensor product.

When E and F are subspaces of measurable functions on Rm and Rn respectively, 
and e ∈ E and f ∈ F , we let e ⊗ f denote the function

e⊗ f : Rm ×Rn → C, (e⊗ f)(xm;x′
n) := e(xm)f(x′

n), (4.62)

which induces a bilinear map E × F → E ⊗ F . Similarly, if E′ and F ′ are the duals of 
spaces of test functions E and F , for instance E′ = D′(Rm) and F ′ = D′(Rn), we let 
u ⊗ v denote the unique distribution satisfying

(u⊗ v)(e⊗ f) = u(e) · v(f). (4.63)

Finally, if φ : Rm → C is a measurable function, we use the notation φ⊗k, for k ∈ N, to 
denote the measurable function φ⊗k : Rmk → C defined by

φ⊗k(xm,1, . . . , xm,k) :=
k∏

�=1

φ(xm,�). (4.64)

23 The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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5. Geometric structure for the N -body problem

In this section we establish proofs of the results stated in Section 2.1.

5.1. Lie algebra GN of finite hierarchies quantum observables

We begin by defining a Lie algebra gk of k-body observables. We have some freedom 
to choose our definition of this Lie algebra, provided that our choice is large enough to 
include the Hamiltonian of the N -body problem yet small enough so that operations 
such as composition and taking adjoints are well-defined. We find that continuous linear 
maps from the bosonic Schwartz space to itself forms a convenient choice.

For k ∈ N, define

gk := {A(k) ∈ L̃(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)}, (5.1)

where we recall that L̃(Ss(Rk), S ′
s(Rk)) is defined in Remark 4.28. Let

[·, ·]
gk

: gk × gk → gk

be the usual commutator bracket scaled by a factor of k:

[A,B]
gk

:= k[A,B] = k(AB −BA). (5.2)

Note that the commutator is well-defined since the space L(Ss(Rk), Ss(Rk)) is closed 
under composition. We refer to the elements of gk as k-body observables.

The first goal of this subsection is to verify that (gk, [·, ·]gk
) is a Lie algebra in the 

sense of Definition 4.14. Namely, we prove the following proposition.

Proposition 5.1. (gk, [·, ·]gk
) is a Lie algebra in the sense of Definition 4.14

Proof. That [·, ·]
gk

is algebraically a Lie bracket is immediate from the fact that the 
commutator satisfies Properties 1, 2, and 3. Therefore, it remains to verify that the 
commutator is separately continuous with respect to the topology on gk. By symmetry, 
it suffices to show that for fixed A(k) ∈ gk, the map B(k) �→ A(k)B(k) is continuous on 
L̃(Ss(Rk), Ss(Rk)), which amounts to showing that for any bounded subset R ⊂ Ss(Rk), 
there exists a bounded subset R̃ ⊂ Ss(Rk), such that

sup
f,g∈R

∣∣∣〈g∣∣∣A(k)B(k)f
〉∣∣∣ � sup

f,g∈R̃

∣∣∣〈g∣∣∣B(k)f
〉∣∣∣ . (5.3)

Now note that 
〈
g
∣∣A(k)B(k)f

〉
=
〈
(A(k))∗g

∣∣B(k)f
〉
. Since (A(k))∗ = −A(k), it follows 

from the continuity of A(k) that (A(k))∗(R) it a bounded subset of Ss(Rk). Choosing 
R̃ = R ∪ (A(k))∗(R) completes the proof. �
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We next introduce some combinatorial notation used frequently in the sequel. For 
N ∈ N and k ∈ N≤N , let PN

k denote the collection of k-tuples (j1, . . . , jk) with k
distinct elements drawn from the set N≤N . Given an element (j1, . . . , jk) ∈ PN

k , let 
(m1, . . . , mN−k) denote the increasing arrangement of N≤N \ {j1, . . . , jk}. We denote by 
πj1···jk ∈ SN the permutation

π(a) :=
{
i, a = ji for i ∈ N≤k

k + i, a = mi for i ∈ N≤N−k

. (5.4)

Our first lemma defines a continuous linear map εk,N which allows us to regard a k-
particle observable as an N -particle observable. This map εk,N is crucial to the definition 
of the Lie bracket between two observable N -hierarchies and by duality, to the Poisson 
bracket of two density matrix N -hierarchies.

For A(k) ∈ L(Ss(Rk), Ss(Rk)), N ∈ N with 1 ≤ k ≤ N , and (j1, . . . , jk) ∈ PN
k we can 

define the operator

A
(k)
(j1,...,jk) ∈ L(Ss(RN ),S(RN )) (5.5)

which acts only on the variables {j1, . . . , jk} by defining

A
(k)
(1,...,k) = A(k) ⊗ IdN−k

and setting

A
(k)
(j1,...,jk) = π−1

j1···jk ◦A(k)
(1,...,k) ◦ πj1···jk . (5.6)

We establish some properties of such operators, which we call k-particle extensions, in 
Proposition B.10. These k-particle extensions are used to define a map εk,N . We will 
show first, in the following lemma, that εk,N have the desired mapping properties, and 
then subsequently that the εk,N are injective, and hence they are proper embeddings of 
the space gk into gN .

Remark 5.2. Although A(k) is a priori only defined on the proper subspace Ss(Rk) ⊂
S(Rk), this operator admits an extension to the space S(Rk) since we may always con-
sider A(k)◦Symk. We agree going forward to abuse notation by identifying A(k) with this 
extension. Consequently, we may regard A(k)

(j1,...,jk) ∈ L(S(RN ), S(RN )). As the reader 
will see, though, all our constructions are independent of the choice of extension.

Lemma 5.3. For integers 1 ≤ k ≤ N , there is a continuous linear map

εk,N : L(Ss(Rk),S ′
s(Rk)) → L(Ss(RN ),S ′

s(RN )) (5.7)

defined by
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εk,N (A(k)) := Ck,N

∑
(j1,...,jk)∈PN

k

A
(k)
(j1,...,jk), (5.8)

where24

Ck,N :=
(
k!
(
N

k

))−1

= 1
N · · · (N − k + 1) . (5.9)

Moreover, if A(k) ∈ L(Ss(Rk), Ss(Rk)), then εk,N (A(k)) ∈ L(Ss(RN ), Ss(RN )), and if 
A(k) is skew-adjoint, then εk,N (A(k)) is skew-adjoint. In particular, εk,N (gk) ⊂ gN .

Proof. Fix 1 ≤ k ≤ N . From Proposition B.10, it follows that if A(k) ∈ L(Ss(Rk), S ′
s(Rk)),

then εk,N (A(k)) as given in (5.8) is a well-defined element of L(Ss(RN ), S ′
s(RN )) and the 

map εk,N is linear. Furthermore, it follows from Lemma B.11 that skew-adjointness is 
preserved. So it remains for us to show that

εk,N (L(Ss(Rk),Ss(Rk))) ⊂ L(Ss(RN ),Ss(RN )) (5.10)

and that εk,N is continuous.

• Consider the assertion (5.10). By properties of tensor product and the continuity of 
A(k), it follows that A(k)

(1,...,k) = A(k)⊗̂IdN−k is a continuous map of Ss(Rk) ⊗S(RN−k)
to itself, and hence that

A
(k)
(j1,...,jk) : Ss(RN ) → S(RN )

is a continuous map follows directly from (5.6). We thus need to show that 
εk,N (A(k))(f) is bosonic.
Let π ∈ SN . It is straightforward from the definition of A(k)

(j1,...,jk) and (4.29) that, 
for any test function f ∈ Ss(RN ), we have

πA
(k)
(j1,...,jk)(f) = A

(k)
(π(j1),...,π(jk))(πf) = A

(k)
(π(j1),...,π(jk))(f), (5.11)

where the ultimate equality follows from f being bosonic. Since SN induces a left 
group action on PN

k , it follows that∑
(j1,...,jk)∈PN

k

A
(k)
(j1,...,jk) =

∑
(j1,...,jk)∈PN

k

A
(k)
(π(j1),...,π(jk)) (5.12)

on Ss(Rk), which implies together with (5.11) that

24 Note that Ck,N = 1/|PN
k |.
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πεk,N (A(k))(f) = Ck,N

∑
(j1,...,jk)∈PN

k

πA
(k)
(j1,...,jk)(f) = εk,N (A(k))(f), (5.13)

as desired.
• Now we will prove the assertion that εk,N is continuous. Let RN be a bounded subset 

of Ss(RN ). We need to show that there exists a bounded subset Rk ⊂ Ss(Rk) such 
that

sup
f(N),g(N)∈RN

∣∣∣〈g(N)
∣∣∣εk,N (A(k))f (N)

〉∣∣∣ � sup
f(k),g(k)∈Rk

∣∣∣〈g(k)
∣∣∣A(k)f (k)

〉∣∣∣ . (5.14)

Using the fact that there are finitely many terms in the definition of εk,N and that 
the finite union of bounded subsets is again a bounded subset, it suffices to show 
that, for RN as above and any tuple (j1, . . . , jk) ∈ PN

k , there exists a bounded subset 
R(j1,...,jk) ⊂ S(Rk), such that

sup
f(N),g(N)∈RN

∣∣∣〈g(N)
∣∣∣A(k)

(j1,...,jk)f
(N)
〉∣∣∣ � sup

f(k),g(k)∈R(j1,...,jk)

∣∣∣〈g(k)
∣∣∣A(k)f (k)

〉∣∣∣ , (5.15)

since then the desired bounded subset Rk ⊂ Ss(Rk) is obtained by taking

Rk := Symk

⎛⎝ ⋃
j
k
∈PN

k

R(j1,...,jk)

⎞⎠.

Now (5.15) is a consequence of the fact that

L(Ss(Rk),S ′
s(Rk)) �→ L(Ss(Rk)⊗̂S(RN−k),S ′(RN )), A(k) �→ A(k) ⊗ IdN−k

(5.16)
is continuous, (5.6), and the fact that for any j

k
∈ PN

k , the map πj1...jk defined by 
(5.4) and duality is a continuous endomorphism of S ′(RN ). �

We next show that the maps εk,N are injective. This property is crucial as we will 
ultimately construct our Lie bracket on the hierarchy algebra by embedding elements of 
the sequence into the ambient algebra gN , taking the bracket in gN , and then identifying 
the output as an embedded element of gk, for some k ∈ N≤N .

Lemma 5.4 (Injectivity of εk,N ). For integers 1 ≤ k ≤ N , the map εk,N : gk → gN is 
injective. Consequently, εk,N has a well-defined inverse on its image, which we denote 
by ε−1

k,N .

Proof. Fix 1 ≤ k ≤ N . We will show the contrapositive statement: if A(k) �= 0, then 
εk,N (A(k)) �= 0.
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We introduce a parameter n ∈ N0, with n < k. We say that A(k) has property Pn if 
the following holds: there exists f, g1, . . . , gk−n ∈ S(R) such that

A(k)
(

Symk

(
f⊗k−n ⊗

n⊗
a=1

ga

))
�= 0, (5.17)

where the tensor product is understood as vacuous when n = 0. We define the integer 
nmin by25

nmin := max{min{n ∈ N<k : A(k) has property Pn}, k}. (5.18)

Note that we must have nmin < k, else, by definition of property Pn, we would then 
have that for all g1, . . . , gk ∈ S(R),

A(k)(Symk(g1 ⊗ · · · ⊗ gk)) = 0. (5.19)

By linearity and continuity of A(k) together with density of finite linear combinations of 
symmetric pure tensors in Ss(Rk), (5.19) implies that A(k) ≡ 0, which is a contradiction.

To avoid notation confusion, we first dispense with the trivial case nmin = 0. The 
definition of property P0 implies that there exists an element f ∈ S(R) such that 
A(k)(f⊗k) �= 0. It then follows trivially from the definition of each summand A(k)

(j1,...,jk)
in the definition of εk,N (A(k)) that

εk,N (A(k))(f⊗N ) �= 0 ∈ S ′
s(RN ). (5.20)

We now consider the case 1 ≤ nmin < k. The definition of property Pnmin implies that 
there exist elements f, g1, . . . , gnmin ∈ S(R) such that

A(k)
(

Symk

(
f⊗k−nmin ⊗

nmin⊗
a=1

ga

))
�= 0 ∈ S ′

s(Rk). (5.21)

Define an element h(N) ∈ Ss(RN ) by

h(N) := SymN

(
f⊗k−nmin ⊗ (

nmin⊗
a=1

ga) ⊗ f⊗N−k

)
. (5.22)

We claim that εk,N (A(k))(h(N)) �= 0 ∈ S ′
s(RN ). Indeed, unpacking the definition of 

εk,N (A(k)) and SymN , we have

25 We adopt the convention that the minimum of the empty set is ∞, and therefore we take the maximum 
with k to ensure that nmin is finite.
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. 
εk,N (A(k))(h(N)) = Ck,N

∑
j
k
∈PN

k

A
(k)
(j1,...,jk)

( ∑
π∈SN

π(f⊗k−nmin ⊗ (
nmin⊗
a=1

ga) ⊗ f⊗N−k)
)
.

(5.23)
We first examine the interior sum. For each j

k
∈ PN

k , we can partition SN into the sets

Sj
k
,r := {π ∈ SN : |{π(k − nmin + 1), . . . , π(k)} ∩ {j1, . . . , jk}| = r} (5.24)

for r = 0, . . . , nmin. We write

∑
π∈SN

π(f⊗k−nmin ⊗ (
nmin⊗
a=1

ga) ⊗ f⊗N−k) =
nmin∑
r=0

∑
π∈Sjk,r

π(f⊗k−nmin ⊗ (
nmin⊗
a=1

ga) ⊗ f⊗N−k).

(5.25)
By symmetry considerations, we may suppose that (j1, . . . , jk) = (1, . . . , k). It is a short 
counting argument that for each r ∈ {0, . . . , nmin}, we have that

∑
π∈S(1,...,k),r

π(f⊗k−nmin ⊗ (
nmin⊗
a=1

ga) ⊗ f⊗N−k)

= C(k, nmin, r,N)
∑

�nmin∈P
nmin
nmin

Symk

(
f⊗k−r ⊗

r⊗
a=1

g�a

)

⊗ SymN−k

(
(

nmin⊗
a=r+1

g�a) ⊗ f⊗N−nmin−k+r

)
,

(5.26)

where C(k, nmin, r, N) is another combinatorial factor depending on the data (k, nmin, r, N)
Each term

Symk

(
f⊗k−r ⊗

r⊗
a=1

g�a

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g�a) ⊗ f⊗N−nmin−k+r

)
(5.27)

is an element of Ss(Rk)⊗̂Ss(RN−k), and therefore (5.27) belongs to the domain of 
A

(k)
(1,...,k). Now by definition of nmin, we have that for each r ∈ {0, . . . , nmin − 1} that

A
(k)
(1,...,k)

(
Symk

(
f⊗k−r ⊗

r⊗
a=1

g�a

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g�a) ⊗ f⊗N−nmin−k+r

))

= A(k)
(

Symk(f⊗k−r ⊗
r⊗

a=1
g�a)

)
⊗ SymN−k

(
(

nmin⊗
a=r+1

g�a) ⊗ f⊗N−nmin−k+r

)
= 0 ∈ S ′

s(Rk)⊗̂Ss(RN−k).

When r = nmin, we have that
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A
(k)
(1,...,k)

(
Symk(f⊗k−nmin ⊗

nmin⊗
a=1

g�a) ⊗ f⊗N−k)
)

= A(k)
(

Symk(f⊗k−nmin ⊗
nmin⊗
a=1

ga)
)
⊗ f⊗N−k

is a non-zero element of S ′
s(Rk)⊗̂Ss(RN−k) by choice of the elements f, g1, . . . , gnmin ∈

S(R). Consequently, for a possibly different combinatorial factor C ′(k, N), we conclude 
that

εk,N (A(k))(h(N)) = C(k,N)′ SymN

(
A(k)

(
Symk(f⊗k−nmin ⊗

nmin⊗
a=1

ga)
)
⊗ f⊗N−k

)
(5.28)

is a nonzero element of S ′
s(RN ), completing the proof of the lemma. �

We next show that the bracket [·, ·]
gN

respects the hierarchy in the sense that

[ε�,N (g�), εj,N (gj)]gN
⊂ εmin{�+j−1,N},N (gmin{�+j−1,N}) ⊂ gN . (5.29)

This filtration or gradation property is crucial to our definition of the hierarchy Lie 
bracket in the sequel.

Before proving Lemma 5.7 below, we introduce some contraction and commutator-
type notation used in the proof and in the sequel. Consider integers N ∈ N, �, j ∈
N≤N , k := min{� + j − 1, N} and r ≥ 1 satisfying appropriate conditions. Let A(�) ∈
L(Ss(R�), Ss(R�)) and B(j) ∈ L(Ss(Rj), Ss(Rj)). We define the r-fold contractions

A(�) ◦r B(j) := A
(�)
(1,...,�)

( ∑
αr∈P �

r

B
(j)
(αr,�+1,...,�+j−r)

)
∈ L(Ss(Rk),S ′(Rk)) (5.30)

B(j) ◦r A(�) := B
(j)
(1,...,j)

( ∑
αr∈P j

r

A
(�)
(αr,j+1,...,j+�−r)

)
∈ L(Ss(Rk),S ′(Rk)). (5.31)

Note that the compositions are well-defined since∑
αr∈P �

r

B
(j)
(αr,�+1,...,�+j−r) and

∑
αr∈P j

r

A
(�)
(αr,j+1,...,j+�−r) (5.32)

have targets which are symmetric under permutation in the first � and j coordinates, 
respectively. We then set

[
A(�), B(j)

]
:=
(
j
)
A(�) ◦r B(j) −

(
�
)
B(j) ◦r A(�). (5.33)
r r r
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The motivation for the combinatorial factors in (5.33) will become clear from the proof 
of Lemma 5.7 below.

Remark 5.5. We may also proceed term-by-term to define (5.30) and (5.31) by consider-
ing extensions of A(�) and B(j) to L(S(R�), S(R�)) and L(S(Rj), S(Rj)), so that A(�)

(1,...,�)

and B(j)
(1,...,j) are then elements of L(S(Rk), S(Rk)). The choice of extensions is immate-

rial by the target symmetry of operators with which the extensions are right-composed.

In the sequel, we will need a technical lemma concerning the separate continuity of 
the binary operation ◦r. The proof of this result is quite similar to that of (the more 
general) Lemma 6.1 below, so we omit the proof.

Lemma 5.6. Let �, j, k, N ≥ 1 be integers such that �, j ≤ N and min{� + j − 1, N} = k. 
Let r be an integer such that r0 ≤ r ≤ min{�, j}, where

r0 := max{1,min{�, j} − (N − max{�, j})}. (5.34)

Then the bilinear map

(·) ◦r (·) : L̃(S(R�),S(R�)) × L̃(S(Rj),S(Rj)) → L̃(S(Rk),S(Rk)) (5.35)

is separately continuous.26

Lemma 5.7 (Filtration of hierarchy). Let N ∈ N and let 1 ≤ �, j ≤ N . Then for any 
A(�) ∈ g� and B(j) ∈ gj, there exists a unique C(k) ∈ gk, for k := min{� + j − 1, N}, 
such that [

ε�,N (A(�)), εj,N (B(j))
]
gN

= εk,N (C(k)). (5.36)

Proof. By definition,[
ε�,N (A(�)), εj,N (B(j))

]
gN

= NC�,NCj,N

⎛⎝ ∑
m�∈PN

�

A
(�)
(m1,...,m�)

( ∑
nj∈PN

j

B
(j)
(n1,...,nj)

)

−
∑

nj∈PN
j

B
(j)
(n1,...,nj)

( ∑
m�∈PN

�

A
(�)
(m1,...,m�)

)⎞⎠
26 We recall that L̃(S(Rk), S(Rk) denotes the space L(S(Rk), S(Rk)) of continuous linear maps from 
Schwartz space to itself equipped with the subspace topology induced by L(S(Rk), S′(Rk)).
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= NC�,NCj,N

min{�,j}∑
r=1

( ∑
m�∈PN

�

A
(�)
(m1,...,m�)

( ∑
nj∈PN

j

|{m1,...,m�}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj)

)

−
∑

nj∈PN
j

B
(j)
(n1,...,nj)

( ∑
m�∈PN

�
|{m1,...,m�}∩{n1,...,nj}|=r

A
(�)
(m1,...,m�)

))
. (5.37)

Without loss of generality, suppose that � ≥ j. We consider the case � + j − 1 ≤ N . For 
each integer 1 ≤ r ≤ j, we have by the Sj-invariance of the operator B(j) that

∑
nj∈PN

j

|{m1,...,m�}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj) =

(
j

r

) ∑
nj∈PN

j

{n1,...,nr}⊂{m1,...,m�}
{nr+1,...,nj}∩{m1,...,m�}=∅

B
(j)
(n1,...,nj). (5.38)

Similarly, by the S�-invariance of the operator A(�), we have that

∑
m�∈PN

�
|{n1,...,nj}∩{m1,...,m�}|=r

A
(�)
(m1,...,m�) =

(
�

r

) ∑
m�∈PN

�
{m1,...,mr}⊂{n1,...,nj}

{mr+1,...,m�}∩{n1,...,nj}=∅

A
(�)
(m1,...,m�). (5.39)

Upon relabeling the summation, we see that

(5.37) = NC�,NCj,N

min{�,j}∑
r=1

∑
p
�+j−r

∈PN
�+j−r

((j
r

)
A

(l)
(p1,...,pl)

( ∑
1≤�1,...,�r≤�
|{�1,...,�r}|=r

B
(j)
(p�1 ,...,p�r ,p�+1,...,p�+j−r)

)

−
(�
r

)
B

(j)
(p1,...,pj)

( ∑
1≤j1,...,jr≤j
|{j1,...,jr}|=r

A
(�)
(pj1 ,...,pjr ,pj+1,...,pj+�−r)

))
.

(5.40)
If r = 1, then the summand of (5.40) equals

NC�,NCj,N

∑
p
k
∈PN

k

jA
(�)
(p1,...,p�)

( �∑
α=1

B
(j)
(pα,p�+1,...,pk)

)
− �B

(�)
(p1,...,p�)

( j∑
α=1

A
(�)
(pα,pj+1,...,pk)

)

= NC�,NCj,N

∑
p
k
∈PN

k

j(A(�) ◦1 B
(j))(p1,...,pk) − �(B(j) ◦1 A

(�))(p1,...,pk)

= εk,N

(
NC�,NCj,N Symk

(
j(A(�) ◦1 B

(j)) − �(B(j) ◦1 A
(�))
))

. (5.41)

Ck,N
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Now suppose that r > 1. Observe that

∑
p
�+j−r

∈PN
�+j−r

((
j

r

)
A

(�)
(p1,...,p�)

( ∑
1≤�1,...,�r≤�
|{�1,...,�r}|=r

B
(j)
(p�1 ,...,p�r ,p�+1,...,p�+j−r)

)

−
(
�

r

)
B

(j)
(p1,...,pj)

( ∑
1≤j1,...,jr≤j
|{j1,...,jr}|=r

A
(�)
(pj1 ,...,pjr ,pj+1,...,pj+�−r)

)) (5.42)

cannot be immediately identified as an embedded element of gk because the summation 
is not over tuples p

k
∈ PN

k . Indeed, we are missing k− (� + j−r) = r−1 coordinates. To 
address this issue, we observe that we can write p

k
∈ PN

k as p
k

= (p
�+j−r

, q
r−1), where 

p
�+j−r

∈ PN
�+j−r and

q
r−1 ∈ (N≤N \ {p1, . . . , p�+j−r})r−1, with |{q1, . . . , qr−1}| = r − 1. (5.43)

For each p
�+j−r

∈ PN
�+j−r, the number of (r − 1)-cardinality subsets of N≤N \

{p1, . . . , p�+j−r} is (
N − �− j + r

r − 1

)
.

Since there are (r − 1)! ways of permuting r − 1 distinct elements, we conclude that for 
p
�+j−r

∈ PN
�+j−r,

|{q
r−1 ∈ (N≤N \ {p1, . . . , p�+j−r})r−1 : |{q1, . . . , qr−1}| = r − 1}|

=
(
N − �− j + r

r − 1

)
(r − 1)!

=
r−1∏
m=1

(N − k + m), (5.44)

where we use that � + j − 1 = k. Hence, the summand of (5.40) equals

NC�,NCj,N∏r−1
m=1(N − k + m)

∑
p
k
∈PN

k

((
j

r

)
A

(�)
(p1,...,p�)

( ∑
�r∈P �

r

B
(j)
(p�1 ,...,p�r ,pr+1,...,p�+j−r)

)

−
(
�

r

)
B

(j)
(p1,...,pj)

( ∑
j
r
∈P j

r

A
(�)
(pj1 ,...,pjr ,pj+1,...,pj+�−r)

))
,

(5.45)

and by definition, we obtain that this expression equals
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εk,N

(
NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

Symk

((
j

r

)
A(�) ◦r B(j) −

(
�

r

)
B(j) ◦r A(�)

))
. (5.46)

Now suppose that � + j − 1 > N . Then proceeding as above, we see that r ≥ 1 must 
in fact satisfy the lower bound

r ≥ min{�, j} − (N − max{�, j}) =: r0. (5.47)

Combining these results, we conclude that[
ε�,N (A(�)), εj,N (B(j))

]
gN

= εk,N

(
Symk

(
N∑

r=r0

NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

((
j

r

)
A(�) ◦r B(j) −

(
�

r

)
B(j) ◦r A(�)

))
,

(5.48)

which concludes the proof of the lemma. �
We now have all the technical lemmas needed to define the Lie algebra GN of observ-

able N -hierarchies. For N ∈ N, let GN denote the locally convex direct sum

GN :=
N⊕

k=1

gk, (5.49)

where we recall that

gk = {A(k) ∈ L̃(Ss(Rk),Ss(Rk)) : (A(k))∗ = −A(k)}. (5.50)

We define a bracket on AN = (A(k)
N )k∈N≤N

, BN = (B(k)
N )k∈N≤N

∈ GN by

[AN , BN ]
GN

:= CN = (C(k)
N )k∈N≤N

, (5.51)

where

C
(k)
N :=

∑
1≤�,j≤N

min{�+j−1,N}=k

ε−1
k,N

([
ε�,N (A(�)

N ), εj,N (B(j)
N )
]
gN

)
. (5.52)

It remains for us to check that GN together with its bracket is actually a Lie algebra 
in the sense of Definition 4.14, as we have so claimed above. Before doing so, we collect 
a result which will be useful in the sequel. Namely, that as a byproduct of the proof 
Lemma 5.7, we have the following explicit formula for the Lie bracket [AN , BN ]

GN
for 

two observable N -hierarchies, which is quite useful for computations.
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Proposition 5.8 (Formula for [AN , BN ](k)
GN

). Let N ∈ N, and let AN = (A(k)
N )k∈N≤N

,

BN = (B(k)
N )k∈N≤N

be observable N -hierarchies. Then for integers 1 ≤ k ≤ N , we have 
that

[AN , BN ](k)
GN

=
∑

1≤�,j≤N
min{�+j−1,N}=k

Symk

(min{�,j}∑
r=r0

C�jkrN

[
A

(�)
N , B

(j)
N

]
r

)
, (5.53)

where27

C�jkrN := NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

, r0 := max{1,min{�, j} − (N − max{�, j})},

(5.54)
and where [·, ·]r is defined in (5.33).

We now establish Proposition 2.1, which is our first main result of this section.

Proposition 2.1. (GN , [·, ·]
GN

) is a Lie algebra in the sense of Definition 4.14.

Proof of Proposition 2.1. There are two parts to the verification: an algebraic part and 
an analytic part.

• We first consider the algebraic part, which amounts to checking bilinearity, anti-
symmetry, and the Jacobi identity. The first two properties are obvious from the 
definition of GN . For the third property, let AN , BN , CN ∈ GN . We need to show 
that[
AN , [BN , CN ]

GN

]
GN

+
[
CN , [AN , BN ]

GN

]
GN

+
[
BN , [CN , AN ]

GN

]
GN

= 0. (5.55)

Since εk,N is injective, it suffices to show that εk,N applied to the left-hand side of the 
preceding identity equals the zero element of gN . We only present the details when 
the component index satisfies 1 ≤ k < N and leave verification of the remaining 
k = N case as an exercise to the reader. Using the definition of the Lie bracket and 
bilinearity, we have the identities

εk,N

([
AN , [BN , CN ]

GN

](k)
GN

)
=

∑
j1+j2−1=k

[
εj1,N (A(j1)

N ), εj2,N ([BN , CN ](j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N (A(j1)

N ),
[
εj3,N (B(j3)

N ), εj4,N (C(j4)
N )

]
gN

]
gN

27 Recall that C�,N = 1/|PN
� |.
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=
∑

�1+�2+�3=k+2

[
ε�1,N (A(�1)

N ),
[
ε�2,N (B(�2)

N ), ε�3,N (C(�3)
N )

]
gN

]
gN

,

εk,N

([
CN , [AN , BN ]

GN

](k)
GN

)
=

∑
j1+j2−1=k

[
εj1,N (C(j1)

N ), εj2,N ([AN , BN ](j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N (C(j1)

N ),
[
εj3,N (A(j3)

N ), εj4,N (B(j4)
N )

]
gN

]
gN

=
∑

�1+�2+�3=k+2

[
ε�3,N (C(�3)

N ),
[
ε�1,N (A(�1)

N ), ε�2,N (B(�2)
N )

]
gN

]
gN

,

εk,N

([
BN , [CN , AN ]

GN

](k)
GN

)
=

∑
j1+j2−1=k

[
εj1,N (B(j1)

N ), εj2,N ([CN , AN ](j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑
j3+j4−1=j2

[
εj1,N (B(j1)

N ),
[
εj3,N (C(j3)

N ), εj4,N (A(j4)
N )

]
gN

]
gN

=
∑

�1+�2+�3=k+2

[
ε�2,N (B(�2)

N ),
[
ε�3,N (C(�3)

N ), ε�1,N (A(�1)
N )

]
gN

]
gN

.

Since [·, ·]
gN

is a Lie bracket and therefore satisfies the Jacobi identity, it follows that 
for fixed integers 1 ≤ �1, �2, �3 ≤ N ,

0 =
[
ε�1,N (A(�1)

N ),
[
ε�2,N (B(�2)

N ), ε�3,N (C(�3)
N )

]
gN

]
gN

+
[
ε�3,N (C(�3)

N ),
[
ε�1,N (A(�1)

N ), ε�2,N (B(�2)
N )

]
gN

]
gN

+
[
ε�2,N (B(�2)

N ),
[
ε�3,N (C(�3)

N ), ε�1,N (A(�1)
N )

]
gN

]
gN

.

(5.56)

Hence,

εk,N

([
AN , [BN , CN ]

GN

](k)
GN

+
[
CN , [AN , BN ]

GN

](k)
GN

+
[
BN , [CN , AN ]

GN

](k)
GN

)
= 0 ∈ gN . (5.57)

• We now consider the analytic part, which amounts to checking the separate continuity 
of [·, ·]

GN
. Using the anti-symmetry of the bracket, it suffices to show that for AN ∈

GN fixed, the map

GN → GN , BN �→ [AN , BN ]
G

(5.58)

N
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is continuous. Moreover, it suffices to show that for each k ∈ N≤N , the map

GN → gk, BN �→ [AN , BN ](k)
GN

is continuous.
Let (BN,a)a∈A, where BN,a = (B(k)

N,a)k∈N≤N
, be a net in GN converging to BN =

(B(k)
N )k∈N≤N

∈ GN . By the continuity of the projection maps GN → gk for each 

k ∈ N≤N , we have that (B(k)
N,a)a∈A is a net in gk converging to B(k)

N ∈ gk.
Unpacking the definition of [AN , BN,a](k)

GN
and using the continuity of the Symk

operator and the operations of addition and scalar multiplication, together with the 
fact there are only finitely many terms, it suffices to show that for any integers 
1 ≤ �, j ≤ N satisfying min{� + j − 1, N} = k, any integer r0 ≤ r ≤ min{�, j}, we 
have the net convergence [

A
(�)
N , B

(j)
N,a

]
r
→
[
A

(�)
N , B

(j)
N

]
r

(5.59)

in L̃(Ss(Rk), S(Rk)). But this convergence is a consequence of Lemma 5.6, thus 
completing the proof. �

5.2. Lie-Poisson manifold G∗
N of finite hierarchies of density matrices

In this subsection, we define the Lie-Poisson manifold g∗N of N -body density matrices 
and the Lie-Poisson manifold G∗

N of density matrix N -hierarchies. A good heuristic to 
keep in mind is that density matrices are dual to skew-adjoint operators. We remind 
the reader that the superscript ∗ does not denote the literal functional analytic dual 
of gN (respectively, GN ) as a topological vector space, but rather a space in weakly 
non-degenerate pairing with gN (respectively, GN ).

To begin with, we define the real topological vector space

g∗N := {ΨN ∈ L(S ′
s(RN ),Ss(RN )) : Ψ∗

N = ΨN} (5.60)

endowed with the subspace topology.

Remark 5.9. Our definition of g∗N is quite natural as it is isomorphic to the strong dual 
of gN . The proof of this fact is quite similar to that of Lemma 6.8 shown below.

We now define a suitable unital sub-algebra ADM,N ⊂ C∞(g∗N ; R) of admissible func-
tionals to build a weak Poisson structure for g∗N .

Definition 5.10. Let ADM,N be the algebra with respect to point-wise product generated 
by the functionals in
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{F ∈ C∞(g∗N ;R) : F (·) = iTr1,...,N (A(N)·), A(N) ∈ gN}
∪{F ∈ C∞(g∗N ;R) : F (·) = C ∈ R}. (5.61)

In words, ADM,N is the algebra (under point-wise product) generated by the constants 
and the image of gN under the canonical embedding into (g∗N )∗.

We record the following result, whose proof we omit since it is similar to and simpler 
than that of Proposition 2.8, which will be used in Section 5.3 below.

Proposition 5.11. (g∗N , ADM,N , {·, ·}
g∗
N

) is a weak Poisson manifold.

Before proceeding, it will be useful to record the following lemma regarding the dual 
of g∗N . In particular, we note that the dual of g∗N is not isomorphic to gN .

Lemma 5.12 (Dual of g∗N ). The topological dual of g∗N , denoted by (g∗N )∗ and endowed 
with the strong dual topology, is isomorphic to

{A(N) ∈ L(Ss(RN ),S ′
s(RN )) : (A(N))∗ = −A(N)}, (5.62)

equipped with the subspace topology induced by L(Ss(RN ), S ′
s(RN )), via the canonical 

bilinear form

iTr1,...,N (A(N)ΨN ), ΨN ∈ g∗N . (5.63)

Proof. The proof follows from the duality L(Ss(RN ), S ′
s(RN ))) ∼= L(S ′

s(RN ), Ss(RN ))∗
together with a polarization-type argument. We leave the details to the reader. �
Remark 5.13. The previous lemma implies that, given a functional F ∈ C∞(g∗N ; R)
and a point ΨN ∈ g∗N , we may identify the continuous linear functional dF [ΨN ], 
given by the Gâteaux derivative of F at the point ΨN , as a skew-adjoint element of 
L(Ss(RN ), S ′

s(RN )). We will abuse notation and denote this element by dF [ΨN ]. More-
over, as we will see below, it is a small computation using the generating structure of 
ADM,N that dF [ΨN ] ∈ gN .

We next define the Lie-Poisson manifold of density matrix N -hierarchies. To begin, 
define the real topological vector space

G∗
N :=

{
ΓN = (Γ(k)

N )k∈N≤N
∈

N∏
k=1

L(S ′
s(Rk),Ss(Rk)) : γ(k)

N = (γ(k)
N )∗ ∀k ∈ N

}
(5.64)

endowed with the subspace product topology. We first note that our definition of G∗
N is 

quite natural, as it is isomorphic to the topological dual of GN , a fact we prove in the 
next lemma.
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Lemma 5.14 (Dual of GN ). The topological dual of GN , denoted by (GN )∗ and endowed 
with the strong dual topology, is isomorphic to G∗

N .

Proof. Using the isomorphism

(
L̃(Ss(Rk),Ss(Rk))

)∗ ∼=
(
L(Ss(Rk),S ′

s(Rk))
)∗ = L(S ′

s(Rk),Ss(Rk)), ∀k ∈ N,

(5.65)
which follows from the proof of Lemma B.15 together with the duality of direct sums 
and direct products, see for instance [17, Proposition 2 in §14, Chapter 3], we have that

(
N⊕

k=1

L̃(Ss(Rk),Ss(Rk))
)∗

∼=︸︷︷︸
=:Φ′

N∏
k=1

L(S ′
s(Rk),Ss(Rk)), (5.66)

via the canonical trace pairing

(AN ,ΓN ) �→ iTr(AN · ΓN ).

Thus elements of (GN )∗ may be identified with functionals i Tr(·ΓN ), and so to prove 
the lemma, we will show that the map

Φ : G∗
N → (GN )∗, ΓN �→ iTr(·ΓN ), (5.67)

is bijective and that both Φ and Φ−1 are continuous.
First, we show surjectivity of Φ. Given any functional F ∈ (GN )∗, we need to find 

some density matrix N -hierarchy ΓN ∈ G∗
N such that

F (AN ) = iTr(AN · ΓN ). (5.68)

To accomplish this task, we define a functional

F̃ ∈
(

N⊕
k=1

L̃(Ss(Rk),Ss(Rk))
)∗

(5.69)

by the formula

F̃ (AN ) := 1
2F (AN −A∗

N ) − i

2F ((AN −A∗
N )) + 1

2F (i(AN + A∗
N )) − i

2F (i(AN + A∗
N )).

(5.70)
By the canonical dual trace pairing, there exists a unique

ΓN ∈
N∏

L(S ′
s(Rk),Ss(Rk))
k=1
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such that

F̃ (AN ) = iTr(AN · ΓN ), ∀AN ∈
N⊕

k=1

L̃(Ss(Rk),Ss(Rk)). (5.71)

Evaluating F̃ on AN ∈ GN , that is assuming AN = −A∗
N , we obtain from (5.70) that

(1 − i)F (AN ) = iTr(AN · ΓN ), (5.72)

and adding this expression to its conjugate implies that

2F (AN ) = i
(
Tr(AN · ΓN ) − Tr(AN · ΓN )

)
.

Since

(AN · ΓN )(k) = A
(k)
N γ

(k)
N ∈ L(S ′

s(Rk),Ss(Rk)), ∀k ∈ N≤N ,

its trace exists in the usual sense of an operator on a separable Hilbert space. Fur-
thermore, the adjoint of A(k)

N γ
(k)
N as a bounded linear operator on L2

s(Rk), denoted by 
(A(k)

N γ
(k)
N )∗, belongs to L(S ′

s(Rk), S(Rk)). A short computation using the skew- and self-
adjointness of A(k)

N and γ(k)
N , respectively, shows that

(A(k)
N γ

(k)
N )∗ = −γ

(k)
N A

(k)
N ,

where we abuse notation by letting A(k)
N also denote the extension to an element of 

L(S ′
s(Rk), S ′

s(Rk)). Consequently, we are justified in writing

Tr1,...,k
(
A

(k)
N γ

(k)
N

)
=Tr1,...,k

(
(A(k)

N γ
(k)
N )∗

)
=−Tr1,...,k

(
γ

(k)
N A

(k)
N

)
=−Tr1,...,k

(
A

(k)
N γ

(k)
N

)
,

where the ultimate equality follows from an approximation of A(k)
N and the cyclicity of 

trace. Therefore,

Γ̃N = 1
2(ΓN + Γ∗

N ) (5.73)

is the desired density matrix N -hierarchy. Injectivity of Φ follows from the polarization 
identity by considering elements of GN of the form

A
(k)
N,k0

=
{
i
∣∣f (k0)

〉 〈
f (k0)

∣∣ , k = k0

0, otherwise
, (5.74)

where k0 ∈ N≤N and f (k0) ∈ Ss(Rk0). Hence Φ is bijective.
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Next, we claim that both Φ and Φ−1 are continuous. Since G∗
N is a Fréchet space, it 

suffices by the open mapping theorem to show that Φ is continuous. Let ιGN
denote the 

canonical inclusion map

GN ⊂
N⊕

k=1

L̃(Ss(Rk),Ss(Rk)), (5.75)

which is continuous by definition of the subspace topology, with adjoint

ι∗GN
:
(

N⊕
k=1

L̃(Ss(Rk),Ss(Rk))
)∗

→ (GN )∗, (5.76)

and let ιG∗
N

denote the canonical inclusion map

G∗
N ⊂

N∏
k=1

L(S ′
s(Rk),Ss(Rk)), (5.77)

which is also continuous by definition of the subspace topology. Then we can write

Φ = ι∗GN
◦ (Φ′)−1 ◦ ιG∗

N
, (5.78)

where Φ′ is the canonical isomorphism described in (5.66). Since ι∗GN
is continuous, as 

can be checked directly or by appealing to the corollary of Proposition 19.5 in [42], 
it follows that Φ is the composition of continuous maps, completing the proof of the 
claim. �

We now need to establish the existence of a Poisson structure for G∗
N . As before, we 

choose a unital sub-algebra AH,N ⊂ C∞(G∗
N ; R), generated by trace functionals and 

constant functionals, to be the algebra of admissible functionals.

Definition 5.15. Let AH,N be the algebra with respect to point-wise product generated 
by the functionals in

{F ∈ C∞(G∗
N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗

N ;R) : F (·) ≡ C ∈ R}.
(5.79)

Remark 5.16. Our definition of AH,N is not canonical in the sense that one may in-
clude additional functionals in it. However, since we are really only interested in trace 
functionals, we will not do so in this work.

Remark 5.17. The structure of AH,N will be frequently used in the following way: it will 
suffice to verify various identities for finite products of trace functionals and constant 
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functionals. Moreover, by Remark 5.18 below and the Leibnitz rule for the Gâteaux 
derivative, it will often suffice to check identities on trace functionals.

Remark 5.18. By the linearity of the trace and the definition of the Gâteaux derivative, 
a trace functional has constant Gâteaux derivative. Similarly, a constant functional has 
zero Gâteaux derivative.

To define the Lie-Poisson bracket on AH,N × AH,N using the Lie bracket [·, ·]
GN

constructed in Section 5.1, we need the following identification of continuous linear func-
tionals with skew-adjoint operators, given via the canonical trace pairing. We note, in 
particular, that (G∗

N )∗ is not isomorphic to GN .

Lemma 5.19 (Dual of G∗
N ). The topological dual of G∗

N , denoted by (G∗
N )∗ and endowed 

with the strong dual topology, is isomorphic to

G̃N :=
{
AN ∈

N⊕
k=1

L(Ss(Rk),S ′
s(Rk)) : (A(k)

N )∗ = −A
(k)
N

}
. (5.80)

Proof. We omit the proof as it proceeds quite similarly to that of Lemma 5.14. �
We continue to abuse notation by using dF [ΓN ] to denote both the continuous linear 

functional and the element of G̃N . We are now prepared to introduce the Lie-Poisson 
bracket {·, ·}

G∗
N

on AH,N ×AH,N .

Definition 5.20. Let N ∈ N. For F, G ∈ AH,N , we define

{F,G}
G∗

N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]

GN
· ΓN

)
=

N∑
k=1

iTr1,...,k
(
[dF [ΓN ], dG[ΓN ]](k)

GN
γ

(k)
N

)
, (5.81)

for ΓN = (γ(k)
N )k∈N≤N

∈ G∗
N .

We now turn to the second main goal of this subsection, that is, proving Proposi-
tion 2.2, the statement of which we repeat here for the reader’s convenience.

Proposition 2.2. (G∗
N , AH,N , {·, ·}

G∗
N

) is a weak Poisson manifold.

We begin with the following technical lemma for the functional derivative of {·, ·}
G∗

N
.

Lemma 5.21. Suppose that Gj ∈ AH,N is a trace functional Gj(ΓN ) = i Tr(dGj [0] · ΓN )
for j = 1, 2. Then for all ΓN ∈ G∗

N , the Gâteaux derivative d{G1, G2}G∗
N

[ΓN ] at the 
point ΓN may be identified with the element
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[dG1[0], dG2[0]]
GN

∈ GN (5.82)

via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the 
product of two trace functionals in AH,N , then d{G1, G2}G∗

N
[ΓN ] may be identified with

G2,1(ΓN )[dG1[0], dG2,2[0]]
GN

+ G2,2(ΓN )[dG1[0], dG2,1[0]]
GN

(5.83)

for all ΓN ∈ G∗
N via the canonical trace pairing.

Proof. The first assertion follows readily from the definition of {G1, G2}G∗
N

. To see the 
second assertion, observe that by the Leibnitz rule for the Gâteaux derivative and the 
bilinearity of the bracket [·, ·]r,[

dG1[ΓN ](�), dG2[ΓN ](j)
]
r

= G2,1(ΓN )
[
dG1[0](�), dG2,2[0](j)

]
r

+ G2,2(ΓN )
[
dG1[0](�), dG2,1[0](j)

]
r
.

Hence using Proposition 5.8 and introducing the notation

C�jkrN := NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

, r0 := max{1,min{�, j} − (N − max{�, j})},

(5.84)
we obtain that

[dG1[ΓN ], dG2[ΓN ]](k)
GN

=
∑

1≤�,j≤N
min{�+j−1,N}=k

Symk

(min{�,j}∑
r=r0

C�jkrN

[
dG1[ΓN ](�), dG2[ΓN ](j)

]
r

)

= G2,1(ΓN )
∑

1≤�,j≤N
min{�+j−1,N}=k

Symk

(min{�,j}∑
r=r0

C�jkrN

[
dG1[0](�), dG2,2[0](j)

]
r

)

G2,2(ΓN )
∑

1≤�,j≤N
min{�+j−1,N}=k

Symk

(min{�,j}∑
r=r0

C�jkrN

[
dG1[0](�), dG2,1[0](j)

]
r

)

= G2,1(ΓN )[dG1[0], dG2,2[0]](k)
GN

+ G2,2(ΓN )[dG1[0], dG2,1[0]](k)
GN

, (5.85)

where the ultimate equality follows from another application of Proposition 5.8. �
We divide our proof of Proposition 2.2 into several lemmas. We first show that {·, ·}

G∗
N

is well-defined and is a Lie bracket satisfying the Leibnitz rule.
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Lemma 5.22. The formula

{F,G}
G∗

N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]

GN
· ΓN

)
, ∀ΓN ∈ G∗

N (5.86)

defines a map AH,N ×AH,N → AH,N which satisfies Property 1 in Definition 4.1.

Proof. We first show that for F, G ∈ AH,N , one has {F,G}
G∗

N
∈ AH,N . Recall that AH,N

is generated by constant functionals and trace functionals, hence using the Leibnitz rule, 
bilinearity of [·, ·]

GN
, and the linearity of the trace, it suffices to consider the case where 

F, G are both trace functionals. Indeed, elements of AH,N are finite linear combinations 
of finite products of trace functionals and constant functionals, hence using that the 
derivative of constant functionals is zero, upon applying the Leibnitz rule, the elements 
of the product which are not differentiated can be treated as scalars when evaluated at 
a point ΓN and hence can be pulled out of the Lie bracket and then out of the trace by 
bilinearity.

When F, G are both trace functionals, dF [ΓN ] and dG[ΓN ] are constant in ΓN by 
Remark 5.18, hence

{F,G}
G∗

N
(ΓN ) = iTr

(
[dF [0], dG[0]]

GN
· ΓN

)
, ∀ΓN ∈ G∗

N . (5.87)

So, we only need to show that the right-hand side defines an element of AH,N . Since dF [0]
and dG[0] both belong to GN , it follows from Proposition 2.1 that [dF [0], dG[0]]

GN
∈ GN . 

Hence, {F,G}
G∗

N
∈ AH,N , which completes the proof of the claim.

Bilinearity and anti-symmetry of {·, ·}
G∗

N
are immediate from the bilinearity and anti-

symmetry of [·, ·]
GN

, so it remains to verify the Jacobi identity. Let F, G, H ∈ AH,N . As 
we argued above, it suffices to consider the case where G and H are trace functionals 
and F is a product of two trace functionals, that is, F = F1F2, where F1, F2 ∈ AH,N are 
such that

Fj(ΓN ) = iTr(dFj [0] · ΓN ), ∀ΓN ∈ G∗
N , j = 1, 2. (5.88)

Thus, we need to show that for all ΓN ∈ G∗
N ,

0 =
{
F, {G,H}

G∗
N

}
G∗

N

(ΓN ) +
{
G, {H,F}

G∗
N

}
G∗

N

(ΓN ) +
{
H, {F,G}

G∗
N

}
G∗

N

(ΓN )

= iTr
([

dF [ΓN ], d{G,H}
G∗

N
[ΓN ]

]
GN

· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}

G∗
N

[ΓN ]
]
GN

· ΓN

)
+ iTr

([
dH[ΓN ], d{F,G}

G∗
N

[ΓN ]
]
GN

· ΓN

)
. (5.89)

We show the desired equality by direct computation:
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First, since dF [ΓN ] = F1(ΓN )dF2[0] + F2(ΓN )dF1[0], where we use that F1 and F2
have constant Gâteaux derivatives by Remark 5.18, it follows from the linearity of the 
trace that

iTr
([

dF [ΓN ], d{G,H}
G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN ) Tr

([
dF2[0], d{G,H}

G∗
N

[ΓN ]
]
GN

· ΓN

)
+ iF2(ΓN ) Tr

([
dF1[0], d{G,H}

G∗
N

[ΓN ]
]
GN

· ΓN

)
= iF1(ΓN ) Tr

([
dF2[0], [dG[0], dH[0]]

GN

]
GN

· ΓN

)
+ iF2(ΓN ) Tr

([
dF1[0], [dG[0], dH[0]]

GN

]
GN

· ΓN

)
, (5.90)

where we use Lemma 5.21 to obtain the ultimate equality.
Next, since F is a product of two trace functionals, we have by Lemma 5.21 that

d{H,F}
G∗

N
[ΓN ] = F1(ΓN )[dH[0], dF2[0]]

GN
+F2(ΓN )[dH[0], dF1[0]]

GN
, ∀ΓN ∈ G∗

N .

(5.91)
Hence by bilinearity of the Lie bracket and linearity of the trace,

iTr
([

dG[ΓN ], d{H,F}
G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN ) Tr

([
dG[0], [dH[0], dF2[0]]

GN

]
GN

· ΓN

)
+ iF2(ΓN ) Tr

([
dG[0], [dH[0], dF1[0]]

GN

]
GN

· ΓN

)
. (5.92)

Finally, similarly to the preceding case,

d{F,G}
G∗

N
[ΓN ] = F1(ΓN )[dF2[0], dG[0]]

GN
+ F2(ΓN )[dF1[0], dG[0]]

GN
, (5.93)

and therefore,

iTr
([

dH[ΓN ], d{F,G}
G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN ) Tr

([
dH[0], [dF2[0], dG[0]]

GN

]
GN

· ΓN

)
+ iF2(ΓN ) Tr

([
dH[0], [dF1[0], dG[0]]

GN

]
GN

· ΓN

)
. (5.94)

Combining the preceding identities, we obtain that

iTr
([

dF [ΓN ], d{G,H}
G∗

N
[ΓN ]

]
· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}

G∗
N

[ΓN ]
]

· ΓN

)

GN GN
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+ iTr
([

dH[ΓN ], d{F,G}
G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN ) Tr

(([
dF2[0], [dG[0], dH[0]]

GN

]
GN

+
[
dG[0], [dH[0], dF2[0]]

GN

]
GN

+
[
dH[0], [dF2[0], dG[0]]

GN

]
GN

)
· ΓN

)
+ iF2(ΓN ) Tr

(([
dF1[0], [dG[0], dH[0]]

GN

]
GN

+
[
dG[0], [dH[0], dF1[0]]

GN

]
GN

+
[
dH[0], [dF1[0], dG[0]]

GN

]
GN

)
· ΓN

)
= 0, (5.95)

where the ultimate equality follows from the fact that both lines in the penultimate 
equality vanish by virtue of the Jacobi identity of the Lie bracket [·, ·]

GN
.

Finally, we claim that {·, ·}
G∗

N
satisfies the Leibnitz rule:

{FG,H}
G∗

N
(ΓN ) = G(ΓN ){F,H}

G∗
N

(ΓN ) + F (ΓN ){G,H}
G∗

N
(ΓN ), ∀ΓN ∈ G∗

N .

(5.96)
Since d(FG)[ΓN ] = F (ΓN )dG[ΓN ] +G(ΓN )dF [ΓN ] by the Leibnitz rule for the Gâteaux 
derivative, we see that

{FG,H}
G∗

N
(ΓN ) = iTr

(
[d(FG)[ΓN ], dH[ΓN ]]

GN
· ΓN

)
= iF (ΓN ) Tr

(
[dG[ΓN ], dH[ΓN ]]

GN
· ΓN

)
+ iG(ΓN ) Tr

(
[dF [ΓN ], dH[ΓN ]]

GN
· ΓN

)
= F (ΓN ){G,H}

G∗
N

(ΓN ) + G(ΓN ){F,H}
G∗

N
(ΓN ), (5.97)

where the penultimate equality follows by bilinearity of the Lie bracket and linearity of 
the trace and the ultimate equality follows from the definition of the Poisson bracket. �

We next verify that AH,N satisfies the non-degeneracy Property 2.

Lemma 5.23. AH,N satisfies Property 2 in Definition 4.1.

Proof. Let ΓN ∈ G∗
N and v ∈ TΓN

G∗
N , and note that TΓN

G∗
N = G∗

N . Suppose that 
dF [ΓN ](v) = 0 for all F ∈ AH,N . We will show that v = 0.

Consider functionals of the form Ff,k0(·) := i Tr(AN,k0 ·),

A
(k)
N,k0

:=
{
−i
∣∣f (k0)

〉 〈
f (k0)

∣∣ , k = k0

0, otherwise
, (5.98)

for k0 ∈ N≤N and f (k0) ∈ Ss(Rk0). By Remark 5.18, we have dFf,k0 [ΓN ](·) = Ff,k0(·), 
so if v = (v(k))k∈N≤N

∈ G∗
N is as above, we have by definition of the trace that
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Ff,k0(v) =
〈
v(k0)f (k0)

∣∣∣f (k0)
〉

= 0. (5.99)

Since v(k) extends uniquely to a bounded operator on L2
s(Rk) and Ss(Rk) is dense in 

L2
s(Rk), it follows from a standard polarization argument that v(k) = 0 for all k ∈ N≤N , 

which completes the proof. �
Lastly, we show the existence of a unique Hamiltonian vector XH for H ∈ AH,N with 

respect to the Poisson structure {·, ·}
G∗

N
. With this last (most difficult) step, the proof 

of Proposition 2.2 will be complete.

Lemma 5.24. (G∗
N , AH,N , {·, ·}

G∗
N

) satisfies Property 3 in Definition 4.1. Furthermore, if 
H ∈ AH,N , then we have the following formula for the Hamiltonian vector field XH :

XH(ΓN )(�) =
N∑
j=1

min{�,j}∑
r=r0

C ′
�jkrN Tr�+1,...,k

⎛⎝⎡⎣ ∑
αr∈P �

r

dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k}), γ
(k)
N

⎤⎦⎞⎠,

(5.100)

where

k := min{� + j − 1, N}, r0 := max{1,min{�, j} − (N − max{�, j})}

and where

C ′
�jkrN :=

(
j

r

)
NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

,

for C�,N , Ck,N as in (5.9).

Proof. Given F, H ∈ AH,N , we first identify a candidate vector field XH by directly 
computing {F,H}

G∗
N

. Once we have found the candidate and verified its smoothness as 
a map G∗

N → G∗
N , the proof is complete by the uniqueness guaranteed by Remark 4.2.

By definition of the Poisson bracket on G∗
N , we have that

{F,H}
G∗

N
(ΓN ) = iTr

(
[dF [ΓN ], dH[ΓN ]]

GN
· ΓN

)
= i

N∑
k=1

Tr1,...,k
(
[dF [ΓN ], dH[ΓN ]](k)

GN
γ

(k)
N

)
, (5.101)

for ΓN = (γ(k)
N )Nk=1 ∈ G∗

N . Using the linearity of the Symk operator, we have by the 
formula from Proposition 5.8 that

[dF [ΓN ], dH[ΓN ]](k)
GN

=
∑

1≤�,j≤N
min{�+j−1,N}=k

min{�,j}∑
r=r0

C�jkrN Symk

([
dF [ΓN ](�), dH[ΓN ](j)

]
r

)
,
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and

Symk

([
dF [ΓN ](�), dH[ΓN ](j)

]
r

)
= Symk

((
j

r

)
dF [ΓN ](�)(1,...,�)

( ∑
αr∈P �

r

dH[ΓN ](j)(αr,�+1,...,�+j−r)

))

− Symk

((
�

r

)
dH[ΓN ](j)(1,...,j)

( ∑
αr∈P j

r

dF [ΓN ](�)(αr,j+1,...,j+�−r)

))
,

where we have used the combinatorial notation C�jkrN defined in (5.84). Recall from 
Remark 5.5 that we are justified in writing

dH[ΓN ](j)(1,...,j)

( ∑
αr∈P j

r

dF [ΓN ](�)(αr,j+1,...,j+�−r)

)

=
∑

αr∈P j
r

dH[ΓN ](j)(1,...,j)dF [ΓN ](�)(αr,j+1,...,j+�−r). (5.102)

Let (m1, . . . , mj−r) be the increasing arrangement of the set N≤j \{α1, . . . , αr}. Defining 
the permutation τ ∈ Sk by the formula

τ(a) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i, a = αi for 1 ≤ i ≤ r

a− j + r, j + 1 ≤ a ≤ j + �− r

� + i, a = mi for 1 ≤ i ≤ j − r

a, otherwise

, (5.103)

we find that for each αr ∈ P j
r fixed,

(
dH[ΓN ](j)(1,...,j)dF [ΓN ](�)(αr,j+1,...,j+�−r)

)
(τ(1),...,τ(k))

= dH[ΓN ](j)(1,...,r,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�). (5.104)

Since the Symk operator is Sk-invariant, it then follows that

Symk

(
dH[ΓN ](j)(1,...,j)dF [ΓN ](�)(αr,�+1,...,�+j−r)

)
= Symk

(
dH[ΓN ](j)(1,...,r,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
. (5.105)

Consequently, using that |P j
r | =

(
j
)
r!, we obtain that
r
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Symk

((
�

r

)
dH[ΓN ](j)(1,...,j)

( ∑
αr∈P j

r

dF [ΓN ](�)(αr,j+1,...,j+�−r)

))

=
(
�

r

)(
j

r

)
r! Symk

(
dH[ΓN ](j)(1,...,r,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
.

(5.106)

Now given αr ∈ P �
r , let (m1, . . . , m�−r) be the increasing arrangement of the set N≤� \

{α1, . . . , αr}. We recycle notation to define a new permutation τ ∈ Sk by

τ(i) :=

⎧⎪⎪⎨⎪⎪⎩
αi, 1 ≤ i ≤ r

mi−r, r + 1 ≤ i ≤ �

i, otherwise
. (5.107)

Then

Symk

((
dH[ΓN ](j)(1,...,r,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
(τ(1),...,τ(k))

)
= Symk

(
dH[ΓN ](j)(αr,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
,

(5.108)

where we can “undo” the permutation τ ’s effect on dF [ΓN ](�)(1,...,�) by its S�-invariance. 
Using that |P �

r | =
(
�
r

)
r!, we obtain that

(
�

r

)(
j

r

)
r! Symk

(
dH[ΓN ](j)(1,...,r,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
=
(
j

r

) ∑
αr∈P �

r

Symk

(
dH[ΓN ](j)(αr,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)

)
.

(5.109)

Substituting the preceding identity into the expression Tr1,...,k([dF [ΓN ], dH[ΓN ]](k)
GN

γ
(k)
N )

and using Lemma 4.33 to eliminate the Symk operator, we obtain that

iTr1,...,k
(
[dF [ΓN ], dH[ΓN ]](k)

GN
γ

(k)
N

)
= i

∑
min{�+j−1,N}=k

min{�,j}∑
r=r0

C�jkrN

(
j

r

)

×
∑

αr∈P �
r

(
Tr1,...,k

(
dF [ΓN ](�)(1,...,�)dH[ΓN ](j)(αr,�+1,...,�+j−r)γ

(k)
N

)

− Tr1,...,k
(
dH[ΓN ](j)(αr,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)γ

(k)
N

))
.

(5.110)
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Since dH[ΓN ](j)(αr,�+1,...,�+j−r) is skew-adjoint and therefore by duality extends to an 

element in L(S ′
s(Rk), S ′(Rk)), it follows from the cyclicity property of Proposition B.7iii

that

Tr1,...,k
(
dH[ΓN ](j)(αr,�+1,...,�+j−r)dF [ΓN ](�)(1,...,�)γ

(k)
N

)
= Tr1,...,k

(
dF [ΓN ](�)(1,...,�)(γ

(k)
N dH[ΓN ](j)(αr,�+1,...,�+j−r))

)
.

(5.111)

Since

dH[ΓN ](j)(αr,�+1,...,�+j−r)γ
(k)
N , γ

(k)
N dH[ΓN ](j)(αr,�+1,...,�+j−r) ∈ L(S ′

s(Rk),S(Rk)), (5.112)

the usual partial trace Tr�+1,...,k of each of these operators exists and defines an element 
of L(S ′

s(R�), S(R�)). Moreover, since dH[ΓN ](j) and γ(k)
N are skew- and self-adjoint, re-

spectively, these partial traces are self-adjoint.
Returning to the expression i Tr

(
[dF [ΓN ], dH[ΓN ]]

GN
· ΓN

)
and interchanging the 

order of the k and � summations, we see that

N∑
k=1

iTr1,...,k
(
[dF [ΓN ], dH[ΓN ]](k)

GN
γ

(k)
N

)

= i
N∑

�=1

N∑
j=1

min{�,j}∑
r=r0

C
′
ljk̃rN

(
Tr1,...,�

(
dF [ΓN ](�)

( ∑
αr∈P�

r

Tr�+1,...,k̃

(
dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})γ

(k̃)
N

)))

−Tr1,...,�
(
dF [ΓN ](�)

( ∑
αr∈P�

r

Tr�+1,...,k̃

(
γ

(k̃)
N dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})

))))
,

where

k̃ := min{� + j − 1, N}, (5.113)

C ′
�jk̃rN

:= NC�,NCj,N

Ck̃,N

∏r−1
m=1(N − k̃ + m)

(
j

r

)
. (5.114)

Note that since γ(k̃)
N admits a decomposition

γ
(k̃)
N =

∞∑
m=1

λm

∣∣∣f (k̃)
m

〉〈
f (k̃)
m

∣∣∣ , (5.115)

where 
∑∞

m=1 |λm| ≤ 1 and f (k̃)
m , g(k̃)

m converge to zero in Ss(Rk̃), we see that

Tr�+1,...,k̃

(
γk̃
NdH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})

)
=

∞∑
λm

〈
f (k̃)
m

∣∣∣dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})f
(k̃)
m

〉
,

(5.116)
m=1
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which is independent of the choice of extension of dH[ΓN ](j) to domain S(Rj) by the 

permutation invariance of each f (k̃)
m . Furthermore, the operator∑

αr∈P �
r

Tr�+1,...,k̃

(
γ

(k̃)
N dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})

)
(5.117)

is invariant under the S� action, since P �
r is invariant under the S� group action. Hence, 

it maps into Ss(R�), and its left-composition with dF [ΓN ](�) is well-defined.
Using the bilinearity of the generalized trace, we obtain the candidate Hamiltonian 

vector field

XH(ΓN )(�) :=
N∑
j=1

min{�,j}∑
r=r0

C ′
�jk̃rN

∑
αr∈P �

r

(
Tr�+1,...,k̃

(
dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})γ

(k̃)
N

)

− Tr�+1,...,k̃

(
γ

(k̃)
N dH[ΓN ](j)(αr,�+1,...,min{�+j−r,k̃})

))
.

(5.118)

We now verify that XH , as defined above, is a smooth map G∗
N → G∗

N , so that we may 
conclude the proof by Remark 5.18. We claim that the right-hand side of the preceding 
identity defines a continuous linear (hence, smooth) map

G∗
N →

N⊕
k=1

L(S ′
s(Rk),Ss(Rk)). (5.119)

Linearity is obvious, and the map is continuous from

G∗
N →

N⊕
k=1

L(S ′
s(Rk),S(Rk))

by Proposition B.8. That we may replace the target S(Rk) by the bosonic subspace 
Ss(Rk) is a consequence of the following facts: P �

r is invariant under the S� group ac-
tion, dH[ΓN ](j) is Sj-invariant, and γ(k̃)

N is a fortiori S�-invariant. The self-adjointness 
of XH(ΓN )(�) follows from the skew- and self-adjointness of dH[ΓN ](j) and γ(k̃)

N , respec-
tively, and the adjoint properties of the generalized partial trace. �
5.3. Density matrix maps as Poisson morphisms

We close this section with the observations that the well-known operations of forming 
a density matrix out of a wave function and forming an N -hierarchy of reduced den-
sity matrices from an N -body density matrix respect the geometric structure we have 
developed, in the sense that these operations define Poisson morphisms.
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We first define the density matrix map or ket-bra map from N -body bosonic wave 
functions to N -body bosonic density matrices.

Definition 5.25 (Density matrix map). We define the density matrix map or ket-bra map
by

ιDM,N : Ss(RN ) → g∗N ιDM,N (ΦN ) := |ΦN 〉 〈ΦN | = ΦN ⊗ ΦN . (5.120)

It is easy to verify that ιDM,N is a smooth map from Ss(RN ) to g∗N . We now show that 
the density matrix map is a Poisson map. To prove this property, we recall from Defini-
tion 4.7 the requirement that ι∗DM,NADM,N ⊂ AS . If F is smooth, then the smoothness 
of ιDM,N implies by the chain rule that f = F ◦ ιDM,N ∈ C∞(Ss(RN ); R). However, it is 
not a priori clear that f ∈ AS , where we recall that AS ⊂ C∞(S(RN ); R) is defined by

AS :=
{
H : ∇sH ∈ C∞(S(RN );S(RN ))

}
, (5.121)

In the sequel, we will use the notation AS,N to make the dependence on N explicit.

Lemma 5.26. Let N ∈ N. For any F ∈ ADM,N , the functional f := F ◦ ιDM,N ∈
C∞(Ss(RN ); R) belongs to AS,N . Furthermore,

∇sf(ΦN ) = dF [ιDM,N (ΦN )](ΦN ), ∀ΦN ∈ Ss(RN ), (5.122)

where we identify dF [ιDM,N (ΦN )] as a skew-adjoint operator by Remark 5.13.

Proof. Observe from the chain rule that for ΦN , δΦN ∈ Ss(RN ),

df [ΦN ](δΦN ) = dF [ιDM,N (ΦN )](dιDM,N [ΦN ](δΦN ))

= dF [ιDM,N (ΦN )](|ΦN 〉 〈δΦN | + |δΦN 〉 〈ΦN |), (5.123)

where we use the elementary computation

dιDM,N [ΦN ](δΦN ) = |ΦN 〉 〈δΦN | + |δΦN 〉 〈ΦN | . (5.124)

Identifying the functional dF [ιDM,N (ΦN )](·) with a skew-adjoint DVO given by 
dF [ιDM,N (ΦN )] as in Remark 5.13, we have that

dF [ιDM,N (ΦN )](|ΦN 〉 〈δΦN | + |δΦN 〉 〈ΦN |)
= iTr1,...,N (dF [ιDM,N (ΦN )](|ΦN 〉 〈δΦN | + |δΦN 〉 〈ΦN |))
= i 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉 + i 〈ΦN |dF [ιDM,N [ΦN ]δΦN 〉 .

Since dF [ιDM,N (ΦN )] is skew-adjoint, the preceding expression equals
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i 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉 − i 〈dF [ιDM,N (ΦN )]ΦN |δΦN 〉

= −2 Im 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉

= ωL2(dF [ιDM,N (ΦN )]ΦN , δΦN ).

We claim that the map ΦN �→ dF [ιDM,N (ΦN )]ΦN is a smooth map of Ss(RN ) to itself, 
which justifies our preceding manipulations. Indeed, suppose first that F ∈ ADM,N

is a trace functional. Then dF [ιDM,N (ΦN )] = dF [0], and therefore the claim follows 
since dF [0] is a continuous linear map of Ss(RN ) to itself by definition of ADM,N . The 
general case then follows by the Leibnitz rule for the Gâteaux derivative. Therefore, the 
functional f has symplectic L2 gradient

∇sf(ΦN ) = dF [ιDM,N (ΦN )]ΦN ,

and ∇sf is a smooth map of Ss(RN ) to itself, which implies that f ∈ AS,N . �
We recall from (1.3) the definition for {·, ·}L2 , and we consider the rescaled Poisson 

bracket

{·, ·}L2,N := N{·, ·}L2 . (5.125)

Proposition 5.27. Let N ∈ N. Then

ιDM,N : (Ss(RN ),AS,N , {·, ·}L2,N ) → (g∗N ,ADM,N , {·, ·}
g∗
N

) (5.126)

is a Poisson map.

Proof. As observed above, the smoothness of ιDM,N is evident, and by Lemma 5.26, 
F ◦ ιDM,N ∈ AS,N for any F ∈ ADM,N . Hence, it remains for us to show that for all 
F, G ∈ ADM,N ,

{F ◦ ιDM,N , G ◦ ιDM,N}L2,N (ΦN ) = {F,G}
g∗
N
◦ ιDM,N (ΦN ), ∀ΦN ∈ Ss(RN ).

(5.127)
For convenience, we introduce the notation f := F ◦ ιDM,N and g := G ◦ ιDM,N . We 
first consider the expression {f, g}L2,N (ΦN ). Observe that by definition of the Poisson 
bracket {·, ·}L2,N ,

{f, g}L2,N (ΦN ) = NωL2(∇sf(ΦN ),∇sg(ΦN ))

= 2N Im 〈dF [ιDM,N (ΦN )]ΦN |dG[ιDM,N (ΦN )]ΦN 〉 . (5.128)

Now using the skew-adjointness of dG[ιDM,N (ΦN )] and dF [ιDM,N (ΦN )], we conclude 
that the last expression equals
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)

iN(〈ΦN |dF [ιDM,N (ΦN )dG[ιDM,N (ΦN )]ΦN 〉−〈ΦN |dG[ιDM,N (ΦN )]dF [ιDM,N (ΦN )]ΦN 〉)

= iTr1,...,N
(
[dF [ιDM,N (ΦN )], dG[ιDM,N (ΦN )]]

gN
|ΦN 〉 〈ΦN |

)
= {F,G}

g∗
N
◦ ιDM,N (ΦN ), (5.129

which is exactly what we wanted to show. �
We next show that there is a linear homomorphism of Lie algebras GN → gN induced 

by the embeddings {εk,N}k∈N≤N
. We will then combine this fact with a duality argument 

to prove that the reduced density matrix operation is a Poisson mapping

(g∗N ,ADM,N , {·, ·}
g∗
N

) → (G∗
N ,AH,N , {·, ·}

G∗
N

). (5.130)

Proposition 5.28. For any N ∈ N, the map

ιε,N : GN → gN , ιε,N (AN ) :=
N∑

k=1

εk,N (A(k)
N ), (5.131)

is a continuous linear homomorphism of Lie algebras.

Proof. Continuity and linearity are evident from the continuity and linearity of the maps 
εk,N (recall Lemma 5.3). To show that ιsum,N is a homomorphism of Lie algebras, we 
need to show that for any

AN = (A(k)
N )k∈N≤N

, BN = (B(k)
N )k∈N≤N

∈ GN , (5.132)

we have that

ιε,N
(
[AN , BN ]

GN

)
= [ιε,N (AN ), ιε,N (BN )]

gN
. (5.133)

Consider the left-hand side expression. By the definition of the map ιε,N , the definition 
of the Lie bracket [·, ·]

GN
from (5.52), and Lemma 5.7, we obtain that

ιε,N
(
[AN , BN ]

GN

)
=

N∑
k=1

εk,N

(
[AN , BN ](k)

GN

)

=
N∑

k=1

εk,N (C(k)
N )

=
N∑

k=1

∑
1≤�,j≤N

min{�+j−1,N}=k

[
ε�,N (A(�)

N ), εj,N (B(j)
N )
]
gN

.

Using the partition
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{(�, j) ∈ (N≤N )2} =
N⋃

k=1

{(�, j) ∈ (N≤N )2 : min{� + j − 1, N} = k}, (5.134)

we see that

N∑
k=1

∑
1≤�,j≤N

min{�+j−1,N}=k

[
ε�,N (A(�)

N ), εj,N (B(j)
N )
]
gN

=
N∑
�=1

N∑
j=1

[
ε�,N (A(�)

N ), εj,N (B(j)
N )
]
gN

.

(5.135)
By the definition of the map ιε,N and the bilinearity of Lie brackets, we observe that

N∑
�=1

N∑
j=1

[
ε�,N (A(�)

N ), εj,N (B(j)
N )
]
gN

= [ιε,N (AN ), ιε,N (BN )]
gN

, (5.136)

which completes the proof. �
Finally, we show that there is a canonical Poisson mapping of g∗N → G∗

N given by 
taking the sequence of reduced density matrices.

Proposition 5.29 (RDM Map is Poisson). The map ιRDM,N : g∗N → G∗
N given by

ιRDM,N (ΨN ) := ΓN = (γ(k)
N )k∈N≤N

, γ
(k)
N := Trk+1,...,N (ΨN ) (5.137)

is a Poisson map.

To prove Proposition 5.29, we will show that ιRDM,N is the dual of the map ιsum,N , 
which, by Proposition 5.28, we know is a continuous linear homomorphism of Lie alge-
bras. We then appeal to the following general result, the statement of which we have 
taken from [25, Proposition 10.7.2].

Lemma 5.30. Let (g, [·, ·]
g
) and (h, [·, ·]

h
) be Lie algebras. Let α : g → h be a linear 

map. Then the map α is a homomorphism of Lie algebras if and only if its dual map 
α∗ : h∗ → g∗ is a (linear) Poisson map.

Proof of Proposition 5.29. As stated above, we want to show that the reduced density 
matrix ιRDM,N is the dual of the map

ιε,N : GN → gN , AN = (A(1)
N , . . . , A

(N)
N ) �→

N∑
k=1

εk,N (A(k)
N ). (5.138)

Indeed, observe that for ΨN ∈ g∗N and AN = (A(k)
N )k∈N≤N

∈ GN , we see from unpacking 
the definition of ιε,N and using the bilinearity of the generalized trace that
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ι∗ε,N (ΨN )(AN ) = iTr1,...,N (ιε,N (AN )ΨN ) =
N∑

k=1

iTr1,...,N
(
εk,N (A(k)

N )ΨN

)
. (5.139)

Unpacking the definition (5.8) of the map εk,N (A(k)
N ) and using the bilinearity of the 

generalized trace again, we see that

N∑
k=1

iTr1,...,N
(
εk,N (A(k)

N )ΨN

)
=

N∑
k=1

∑
p
k
∈PN

k

iCk,N Tr1,...,N
(
A

(k)
N,(p1,...,pk)ΨN

)
. (5.140)

Hence using that ΨN is bosonic and Lemma 4.33, we have that

Tr1,...,N
(
A

(k)
N,(p1,...,pk)ΨN

)
= Tr1,...,N

(
A

(k)
N,(1,...,k)ΨN

)
= Tr1,...,k

(
A

(k)
N Trk+1,...,N (ΨN )

)
= Tr1,...,k

(
A

(k)
N γ

(k)
N

)
, (5.141)

where the ultimate equality follows by definition of γ(k)
N . Since |PN

k | = 1/Ck,N , we 
conclude that

ι∗ε,N (ΨN )(AN ) =
N∑

k=1

iTr1,...,k
(
A

(k)
N γ

(k)
N

)
= iTr(AN · ιRDM,N (ΨN )), (5.142)

which completes the proof of the proposition. �
6. Geometric structure for infinity hierarchies

In this section, we compute the limit of the N -body Lie algebra (GN , [·, ·]
GN

) as 
N → ∞. We then show that in this limit, the higher-order contractions appearing 
in formula (5.53) vanish. Consequently, the domain of definition of the Lie bracket 
may be enlarged, for which we construct the Lie algebra (G∞, [·, ·]

G∞
) of observable 

∞-hierarchies and dually, the weak Lie-Poisson manifold (G∗
∞, A∞, {·, ·}

G∗
∞

) of density 
matrix ∞-hierarchies.

6.1. The limit of GN as N → ∞

In order to pass from the N -particle setting to the ∞-particle setting, we first study 
the limit of the Lie algebra (GN , [·, ·]

GN
) as N → ∞.

Via the natural inclusion map, we can identify GN as the subspace of the locally 
convex direct sum

F∞ :=
∞⋃

GN =
∞⊕

gk (6.1)

N=1 k=1
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consisting of elements A = (A(k))k∈N , where A(k) = 0 for k ≥ N + 1. In our next result, 
Proposition 2.4, we establish a formula for the limiting bracket structure for G∞.

Proposition 2.4. Let N0 ∈ N. For A = (A(k))k∈N , B = (B(k))k∈N ∈ GN0 , we have that

lim
N→∞

[A,B]
GN

= C = (C(k)k∈N , (2.20)

where

C(k) :=
∑
�,j≥1

�+j−1=k

Symk

([
A(�), B(j)

]
1

)
, (2.21)

in the topology of F∞.

Proof. Let k ∈ N. For M � k, we have by Proposition 5.8 and the linearity of the map 
εk,N that

∑
�,j≥1

�+j−1=k

ε−1
k,M

([
ε�,M (A(�)), εj,M (B(j))

]
gM

)

=
∑
�,j≥1

�+j−1=k

Symk

⎛⎝min{�,j}∑
r=1

MC�,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(�), B(j)

]
r

⎞⎠
=

∑
�,j≥1

�+j−1=k

Symk

(
MC�,MCj,M

Ck,M

[
A(�), B(j)

]
1

)

+
∑
�,j≥1

�+j−1=k

Symk

⎛⎝min{�,j}∑
r=2

MC�,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(�), B(j)

]
r

⎞⎠
=: Term1,M + Term2,M . (6.2)

We first consider Term1,M . Since

lim
M→∞

MC�,MCj,M

Ck,M
= lim

M→∞

M
∏k

a=1(M + 1 − a)
(
∏�

a=1(M + 1 − a))(
∏j

a=1(M + 1 − a))
= lim

M→∞

Mk+1

M �+j
= 1,

we see that

Term1,M →
∑

�,j≥1;�+j−1=k

Symk

([
A(�), B(j)

]
1

)
, (6.3)

as M → ∞, in gk.
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We next consider Term2,M . Let 2 ≤ r ≤ min{�, j}. Since

lim
M→∞

MC�,NCj,M

Ck,M

∏r−1
a=1(M − k + a)

= lim
M→∞

M
∏k

a=1(M + 1 − a)
(
∏�

a=1(M + 1 − a))(
∏j

a=1(M + 1 − a))(
∏r−1

a=1(M − k + a))

= lim
M→∞

Mk+1

M �+j+r−1

= lim
M→∞

M1−r

= 0, (6.4)

we see that

Symk

(
MC�,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(�), B(j)

]
r

)
→ 0, (6.5)

as M → ∞, in gk. Summing over the ranges 2 ≤ r ≤ min{�, j} and � + j − 1 = k, for a 
total of finitely many terms, we conclude that

Term2,M → 0, (6.6)

as M → ∞, in gk, proving the result. �
6.2. The Lie algebra G∞ of observable ∞-hierarchies

As mentioned in the introduction, the simplified form of [·, ·]
G∞

allows us to take 
advantage of the good mapping property and extend this bracket to a map on a much 
larger real topological vector space, which we redefine G∞ to be, to obtain a Lie algebra 
of observable ∞-hierarchies. We rigorously construct this extension now.

We define gk,gmp to be

gk,gmp := {A(k) ∈ Lgmp(Ss(Rk),S ′
s(Rk)) : A(k) = −(A(k))∗}. (6.7)

In words, gk,gmp is the real, locally convex space consisting of skew-adjoint elements of 
Lgmp(Ss(Rk), S ′

s(Rk)). We will hereafter refer to the elements of gk,gmp as k-particle or 
k-body observables. We define the locally convex direct sum

G∞ :=
∞⊕
k=1

gk,gmp. (6.8)

We refer to the elements of G∞ as observable ∞-hierarchies. For
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A = (A(k))k∈N , B = (B(k))k∈N ∈ G∞,

we define

[A,B]
G∞

:= C = (C(k))k∈N ,

C(k) := Symk

( ∑
�,j≥1

�+j−1=k

[
A(�), B(j)

]
1

)
, (6.9)

where Symk denotes the bosonic symmetrization operator defined in Section 4, which 
we recall is given by

Symk(A(k)) := 1
k!
∑
π∈Sk

A
(k)
(π(1),...,π(k)), A

(k)
(π(1),...,π(k)) = π ◦A(k)

1,...,k ◦ π−1 (6.10)

and where 
[
A(�), B(j)]

1 is given according to (5.33) by

[
A(�), B(j)

]
1

= jA(�) ◦1 B
(j) − �B(j) ◦1 A

(�)

= jA
(�)
(1,...,�)

( �∑
α=1

B
(j)
(α,�+1,...,�+j−1)

)
− �B(j)

( j∑
α=1

A
(�)
(α,j+1,...,j+�−1)

)
.

(6.11)

The main goal of this section is to establish the existence of a Lie algebra of observable 
∞-hierarchies, namely, to prove Proposition 2.7:

Proposition 2.7. (G∞, [·, ·]
G∞

) is a Lie algebra in the sense of Definition 4.14.

The construction follows closely our N -body approach in Section 5; however, there are 
new technical difficulties that have to be considered. Indeed, G∞ contains more singular 
objects than GN , and we have to heavily exploit the good mapping property in order 
to handle this issue. We remind the reader the enlarged definition of G∞, as opposed to 
simply the union of the GN , is necessary to accommodate the observable ∞-hierarchy 
−iWGP which generates the GP Hamiltonian functional.

We first need to establish that the Lie bracket given by (6.9) is well-defined on G∞. 
To this end, we must begin by giving meaning to the composition

A
(�)
(1,...,�)

(
�∑

α=1
B

(j)
(α,�+1,...,�+j−1)

)
(6.12)

as an operator in L(S(Rk), S ′(Rk)), for which it will be convenient to proceed term-wise 
by extending A(�) and B(j) to operators defined on the entire space S(R�) and S(Rj), 
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respectively, as described in Remark 5.5.28 For general A(�) ∈ L(S(R�), S ′(R�)) and 
B(j) ∈ L(S(Rj), S ′(Rj)), such a composition may not be well-defined, see Remark B.12, 
and hence we appeal to the good mapping property of Definition 2.5 to give meaning to 
(6.12). It will be useful in the sequel to observe that the definition of the good mapping 
property says the following: let A(�) ∈ L(S(R�), S ′(R�)) and (f (�), g(�)) ∈ S(R�) ×S(R�), 
and for fixed x′

α ∈ R, consider the distribution in S ′(R) defined by

φ �→
〈
A(�)f (�),

(
φ⊗α g(�)(·, x′

α, ·)
)〉

S′(R�)−S(R�)
, (6.13)

where (
φ⊗α g(�)(·, x′

α, ·)
)
(y

�
) := φ(yα)g(�)(y1;α−1, x

′
α, yα+1;�), y

�
∈ R�. (6.14)

Then A(�) ∈ Lgmp(S(R�), S ′(R�)) if the element of S(R; S ′(R))29 defined by

x′
α �→

〈
A(�)f (�), (·) ⊗α g(�)(·, x′

α, ·)
〉
S′(R�)−S(R�)

, (6.15)

may be identified with a (necessarily unique) Schwartz function Φ(f (�), g(�)) in S(R2) by

〈
A(�)f (�), φ⊗α g(�)(·, x′

α, ·)
〉
S′(R�)−S(R�)

=
∫
R

dxαΦ(f, g)(xα, x
′
α)φ(xα), x′

α ∈ R,

(6.16)
and the assignment Φ : S(R�) × S(R�) → S(R2) is continuous.

Lemma 6.1 (◦βα contraction). Let i, j ∈ N, let k := i + j− 1, and let (α, β) ∈ N≤i ×N≤j. 
Then there exists a bilinear map, continuous in the first entry,

◦βα : L(S(Ri),S ′(Ri)) × Lgmp(S(Rj),S ′(Rj)) → L(S(Rk),S ′(Rk)), (6.17)

such that A(i) ◦βα B(j) corresponds to

A(i) ◦βα B(j) = A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k), (6.18)

when A(i) ∈ L(S(Ri), S(Ri)) and B(j) ∈ L(S(Rj), S(Rj)) or A(i) ∈ L(S(Ri), S ′(Ri))
and B(j) ∈ L(S ′(Rj), S ′(Rj)). If we replace the domain space L(S(Ri), S ′(Ri)) for the 
first entry by Lgmp(S(Ri), S ′(Ri)), then the bilinear map

28 We will see later that the choice of extension is immaterial.
29 Given a Hausdorff locally convex space E, we let S(Rd; E) denote the space of functions f ∈ C∞(Rd; E)
such that for each pair of d-dimensional polynomials P and Q with complex coefficients, the union ⋃

x∈Rd{P (x)Q(∂x)f(x)} is contained in a bounded subset of E. We endow S(Rd; E) with the topology 
of uniform convergence of the functions P (x)Q(∂x)f(x), for all P and Q.
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◦βα : Lgmp(S(Ri),S ′(Ri)) × Lgmp(S(Rj),S ′(Rj)) → Lgmp(S(Rk),S ′(Rk)) (6.19)

is continuous in the first entry.

Remark 6.2. Using this lemma and bosonic symmetry, we note that we can rewrite our 
definition of [·, ·]1 from (5.33) using the contractions ◦βα as follows: Let i, j ∈ N and set 
k := i + j − 1. We extend [·, ·]1 to be the bilinear, continuous in the first entry, map

[·, ·]1 : Lgmp(S(Ri),S ′(Ri)) × Lgmp(S(Rj),S ′(Rj)) → Lgmp(S(Rk),S ′(Rk))

(A(i), B(j)) �→
i∑

α=1

j∑
β=1

A(i) ◦βα B(j) −B(j) ◦αβ A(i),
(6.20)

for ◦βα and ◦αβ as in Lemma 6.1.

Proof of Lemma 6.1. We first show that for fixed f ∈ S(Rk), there is a well-defined 
element

(A(i) ◦βα B(j))(f) ∈ S ′(Rk) (6.21)

corresponding to

A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k)(f). (6.22)

Let g ∈ S(Rk). Now it follows from the assumption that B(j) has the good mapping 
property and Remark B.13 that the bilinear map

(f̃ , g̃) �→
〈
B

(j)
(2,...,β,1,β+1,...,j)(f̃(xα−1, ·, xα+1;i, ·)), (·) ⊗ g̃(x′

i, ·)
〉
S′(Rj)−S(Rj)

, (6.23)

which is a priori a bilinear continuous map

S(Rk) × S(Rk) → S(xα−1,xα+1;i,x
′
i)(R

α−1 ×Ri−α ×Ri;S ′
xα

(R)), (6.24)

is identifiable with a unique smooth map

ΦB(j),α,β : S(Rk) × S(Rk) → S(xi;x′
i)(R

2i). (6.25)

Since we have the canonical isomorphism

L(S(Ri),S ′(Ri)) ∼= S ′(R2i) (6.26)

by the Schwartz kernel theorem, we therefore define the composition (6.21) by

〈(A(i) ◦βα B(j))f, g〉S′(Rk)−S(Rk) :=
〈
KA(i) ,ΦB(j),α,β(f, g)t

〉
S′(R2i)−S(R2i), (6.27)
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where

ΦB(j),α,β(f, g)t(xi;x′
i) = ΦB(j),α,β(f, g)(x′

i;xi), (xi, x
′
i) ∈ R2i.

Hence, taking (6.27) as the definition of (6.21) for f ∈ S(Rk), we have defined an 
evidently linear map

A(i) ◦βα B(j) : S(Rk) → S ′(Rk). (6.28)

The continuity of this map follows from its definition as a composition of continuous 
maps. Bilinearity of ◦βα in A(i) and B(j) is obvious. Moreover, it is clear that if B(j) has 
the good mapping property, then A(i)◦βαB(j) has the good mapping property. Lastly, the 
reader can check from the distributional Fubini-Tonelli theorem that our definition of 
A(i)◦βαB(j) coincides with the composition (6.22) in the cse where A(i) ∈ L(S(Ri), S(Ri))
and B(j) ∈ L(S(Rj), S(Rj)) or A(i) ∈ L(S(Ri), S ′(Ri)) and B(j) ∈ L(S ′(Rj), S ′(Rj)).

We now prove that the map

(·) ◦βα (·) : L(S(Ri),S ′(Ri)) × Lgmp(S(Rj),S ′(Rj)) → Lgmp(S(Rk),S ′(Rk)) (6.29)

is continuous in the first entry, that is, for fixed B(j) ∈ Lgmp(S(Ri), S ′(Ri)), the map

L(S(Ri),S ′(Ri)) → Lgmp(S(Rk),S ′(Rk)), A(i) �→ A(i) ◦βα B(j) (6.30)

is continuous. By considerations of symmetry, it suffices to consider the case (α, β) =
(1, 1). To this end, it suffices to show that given a bounded subset R(k) ⊂ S(Rk), there 
exists a bounded subset R(i) ⊂ S(Ri) such that

sup
f(k),g(k)∈R(k)

∣∣∣〈(A(i) ◦1
1 B

(j))f (k)
∣∣∣g(k)

〉∣∣∣ � sup
f(i),g(i)∈R(i)

∣∣∣〈A(i)f (i)
∣∣∣g(i)

〉∣∣∣ . (6.31)

To see how to obtain the desired seminorm, first observe that∣∣∣〈(A(i) ◦1
1 B

(j))f (k)
∣∣∣g(k)

〉∣∣∣ =
∣∣∣∣〈KA(i) ,ΦB(j),1,1(f (k), g(k))t

〉
S′(R2i)−S(R2i)

∣∣∣∣
=
∣∣∣Tr1,...,i

(
A(i)ΦB(j),1,1(f (k), g(k))

)∣∣∣ , (6.32)

where the ultimate equality follows from the definition of the generalized trace (recall Def-
inition B.5) and we commit an abuse of notation by using ΦB(j),1,1(f (k), g(k)) to denote 
the operator in L(S ′(Ri), S(Ri)) defined by this integral kernel. Since R(k) is bounded, 
the image ΦB(j),1,1(R(k) ×R(k)) is a bounded subset of S(R2i) ∼= L(S ′(Ri), S(Ri)), and 
since A(i) is continuous, it follows that

sup
γ(i)∈Φ (j) (R(k)×R(k))

∣∣∣Tr1,...,i
(
A(i)γ(i)

)∣∣∣ < ∞. (6.33)

B ,1,1
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Hence, there exists an element γ(i)
0 ∈ ΦB(j),1,1(R(k) ×R(k)) such that

∣∣∣Tr1,...,i
(
A(i)γ

(i)
0

)∣∣∣ ≥ 1
2 sup

γ(i)∈Φ
B(j),1,1(R

(k)×R(k))

∣∣∣Tr1,...,i
(
A(i)γ(i)

)∣∣∣ . (6.34)

Since each element of S(R2i) can be written as 
∑∞

�=1 λ�f
(i)
� ⊗ g

(i)
� , where 

∑∞
�=1 |λ�| ≤

1, and f (i)
� , g(i)

� are sequences in S(Ri) converging to zero, we see from the separate 
continuity of the generalized trace that

∣∣∣Tr1,...,i
(
A(i)γ

(i)
0

)∣∣∣ ≤ ∞∑
�=1

|λ�|
∣∣∣Tr1,...,i

(
A(i)(f (i)

0,� ⊗ g
(i)
0,�)
)∣∣∣

≤ sup
f(i),g(i)∈{f(i)

0,�′ ,g
(i)
0,�′}

∞
�′=1

∣∣∣〈A(i)f (i), g(i))〉S′(Ri)−S(Ri)

∣∣∣ . (6.35)

We claim that {f (i)
0,� , g

(i)
0,�}∞�=1 is a bounded subset of S(Ri), which then completes the 

proof. Indeed, this follows readily from the fact that f (i)
0,� , g

(i)
0,� converge to zero. �

Remark 6.3. If we restrict the domain of the map ◦βα to the space

Lgmp,∗(S(Ri),S ′(Ri)) × Lgmp,∗(S(Rj),S ′(Rj))

consisting of distribution-valued operators satisfying the good mapping property such 
that their adjoints also satisfy the good mapping property, which we endow with the 
subspace topology, then it follows by duality that ◦βα is separately continuous on this 
space.

Remark 6.4. If B(j) ∈ Lgmp(Ss(Rj), S ′
s(Rj)), then it follows from bosonic symmetry that 

for any (α, β) ∈ N≤i ×N≤j ,

A(i) ◦βα B(j) = A(i) ◦1
α B(j). (6.36)

Remark 6.5. If A(i) ∈ L(Ss(Ri), S ′(Ri)) and B(j) ∈ Lgmp(Ss(Rj), S ′
s(Rj)), then given 

two extensions A(i)
1 , A(i)

2 ∈ L(S(Ri), S ′(Ri)) of A(i), we claim that

i∑
α=1

A
(i)
1 ◦1

α B(j) =
i∑

α=1
A

(i)
2 ◦1

α B(j) ∈ L(Ss(Rk),S ′(Rk)). (6.37)

Indeed, for f ∈ Ss(Rk), g ∈ S(Rk), we have that

i∑
〈g, (A(i)

1 ◦1
α B(j))f〉S(Rk)−S′(Rk)
α=1
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=
i∑

α=1

〈
K

A
(i)
1
,ΦB(j),α,1(f, g)t

〉
S′(R2i)−S(R2i)

. (6.38)

Since each ΦB(j),α,1(f, g) ∈ S(R2i) and f ∈ Ss(Rk), we see that

i∑
α=1

ΦB(j),α,1(f, g)(π(xi);x′
i) =

i∑
α=1

ΦB(j),α,1(f, g)(xi;x′
i), (xi, x

′
i) ∈ R2i, (6.39)

for any permutation π ∈ Si. Consequently, for fixed x′
i ∈ Ri, the function∑i

α=1 ΦB(j),α,1(f, g)(·, x′
i) belongs to Ss(Ri) on which the two extensions A(i)

1 and A(i)
2

agree. It then follows from the Schwartz kernel theorem that〈
K

A
(i)
1
,

(
i∑

α=1
ΦB(j),α,1(f, g)

)t〉
S′(R2i)−S(R2i)

=
〈
K

A
(i)
2
,

(
i∑

α=1
ΦB(j),α,1(f, g)

)t〉
S′(R2i)−S(R2i)

, (6.40)

and therefore

i∑
α=1

〈g, (A(i)
1 ◦1

α B(j))f〉S(Rk)−S′(Rk) =
i∑

α=1
〈g, (A(i)

2 ◦1
α B(j))f〉S(Rk)−S′(Rk), (6.41)

which establishes our claim.

By Lemma 6.1,

A(�) ◦βα B(j) ∈ Lgmp(S(Rk),S ′(Rk)), for � + j − 1 = k. (6.42)

Hence, by definition of the bracket [·, ·]1 and Remark 6.2,∑
�,j≥1

�+j−1=k

[
A(�), B(j)

]
1
∈ Lgmp(Ss(Rk),S ′(Rk)). (6.43)

Thus it remains to show two properties: first that the symmetrization of an oper-
ator preserves the good mapping property, which will then establish that C(k) ∈
Lgmp(Ss(Rk), S ′

s(Rk)), where C(k) is defined according to (6.9), and second that C(k) is 
skew-adjoint. We begin with the following lemma which establishes the desired property 
of the symmetrization operators.

Lemma 6.6. If A = (A(k))k∈N ∈
⊕∞

k=1 Lgmp(S(Rk), S ′(Rk)), then

Sym(A) ∈
∞⊕

Lgmp(Ss(Rk),S ′
s(Rk)).
k=1
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Proof. It suffices to show that for each k ∈ N, if A(k) ∈ Lgmp(S(Rk), S ′(Rk)), then

Symk(A(k)) ∈ Lgmp(Ss(Rk),S ′
s(Rk)).

Let α ∈ N≤k. We need to show that the map

Ss(Rk) × Ss(Rk) → S(R;S ′(R))

(f (k), g(k)) �→
〈
Symk(A(k))(f (k)), (·) ⊗α g(·, x′

α, ·)
〉
S′(Rk)−S(Rk)

(6.44)

may be identified with a continuous map Ss(Rk) ×Ss(Rk) → S(R2). By definition of the 
Symk operator and bilinearity of the distributional pairing, we have that〈

Symk(A(k))f (k), (·) ⊗α g(k)(·, x′
α, ·)

〉
S′(Rk)−S(Rk)

= 1
k!
∑
π∈Sk

〈
A

(k)
(π(1),...,π(k))f

(k), (·) ⊗α g(k)(·, x′
α, ·)

〉
S′(Rk)−S(Rk)

. (6.45)

By definition of the notation A(k)
(π(1),...,π(k)) = π ◦A(k)

1,...,k ◦ π−1, we have that〈
A

(k)
(π(1),...,π(k))f

(k), (·) ⊗α g(k)(·, x′
α, ·)

〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k) ◦ π−1) ◦ π, (·) ⊗α g(k)(·, x′

α, ·)
〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k)) ◦ π, (·) ⊗α g(k)(·, x′

α, ·)
〉
S′(Rk)−S(Rk)

, (6.46)

where the ultimate equality follows from the assumption f (k) ∈ Ss(Rk). Let φ ∈ S(R)
be a test function. Then by definition of the permutation of a distribution,〈

A(k)(f (k)) ◦ π, φ⊗α g(k)(·, x′
α, ·)

〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), (φ⊗α g(k)(·, x′

α, ·)) ◦ π−1
〉
S′(Rk)−S(Rk)

. (6.47)

Observing that

((φ⊗α g(k)(·, x′
α, ·)) ◦ π−1)(xk)

= g(k)(xπ−1(1), . . . , xπ−1(α−1), x
′
α, xπ−1(α+1), . . . , xπ−1(k))φ(xπ−1(α)), xk ∈ Rk,

(6.48)

upon setting j := π−1(α) and using the bosonic symmetry of g(k), we obtain that

((φ⊗α g(k)(·, x′
α, ·)) ◦ π−1)(xk) = g(k)(xj−1, x

′
α, xj+1;k)φ(xj) = (φ⊗j g

(k)(·, x′
α, ·))(xk).

(6.49)
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Since A(k) has the good mapping property, we have that〈
A(k)f (k), φ⊗j g

(k)(·, x′
α, ·)

〉
S′(Rk)−S(Rk)

=
〈
ΦA(k),j(f (k), g(k))(·, x′

α), φ
〉
S′(R)−S(R)

,

(6.50)

where ΦA(k),j : S(Rk) × S(Rk) → S(R2) is a continuous bilinear map. Since Ss(Rk)
continuously embeds (trivially) in S(Rk) and since α ∈ N≤k was arbitrary, we conclude 
that (6.45) is identifiable with a finite sum of continuous bilinear maps Ss(Rk) ×Ss(Rk) →
S(R2), and the proof of the lemma is complete. �

Finally, to conclude our proof that the Lie bracket is well-defined, we only need to 
verify that C(k) defined according to (6.9) is skew-adjoint. This is a consequence of 
Remark 6.2, Remark 6.5, and the following lemma.

Lemma 6.7. Let i, j ∈ N, and define k := i + j − 1. Let A(i) ∈ Lgmp(S(Ri), S ′(Ri)) and 
B(j) ∈ Lgmp(S(Rj), S ′(Rj)) be skew-adjoint distribution-valued operators. Then for any 
(α, β) ∈ N≤i ×N≤j,

(A(i) ◦βα B(j))∗ = (B(j) ◦αβ A(i))(i+1,...,i+β−1,α,i+β,...,k,1,...,i) ∈ Lgmp(S(Rk),S ′(Rk)).
(6.51)

Proof. By considerations of symmetry, it suffices to consider the case where (α, β) =
(1, 1). Recalling the definition of the adjoint of a distribution-valued operator, see 
Lemma B.1, we need to show that〈

(B(j) ◦1
1 A

(i))(1,i+1,...,k,2,...,i)g, f̄
〉
S′(Rk)−S(Rk)

=
〈
(A(i) ◦1

1 B
(j))f, g

〉
S′(Rk)−S(Rk),

(6.52)

for any f, g ∈ S(Rk). By Lemma B.11,

A
(i)
(1,...,i) and B

(j)
(1,i+1,...,k)

are both skew-adjoint elements of Lgmp(S(Rk), S ′(Rk)). Now by density of linear 
combinations of pure tensors, linearity, and the continuity of the operators A(i)

(1,...,i), 
B

(j)
(1,i+1,...,k), and A(i) ◦1

1 B
(j), it suffices to consider the expression

〈
(A(i) ◦1

1 B
(j))f, g

〉
S′(Rk)−S(Rk) (6.53)

in the case where f, g ∈ S(Rk) are pure tensors of the form
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f =
k⊗

a=1
fa and g =

k⊗
a=1

ga, (6.54)

respectively, where f1, . . . , fk, g1, . . . , gk ∈ S(R). Recalling the definition (6.27) for A(i)◦1
1

B(j), we have that

〈
(A(i) ◦1

1 B
(j))f, ḡ

〉
S′(Rk)−S(Rk) =

〈
KA(i) ,ΦB(j),1,1(f, ḡ)t

〉
S′(R2i)−S(R2i).

An examination of the ΦB(j)(f, ̄g) together with the tensor product structure of f and 
g reveals that

ΦB(j),1,1(f, ḡ)(xi;x′
i) = (

i⊗
a=2

fa)︸ ︷︷ ︸
=:f(i−1)

(x2;i) (
i⊗

a=1
ga)︸ ︷︷ ︸

=:g(1)⊗g(i−1)

(x′
i)

×
〈
B(j)

(
f1 ⊗

k⊗
a=i+1

fa

)
, (·) ⊗

k⊗
a=i+1

ga

〉
S′(Rj)−S(Rj)

(x1).

(6.55)

Since B(j) has the good mapping property, it follows that the element of S ′
x1

(R) defined 
by the second factor in the right-hand side of (6.55) is in fact an element of S(R), which 
we denote by

φB(j),1

(
f1 ⊗

k⊗
a=i+1

fa,
k⊗

a=i+1
ga

)
=: φB(j),1(f (j), g(j−1)). (6.56)

Thus, using (6.56) and (6.55), we can write

ΦB(j),1,1(f, ḡ)(xi;x′
i)

= φB(j),1(f (j), g(j−1))(x1)f (i−1)(x2;i)g(1)(x′
1)g(i−1)(x′

2;i), (xi, x
′
i) ∈ R2i,

(6.57)

and

〈
KA(i) ,ΦB(j),1,1(f, ḡ)t

〉
S′(R2i)−S(R2i)

=
〈
A(i)

(
φB(j),1(f (j), g(j−1)) ⊗ f (i−1)

)
, g(1) ⊗ g(i−1)

〉
S′(Ri)−S(Ri)

(6.58)

by the Schwartz kernel theorem. Since A(i) is skew-adjoint, we have that this last ex-
pression equals
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−
〈
A(i)

(
g(1) ⊗ g(i−1)

)
, φB(j),1(f (j), g(j−1)) ⊗ f (i−1)

〉
S′(Ri)−S(Ri)

. (6.59)

Now since A(i) also has the good mapping property by assumption, the element of S ′
x1

(R)
defined by

−
〈
A(i)

(
g(1) ⊗ g(i−1)

)
, (·) ⊗ f (i−1)

〉
S′(Ri)−S(Ri)

(6.60)

is identifiable with a unique element of Sx1(R), which we denote by

−φA(i),1(g(1) ⊗ g(i−1), f (i−1)). (6.61)

Using (6.61), we see that

(6.59) = −
∫
R

dxφA(i),1(g(1) ⊗ g(i−1), f (i−1))(x)φB(j),1(f (j), g(j−1))(x). (6.62)

After unpacking the definition of the Schwartz function φB(j),1(f (j), g(j−1)) given in 
(6.55) and (6.56), it follows that

(6.62) =
〈
B(j)f (j), φA(i),1(g(1) ⊗ g(i−1), f (i−1)) ⊗ g(j−1)

〉
S′(Rj)−S(Rj)

=
〈
B(j)

(
φA(i),1(g(1) ⊗ g(i−1), f (i−1)) ⊗ g(j−1)

)
, f (j)

〉
S′(Rj)−S(Rj)

=
〈
KB(j) ,

((
φA(i),1(g(1) ⊗ g(i−1), f (i−1)) ⊗ g(j−1)

)
⊗ f (j)

)t〉
S′(R2j)−S(R2j)

,

(6.63)

where we use the skew-adjointness of B(j) to obtain the penultimate equality and the 
Schwartz kernel theorem to obtain the ultimate equality.

Our goal now is to show that(
φA(i),1(g(1) ⊗ g(i−1), f (i−1)) ⊗ g(j−1)

)
⊗ f (j)(xj ;x′

j)

= ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj ;x′
j)

(6.64)

where π ∈ Sk is the permutation

π(a) =

⎧⎪⎪⎨⎪⎪⎩
1, a = 1
a + j − 1, 2 ≤ a ≤ i

a− i + 1, i + 1 ≤ a ≤ k.

(6.65)
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With (6.64), we then have by definition of the composite distribution B(j) ◦1
1 A(i), see 

(6.27), and the notation

(B(j) ◦1
1 A

(i))(1,i+1,...,k,2,...,i),

see Proposition B.10, that

(6.63) =
〈
KB(j) ,ΦA(i),1,1(g ◦ π, f̄ ◦ π)t

〉
S′(R2j)−S(R2j)

=
〈
(B(j) ◦1

1 A
(i))(g ◦ π), f̄ ◦ π

〉
S′(Rk)−S(Rk)

=
〈
(B(j) ◦1

1 A
(i))(1,i+1,...,k,2,...,i)g, f̄

〉
S′(Rk)−S(Rk)

, (6.66)

which is exactly what we needed to show.
Turning to (6.64), observe that

(g ◦ π)(xk) = g(x1, xj+1, . . . , xk, x2, . . . , xj) = g1(x1)(
i⊗

a=2
ga)(xj+1;k)(

k⊗
a=i+1

ga)(x2;j),

(6.67)
and similarly for (f̄ ◦ π). By the same analysis as in (6.55), it then follows that

ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj ;x′
j) = (

k⊗
a=i+1

ga)(x2;j)(
k⊗

a=i+1
fa)(x′

2;j)f1(x′
1)

×
〈
A(i)(

i⊗
a=1

ga), (·) ⊗
i−1⊗
a=2

fa

〉
S′(Ri)−S(Ri)

(x1)

= φA(i),1(g(1) ⊗ g(i−1), f (i−1))(x1)g(j−1)(x2;j)f (j)(x′
j),

(6.68)

as desired. �
We now turn to the proof of Proposition 2.7.

Proof of Proposition 2.7. We first verify the Lie bracket Properties 1-3 in Definition 4.14. 
Bilinearity and anti-symmetry are immediate from the linearity of the bosonic sym-
metrization Sym operator, see (6.10) above, and the bilinearity and anti-symmetry of 
the bracket [·, ·]1.

To verify the Jacobi identity

[A, [B,C]](k) + [C, [A,B]](k) + [B, [C,A]](k) = 0, (6.69)
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we use our convergence result Proposition 2.4 together with the fact that [·, ·]
GN

is 
a Lie bracket by Proposition 2.1. Let A, B, C ∈ G∞, where A = (A(k))k∈N , B =
(B(k))k∈N , C = (C(k))k∈N . Note that since G∞ is a direct sum, there exists an N0 ∈ N

such that A(k) = B(k) = C(k) = 0 for k ≥ N0. Now by mollifying and truncating the 
Schwartz kernels of the k-particle components A(k), B(k), C(k), we obtain approximating 
sequences

An1 := (A(k)
n1

)k∈N , Bn2 := (B(k)
n2

)k∈N , Cn3 := (C(k)
n3

)k∈N ∈ G∞ ∩
∞⊕
k=1

L(S ′
s(Rk),Ss(Rk))

(6.70)
such that for all (n1, n2, n3) ∈ N3, A(k)

n1 = B
(k)
n2 = C

(k)
n3 = 0 ∈ gk,gmp for k ≥ N0. In 

particular, An1 , Bn2 , Cn3 ∈ GM for any integer M ≥ N0. Now for such M , we know from 
the Jacobi identity for [·, ·]

GM
that

[
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

= 0 ∈ GM ⊂ G∞. (6.71)

Consequently, for fixed (n1, n2, n3) ∈ N3, we obtain from Proposition 2.4 that

0 = lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)
=
[
An1 , [Bn2 , Cn3 ]G∞

]
G∞

+
[
Cn3 , [An1 , Bn2 ]G∞

]
G∞

+
[
Bn2 , [Cn3 , An1 ]G∞

]
G∞

. (6.72)

Next, using three applications of the separate continuity of the bracket [·, ·]
G∞

established 
below, we have that

[
A, [B,C]

G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
An1 , [Bn2 , Cn3 ]G∞

]
G∞

, (6.73)[
C, [A,B]

G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Cn3 , [An1 , Bn2 ]G∞

]
G∞

, (6.74)[
B, [C,A]

G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Bn2 , [Cn3 , An1 ]G∞

]
G∞

. (6.75)

Summarizing our computations, we have shown that

0 = lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)
=
[
A, [B,C]

G∞

]
G∞

+
[
C, [A,B]

G∞

]
G∞

+
[
B, [C,A]

G∞

]
G∞

, (6.76)

which completes the proof of the Jacobi identity.
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Finally, we check that the map [·, ·]
G∞

is separately continuous. By linearity, it suffices 
to show that for each fixed �, j ∈ N and fixed α ∈ N≤�, the binary operation ◦1

α is 
separately continuous as a map

◦1
α : g�,gmp × gj,gmp → Lgmp,∗(S(Rk),S ′(Rk)) (6.77)

where k := � + j− 1 and where the space Lgmp,∗(S(Rk), S ′(Rk)) consists of distribution-
valued operators satisfying the good mapping property such that their adjoints also 
satisfy the good mapping property, endowed with the subspace topology. This property 
follows from Remark 6.3 together with the fact that the adjoints of elements in g�,gmp

and gj,gmp also satisfy the good mapping property by skew-adjointness. Thus, the proof 
of the proposition is complete. �
6.3. Lie-Poisson manifold G∗

∞ of density matrix ∞-hierarchies

In this subsection, we define the Poisson structure on G∗
∞, which will be used in the 

sequel in order to establish Hamiltonian properties of the GP hierarchy. Since many of 
the proofs from Section 5.2 carry over with trivial modification, as they do not make 
use of the good mapping property, we focus instead in this section on the parts of the 
construction which require the good mapping property. To begin, we define the real 
topological vector space

G∗
∞ := {Γ = (γ(k))k∈N ∈

∞∏
k=1

L(S ′
s(Rk),Ss(Rk)) : γ(k) = (γ(k))∗ ∀k ∈ N}, (6.78)

endowed with the product topology.30 Analogous to Lemma 5.14, it holds that G∗
∞ is 

isomorphic to the dual of (G∞)∗.

Lemma 6.8 (Dual of G∞). The topological dual of G∞, denoted by (G∞)∗ and endowed 
with the strong dual topology, is isomorphic to G∗

∞.

We now need to establish the existence of a Poisson structure on G∗
∞. We start by 

specifying a unital sub-algebra of C∞(G∗
∞; R).

Definition 6.9. Let A∞ be the algebra with respect to point-wise product generated by 
functionals in

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗

∞;R) : F (·) ≡ C ∈ R}.
(6.79)

30 We remark that G∗
∞ is the projective limit of the spaces {G∗

N}N∈N directed with respect to reverse 
inclusion.
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In other words, A∞ is the algebra (under point-wise product) generated by constants 
and the image of G∞ under the canonical embedding into (G∗

∞)∗. We note that our 
previous remarks Remark 5.16, Remark 5.17, Remark 5.18 carry over with AH,N replaced 
by A∞.

We now wish to define the Lie-Poisson bracket {·, ·}
G∗

∞
on A∞ × A∞ using the Lie 

bracket constructed in Section 6.2. In order to so, we first need an identification of 
continuous linear functionals as skew-adjoint operators, which follows from Lemma 5.19.

Lemma 6.10 (Dual of G∗
∞). The topological dual of G∗

∞, denoted by (G∗
∞)∗ and endowed 

with the strong dual topology, is isomorphic to

G̃∞ := {A ∈
∞⊕
k=1

L(Ss(Rk),S ′
s(Rk)) : (A(k))∗ = −A(k)}, (6.80)

equipped with the subspace topology induced by 
⊕∞

k=1 L(Ss(Rk), S ′
s(Rk)), via the canon-

ical bilinear form

iTr(A · Γ) = i
∞∑
k=1

Tr1,...,k(A(k)γ(k)), Γ = (γ(k))k∈N ∈ G∗
∞. (6.81)

Remark 6.11. The previous lemma implies that, given a smooth real-valued func-
tional F : G∗

∞ → R and a point Γ ∈ G∗
∞, we may identify the continuous linear 

functional dF [Γ], given by the Gâteaux derivative of F at Γ, as a skew-adjoint ele-
ment of 

⊕∞
k=1 L(Ss(Rk), S ′

s(Rk)). We will abuse notation by denoting this element by 
dF [Γ] = (dF [Γ](k))k∈N .

We are now prepared to introduce the Lie-Poisson bracket {·, ·}
G∗

∞
on A∞ ×A∞.

Definition 6.12. For F, G ∈ A∞, we define

{F,G}
G∗

∞
(Γ) := iTr

(
[dF [Γ], dG[Γ]]

G∞
· Γ
)
, ∀Γ ∈ G∗

∞. (6.82)

Remark 6.13 (Existence of Casimirs). The functional F (Γ) := Tr1(γ(1)) is a Casimir31
for the Poisson bracket {·, ·}

G∗
∞

. Consequently, the Poisson bracket {·, ·}
G∗

∞
is not canon-

ically induced by a symplectic structure on G∗
∞.

We now turn to our ultimate goal of this subsection, that is, proving the following:

Proposition 2.8. (G∗
∞, A∞, {·, ·}

G∗
∞

) is a weak Poisson manifold.

31 i.e. it Poisson commutes with every functional in A∞.
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Properties 1 and 2 in Definition 4.1 for weak Poisson manifolds are readily proved using 
the same arguments in the proofs of Lemma 5.22 and Lemma 5.23, respectively, together 
with the following technical result, which in turn follows from the same argument as in 
Lemma 5.21. We omit the details of the verification of these properties.

Lemma 6.14. Suppose that Gj ∈ A∞ is a trace functional Gj(Γ) = i Tr(dGj [0] · Γ) for 
j = 1, 2. Then for all Γ ∈ G∗

∞, the Gâteaux derivative d{G1, G2}G∗
∞

[Γ] at the point Γ
may be identified with the element

[dG1[0], dG2[0]]
G∞

∈ G∞ (6.83)

via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the 
product of two trace functionals in A∞, then d{G1, G2}G∗

∞
[Γ] may be identified with

G2,1(Γ)[dG1[0], dG2,2[0]]
G∞

+ G2,2(Γ)[dG1[0], dG2,1[0]]
G∞

(6.84)

for all Γ ∈ G∗
∞ via the canonical trace pairing.

Property 3 is more delicate: to show that the Hamiltonian vector field is well-defined, 
we have to exploit the good mapping property. Analogous to the proof of Proposition 2.7, 
rather than prove directly the well-definedness of the Hamiltonian vector field, we can use 
our earlier investment of work in proving Lemma 5.24, which gives an explicit formula 
for the N -body vector field, together with our convergence result Proposition 2.4 and an 
approximation argument.

Lemma 6.15. (G∗
∞, A∞, {·, ·}

G∗
∞

) satisfies Property 3 in Definition 4.1. Furthermore, if 
H ∈ A∞, then we have the following formula for the Hamiltonian vector field XH :

XH(Γ)(�) =
∞∑
j=1

j Tr�+1,...,�+j−1

([
�∑

α=1
dH[Γ](j)(α,�+1,...,�+j−1), γ

(�+j−1)

])
. (6.85)

Proof. Let F, H ∈ A∞. In order to find a candidate Hamiltonian vector field, we compute 
{F,H}

G∗
∞

using an approximation to reduce to the case where F and G belong to AH,N , 
for all N sufficiently large, together with the N -hierarchy Hamiltonian vector field result 
Lemma 5.24 and our convergence result Proposition 2.4. Once we have found a candidate, 
we then verify that the vector field is a smooth map G∗

∞ → G∗
∞, which then completes 

the proof by the uniqueness guaranteed by Remark 4.2.
By definition of A∞, the functionals F and H are finite linear combinations of finite 

products of trace functionals generated by elements in G∞:

F (Γ) =
MF∑

Ca,F

Ma,F∏
iTr(Ab,F · Γ), H(Γ) =

MH∑
Ca,H

Ma,H∏
iTr(Ab,H · Γ), (6.86)
a=1 b=1 a=1 b=1



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 85
where MF , MH , Ma,F , Ma,H ∈ N, Ca,F , Ca,H ∈ R, and Ab,F = (A(k)
b,F )k∈N , Ab,H =

(A(k)
b,H)k∈N ∈ G∞. Additionally, since G∞ is a direct sum, there exists an integer N0 ∈ N

such that for each 1 ≤ a ≤ MF and 1 ≤ b ≤ Ma,F ,

A
(k)
b,F = 0 ∈ gk,gmp, ∀1 ≤ k ≤ N0 (6.87)

and similarly for A(k)
b,H . So by mollifying and truncating the Schwartz kernels of each 

A
(k)
b,F , A

(k)
b,H , we obtain approximating sequences An,b,F := (A(k)

n,b,F )k∈N and An,b,H :=
(A(k)

n,b,H)k∈N , such that

An,b,F , An,b,H ∈ G∞ ∩
∞⊕
k=1

L(S ′
s(Rk),Ss(Rk)), (6.88)

An,b,F → Ab,F , and An,b,H → Ab,H in G∞ as n → ∞. In particular, each An,b,F , An,b,H ∈
GM for every integer M ≥ N0. Now using the approximants An,b,F and An,b,H , we can 
define sequences (Fn)n∈N and (Hn)n∈N of functionals in A∞ by

Fn(Γ) :=
MF∑
a=1

Ca,F

Ma,F∏
b=1

iTr(An,b,F · Γ), Hn(Γ) :=
MH∑
a=1

Ca,H

Ma,H∏
b=1

iTr(An,b,H · Γ),

(6.89)
such that Fn(Γ) → F (Γ) and Hn(Γ) → H(Γ) as n → ∞ uniformly on bounded subsets 
of G∗

∞. Lastly, note that by the Leibnitz rule for the Gâteaux derivative,

dFn[Γ], dHn[Γ] ∈ GM , ∀M ≥ N0 (6.90)

and dFn[Γ] → dF [Γ] and dHn[Γ] → dH[Γ] in 
⊕∞

k=1 L(Ss(Rk), S ′
s(Rk)), as n → ∞, 

uniformly on bounded subsets of G∗
∞.

Now by separate continuity of the Lie bracket [·, ·]
G∞

and the separate continuity of 
the generalized trace (see Proposition B.7), we obtain from the definition of {·, ·}

G∗
∞

that

{F,H}
G∗

∞
(Γ) = iTr

(
[dF [Γ], dH[Γ]]

G∞
· Γ
)

= i lim
n1→∞

lim
n2→∞

Tr
(
[dFn1 [Γ], dHn2 [Γ]]

G∞
· Γ
)

= lim
n1→∞

lim
n2→∞

{Fn1 , Hn2}G∗
∞

(Γ), (6.91)

for each Γ ∈ G∗
∞. Since

dFn1 [Γ](k) = dHn2 [Γ](k) = 0 ∈ gk,gmp, ∀k ≥ N0, (n1, n2) ∈ N2, Γ ∈ G∗
∞, (6.92)

it follows from an examination of the definition of [dFn1 [Γ], dHn2 [Γ]]
G∞

that

[dFn1 [Γ], dHn2 [Γ]](k)
G

= 0 ∈ gk,gmp, ∀k ≥ 2N0 +1, (n1, n2) ∈ N2, Γ ∈ G∗
∞. (6.93)
∞



86 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054
Therefore, if Γ = (γ(k))k∈N ∈ G∗
∞, then letting ΓM := (γ(k))Mk=1 be the projection onto 

an element of G∗
M , for M ≥ 2N0 + 1, we see that

Tr
(
[dFn1 [Γ], dHn2 [Γ]]

G∞
· Γ
)

= Tr
(
[dFn1 [Γ], dHn2 [Γ]]

G∞
· Γ2N0+1

)
= Tr

(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞

· Γ2N0+1
)
.

(6.94)

For each (n1, n2) ∈ N2, we have by Proposition 2.4 and the separate continuity of the 
generalized trace that

Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞

· Γ2N0+1
)

= lim
M→∞

Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1
)
. (6.95)

For M � 2N0+1, we have by Lemma 5.24 that

iTr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1
)

= {Fn1 , Hn2}G∗
M

(Γ2N0+1)

=
N0∑
�=1

iTr1,...,�
(
dFn1 [Γ2N0+1](�)XHn2 ,G

∗
M

(Γ2N0+1)(�)
)
, (6.96)

where

XHn2 ,G
∗
M

(Γ2N0+1)(�)

=
M∑
j=1

min{�,j}∑
r=r0

C ′
�jkrM Tr�+1,...,k

⎛⎝⎡⎣ ∑
αr∈P �

r

dHn2 [Γ2N0+1](j)(αr,�+1,...,min{�+j−r,k}), γ
(k)
2N0+1

⎤⎦⎞⎠
(6.97)

and where

k := min{� + j − 1,M}, r0 := max{1,min{�, j} − (M − max{�, j})}, (6.98)

and

C ′
�jkrM :=

(
j

r

)
MC�,MCj,M

Ck,M

∏r−1
m=1(M − k + m)

. (6.99)

Since dFn1 [Γ2N0+1](�) = 0 ∈ g� and dHn2 [Γ2N0+1](j) = 0 ∈ gj , for �, j ≥ N0, we see 
upon substituting the right-hand side of (6.97) into (6.96) that, for any M ≥ 2N0 + 1, 
only pairs (�, j) satisfying � + j − 1 ≤ M give a nonzero contribution to the resulting 
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expression. Similarly, only pairs (�, j) such that r0 = 1 give a nonzero contribution to 
(6.96). Therefore, we may write

XHn2 ,G
∗
M

(Γ2N0+1)(�)

=
M∑
j=1

min{�,j}∑
r=1

C ′
�jkrM Tr�+1,...,�+j−1

⎛⎝⎡⎣ ∑
αr∈P �

r

dHn2 [Γ2N0+1](j)(αr,�+1,...,�+j−r), γ
(�+j−1)
2N0+1

⎤⎦⎞⎠.

(6.100)

By the analysis from the proof of Proposition 2.4, we have that

lim
M→∞

C ′
�jkrM =

{
j, r = 1
0, 2 ≤ r ≤ min{�, j}

. (6.101)

Since the summands in (6.100) are zero for j ≥ N0, it then follows that

XHn2 ,G
∗
M

(Γ2N0+1)(�)

g
∗
�−−−−→

M→∞

∞∑
j=1

j Tr�+1,...,�+j−1

([
�∑

α=1
dHn2 [Γ2N0+1](j)(α,�+1,...,�+j−1), γ

(�+j−1)
2N0+1

])
︸ ︷︷ ︸

=:XHn2 ,G∗∞ (Γ2N0+1)(�)

.

(6.102)

The preceding convergence result implies, by the separate continuity of the generalized 
trace, that for fixed (n1, n2) ∈ N2,

lim
M→∞

N0∑
�=1

iTr1,...,�
(
dFn1 [Γ2N0+1](�)XHn2 ,G

∗
M

(Γ2N0+1)(�)
)

=
N0∑
�=1

iTr1,...,�
(
dFn1 [Γ2N0+1](�)XHn2 ,G

∗
∞(Γ2N0+1)(�)

)
.

(6.103)

Recalling from (6.92) that dHn2 [Γ2N0+1](j) = dHn2 [Γ](j), for all j ∈ N, and

γ
(�+j−1)
2N0+1 = γ(�+j−1), for � + j − 1 ≤ 2N0 + 1,

by definition of the projection Γ2N0+1, we obtain that

XHn2 ,G
∗
∞(Γ2N0+1)(�) =

∞∑
j=1

j Tr�+1,...,�+j−1

([
�∑

α=1
dHn2 [Γ](j)(α,�+1,...,�+j−1), γ

(�+j−1)

])
︸ ︷︷ ︸

=:XHn2
(Γ)(�)

,

(6.104)
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for � ∈ N≤N0 . Similarly, by (6.92), dFn1 [Γ2N0+1](�) = dFn1 [Γ](�), and so we have that

N0∑
�=1

iTr1,...,�
(
dFn1 [Γ2N0+1](�)XHn2 ,G

∗
∞(Γ2N0+1)(�)

)
=

N0∑
�=1

iTr1,...,�
(
dFn1 [Γ](�)XHn2

(Γ)(�)
)
.

(6.105)
We now proceed to the analysis of the iterative limits n2 → ∞ followed by n1 → ∞. 

Since

dHn2 [Γ] → dH[Γ]

in G∞, as n2 → ∞, it follows from Proposition B.10 and the universal property of the 
tensor product that the (� + j − 1)-particle extensions

dHn2 [Γ](j)(α,�+1,...,�+j−1) −→ dH[Γ](j)(α,�+1,...,�+j−1), (6.106)

in Lgmp(S(R�+j−1), S ′(R�+j−1)) as M → ∞ for Γ ∈ G∗
∞ fixed. The continuity of the 

commutator bracket, the good mapping property, and the separate continuity of the 
generalized trace imply that

XHn2
(Γ) −→ XH(Γ), (6.107)

in 
∏∞

k=1 L(S ′
s(Rk), Ss(Rk)) as n2 → ∞. Moreover, the continuity of the adjoint operation 

(see Lemma B.1) and the self-adjointness of XHn2
(Γ) imply that XH(Γ) is self-adjoint, 

hence an element of G∗
∞. We note that writing XH(Γ) is a slight abuse of notation since 

we have not yet verified that XH satisfies all of the desired properties, but this limit, 
XH , will be our candidate Hamiltonian vector field from the statement of the lemma.

For each n1 ∈ N fixed, the separate continuity of the generalized trace and the fact 
that dFn1 [Γ](�) = 0, for � ≥ N0, then implies

lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)

= iTr(dFn1 [Γ] ·XH(Γ)). (6.108)

Since dFn1 [Γ] → dF [Γ] in G∞, as n1 → ∞, by construction of the approximations Fn1 , 
another application of the separate continuity of the generalized trace yields

lim
n1→∞

iTr(dFn1 [Γ] ·XH(Γ)) = iTr(dF [Γ] ·XH(Γ)). (6.109)

After a little bookkeeping, we have shown that for every Γ ∈ G∗
∞,

{F,G}
G∗

∞
(Γ) = lim

n1→∞
lim

n2→∞
lim

M→∞
iTr

(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1
)

= lim
n1→∞

lim
n2→∞

lim
M→∞

iTr
(
dF [Γ2N0+1] ·XHn2 ,GM

(Γ2N0+1)
)

= lim
n1→∞

lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)

= iTr(dF [Γ] ·XH(Γ)). (6.110)
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We now verify that XH is a smooth map G∗
∞ → G∗

∞ in order to conclude by Re-
mark 4.2. It remains only to check the smoothness property. If H is a trace functional, 
then since dH[Γ](j) = dH[0](j) satisfies the good mapping property, the desired conclu-
sion is immediate. The general case then follows by the Leibnitz rule for the Gâteaux 
derivative, since constant functionals and trace functionals generate A∞. �
6.4. The Poisson morphism ι : S(R) → G∗

∞

We now turn to the proof of Theorem 2.12. We recall that we are considering the map

ι : S(R) → G∗
∞, ι(φ) :=

(∣∣φ⊗k
〉 〈

φ⊗k
∣∣)

k∈N , (6.111)

which sends a 1-particle wave function to a density matrix ∞-hierarchy. We recall the 
definition

AS =
{
H : ∇sH ∈ C∞(S(R);S(R))

}
⊂ C∞(S(R);R),

and we restate Theorem 2.12 here for the reader’s convenience.

Theorem 2.12. The map ι is a Poisson morphism of (S(Rd), AS , {·, ·}L2) into (G∗
∞, A∞,

{·, ·}
G∗

∞
), i.e. it is a smooth map such that

{F ◦ ι, G ◦ ι}L2(φ) = {F,G}
G∗

∞
(ι(φ)), ∀φ ∈ S(Rd), (2.39)

for all functionals F, G ∈ A∞.

We recall that although we set d = 1 in the proof, it works in any dimension. To prove 
Theorem 2.12, we will need the following technical result which gives a formula for the 
Gâteaux derivative of ι.

Lemma 6.16 (Formula for dι). Let φ, ψ ∈ S(R). Then for all k ∈ N,

dι[φ](ψ)(k) =
k∑

m=1

∣∣∣φ⊗(m−1) ⊗ ψ ⊗ φ⊗(k−m)
〉 〈

φ⊗k
∣∣+ k∑

m=1

∣∣φ⊗k
〉 〈

φ⊗m−1 ⊗ ψ ⊗ φ⊗(k−m)
∣∣∣ .

(6.112)

Proof. The desired formula follows readily from the product rule. �
Remark 6.17. We record here the observation that for φ ∈ S(R) fixed, each sum in 
(6.112) has co-domain L(S ′

s(Rk), Ss(Rk)). We will use this observation throughout the 
proof of Theorem 2.12 below.
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Proof of Theorem 2.12. Smoothness of ι follows readily from Lemma 6.16 and induction 
on k, therefore, it remains to check that

(i) ι∗A∞ ⊂ AS ,
(ii) ι∗{·, ·}

G∗
∞

= {ι∗·, ι∗·}S(R).

We prove assertion i. Let F ∈ A∞. We need to show that f := F ◦ ι ∈ AS , that is, we 
need to show the symplectic L2 gradient of f exists and is a smooth S(R)-valued map. 
To this end, observe that by the chain rule, for any φ, δφ ∈ S(R), we have

df [φ](δφ) = dF [ι(φ)](dι[φ](δφ))

= iTr(dF [ι(φ)] · dι[φ](δφ))

= i

∞∑
k=1

Tr1,...,k
(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
, (6.113)

where the penultimate equality follows from the identification of dF [ι(φ)] as an element of 
G̃∞, the bi-dual of G∞, via the canonical trace pairing and the ultimate equality follows 
from the definition of the dot product. Now applying Lemma 6.16 and the bilinearity of 
the generalized trace, we see that

Tr1,...,k
(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

∣∣∣φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)
〉 〈

φ⊗k
∣∣))

+ Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

∣∣φ⊗k
〉 〈

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)
∣∣∣))

=
〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1
φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+
〈

k∑
m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
, (6.114)

where the ultimate equality is just applying the definition of the generalized trace. Since 
dF [ι(φ)](k) is skew-adjoint, we have that

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1
φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

= −
〈
dF [ι(φ)](k)φ⊗k

∣∣∣∣∣
k∑

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

〉
.

(6.115)
m=1
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Since dF [ι(φ)](k) satisfies the good mapping property, the preceding expression can be 
written as − 〈ψF,k|δφ〉, where ψF,k ∈ S(R) is the unique Schwartz function coinciding 
with the bosonic tempered distribution〈

k∑
α=1

(·) ⊗α φ⊗(k−1)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
, (6.116)

and we recall the notation (·) ⊗α φ⊗(k−1) introduced in (6.14). Similarly,〈
k∑

m=1
φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
= 〈δφ|ψF,k〉 . (6.117)

Therefore, we have shown that〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

m=1
φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+
〈

k∑
m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉
= 2i Im {〈δφ|ψF,k〉}
= iωL2(δφ, ψF,k) (6.118)

and consequently by (6.113), (6.114), (6.118) and bilinearity

i

∞∑
k=1

Tr1,...,k
(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= −

∞∑
k=1

ωL2(δφ, ψF,k) = ωL2(ψF , δφ), (6.119)

where we have defined ψF :=
∑∞

k=1 ψF,k and used the anti-symmetry of ωL2 to obtain 
the ultimate equality. Note that moving the summation inside the second entry of ωL2 is 
justified by the bilinearity of the symplectic form since dF [ι(φ)](k) = 0 for all but finitely 
many k, by assumption that F ∈ A∞ and the generating structure of A∞. Consequently, 
ψF,k ≡ 0 for all but finitely many k. We conclude that

df [φ](δφ) = ωL2(ψF , δφ), (6.120)

and hence, recalling the definition of the symplectic L2 gradient in Remark 4.12, we have 
that

∇sf(φ) = ψF ∈ S(R). (6.121)

Lastly, using the identity (6.121), we prove assertion ii. By definition of the Hamil-
tonian vector field XG(ι(φ)) in 3 together with Lemma 6.15, which gives a formula for 
XG(ι(φ)), we have that for F, G ∈ A∞,
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{F,G}
G∗

∞
(ι(φ))

= dF [ι(φ)](XG(ι(φ)))

= i

∞∑
k=1

Tr1,...,k

⎛⎝dF [ι(φ)](k)
∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1
dG[ι(φ)](j)(α,k+1,...,k+j−1), ι(φ)(k+j−1)

])⎞⎠.
(6.122)

Observe that

dG[ι(φ)](j)(α,k+1,...,k+j−1)ι(φ)(k+j−1) =
∣∣∣φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)

〉〈
φ⊗(k+j−1)

∣∣∣ ,
(6.123)

where φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j) is the tempered distribution in S ′(Rk+j−1) defined 
by (

φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)
)
(xk+j−1)

:= φ⊗(α−1)(xα−1)φ⊗(k−α)(xα+1;k)dG[ι(φ)](j)(xα, xk+1;k+j−1).
(6.124)

Since dG[ι(φ)](j) has the good mapping property by assumption G ∈ A∞, it follows from 
Remark B.13 and the definition of the generalized partial trace that

Trk+1,...,k+j−1

(
dG[ι(φ)](j)(α,k+1,...,k+j−1)ι(φ)(k+j−1)

)
=
∣∣∣φ⊗(α−1) ⊗ ψG,j,α ⊗ φ⊗(k−α)

〉 〈
φ⊗k

∣∣ , (6.125)

where ψG,j,α ∈ S(R) is the unique Schwartz function such that

〈δφ|ψG,j,α〉 =
〈
δφ⊗α φ⊗(j−1)

∣∣∣dG[ι(φ)](j)(φ⊗j)
〉
, ∀δφ ∈ S(R). (6.126)

Moreover, since dG[ι(φ)](j)(φ⊗j) ∈ S ′
s(Rj), it follows from Lemma 4.27 that〈

δφ⊗α φ⊗(j−1)
∣∣∣dG[ι(φ)](j)(φ⊗j)

〉
=
〈
δφ⊗α′ φ⊗(j−1)

∣∣∣dG[ι(φ)](j)(φ⊗j)
〉
, (6.127)

for any 1 ≤ α, α′ ≤ j, and therefore ψG,j,α = ψG,j,α′ . Hence,

Trk+1,...,k+j−1

(
dG[ι(φ)](j)(α,k+1,...,k+j−1)ι(φ)(k+j−1)

)
= 1

j

∣∣∣φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)
〉 〈

φ⊗k
∣∣ , (6.128)

where ψG,j is defined the same as ψF,k above, except with (F, k) replaced by (G, j). 
By completely analogous reasoning together with the skew-adjointness of dG[ι(φ)](j), we 
also obtain that
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Trk+1,...,k+j−1

(
ι(φ)(k+j−1)dG[ι(φ)](j)(α,k+1,...,k+j−1)

)
= −1

j

∣∣φ⊗k
〉 〈

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)
∣∣∣ , (6.129)

Substituting the identities (6.128) and (6.129) into (6.122), we obtain the expression

i
∞∑
k=1

Tr1,...,k
(
dF [ι(φ)](k)

( ∞∑
j=1

k∑
α=1

∣∣∣φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)
〉 〈

φ⊗k
∣∣

+
∣∣φ⊗k

〉 〈
φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣ ))
= i

∞∑
j=1

∞∑
k=1

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)](k)

(
k∑

α=1
φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

)〉

+
〈

k∑
α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉

= −2
∞∑
j=1

∞∑
k=1

Im
{〈

k∑
α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)](k)φ⊗k

〉}

= −2
∞∑
j=1

∞∑
k=1

Im {〈ψG,j |ψF,k〉} , (6.130)

where the penultimate equality follows from the skew-adjointness of dF [ι(φ)](k) and the 
ultimate equality follows from the definition of ψF,k. Since ψF,k = ψG,j ≡ 0 for all but 
finitely many j, k, we are justified in writing

−2
∞∑
j=1

∞∑
k=1

Im {〈ψG,j |ψF,k〉} = −2 Im {〈ψG|ψF 〉} , (6.131)

where ψF is defined as above and ψG :=
∑∞

j=1 ψG,j is defined completely analogously. 
Recalling (4.15) for the definition of ωL2 and identity (6.121) for the symplectic gradient, 
we obtain that

−2 Im {〈ψG|ψF 〉} = ωL2(∇sf(φ),∇sg(φ)). (6.132)

After a little bookkeeping, we realize that we have shown that

{F,G}
G∗

∞
(ι(φ)) = ωL2(∇sf(φ),∇sg(φ)). (6.133)

Since the symplectic form ωL2 canonically induces the Poisson bracket {·, ·}L2 through

{f, g}L2(φ) = ωL2(∇sf(φ),∇sg(φ)), (6.134)

the proof of assertion ii is complete. �



94 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054
7. GP Hamiltonian flows

In this last section, we prove Theorem 2.3 and its limiting version Theorem 2.10.

7.1. BBGKY Hamiltonian flow

For the reader’s benefit, we recall that the BBGKY Hamiltonian HBBGKY,N is the 
trace functional given by

HBBGKY,N (ΓN ) = Tr(WBBGKY,N · ΓN ), (7.1)

where

WBBGKY,N = (−Δx, κVN (X1 −X2), 0, . . .), (7.2)

with κ and VN as in (2.3). We also recall here the statement of Theorem 2.3.

Theorem 2.3. Let I ⊂ R be a compact interval. Then ΓN = (γ(k)
N )Nk=1 ∈ C∞(I; G∗

N ) is a 
solution to the BBGKY hierarchy (2.4) if and only if

d

dt
ΓN = XHBBGKY,N

(ΓN ), (2.18)

where XHBBGKY,N
is the unique vector field defined by HBBGKY,N (see Definition 4.1) 

with respect to the weak Poisson structure (G∗
N , AH,N , {·, ·}

G∗
N

).

We now proceed to proving Theorem 2.3. Since by Lemma 5.24, we have the formula

XHBBGKY,N
(ΓN )(�)

=
N∑
j=1

min{�,j}∑
r=r0

C ′
�jkrN Tr�+1,...,k

⎛⎝⎡⎣ ∑
αr∈P �

r

dHBBGKY,N [ΓN ](j)(αr,�+1,...,min{�+j−r,k}), γ
(k)
N

⎤⎦⎞⎠,

(7.3)

where

k := min{� + j − 1, N}, r0 := max{1,min{�, j} − (N − max{�, j})}, (7.4)

and

C ′
�jkrN := NC�,NCj,N

Ck,N

∏r−1
m=1(N − k + m)

(
j

r

)
,

our task reduces to simplifying the expression in the right-hand side of (7.3).
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To this end, we first need a formula for the Gâteaux derivative dHBBGKY,N of 
HBBGKY,N and its identification with an observable N -hierarchy via the canonical trace 
pairing. Indeed, let N ∈ N. Then for any ΓN = (γ(k)

N )Nk=1 ∈ G∗
N , we have that

dHBBGKY,N [ΓN ](δΓN ) = Tr(WBBGKY,N · δΓN ), ∀δΓN ∈ G∗
N . (7.5)

Therefore, dHBBGKY,N [ΓN ] = dHBBGKY,N [0] is uniquely identifiable with the observ-
able 2-hierarchy −iWBBGKY,N . As a consequence, we see that

dHBBGKY,N [ΓN ](j)(αr,�+1,...,min{�+j−r,k}) = 0 (7.6)

for 3 ≤ j ≤ N . Therefore, by (7.3), we have

XHBBGKY,N
(ΓN )(�)

= −iC ′
�1�1N

�∑
α=1

[
(−Δx1)(α), γ

(�)
N

]

− iκ

min{�,2}∑
r=r0

C ′
�2krN

∑
αr∈P �

r

Tr�+1,...,k

([
(VN (X1 −X2))(αr,�+1,...,min{�+2−r,k}), γ

(k)
N

])
=: Term1,� + Term2,�. (7.7)

We first consider Term1,�. Note that (−Δx)(α) = −Δxα
. Now unpacking the definition 

of the normalizing constant C ′
�1�1N , we find that

C ′
�1�1N = NC�,NC1,N

C�,N
= NC1,N = 1, (7.8)

where the ultimate equality follows from the fact that C1,N = 1/|PN
1 | = 1/N . Hence,

Term1,� = −i
�∑

α=1

[
−Δxα

, γ
(�)
N

]
. (7.9)

We next consider Term2,�. We divide into cases based on the values of � ∈ {1, . . . , N}.

• If � = 1, then

Term2,1 = −iκC ′
1221N Tr2

([
(VN (X1 −X2)(1,2), γ

(2)
N

])
, (7.10)

where we use that k = 2. Since (VN (X1 −X2))(1,2) = VN (X1 −X2), it follows that

Term2,1 = −iκC ′
1221N Tr2

([
VN (X1 −X2), γ(2)

N

])
. (7.11)
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Unpacking the definition of the constant C ′
1221N , we see that

C ′
1221N = NC1,NC2,N

C2,N

(
2
1

)
= 2NC1,N = 2, (7.12)

hence,

Term2,1 = −2iκTr2
([

VN (X1 −X2), γ(2)
N

])
. (7.13)

• If 2 ≤ � ≤ N − 1, then

r0 = max{min{�, 2} − (N − max{�, 2}), 1} = max{2 − (N − �), 1} = 1 (7.14)

and therefore

Term2,� = −iκ

2∑
r=1

C ′
�2(�+1)rN

∑
αr∈P �

r

Tr�+1

([
VN (X1 −X2)(αr,�+1), γ

(�+1)
N

])
, (7.15)

where we use that k = � + 1. If r = 1, then

∑
α1∈P �

1

Tr�+1

([
VN (X1 −X2)(α1,�+1), γ

(�+1)
N

])
=

�∑
α=1

Tr�+1

([
VN (Xα −X�+1), γ(�+1)

N

])
,

(7.16)

and recalling (5.9), we have

C ′
�2(�+1)1N = NC�,NC2,N

C�+1,N

(
2
1

)
= 2(N − �)

(N − 1) . (7.17)

If r = 2, then min{� + 2 − r, k} = �, which per our notation implies that

∑
αr∈P �

r

Tr�+1

([
VN (X1 −X2)(αr,�+1), γ

(�+1)
N

])
=

∑
(α1,α2)∈P �

2

Tr�+1

([
(VN (X1 −X2)(α1,α2), γ

(�+1)
N

])
. (7.18)

Since α1, α2 ∈ N≤� and VN (X1 −X2)(α1,α2) = VN (Xα1 −Xα2), we have that

Tr�+1

([
(VN (X1 −X2)(α1,α2), γ

(�+1)
N

])
=
[
VN (Xα1 −Xα2), γ

(�)
N

]
. (7.19)

Now since k = � + 1, it follows from our computation in (7.17) that
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C ′
�2(�+1)2N = NC�,NC2,N

C�+1,N (N − k + 1)

(
2
2

)
= 1

N − 1 . (7.20)

Since VN (Xα1 −Xα2) = VN (Xα2 −Xα1) by the evenness of the potential V , it follows 
that

∑
α2∈P �

2

[
VN (Xα1 −Xα2), γ

(�)
N

]
= 2

N − 1
∑

1≤α1<α2≤�

[
VN (Xα1 −Xα2), γ

(�)
N

]
. (7.21)

After a little bookkeeping, we obtain that

Term2,� = −iκ
2(N − �)
N − 1

�∑
α=1

Tr�+1

([
VN (Xα −X�+1), γ(�+1)

N

])
− iκ

2
N − 1

∑
1≤α1<α2≤�

[
VN (Xα1 −Xα2), γ

(�)
N

]
.

(7.22)

• Lastly, if � = N , then

r0 = max{min{N, 2} − (N − max{N, 2}), 1} = 2. (7.23)

Moreover, k = N , so that

Term2,N = −iκC ′
N2N2N

∑
α2∈PN

2

[
(VN (X1 −X2))(α2), γ

(N)
N

]
. (7.24)

Since

C ′
N2N2N = NCN,NC2,N

CN,N

(
2
2

)
= 1

N − 1 , (7.25)

we can again use the evenness of the potential V to conclude that

Term2,N = − 2iκ
N − 1

∑
1≤α1<α2≤N

[
VN (Xα1 −Xα2), γ

(N)
N

]
. (7.26)

Putting our case analysis together, we obtain

XHBBGKY,N
(ΓN )(1) = −i

[
−Δx1 , γ

(1)
N

]
− 2iκTr2

([
VN (X1 −X2), γ(2)

N

])
, (7.27)

while for 2 ≤ � ≤ N − 1 we have
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XHBBGKY,N
(ΓN )(�) = −i

�∑
α=1

[
−Δxα

, γ
(�)
N

]
− 2iκ

N − 1
∑

1≤α1<α2≤�

[
VN (Xα1 −Xα2), γ

(�)
N

]

− 2iκ(N − �)
N − 1

�∑
α=1

Tr�+1

([
VN (Xα −X�+1), γ(�+1)

N

])
,

(7.28)

and finally

XHBBGKY,N
(ΓN )(N) = −i

N∑
α=1

[
−Δxα

, γ
(�)
N

]
− 2iκ

N − 1
∑

1≤α1<α2≤N

[
VN (Xα1 −Xα2), γ

(N)
N

]
,

(7.29)
which we see, upon comparison with (2.4), are precisely the equations for solutions to 
the BBGKY hierarchy, thus completing the proof.

7.2. GP Hamiltonian flow

In this subsection, we prove Theorem 2.10. For the reader’s benefit, we recall that the 
GP Hamiltonian HGP is the trace functional given by

HGP (Γ) := Tr(WGP · Γ), Γ ∈ G∗
∞; WGP = (−Δx, κδ(X1 −X2), 0, . . .). (7.30)

We recall the statement of the theorem.

Theorem 2.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then 
Γ ∈ C∞(I; G∗

∞) is a solution to the GP hierarchy (2.5) if and only if(
d

dt
Γ
)

(t) = XHGP
(Γ(t)), ∀t ∈ I, (2.31)

where XHGP
is the unique Hamiltonian vector field defined by HGP with respect to the 

weak Poisson structure (G∗
∞, A∞, {·, ·}

G∗
∞

).

The proof is similar to the proof that the BBGKY hierarchy is a Hamiltonian equation 
of motion, and Theorem 2.10 may be viewed as the N → ∞ limit of Theorem 2.3. In 
our companion work [28], we will obtain Theorem 2.10 for the 1D cubic GP hierarchy 
as part of a more general theorem which connects the Hamiltonian structure of an 
infinite coupled system of linear equations, which we call the n-th GP hierarchy, to 
the Hamiltonian structure of the n-th equation of the nonlinear Schrödinger hierarchy, 
which is of fundamental interest in the study of the NLS as an integrable system (see, 
for instance, the survey of Palais [35]). The GP hierarchy under consideration here then 
corresponds to the n = 3 equation of the aforementioned family of equations.
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We now proceed to proving Theorem 2.10. Recalling equation (2.5) for the GP hier-
archy, we need to show that

XHGP
(Γ)(k) = −i

([
−Δxk

, γ(k)
]

+ 2κBk+1γ
(k+1)

)
, k ∈ N, (7.31)

for any Γ = (γ(k)) ∈ G∗
∞, which we do by direct computation.

Let Γ ∈ G∗
∞. By application of Lemma 6.15 to HGP together with the identification

dHGP [Γ] = −iWGP , (7.32)

which is immediate from the fact that HGP is a trace functional, we know that

XHGP
(Γ)(k) =

∞∑
j=1

j Trk+1,...,k+j−1

([
k∑

α=1
dHGP [Γ](j)(α,k+1,...,k+j−1), γ

(k+j−1)

])
. (7.33)

Since −iW(j)
GP = 0 ∈ gj,gmp, for j ≥ 3, we see from (7.30) that the formula for XHGP

(Γ)
simplifies to

XHGP
(Γ)(k) = −i

k∑
α=1

(
(−Δx1)(α)γ

(k) − γ(k)(−Δx1)(α)

)

− i2κ
k∑

α=1
Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)

− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)
,

(7.34)

for k ∈ N.
Since (−Δx1)(α) = −Δxα

and Δxk
=
∑k

α=1 Δxα
by definition, it follows that

−i
k∑

α=1

(
(−Δx1)(α)γ

(k) − γ(k)(−Δx1)(α)

)
= −i

[
−Δxk

, γ(k)
]
. (7.35)

Since δ(X1−X2)(α,k+1) = δ(Xα−Xk+1), it follows from Proposition B.8 for the gener-
alized partial trace that Trk+1(δ(Xα −Xk+1)γ(k+1)) is the element of L(S ′

s(Rk), S(Rk))
with Schwartz kernel∫

R

dxk+1δ(xα − xk+1)γ(k+1)(xk+1;x′
k, xk+1) = γ(k+1)(xk, xα;x′

k, xα)

= B+
α;k+1γ

(k+1)(xk;x′
k). (7.36)

Similarly, Trk+1(γ(k+1)δ(Xα −Xk+1)) is the operator with Schwartz kernel
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∫
R

dx′
k+1δ(x′

α − xk+1)γ(k+1)(xk, x
′
k+1;x′

k+1) = γ(k+1)(xk, x
′
α;x′

k, x
′
α)

= B−
α;k+1γ

(k+1)(xk;x′
k). (7.37)

Since Bk+1 =
∑k

α=1 B
+
α;k+1 −B−

α;k+1 by definition, we conclude that

− 2κi
k∑

α=1
Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)
− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)
= −2κiBk+1γ

(k+1).

(7.38)

After a little bookkeeping, we see that we have shown (7.31), thus completing the 
proof of Theorem 2.10.

Appendix A. Locally convex spaces

A.1. Calculus on locally convex spaces

The following material is intended as a crash course on calculus in the setting of 
locally convex topological vector spaces. Since we are in general not dealing with Banach 
spaces or Banach manifolds, the usual notion of the Fréchet derivative is not suitable for 
our purposes. Indeed, the prototypical example we ask the reader to keep in mind is the 
Schwartz space S(R).

One main issue posed by this more general setting is that there are several inequiva-
lent notions of the derivative for maps between locally convex spaces. Here, we use the 
definition which is typically called the Gâteaux derivative, which has the property that 
C1 maps are continuous,32 and hence enables us to regard the derivative of a smooth 
real-valued functional f at a point x ∈ X, which we denote by df [x], as an element of 
the topological dual X∗.

The following material can be found in lecture notes by Milnor [29]. Many of the 
definitions we record are standard, but we include them for completeness. The proofs 
are omitted, but can be found in [15].

Definition A.1 (Topological vector space). A real or complex topological vector space (tvs)
X is a vector space over a field K ∈ {R, C} with a topology τ which is Hausdorff and 
such that the operations of addition

+ : X ×X → X, (x, y) �→ x + y (A.1)

and scalar multiplication

32 For a notion of smoothness which allows for maps to be smooth but not continuous, we refer the reader 
to the monograph [19].
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· : K×X → X, (λ, x) �→ λx (A.2)

are continuous (the domains are equipped with the product topology).

Definition A.2 (Locally convex space). A tvs X is said to be locally convex if every 
neighborhood U � 0 contains a neighborhood U ′ � 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type 
result.

Proposition A.3 (Hahn-Banach). If X is locally convex, then given two distinct vectors 
x, y ∈ X, there exists a continuous K-linear map � : X → K with �(x) �= �(y).

Definition A.4 (Gâteaux derivative). Let X and Y be locally convex R-tvs, let X0 ⊂ X

and Y0 ⊂ Y be open sets, and let f : X0 → Y0 be a continuous map. Given a point 
x ∈ X0 and a direction v ∈ X, we define the directional derivative or Gâteaux derivative
of f at x in the direction v to be the vector

f ′(x; v) =: f ′
x(v) := lim

t→0

f(x + tv) − f(x)
t

, (A.3)

if this limit exists. We call the map f ′
x : X → Y the derivative of f at the point x. We 

use the notation df [x](v) := f ′(x; v).

Definition A.5 (C1 Gâteaux map). Let X0, Y0, and f be as above. The map f : X0 → Y0
is C1 if f ′(x; v) exists for all x ∈ X0, v ∈ X and is continuous as a map

f ′ : X0 ×X → Y, (A.4)

where the domain is equipped with the product topology.

The Gâteaux derivative f ′
x of a map f between two locally convex spaces may fail to 

be linear in the direction v. However, C1 smoothness is enough to ensure linearity in 
the direction variable. We always work with C∞ functionals (see Definition A.7), so the 
requisite C1 smoothness is not problematic for our purposes.

Proposition A.6 (Linearity of derivative). If f is C1, then for all x0 fixed, the map

X → Y, v �→ f ′(x0; v) (A.5)

is linear.

Having defined the derivative and C1 regularity, we can inductively define higher-order 
derivatives and regularity.
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Definition A.7 (Higher derivatives). The map f : X0 → Y0 is C2 Gâteaux if f is a C1

Gâteaux map and for each v1 ∈ X fixed, the map

X0 → Y, x �→ f ′(x; v1) (A.6)

is C1 with Gâteaux derivative

lim
t→0

f ′(x + tv2; v1) − f ′(x; v1)
t

(A.7)

depending continuously on (x; v1, v2) ∈ X0×X×X equipped with the product topology. 
If this limit exists, we call it the second Gâteaux derivative of f at x in the directions 
v1, v2 and denote it by f ′′(x; v1, v2). We inductively define Cr maps X0 → Y0. If a map 
is Cr for every r ∈ N, then we say that f is a C∞ map or alternatively, smooth map.

Proposition A.8 (Symmetry and r-linearity of f (r)
x0 ). If for r ∈ N, the map f is Cr, then 

for each fixed x0 ∈ X0, the map

X × · · · ×X︸ ︷︷ ︸
r

→ Y, (v1, . . . , vr) �→ f (r)(x0; v1, . . . , vr) (A.8)

is r-linear and symmetric, i.e. for any permutation π ∈ Sr,

f (r)(x0; vπ(1), . . . , vπ(r)) = f (r)(x0; v1, . . . , vr). (A.9)

Proposition A.9 (Composition). If f : X0 → Y0 and g : Y0 → Z0 are Cr maps, then 
g ◦ f : X0 → Z0 is Cr and the derivative of (g ◦ f) at the point x ∈ X0 is the map 
g′f(x) ◦ f ′

x : X → Z.

A.2. Smooth locally convex manifolds

In this subsection, we use the calculus reviewed in the preceding subsection to intro-
duce the basics of smooth manifolds modeled on locally convex topological vector spaces, 
which is needed for the construction of the Lie-Poisson manifold structure in Section 6. 
Much of the theory parallels the finite-dimensional setting, where the model space Rd

is now replaced by an arbitrary, possibly infinite-dimensional locally convex tvs. Con-
sequently, many of the definitions below will be familiar to the reader with a minimal 
knowledge of differential topology, but we record them for completeness. As in the last 
subsection, we closely follow [29] in our presentation.

Definition A.10 (Smooth manifold). A smooth manifold modeled on a locally convex 
space V consists of a regular, Hausdorff topological space M together with a collection 
of homeomorphisms ϕα : Vα → Mα satisfying the following properties:
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(M1) Vα ⊂ V is open.
(M2) Mα ⊂ M is open and 

⋃
α Mα = M .

(M3) ϕ−1
β ◦ϕα : ϕ−1

α (Mα∩Mβ) → ϕ−1
β (Mα∩Mβ) is a smooth map between open subsets 

of V . We refer to the maps ϕα as local coordinate systems on M and the maps 
ϕ−1
α as coordinate charts.

Remark A.11. We will sometimes say that the manifold M is a Fréchet manifold if the 
locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we 
can define the notion of a smooth map between manifolds.

Definition A.12 (Smooth map). If M1 and M2 are smooth manifolds modeled on locally 
convex spaces V1 and V2, respectively, then a continuous function f : M1 → M2 is smooth
if the composition

ϕ−1
β,2 ◦ f ◦ ϕα,1 : ϕ−1

α,1
(
M1,α ∩ f−1(M2,β)

)
→ V2,β (A.10)

is smooth whenever f(M1,α) ∩ M2,β �= ∅. We say that f is a diffeomorphism if it is 
bijective and both f and f−1 are smooth.

Definition A.13 (Submanifold). A subset N of a smooth locally convex manifold M is a 
submanifold if for each m ∈ N , there exists a chart (Mα, ϕ−1

α ) about the point m, such 
that ϕ−1

α (Mα ∩ N) = ϕ−1
α (Mα) ∩ W , where W is a closed subspace of the space V on 

which M is modeled.

Remark A.14. The submanifold N is smooth locally convex manifold modeled on W . 
Indeed, the reader may check that the maps ϕα|Vα∩W : Vα ∩W → Mα ∩N are homeo-
morphisms which satisfy Properties 1 - 3.

In this work, we use the kinematic definition of tangent vectors (i.e. equivalence classes 
of smooth curves), as opposed to the operational definition (i.e. derivations). While 
these two definitions are equivalent in the finite-dimensional setting, they are in general 
inequivalent in the infinite-dimensional setting.

Definition A.15 (Tangent space). Let ϕα : Vα → Mα be a local coordinate system on M
with x0 ∈ Mα. Let p1, p2 : I → M be smooth maps on an open interval I ⊂ R with 
pi(0) = x0 for i = 1, 2. We say that p1 ∼ p2 if and only if

d (
ϕ−1
α ◦ p1

)
|t=0 = d (

ϕ−1
α ◦ p2

)
|t=0. (A.11)
dt dt
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The reader may verify that ∼ defines an equivalence relation on smooth curves p : I → M

with p(0) = x0. The set of all such equivalence classes is called the tangent space at x0, 
denoted by Tx0M .

Definition A.16 (Tangent bundle). We define the tangent bundle TM as a set by

∐
x∈M

TxM.

We define a smooth locally convex structure on TM modeled on V × V by the local 
coordinate systems

ψα : Vα × V → TMα ⊂ TM, (A.12)

where ψα(u, v) is defined to be the equivalence class containing the smooth curve t �→
ϕα(u + tv) through the point ϕα(u) ∈ M . The reader may verify that ψα maps {u} × V

isomorphically onto the tangent space Tϕα(u)M .

Definition A.17 (Derivative). Let M1 and M2 be smooth locally convex manifolds. 
A smooth map f : M1 → M2 induces a continuous map

f ′
x : TxM1 → Tf(x)M2, [p1] �→ [f ◦ p1] (A.13)

called the derivative of f at x. Together, the maps f ′
x induce a smooth map

f∗ : TM1 → TM2, (x, v) �→ (f(x), f ′
x(v)) (A.14)

which maps TxM1 linearly into Tf(x)M2.

Definition A.18 (Smooth vector field). A smooth vector field on M is a smooth map 
X : M → TM such that X(x) ∈ TxM . We denote the vector space of smooth vector 
fields on M by X(M).

Appendix B. Distribution-valued operators

We review and develop some properties of distribution-valued operators (DVOs), that 
is, elements of L(S(Rk), S ′(Rk)), which are used extensively in this work. Most of these 
properties are a special case of a more general theory involving topological tensor prod-
ucts of locally convex spaces for which we refer the reader to [38,17,42] for further 
reading.
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B.1. Adjoint

In this subsection, we record some properties of the adjoint of a DVO as well as some 
properties of the map taking a DVO to its adjoint. The proofs follow more or less readily 
from the definition and standard arguments, and are left to the reader.

Lemma B.1 (Adjoint map). Let k ∈ N, and let A(k) ∈ L(S(Rk), S ′(Rk)). Then there is 
a unique map (A(k))∗ ∈ L(S(Rk), S ′(Rk)) such that〈

(A(k))∗g(k), f (k)
〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), g(k)

〉
S′(Rk)−S(Rk)

, ∀f (k), g(k) ∈ S(Rk).

(B.1)
Furthermore, the adjoint map

∗ : L(S(Rk),S ′(Rk)) → L(S(Rk),S ′(Rk)), A(k) �→ (A(k))∗ (B.2)

is a continuous involution.
Additionally, for B(k) ∈ L(S ′(Rk), S ′(Rk)), there exists a unique linear map in 

(B(k))∗ ∈ L(S(Rk), S(Rk)) such that〈
u(k), (B(k))∗g(k)

〉
S′(Rk)−S(Rk)

=
〈
B(k)u(k), g(k)

〉
S′(Rk)−S(Rk)

,

∀(g(k), u(k)) ∈ S(Rk) × S ′(Rk). (B.3)

Moreover, the adjoint map

∗ : L(S ′(Rk),S ′(Rk)) → L(S(Rk),S(Rk)) (B.4)

is a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps. We 
omit the proof, which is standard.

Lemma B.2. Let A(k) ∈ L(S(Rk), S ′(Rk)) and B(k) ∈ L(S ′(Rk), S ′(Rk)). Then(
B(k)A(k)

)∗
= (A(k))∗(B(k))∗. (B.5)

Definition B.3 (Self- and skew-adjoint). Given k ∈ N, we say that an operator 
A(k) ∈ L(S(Rk), S ′(Rk)) is self-adjoint if (A(k))∗ = A(k). Similarly, we say that 
A(k) ∈ L(S(Rk), S ′(Rk)) is skew-adjoint if (A(k))∗ = −A(k).

Remark B.4. Note that if A(k) ∈ L(S(Rk), S ′(Rk)) is an operator mapping S(Rk) →
L2(Rk), then our definition of self-adjoint does not coincide with the usual Hilbert space 
definition for densely defined operators, but instead with the definition of a symmetric 
operator.
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B.2. Trace and partial trace

In this subsection, we generalize the trace of an operator on a separable Hilbert space 
to the DVO setting. First, we record some remarks to motivate our definition. Since the 
operator |f〉 〈g|, where f, g ∈ L2(RN ), has trace equal to 〈f |g〉, we might try to generalize 
the notion of trace to pure tensors of the form f ⊗u, where u ∈ S ′(RN ) and f ∈ S(RN ), 
by defining

Tr1,...,N (f ⊗ u) = 〈u, f〉S′(RN )−S(RN ) (B.6)

and hope to extend this definition to S(RN)⊗̂S ′(RN ) through linearity, continuity, and 
density. However, the evaluation map

S(RN ) × S ′(RN ) → C, (f, u) �→ 〈u, f〉S′(RN )−S(RN ), (B.7)

is not continuous, but only separately continuous, preventing us from appealing to the 
universal property of the tensor product to guarantee the existence of a unique general-
ized trace

Tr1,...,N : S(RN )⊗̂S ′(RN ) → C (B.8)

satisfying (B.6).
Nonetheless, by viewing the trace as a bilinear map and using the canonical isomor-

phisms

L(S(RN ),S ′(RN )) ∼= S ′(R2N ) and L(S ′(RN ),S(RN )) ∼= S(R2N ), (B.9)

we can uniquely define the generalized trace of the right-composition of an operator in 
L(S(RN ), S ′(RN )) with an operator in L(S ′(RN ), S(RN )) through the pairing of their 
Schwartz kernels. More precisely,

Tr1,...,N (A(N)γ(N)) = 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ) (B.10)

is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A(N), 
which belongs to S ′(R2N ), with the Schwartz kernel of the transpose of γ(N),33 which 
belongs to S(R2N ). Equivalently, for each fixed A(N) ∈ L(S(RN ), S ′(RN )), the Schwartz 
kernel theorem implies the existence of a unique linear map L(S ′(RN ), S(RN )) → C, 
such that

Tr1,...,N
(
A(N)(f ⊗ g)

)
= 〈A(N)f, g〉S′(RN )−S(RN ) (B.11)

for all f, g ∈ S(RN ).

33 (γ(N))t is the operator f �→
∫
RN dx′

Nγ(x′
N ; xN )f(x′

N ).
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Definition B.5 (Generalized trace). We define

Tr1,...,N : L(S(RN ),S ′(RN )) × L(S ′(RN ),S(RN )) → C

Tr1,...,N
(
A(N)γ(N)

)
:= 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ).

(B.12)

Remark B.6. The reader can check that if A(N) ∈ L(S(RN ), S ′(RN )) and γ(N) ∈
L(S ′(RN ), S(RN )) are such that A(N)γ(N) is a trace-class operator ρ(N), then our def-
inition of the generalized trace of A(N)γ(N) coincides with the usual definition of the 
trace of ρ(N) as an operator on the Hilbert space L2(RN ).

We now establish some properties of the generalized trace which are reminiscent of 
properties of the usual trace encountered in functional analysis.

Proposition B.7 (Properties of generalized trace). Let A(N) ∈ L(S(RN ), S ′(RN )), and let 
γ(N) ∈ L(S ′(RN ), S(RN )). The following properties hold:

(i) Tr1,...,N is separately continuous.
(ii) We have the following identity:

Tr1,...,N
(
(A(N))∗γ(N)

)
= Tr1,...,N

(
A(N)(γ(N))∗

)
. (B.13)

(iii) If B(N) ∈ L(S ′(RN ), S ′(RN )), then Tr1,...,N satisfies the cyclicity property

Tr1,...,N
((

B(N)A(N)
)
γ(N)

)
= Tr1,...,N

(
A(N)

(
γ(N)B(N)

))
. (B.14)

Proof. Assertion i follows from the separate continuity of the distributional pairing 
〈·, ·〉S′(R2N )−S(R2N ).

To prove assertion ii, it suffices by density of finite linear combinations of pure tensors 
together with bilinearity and separate continuity of the generalized trace to consider the 
case where γ(N) = f (N) ⊗ g(N), for f (N), g(N) ∈ S(RN ). By definition of the generalized 
trace,

Tr1,...,N
(
(A(N))∗(f (N) ⊗ g(N))

)
=
〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

, (B.15)

and by definition of the adjoint in Lemma B.1,

〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

=
〈
A(N)g(N), f (N)

〉
S′(RN )−S(RN )

. (B.16)

Since (γ(N))∗ = g(N)⊗f (N), the desired conclusion then follows from another application 
of the definition of the generalized trace.
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To prove assertion iii, we note that since

B(N)A(N) ∈ L(S(RN ),S ′(RN )), γ(N)B(N) ∈ L(S ′(RN ),S(RN )), (B.17)

all expressions are well-defined. As before, it suffices to consider the case where γ(N) =
f (N) ⊗ g(N), for f (N), g(N) ∈ S(RN ). The proof then follows readily using the involution 
property of the adjoint and the definition of generalized trace. �

We now extend the partial trace map to our setting using our bilinear perspective.

Proposition B.8 (Generalized partial trace). Let N ∈ N and let k ∈ {0, . . . , N −1}. Then 
there exists a unique bilinear, separately continuous map

Trk+1,...,N : L(S(RN ),S ′(RN )) × L(S ′(RN ),S(RN )) → L(S(Rk),S ′(Rk)), (B.18)

which satisfies

Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
=

∫
RN−k

dxk+1;N (A(N)f (N))(xk, xk+1;N )g(N)(x′
k, xk+1;N ),

(B.19)
for all A(N) ∈ L(S(RN ), S ′(RN )), and f (N), g(N) ∈ S(RN ). That is,〈

Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
φ(k), ψ(k)

〉
S′(Rk)−S(Rk)

=
〈
A(N)f (N), ψ(k) ⊗ 〈g(N), φ(k)〉S′

xk
(Rk)−Sxk

(Rk)

〉
S′(RN )−S(RN )

,
(B.20)

for all φ(k), ψ(k) ∈ S(Rk).

Remark B.9. Our notation Trk+1,...,N implies a partial trace over the variables with 
indices belonging to the index set {i : k + 1 ≤ i ≤ N}. To alleviate some notational 
complications, we will use the convention that if the index set of the partial trace is 
empty, we do not take a partial trace.

Proof. We first show uniqueness. Fix N ∈ N and k ∈ {0, . . . , N − 1}. Fix A(N) ∈
L(S(RN ), S ′(RN )). Suppose that there are two maps Trk+1,...,N and T̂rk+1,...,N satisfying 
(B.19). Since every element γ(N) ∈ L(S ′(RN ), S(RN )) is of the form

γ(N) =
∞∑
j=1

λjf
(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j , (B.21)

where {λj}j∈N ∈ �1 and f (k)
j , g(k)

j and f (N−k)
j , g(N−k)

j are sequences converging to zero in 
S(Rk) and S(RN−k), respectively. Since the partial sums converge in L(S ′(RN ), S(RN )), 
we have by separate continuity that
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Trk+1,...,N

(
A(N)γ(N)

)
=

∞∑
j=1

λj Trk+1,...,N

(
A(N)

(
f

(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j

))

=
∞∑
j=1

λjT̂rk+1,...,N

(
A(N)

(
f

(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j

))
= T̂rk+1,...,N

(
A(N)γ(N)

)
, (B.22)

which completes the proof of uniqueness.
We now prove existence. Let N, k and A(N) be fixed as above. For f (k), g(k) ∈ S(Rk)

and γ(N) ∈ L(S ′(RN ), S(RN )), we define the integral kernel

Kf(k),g(k),γ(N)(xN ;x′
N ) := g(k)(x′

k)
∫
Rk

dy
k
γ(N)(xN ; y

k
, x′

k+1;N )f (k)(y
k
),

(xN , x′
N ) ∈ R2N . (B.23)

It is evident that Kf(k),g(k),γ(N) ∈ S(R2N ). Moreover, it is straightforward to check that 
the trilinear map

S(Rk) × S(Rk) × S(R2N ) → S(R2N ), (f (k), g(k), γ(N)) �→ Kf(k),g(k),γ(N) (B.24)

is continuous, where we abuse notation by using γ(N) to denote the Schwartz kernel 
as well as the operator. Therefore by the Schwartz kernel theorem and the fact that 
A(N) ∈ L(S(RN ), S ′(RN )) by assumption, for fixed f (k) ∈ S(Rk), the map

S(Rk) → C, g(k) �→
〈
KA(N) ,Kt

f(k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

(B.25)

defines an element of S ′(Rk) and the map

S(Rk) → S ′(Rk), f (k) �→
〈
KA(N) ,Kt

f(k),·,γ(N)

〉
S′(R2N )−S(R2N )

(B.26)

is continuous. We therefore define Trk+1,...,N (A(N)γ(N)) to be the element of L(S(Rk),
S ′(Rk)) given by

〈
Trk+1,...,N (A(N)γ(N))f (k), g(k)

〉
S′(Rk)−S(Rk)

:=
〈
KA(N) ,Kt

f(k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

,

(B.27)
which is evidently bilinear in (A(N), γ(N)).

It remains for us to prove separate continuity. Implicit in our work in the preceding 
paragraph is continuity in the second entry for fixed A(N). Continuity in the first entry 
for fixed γ(N) ∈ L(S ′(RN ), S(RN )) then follows by duality. �
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B.3. Contractions and the “good mapping property”

Given A(i) ∈ L(S(Ri), S ′(Ri)), an integer k ≥ i, and a cardinality-i subset 
{�1, . . . , �i} ⊂ N≤k, we want to define to an operator acting only on the variables asso-
ciated to {�1, . . . , �i}. We have the following result.

Proposition B.10 (k-particle extensions). There exists a unique A(i)
(�1,...,�i) ∈ L(S(Rk),

S ′(Rk)), which satisfies

A
(i)
(�1,...,�i)(f1 ⊗ · · ·⊗ fk)(xk) = A(i)(f�1 ⊗ · · ·⊗ f�i)(x�1 , . . . , x�i) ·

( ∏
�∈N≤k\{�1,...,�i}

f�(x�)
)

(B.28)
in the sense of tempered distributions.

Proof. We first consider the case (�1, . . . , �i) = (1, . . . , i). By the universal property of 
the tensor product, there exists a unique continuous linear map

A
(i)
(1,...,i) := A(i) ⊗ Idk−i : S(Ri)⊗̂S(Rk−i) → S ′(Ri)⊗̂S ′(Rk−i), (B.29)

satisfying

A
(i)
(1,...,i)(f

(i) ⊗ g(k−i))(xk) = A(i)(f (i))(xi)g(k−i)(xk−i), ∀f ∈ S(Ri), g ∈ S(Rk−i).
(B.30)

For the general cases where (�1, . . . , �i) �= (1, . . . , i), we set

A
(i)
(�1,...,�i) := π−1 ◦A(i)

(1,...,i) ◦ π, (B.31)

where π ∈ Sk is any permutation such that π(�j) = j for j ∈ N≤i and we let π act 
on measurable functions by (4.29) and on distributions by duality. Let (�∗1, . . . , �∗k−i)
denote the increasing ordering of the elements of the set N≤k \{�1, . . . , �i}. Then for test 
functions f1, . . . , fk, g1, . . . , gk ∈ S(R), we have〈

(π−1 ◦A(i)
(1,...,i) ◦ π)(

k⊗
�=1

f�),
k⊗

�=1

g�

〉
S′(Ri)−S(Ri)

=
〈
A(i)(

i⊗
j=1

f�j ) ⊗
k−i⊗
j=1

f�∗j , (
k⊗

j=1
gj) ◦ π

〉
S′(Rk)−S(Rk)

=
〈
A(i)(

i⊗
j=1

f�j ),
i⊗

j=1
g�j

〉
S′(Ri)−S(Ri)

·
〈

k−i⊗
j=1

f�∗j ,
k−i⊗
j=1

g�∗j

〉
S′(Rk−i)−S(Rk−i)

=
〈
A(i)(

i⊗
j=1

f�j ),
i⊗

j=1
g�j

〉
′ i i

·
∏

j∈N \{� ,...,� }
〈fj , gj〉S′(R)−S(R), (B.32)
S (R )−S(R ) ≤k 1 i
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where the penultimate equality follows from the definition of the tensor product of two 
distributions. By the density of finite linear combinations of pure tensors in S(Rk), it 
follows from the preceding equality that our definition (4.42) is independent of the choice 
of permutation π ∈ Sk satisfying π(�j) = j for every j ∈ N≤i. �

An important property of the above k-particle extension is that it preserves self- and 
skew-adjointness.

Lemma B.11. Let i ∈ N, let k ∈ N≥i, and let A(i) ∈ L(S(Rk), S ′(Ri)) be self-adjoint 
(resp skew-adjoint). Then for any cardinality-i subset {�1, . . . , �i} ⊂ N≤k, we have that 
A

(i)
(�1,...,�i) is self-adjoint (resp. skew-adjoint).

Proof. Replacing A(i) by iA(i), it suffices to consider the self-adjoint case. By consider-
ations of symmetry, it suffices to consider the case (�1, . . . , �i) = (1, . . . , i). The desired 
conclusion then follows from the fact that〈

A
(i)
(1,...,i)(f

(i) ⊗ f (k−i))
∣∣∣g(i) ⊗ g(k−i)

〉
=
〈
Af (i)

∣∣∣g(i)
〉〈

f (k−i)
∣∣∣g(k−i)

〉
=
〈
f (i)

∣∣∣A(i)g(i)
〉〈

f (k−i)
∣∣∣g(k−i)

〉
=
〈
f (i) ⊗ f (k−i)

∣∣∣A(i)
(1,...,i)(g

(i) ⊗ g(k−i))
〉
, (B.33)

for all (f (i), f (k−i), g(i), g(k−i)) ∈ (S(Ri) × S(Rk−i))2, linearity, and density of linear 
combinations of such pure tensors in S(Rk). �

Now let i, j ∈ N, let k := i + j − 1, and let (α, β) ∈ N≤i × N≤j . To construct a Lie 
bracket in Section 6.2, we need to give meaning to the composition

A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k) (B.34)

as an operator in L(S(Rk), S ′(Rk)), when A(i) ∈ L(S(Ri), S ′(Ri)) and B(j) ∈
L(S(Rj), S ′(Rj)).

Remark B.12. Without further conditions on A(i) or B(j), the composition (B.34) may 
not be well-defined. Indeed, consider the operator A ∈ L(S(R2), S ′(R2)) defined by

Af := δ0f, ∀f ∈ S(R2), (B.35)

where δ0 denotes the Dirac mass about the origin in R2. Then for f, g ∈ S(R),∫
R

dx2(Af⊗2)(x1, x2)g⊗2(x′
1, x2) = f(0)g(0)f(x1)g(x′

1)δ0(x1) ∈ S ′(R) ⊗ S(R). (B.36)

It is easy to show that fδ0 ∈ S ′(R) does not coincide with a Schwartz function.
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This issue leads us to a property we call the good mapping property. The intuition for 
the good mapping property is the basic fact from distribution theory that the convolu-
tion of a distribution of compact support with a Schwartz function is again a Schwartz 
function. We recall the definition of the good mapping property here.

Definition 2.5 (Good mapping property). Let i ∈ N. We say that an operator A(i) ∈
L(S(Rdi), S ′(Rdi)) has the good mapping property if for any α ∈ N≤i, the continuous 
bilinear map

S(Rdi) × S(Rdi) → S ′(Rd)⊗̂S(Rd)

(f (i), g(i))

�→
∫

Ri−1

dx1 . . . dxα−1dxα+1 . . . dxiA
(i)(f (i))(x1, . . . , xi)g(i)(x1, . . . , xα−1, x

′
α, xα+1, . . . , xi),

may be identified with a continuous bilinear map S(Rdi) × S(Rdi) → S(R2d).34

Remark B.13. By tensoring with identity, we see that if A(i) has the good mapping 
property, then A(i)

(�1,...,�i) has the good mapping property, where i is replaced by k and 
α ∈ N≤k.

B.4. The subspace Lgmp(S(Rk), S ′(Rk))

In this subsection, we expand more on Lgmp(S(Rk), S ′(Rk)) as a topological vector 
subspace of L(S(Rk), S ′(Rk)) and more on the identification of its topological dual.

Lemma B.14. Lgmp(S(Rk), S ′(Rk)) is a dense subspace of L(S(Rk), S ′(Rk)).

Proof. We first show density, beginning by recalling that Lgmp(S(Rk), S ′(Rk)) is 
endowed with the subspace topology induced by L(S(Rk), S ′(Rk)). Let A(k) ∈
L(S(Rk), S ′(Rk)), and let KA(k) ∈ S ′(R2k) denote the Schwartz kernel of A(k). Since 
S(R2k) is dense in S ′(R2k), given any bounded subset R ⊂ S(R2k) and ε > 0, there 
exists KR,ε ∈ S(R2k) such that

sup
K̃∈R

∣∣∣〈KA(k) −KR,ε, K̃〉S′(R2k)−S(R2k)

∣∣∣ < ε. (B.37)

Since the integral operator defined by the kernel KR,ε is a continuous endomorphism of 
S(Rk), it belongs to Lgmp(S(Rk), S ′(Rk)). Since any bounded subset S ⊂ S(Rk) induces 
a bounded subset R ⊂ S(R2k) by

34 We use ⊗̂ to denote the completion of the tensor product in either the projective or injective topology 
(which coincide). See Section 4.3 for further discussion.
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R := S⊗S := {f ⊗ ḡ : f, g ∈ S}, (B.38)

we conclude that given any ε > 0 and bounded subset S ⊂ S(Rk), there exists an 
element A(k)

S,ε ∈ L(S ′(Rk), S(Rk)) such that

sup
f,g∈S

∣∣∣〈(A(k) −A
(k)
S,ε)f

∣∣∣g〉∣∣∣ < ε. (B.39)

Since the preceding seminorms generate the topology for L(S(Rk), S ′(Rk)), the proof of 
density is complete. �

Using the preceding lemma, we can show that the strong dual of the subspace 
Lgmp(S(Rk), S ′(Rk)) is isomorphic to the space of linear operators with Schwartz-class 
kernels.

Lemma B.15. The space Lgmp(S(Rk), S ′(Rk))∗ endowed with the strong dual topology is 
isomorphic to L(S ′(Rk), S(Rk)).

Proof. Since the canonical embedding ι : Lgmp(S(Rk), S ′(Rk)) → L(S(Rk), S ′(Rk)) is 
tautologically continuous, the adjoint map

ι∗ : L(S(Rk),S ′(Rk))∗ → Lgmp(S(Rk),S ′(Rk))∗ (B.40)

is continuous. Now since Lgmp(S(Rk), S ′(Rk)) is dense in L(S(Rk), S ′(Rk)), any linear 
functional

� ∈ Lgmp(S(Rk),S ′(Rk))∗ (B.41)

extends to a unique element �̃ ∈ L(S(Rk), S ′(Rk))∗ by the Hahn-Banach theorem. Hence, 
ι∗ is a continuous bijection. Since the domain of the canonical isomorphism

Φ : L(S ′(Rk),S(Rk)) → L(S(Rk),S ′(Rk))∗ (B.42)

is a Fréchet space, it follows from the open mapping theorem that ι∗ ◦ Φ is an isomor-
phism. �
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