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[24] for a system describing the evolution of finitely many
indistinguishable classical particles.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Hamiltonian partial differential equations (PDEs) are a ubiquitous class of equations
which arise as models of physical systems exhibiting at least one, and often several,
conservation laws. While the framework of finite-dimensional Hamiltonian systems was
initially introduced to formalize Newtonian mechanics, infinite-dimensional Hamilto-
nian systems have since become a vast area of study, comprising an important class
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of models in diverse areas such as fluid mechanics, plasma physics, and quantum many-
body systems. Establishing a comprehensive mathematical theory of infinite-dimensional
Hamiltonian systems which is rich enough to accommodate all the physical problems of
interest seems beyond reach; however, one can make mathematically rigorous sense of
infinite-dimensional Hamiltonian systems in many interesting cases, see for instance [6]
and [1].

The focus of the present work will be a particular example of an infinite-dimensional
Hamiltonian PDE, namely, the cubic nonlinear Schrodinger equation (NLS):

i0:6 + A = 25|p|% 9, ¢:RY = C, ke{x1}. (1.1)

We will recall the precise Hamiltonian formulation of (1.1) in (1.4) and (1.5) below.

Over recent years, many authors have sought how to understand the manner in which
the dynamics of the NLS arise as an effective equation. By effective equation, we mean
that solutions of the NLS equation approximate solutions to an underlying physical
equation in some topology in a particular asymptotic regime. For example, the NLS
is an effective equation for a system of N bosons interacting pairwise via a delta or
approximate delta potential, in the sense that the 1-particle density matrix formed by
a solution to the NLS is close to the 1-particle reduced density matrix of the system
in trace norm, with error tending to zero as the number of particles tends to infinity.
Alternatively, the NLS also arises as an effective equation for water waves, where the
multiple scales expansion constructed by solving the NLS approximates slowly modulated
wave packet solutions to the water waves problem in Sobolev norm, with error tending
to zero as the steepness of the wave packets tends to zero.

In contrast to the vast amounts of activity on the derivation of the dynamics of the
NLS, to the best of our knowledge, questions about the origins of the Hamiltonian struc-
ture of the NLS have remained unexplored. Indeed, continuing with our two examples
from the previous paragraph, the N-body Schrédinger problem is well-known to admit a
description as an infinite-dimensional Hamiltonian system, as are the water waves equa-
tions [44], but we are unaware of work which mathematically demonstrates whether, and
if so the manner in which, the Hamiltonian structure of the NLS can be interpreted as a
limit of the Hamiltonian structure of the N-body Schrodinger or water waves problems.

This line of inquiry is not merely aesthetically pleasing. Since the Hamiltonian struc-
ture completely determines an equation’s behavior as a dynamical system, understanding
how the geometry arises from the underlying physical system is foundational for under-
standing how complex behavior is a limiting effect of the system in a specified scaling
regime. Furthermore, from the physics’ perspective of connecting field theories, both
classical and quantum, one often obtains a new field theory by deformation (e.g. first
and second quantization) of one Hamiltonian structure to another. Ideally, one would like
to know that this process is reversible, in the sense that a certain scaling limit recovers
the initial structure. See Remark 1.3 for further elaboration on this point.
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The Hamiltonian formulation for the NLS has two components: the Hamiltonian
functional itself and an underlying phase space geometry provided by a weak Poisson
manifold.® More precisely, to give the Hamiltonian formulation of the NLS, we endow
the d-dimensional Schwartz space S(R?) with the standard weak symplectic structure

wrz(f,9) = 2Im {{J drf(z)g(x) p, Vf,g€SRY. (1.2)

Letting V, denote the symplectic L? gradient, see Remark 4.12, the symplectic form
wr2 induces the canonical Poisson structure

{F,G}12() = w2 (VF (), VG()), (1.3)

defined for F,G belonging to a certain sub-algebra As C C™(S(R%);R), the precise
description of which we postpone to Proposition 4.13. The solution of the NLS (1.1) is
then the flow associated to a Hamiltonian equation of motion on the infinite-dimensional
weak Poisson manifold (S(R*), As, {*,-},2). More precisely, (1.1) is equivalent to

(50) 0 = Vrusto). (1.4
where
Havss(6(t)) = [ do(|Vo(t. o) + slo(t, o)), (1.5
R4

The goal of the current work is to derive both the weak Poisson structure and Hamil-
tonian functional constituting the Hamiltonian formulation of the NLS. Providing a
rigorous definition and derivation of the geometry will pose the bulk of the difficulty in
this work.

The methods we adopt are guided by the extensive research activity in recent years on
the derivation of NLS-type equations from the dynamics of interacting bosons. There are
a number of different approaches to this derivation problem beginning with the influential
work of Hepp [16], later generalized by Ginibre and Velo [14]. But the one which informs
our strategy involves the so-called BBGKY hierarchy,” which is a coupled system of
linear equations describing the evolution of a system of finitely many interacting bosons,
see (2.4) below. This approach was pioneered by Spohn [41] in the quantum context of
the derivation of the Hartree equation in the mean field scaling regime.® We mention

6 We refer to Definition 4.1 and Definition 4.5 for definitions of a weak Poisson and weak symplectic
manifold, respectively.

7 Bogoliubov-Born-Green—Kirkwood—Yvon hierarchy.

8 See also the influential works of Lanford [20,21] on the derivation of the Boltzmann equation.
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the works of Adami, Bardos, Golse, and Teta and Adami, Golse, and Teta [2,3], who
provided a derivation of the one-dimensional cubic NLS via the BBGKY approach in an
intermediate scaling regime between the mean field and Gross-Pitaevskii regimes. We also
mention in particular the works of Erdos, Schlein, and Yau [7-9], who provided the first
rigorous derivation of the three-dimensional cubic NLS in the Gross-Pitaevskii scaling
regime via the BBGKY hierarchy, resolving what was a significant open problem, and the
work of Klainerman and Machedon [18], who incorporated techniques from dispersive
equations to the study of this problem. There is by now an extensive body of work,
spanning many years, on deriving the dynamics of the NLS from many-body quantum
systems. A thorough account of this history would take us too far afield from our current
goals, and consequently we are not mentioning many important contributions in our very
brief account. We instead refer the reader to [37] for a general survey and more extensive
review on the history of the derivation problem and to the more recent lecture notes [36].

To appreciate some of the difficulties involved in our pursuit, it is important to note
that while the dynamics of a system of N-bosons is described by the linear Schrédinger
evolution of a wave function, such an equation is not amenable to taking the infinite-
particle limit directly since the wave functions for different particle numbers do not live
in a common topological space. Consequently, in order to take an infinite-particle limit,
one performs a non-linear transformation of the N-body wave functions and considers
sequences of k-particle marginal density matrices whose evolution is governed by the
BBGKY hierarchy. In particular, there is no clear link between the evolution of the
N-particle wave function and the NLS each as Hamiltonian dynamical systems. To com-
plicate matters further, the BBGKY hierarchy is no longer an evidently Hamiltonian
flow.

At the cost of the added complication of working with the BBGKY hierarchy, the
aforementioned works on the derivation of the one-particle dynamics actually yield the
following stronger result: the full dynamics of the interacting boson system governed by
the BBGKY hierarchy converges to dynamics described by the cubic Gross-Pitaevskii
(GP) hierarchy, which is an infinite coupled system of partial differential equations for
kernels” (y(*))% | of k-particle density matrices, defined in (2.5) below. The connection
to the NLS is then as follows: the GP hierarchy admits a special class of factorized
solutions given by

A k) = ’¢®k> <¢®k

where ¢ : I x R — C solves (1.1).

One might conjecture that the BBGKY and GP hierarchies provide the required link
to understand the derivation of the geometry associated to the Hamiltonian formulation
of (1.1). In particular, it is natural to wonder whether the BBGKY and GP hierarchies

, keN, (1.6)

9 In this work, we follow the widespread convention of using the same notation for both the kernel and
the operator.
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are Hamiltonian evolution equations posed on underlying weak Poisson manifolds of
density matrices,'? and whether the Poisson structure for the infinite-particle setting
arises in the infinite-particle limit from the Poisson structure for the N-body problem.
To summarize, one can pose the following questions:

Question 1.1. Can we connect the Hamiltonian structure of the many-body system with
that of the infinite-particle system in the following sense: can the GP hierarchy be re-
alized as a Hamiltonian equation of motion with associated functional Hgp on some
weak Poisson manifold? Can the Poisson structure and Hamiltonian functional for the
GP hierarchy be derived in a suitable sense from a Poisson structure and Hamiltonian
functional at N-particle level?

In the current work, we answer these questions affirmatively and establish, for the first
time, a Hamiltonian formulation for the BBGKY and GP hierarchies, see Theorem 2.3
and Theorem 2.10 below, and a link between the underlying weak Poisson geometry and
Hamiltonian functionals in the finite- and infinite-particle settings, see Proposition 2.4.

Our geometric constructions will rely on a special type of weak Poisson structure,
namely a Lie-Poisson structure, on a space of density matrix oo-hierarchies, see Sec-
tion 2.2 below. These constructions are motivated by the work of Marsden, Morrison,
and Weinstein [24] on the Hamiltonian structure of the classical BBGKY hierarchy, which
relates to the earlier works on the Hamiltonian structure for plasma systems discovered
in Morrison and Green [32], Morrison [30,31], Marsden and Weinstein [26], Spencer and
Kaufman [40], and Spencer [39]. We refer to [27] for more discussion on the Hamiltonian
formulation of equations of motion for systems arising in plasma physics. Our geometric
perspective for the N-body Schrédinger equation is inspired by taking a “quantized”
version of the work of [24]. By adapting their work to the quantum setting, we obtain
the formulae for the Poisson structure for the (quantum) BBGKY hierarchy. Taking
the infinite-particle limit, which was not considered in [24], we obtain the formula for
the Poisson structure we use in the infinite-particle setting. We expect that our proofs
can serve as a blueprint for deriving the Hamiltonian structure of more general infinite-
particle equations arising from systems of interacting classical and quantum particles.

Returning to the setting of the NLS, the fact that the GP hierarchy admits the
factorized solutions given by (1.6) tells us that the dynamics of the NLS are embedded
in those of the GP hierarchy. Given that the NLS is a Hamiltonian system and, with our
affirmative answer to Question 1.1, so is the GP hierarchy, one might ask if there exists
an embedding of the Hamiltonian structure such that the pullback of this embedding
yields the NLS Hamiltonian and phase space geometry from that of the GP. In other
words, one can pose the following question:

10 We will in fact work on a Poisson manifold of density matrix hierarchies.
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Question 1.2. Given our affirmative answer to the previous question, is there then a
natural way to connect the Hamiltonian formulation of the GP hierarchy with the Hamil-
tonian formulation of the NLS in such a manner so as to respect the geometric structure?

We provide an affirmative answer to this second question by showing, in Theorem 2.12
below, that the natural embedding map taking one-particle functions to factorized den-
sity matrices described in (1.6) is a Poisson morphism between the weak symplectic
manifold constituting the NLS phase space and the weak Poisson manifold'! constitut-
ing the GP phase space. Moreover, the NLS Hamiltonian, see (1.5) below, is just the
pullback of the GP Hamiltonian under this embedding, see (2.30) below. In summary,
the factorization embedding pulls back the GP Hamiltonian structure to that of the
NLS.

We claim that our work provides a new perspective on what it means to “derive”
an equation from an underlying physical problem. Indeed, to justify this assertion, we
highlight some parallels between our results and the aforementioned works of Erdos et
al. on the derivation of solutions to the NLS equation from the N-body problem. In
[7-9], solutions to the BBGKY hierarchy with factorized or asymptotically factorized
initial data are shown to converge to solutions of the GP hierarchy as the number of
particles tends to infinity. The authors then show that solutions to the GP hierarchy in a
certain Sobolev-type space are unique.'? Thus, the solution to the NLS equation provides
the unique solution to the GP hierarchy starting from factorized initial data, thereby
providing a rigorous derivation of the dynamics of the NLS from (2.2). In the current
work, we establish the existence of both the underlying Lie algebra and Poisson structure
associated to a Hamiltonian formulation of the BBGKY hierarchy and prove that in the
infinite-particle limit, these converge to a (previously unobserved) Hamiltonian structure
for the GP hierarchy. Moreover, the BBGKY Hamiltonian, defined in (2.16), converges
to the GP Hamiltonian. Finally, we demonstrate that the Hamiltonian functional and
phase space of the NLS can be obtained via the pullback of the canonical embedding
(2.38), thereby providing a derivation of the Hamiltonian structure of the NLS.

Remark 1.1. We note that our work does not address any derivation of the dynamics
of the nonlinear Schréodinger equation from many-body quantum systems in the vein of
the aforementioned works by Erdos et al. [7-9]. Our current work is complementary to
those in the sense that it addresses geometric aspects of the connection of the NLS with
quantum many-body systems, answering questions which are of a different nature than
those about the dynamics.

Remark 1.2. We view this work as part of broader program of understanding how qual-
itative properties of PDE arise from underlying physical problems, in particular the

1 We refer to Section 4 for definitions of Poisson morphism and weak Poisson manifold.
12 A new proof of this uniqueness result was later given by Chen et al. in [4].
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importance of the Hamiltonian formalism. Related to this program, we mention the
works of Frohlich, Tsai, and Yau [13]; Frohlich, Knowles, and Pizzo [10]; and Frohlich,
Knowles, and Schwarz [12]. While these works concern quantization, mean field theory,
and the dynamics of the Hartree and Vlasov equations, the interpretation of these equa-
tions as infinite-dimensional Hamiltonian systems and more generally the Hamiltonian
perspective figures prominently in these very interesting works. We also mention the
works of Lewin, Nam, and Rougerie [22] and Frohlich, Knowles, Schlein, and Sohinger
[11], which derive invariant Gibbs measures for the NLS from many-body quantum sys-
tems, as we believe they are related in spirit to this program.

We conclude by mentioning an application of our current work. In the one-dimensional
cubic case, for which the corresponding one-dimensional cubic nonlinear Schrédinger
equation is known to be integrable, we establish in a companion work [28] that there
exists an infinite sequence of Poisson commuting functionals, which we call energies.
The Hamiltonian flow associated to the third energy yields the GP hierarchy, and the
corresponding flows for the sequence of energies yield a “hierarchy of infinite-particle
hierarchies” which generalizes the Schrodinger hierarchy of Palais [35].

Remark 1.3. As a final inspirational thought for this subsection, we share the suggestion
of Moshe Flato, which we learned of from [10], that new physical theories obtained in
the early 20th century developments of Quantum Mechanics, Special Relativity, and
General Relativity arise from “deformations of precursor theories”. Based on the results
of the present article, we tentatively supplement Flato’s suggestion with the idea that the
precursor theory should be recoverable from the new physical theory through a limiting
procedure.

In the next section, Section 2, we will record the precise statements of our main results,
which require some additional notation and background. We postpone a subsection on
the organization of our paper until the end of this next section.

1.1. Acknowledgments

The authors thank Jiirg Frohlich and Philip Morrison for their helpful feedback re-
garding references and past work, which has enhanced the presentation of the article.

2. Statements of main results and blueprint of proofs

We will now state precisely and outline the proofs of our three main results: The-
orem 2.3, Theorem 2.10, and Theorem 2.12. The first two results provide the affir-
mative answer to Question 1.1, establishing the BBGKY hierarchy and GP hierarchy,
respectively, as Hamiltonian flows. Theorem 2.12 provides the link between the Hamil-
tonian structure for the GP hierarchy and the Hamiltonian structure for the nonlinear
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Schrédinger equation, answering Question 1.2. Our approach to answering these ques-
tions is to meticulously build a formalism, step-by-step, which renders the desired
conclusions quite intuitive in hindsight.

We recall the N-body Schrodinger equation, BBGKY hierarchy, and limiting GP
hierarchy to set the stage for our discussion of the geometry below. It will be useful going

forward to fix the following notation: for d > 1, we denote the point (xy,...,zx) € R

by z,. We let S;(R?) be the subspace of S(R) of Schwartz functions which are

symmetric in their arguments, that is, for any 7 € Sy'*® we have
q)(xﬂ.(l),...,.’L'Tr(N)):q)(.’L'l,...,ZL'N), QNERdN. (21)

We call S;(R%) the bosonic Schwartz space, see Definition 4.24 for more details.

Consider the N-body Schrodinger equation

0Py = Hy®y, Oy € So(RW) (2.2)
where Hp is the N-body Hamiltonian

Hy =Y (-A,) + 2 Y Ww(Xi— X)),  re{£l}). (2.3)

; N-1 4
Jj=1 1<i<j<N

The pair interaction potential has the form Vy = NV (N95.)  where 8 € (0,1), V is
an even nonnegative function in C2°(R%) with [, dzV(z) = 1, and Vy(X; — X;) denotes
the operator which is multiplication by Vi (z; — ;).

The N-body density matrix, associated to the wave function ®x € S,(R) is given
byl4

Uy = |@n) (Pn] € L(SHRW), S, (RM)),
and the reduced density matrix hierarchy

k
(YN = (Trg, v (T n)),

solves the quantum BBGKY hierarchy

13 Sy is the symmetric group of order N.
4 L£(SH(RYN), Ss(RIN)) denotes the space of continuous linear maps from symmetric tempered distribu-
tions to symmetric Schwartz functions.
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Zaw(k) = { A%’%(\/;)} 27” Z [VN(Xi—Xj)Wz(\];)}

+2"‘](\ﬁv—’“2m+l([vjv<x X)) 1<k<N -1 (24)
=1

k 2K k
= {—Azw%(v)} N1 Z [VN(Xi—Xj)771(V)}7 k=N,
1<i<j<k

where we have introduced the notation A, = Z;?:l Ay,
The GP hierarchy is formally obtained from the BBGKY hierarchy (2.4) by letting

N — oo0. More precisely, a time-dependent family of density matrix co-hierarchies I'(t) =
((t)*))22 ; solves the GP hierarchy if

iaﬂ(k) = - [Agka'}/(k)} + QIinHV(kH), Vk e N (2.5)

with k € {£1} and

k

Bk+17(k+1) = Z(Bfkﬂ B;k+1)7(k+1)7 (2-6)
j=1
where
<Bj+;k+1’y(k+1)) (t, 215 27,
= / dxpi1da) 1 0(xp — Thyy)0(x; — l'k+1)7(k+1)(t7£k+1§ Thy) (2.7)

R2d

with an analogous definition for By, ., with §(z; — zx+1) replaced by §(2} — zg41).
When k = 1, we say that the hierarchy is defocussing and for k = —1, we say that the
hierarchy is focusing (in analogy with the defocussing and focusing NLS, respectively).

As we outlined in the introduction, our first main results establish that the BBGKY
hierarchy (2.4) and the GP hierarchy (2.5) are Hamiltonian flows on appropriate weak
Lie-Poisson manifolds. To do this, we need to define a suitable phase space for the Hamil-
tonian evolution in both the finite- and infinite-particle settings. In particular, we need to
construct certain Lie-Poisson manifolds of density matrix hierarchies, and we outline this
construction in the next subsection. We will also establish that the procedure described
above for obtaining the BBGKY hierarchy from the N-body Schrodinger equation can
be given by the composition of several natural Poisson maps, thereby establishing the
existence of a natural Poisson morphism which maps the N-body Schrédinger equation
to the BBGKY hierarchy.
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2.1. Construction of the Lie algebra & and Lie-Poisson manifold &7
For each k € N, we let
k= {A®) € L(S,(RF),S,(RF)) : (AW)* = —AW)},
endowed with the subspace topology of L(Ss(RF),S.(R¥)). We define a Lie algebra

(9k, [, ) With Lie bracket defined by

(49,56 = k[, 50, 28)

[

where the right-hand side denotes the usual commutator bracket. We refer to elements
of gi as k-particle bosonic observables. For N € N, we then define the locally convex
direct sum

N
By = G}g;€7 (2.9)
k=1

and we refer to elements of &y as observable N -hierarchies.
To define a Lie bracket on the space &y, we consider the following natural embedding
maps. For N € N and k € N<y, there exists a smooth map

€k,N - 9k — 9N, (2.10)

which embeds a k-particle bosonic observable in the space of N-particle bosonic operators
so as to have the filtration property

lee,n(g0), €5, (87)] g € €minferj—1,N},N (Smingerj—1,53) C ON- (2.11)

Using this filtration property and the injectivity of the maps € n, we can now endow
& n with a Lie algebra structure by defining the bracket

B = 5 ah([aw(a?)n(59)] ) ke,

1<t,j<N
min{l¢+j—1,N}=k

(2.12)
Furthermore, the maps {e, N},i\]:1 induce a Lie algebra homomorphism
N
teN OGN — 9N, te, N(AN) : Zek ~( A(k) VAN = (Ag\]?))k:ENgN' (2.13)

k=1

In other words, ¢,y maps an observable N-hierarchy to an N-body bosonic observable.
In Section 5, we will establish several properties of the embedding map, which ultimately
enable us to prove the following result.
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Proposition 2.1. (&, [, ']@N) 1s a Lie algebra in the sense of Definition /.1/.

Next, we define the real topological vector space
* k
&y = {Tn =WV, e H.c (SL(R™), S, (RH)) : ( — 41, (2.14)
k=1

and we refer to elements of &% as density matriz N -hierarchies. Let Ag,n be the algebra
with respect to point-wise product generated by the functionals in the set

{FeC®(®By;R): F(-) =iTr(ANn"), AN € BNIU{F € C®(&3;R): F(-) =C € R}.
We can define a Lie-Poisson structure on &7, given by
{F’G}(’i}‘\, (PN) = ’LTT([dF[FN],dG[FNH@N . PN), VI'y € @7\[7 (215)

where F,G € Ay n.

To construct the weak Lie-Poisson manifold 7%, a good heuristic to keep in mind is
that density matrices are dual to skew-adjoint operators. The superscript *, however,
does not denote the literal functional analytic dual, but rather denotes a space in weakly
non-degenerate pairing with & . The fact that we only have weak non-degeneracy means
that we will be unable to appeal to classical results on Lie-Poisson structures, see for
instance Proposition 4.20 below, and instead we will proceed by direct proof to establish
the following result.

Proposition 2.2. (&%, Ay N, {-, '}@}‘v) is a weak Poisson manifold.

To establish that the BBGKY hierarchy is a Hamiltonian flow on this weak Poisson
manifold, we need to prescribe the BBGKY Hamiltonian functional

Hepory,N(T'n) =Tr(Wgpaky,n - T'n), (2.16)

where —iW ppa iy, n is the observable 2-hierarchy defined by
Wieeeky,N = (—A4, kVN (X1 — X2),0,...). (2.17)
We can now state the following theorem, which establishes that the BBGKY hier-
archy admits a Hamiltonian formulation and lays the groundwork for our answering of

Question 1.1.

Theorem 2.3. Let I C R be a compact interval. Then T'n = (v (k)) ", €C®(L;BY) is a
solution to the BBGKY hierarchy (2.4) if and only if
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d
—I'y = XHBBGKY,N (PN)v (218)

dt
where X3y, pey.n 8 the unique vector field defined by Hppaxy,n (see Definition J.1)
with respect to the weak Poisson structure (&%, Ag N, {-, '}ﬁ*N).

2.2. Derivation of the Lie algebra & and Lie-Poisson manifold &7

Having established the necessary framework at the N-body level, we are now prepared
to address the infinite-particle limit of our constructions. Via the natural inclusion map,
one has & C &), for M > N. Hence, one has a natural limiting algebra'® given by

Foo = |J 65 = P ar(2.19)
N=1 k=1

By embedding &y into this limiting algebra, the rather complicated Lie bracket [, | -
converges pointwise to a much simpler Lie bracket.

We let Sym,; denote the k-particle bosonic symmetrization operator, see Defini-
tion 4.30, and we let [-,]; be a certain separately continuous, bilinear map, the precise

definition of which we defer to Section 5. We establish the following result.

Proposition 2.4. Let Ny € N. For A= (A®)en, B = (B®™)ien € G, we have that

Jm [A, Bl =C = (C®)ken, (2.20)
where
(k) — 0 gl
o) = Z Symk([A B L) (2.21)
0,57>1
P

in the topology of Foo-

The topological vector space given in (2.19) is too small to capture the generator of
the GP Hamiltonian, defined in (2.29) below. Indeed, the 2-particle component V(X7 —
X5) of the N-body Hamiltonian Hy given in (2.3) converges to the distribution-valued
operator'® §(X; — X3) as N — oo. The operator —id(X; — X5) does not belong to gz
since it does not map S,(R??) to itself.

Since we will need our Lie algebra &, to contain the generator of the GP Hamilto-
nian functional, this necessitates an underlying topological vector space which includes

15 This discussion could be formulated more precisely in terms of co-limits of topological spaces ordered
by inclusion.
6 Not to be confused with operator-valued distribution.
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distribution-valued operators (DVOs). The inclusion of DVOs introduces technical diffi-
culties in the definition of the bracket [,-];. As we will see, the definition of the bracket
[-,-];, involves compositions of distribution-valued operators in one coordinate, which in
general is not possible. Consequently, we need to find a setting in which we can give
meaning to such a composition, thus motivating our introduction of the good mapping
property:

Definition 2.5 (Good mapping property). Let i € N. We say that an operator A®) ¢
L(S(R¥),S'(R¥)) has the good mapping property if for any o € N;, the continuous
bilinear map

S(RY) x S(RY) — S'(RHGS(RY)
(f®,g™)

r—>/dzl...dxa_ldxa_H...dxiA(i)(f(i))(xl,...,zi)g(i)(xl,...,o:a_l,zil,xa_‘_l,...,xi),
Ri-1

may be identified with a continuous bilinear map S(R%) x S(R%) — S(R2%).'7

Here and throughout this paper, an integral should be interpreted as a distributional
pairing, unless specified otherwise. We will denote by Ly, (S(R%),S’(R%)) the subset
of L(S(R%),S’(R™)) of operators with the good mapping property.

Remark 2.6. It is evident that £y, (S(R%),S’(R%)) is closed under linear combinations
and therefore a subspace. Note that here and throughout we endow L(S(R%), S'(R%))
with the topology of uniform convergence on bounded sets, and we endow Ly, with the

subspace topology. To see that Ly, is a proper subspace of £, consider the multiplication
operator §(X,) € L(S(R??), S’ (R2)).

The formula for the limiting Lie bracket given in Proposition 2.4 has a greatly sim-
plified form compared to the N-body bracket [-, ']G5N due to the vanishing of the higher
“contraction commutators”. Moreover, as we prove in Appendix B.3, the good mapping
property gives an appropriate definition to the bracket [A(i),B(j)]l as a well-defined
element of £g,,(S(R),S’(R%)). Hence, we can take advantage of the good mapping
property and extend the limiting formula from Proposition 2.4 to a map on a much larger
real topological vector space &, given by the locally convex direct sum

Goo = D Orgmps  Brgmp = {AY € Lomp(Ss(R™), SIR™M)) : AW = —(4®))7}.
k=1
(2.22)

17 We use ® to denote the completion of the tensor product in either the projective or injective topology
(which coincide). See Section 4.3 for further discussion.
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We refer to the elements of &, as observable co-hierarchies, and the elements of
Ok, gmp 38 k-particle bosonic observables. The verification of the Lie algebra axioms then
proceeds by direct computation, and we are able to establish the following result.

Proposition 2.7. (&, [, ']@m) is a Lie algebra in the sense of Definition 4.14.

Analogously to the N-body setting, our second step is the dual problem of building
a weak Lie-Poisson manifold (&%, Ax,{:, }¢- )- If we were in the finite-dimensional
setting or a “nice” infinite-dimensional setting?osuch as &% being a Fréchet space and
& being its predual, then this step would follow from standard results (see Section 4.2).
While &7 is Fréchet, the predual of &% is

{A=(AW)en € éE(SS(Rd’“),S;(Rd’“) (AW = A (2.23)
k=1

which is too large a space for the Lie bracket [-, ~]Q500 to be well-defined. Therefore, the
standard procedure for obtaining a Lie-Poisson manifold from a Lie algebra can only
serve as inspiration.

We define the real topological vector space

6% = {T = (YW)ren € [] L(SLRH), S((RH¥)) : 4 = (y¥)* VE e N}, (2.24)
k=1

where the topology is the product topology. Using the isomorphism
L(S{(R™),5,(R™)) = S, o(R™ x RT), (2.25)

the elements of &7, which we call density matriz co-hierarchies, are infinite sequences of
k-particle integral operators with Schwartz class kernels K (z;; z}), which are separately
invariant under permutation in the z; and gﬁc coordinates.

Let A, be the algebra with respect to point-wise product generated by functionals
in the set

{FeC®B;R): F()=iTr(A:), A€ B} U{F € C®(B.;R): F(-)=C e R}.
(2.26)

We will observe later that, importantly, our choice of A, contains the observable oo-
hierarchy —iW g p, which generates the GP Hamiltonian.

As in the finite-particle setting, the Lie algebra structure on &, canonically induces a
Poisson structure on &7 . This canonical Poisson structure, which is called a Lie-Poisson
structure, is defined by the Poisson bracket

{F.G}y. (T) =i Tx([dF[[],dG[T]lg_-T), VI €6, (2.27)
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where F, G € C*°(&%_; R) are functionals in the unital'® sub-algebra A, and we identify
the Gateaux derivatives dF[['],dG[I'| as observable co-hierarchies via the trace pairing
1 Tr(-). We will ultimately establish the following result, which provides the underlying
geometric structure required to address Question 1.1.

Proposition 2.8. (&% , A, {-, '}620) is a weak Poisson manifold.
Define the Gross-Pitaevskii Hamiltonian functional
Hop: 65, = R (2.28)
by
Hap(T) = = Try (80,7 M) + Ty (60X = X292, T = (4®)sen € 8%, (2.20)

where Try, . ; denotes the j-particle generalized trace, see Appendix B.2 for definition

,,,,,

and discussion. Then we can rewrite Hgp as
/HGP(F)ZTF(WGP-F), WGP = (—Am175(X1—X2),0,...)7 (2.30)
which one should compare with (2.16).

Remark 2.9. Note that —iWgp is an observable oco-hierarchy, that is, an element of
®. Since we have the convergence —iWppary,n = —tWgp in B, as N — oo, it
follows that Hppery,n — Hap in C® (6% ;R) endowed with the topology of uniform
convergence on bounded sets.

We now state our next main result, which addresses the final component of Ques-
tion 1.1:

Theorem 2.10 (Hamiltonian structure for GP). Let I C R be a compact interval. Then

'€ C*(I; &%) is a solution to the GP hierarchy (2.5) if and only if

(0O =Xuertr). el (2:31)

where Xy, s the unique Hamiltonian vector field defined by Hap with respect to the
weak Poisson structure (&%, Aso, {; } o= )-

Remark 2.11. The result of Theorem 2.10 extends, with an almost identical proof, to the
Hartree hierarchy, and it seems likely that this result should also extend to the quintic

18 j.e. containing a multiplicative identity.
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GP hierarchy [5] and other variants which account for higher-order particle interactions
[43].

We now give a geometric formulation of the procedure by which one obtains the
BBGKY hierarchy from the N-body Schrédinger equation. The results described be-
low will be proved in Section 5.3. To record the Hamiltonian structure for the N-body
Schrédinger equation, we equip the bosonic Schwartz space S;(R*Y) with the standard
symplectic structure and define the Hamiltonian functional

Hn (@) ::% / oy On(zn) (HyOn)(@y),  Von € S(RDY).  (232)
]Rd,N

Then the Schrédinger equation (2.2) can be viewed as a Hamiltonian flow on this weak
symplectic manifold. We can endow the space £(S.(R),S,(R%)) of bosonic density
matrices with a weak Poisson structure by defining

(F.G}y = iTrL,,,,N([dF[\I/NLdG[\I/N]}gN\IJN), Yy € L(SI(RWY), S, (RIY),
(2.33)
where dF' and dG denote the Gateaux derivatives, see Definition A.4, of F' and G, which
are smooth real-valued functionals with suitably regular Gateaux derivatives. Then the
Poisson bracket {-,-}, is a Lie-Poisson bracket induced by the Lie algebra of N-body

bosonic observables with Lie bracket given by [, -], .

There is a canonical map from N-body wave functions to N-body density matrices
given by
woamn : Ss(RWY) = L(SIR™), 8, (RYN)),  tpmn(®n) = |On) (Dn].  (2.34)
We will show in Proposition 5.27 that

om Nt (Ss(RM), {1} e ) = (L(SUR™), S (RM)), {-, -} ),

is a Poisson morphism'? and consequently maps solutions of the Schrédinger equation
(2.2) to solutions of the von Neumann equation

10U N = [Hy, Un], (2.35)

where the right-hand side denotes the usual commutator. Defining the Hamiltonian func-
tional

1
Hn(Uy) = v Try N(HyUy), YUy € L(SHR™), S, (RIYY), (2.36)

1% We recall {+,-};» y = N{:, -} .2, and see (1.3) for a definition of {-, -} .. We also note that the co-domain
of this map will be replaced by the appropriate space of N-body density matrices.
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the von Neumann equation (2.35) can be viewed as a Hamiltonian equation of motion
on the weak Poisson manifold (£(S.(R), Ss(RY)), {-, -} ). We will prove in Proposi-
tion 5.29 that the dual of the map ¢ v given in (2.13) induces a canonical morphism of
Poisson manifolds, which is precisely the reduced density matriz map, given by

LRDMN = Uiy P 8N = B8, o (UN) = (Trep v (UN))A, = (W),
(2.37)
which maps solutions of the von Neumann equation to solutions of the quantum BBGKY
hierarchy.

2.3. The connection with the NLS

We will now tie together our main results and state the result which provides an
affirmative answer to Question 1.2. We connect the GP hierarchy to the cubic NLS, each
as infinite-dimensional Hamiltonian systems, through the canonical embedding

LiSRY) = &5, b (|0%F) (67K ren. (2.38)

Although ¢ is rather trivial in terms of the simplicity of its definition, and for this reason
we sometimes refer to ¢ as the trivial embedding, it has the important property of being
a Poisson morphism (see Definition 4.7 below).

Theorem 2.12. The map ¢ is a Poisson morphism of (S(R?), As,{-,-};.) into
(&5, Aco, {- } g« ), €. it is a smooth map such that

{Fou,Gou}a(9) = {F.Gle. (((9)), Vo€ SRY, (2.39)
for all functionals F,G € Ay

We conclude by discussing why the results described in this section provide “a rigorous
derivation of the Hamiltonian structure of the NLS”. It is a quick computation to show
that the pullback of the GP Hamiltonian (2.30) under the map ¢, denoted by (*Hgp,
equals the NLS Hamiltonian (1.5),?" that is

UHap = Hnes- (2.40)

Hence, Theorem 2.12, Theorem 2.10 and (2.40) ultimately demonstrate that the Hamil-
tonian functional and phase space of the NLS can be obtained via the pullback of the
canonical embedding (2.38). Together with the results of Section 5.3, which provide a
geometric correspondence between the N-body Schrodinger equation and the BBGKY

20 1p particular, as a corollary of Theorem 2.10 and Theorem 2.12, we obtain the well-known fact that if
¢(t) is a solution to the cubic NLS (1.1), then I'(¢) := ¢(¢(t)) is a solution to the GP hierarchy (2.5).
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hierarchy, and Proposition 2.4, which enables us to take the infinite-particle limit of
our geometric constructions at the N-body level, this provides a rigorous derivation of
the Hamiltonian structure of the NLS from the Hamiltonian formulation of the N-body
Schrédinger equation.

2.4. Organization of the paper

Section 4 is devoted to preliminary material on weak Poisson manifolds modeled
on locally convex spaces, Lie algebras, and tensor products. The reader familiar with
infinite-dimensional Poisson manifolds and Lie algebras may wish to skip the first two
subsections upon first reading and instead consult them as necessary during the reading
of Section 5 and Section 6.

In Section 5, we build the requisite Lie algebra structure for & and weak Lie-Poisson
structure for &7, thereby proving Proposition 2.1 and Proposition 2.2. Section 5.1
contains the Lie algebra construction, and Section 5.2 contains the dual Lie-Poisson
construction. Lastly, in Section 5.3, we show that the familiar maps of forming a density
matrix from a wave function and taking the sequence of reduced density matrices of a
density matrix have geometric content. Namely, we prove Proposition 5.27 and Proposi-
tion 5.29, which assert that these maps are Poisson morphisms.

In Section 6, we build the requisite Lie algebra structure for ., and weak Lie-Poisson
structure for &%, thereby proving Proposition 2.7 and Proposition 2.8. The section is
broken up into several subsections. Section 6.2 is devoted the Lie algebra construction,
and Section 6.3 is devoted to the dual Lie-Poisson construction. Finally, we will prove
Theorem 2.12 in Section 6.4.

Lastly, in Section 7, we prove our Hamiltonian flows results Theorem 2.3 and Theo-
rem 2.10, which assert that the BBGKY and GP hierarchies, respectively, are Hamilto-
nian flows on the weak Lie-Poisson manifolds constructed in the previous sections.

Remark 2.13. In Section 5, Section 6, and Section 7, we will fix the dimension to be one
for simplicity, but we emphasize that our results hold independently of the dimension.

We have also included two appendices to make this work as self-contained as possible.
Appendix A contains some background material on locally convex spaces, specifying cer-
tain choices which we make in the current work, which in infinite dimensions can lead to
non-equivalent definitions. Appendix B is devoted to technical facts about distribution-
valued operators and topological tensor products, which justify the manipulations used
extensively in this paper. Furthermore, this appendix includes an elaboration on the
good mapping property, in particular, some technical consequences of it which are used
in the body of the paper.
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3. Notation

3.1. Index of notation

We include Table 1 as a notational guide for the various symbols which appear in

this work. In this table, we either provide a definition of the notation or a reference for

where the symbol is defined. When definitions for these objects may have appeared in the

introduction, we will give references to where they first appear in subsequent sections.

Table 1

Notation.

Symbol Definition

(z), 2y, (w1, 2k)

Loy smy, (mm1 PR 7"Emk)

Tisitk (Tiyo s Tigr)

dx,, dxy - --dxy

Az, ;i dx;---driig

N<; or N>, {n € :n<itor{n €N :n>:}
Sk symmetric group on k elements
S(R*), S’ (R¥) Schwartz space on R* and tempered distributions on R¥
D' (R¥) distributions on R*

S:(R%), SL(RF)

L(E; F)
L(S(R"), S(R"))

L(S:(R*), S:(R*))
dF

V or Vi

Al (1), m (k)
Sym(f)

Sym(A)

L2(R¥)

B B

P340
®"

(®T\I’An>o7 {‘v }45’;,)

9k, gmp

(6001 ['! ]051)

o

(6%, A, - Yor)

symmetric Schwartz space, Definition 4.24, and symmetric tempered
distributions

continuous linear maps between locally convex spaces E and F'
L(S(R*),S(R*)) equipped with the subspace topology induced by
L(S(R*),S"(R"))

analogous to previous definition

the Gateaux derivative of F', Definition A.4

the real or symplectic L? gradients, Definition 4.11 and Remark 4.12
conjugation of an operator by a permutation, see (4.42)
symmetrization operator for functions, Definition 4.23
symmetrization operator for operators, Definition 4.30
symmetric wave functions, Definition 4.29

contraction operators, Definition 4.34

k-fold tensor of ¢ with itself, (4.64)

symplectic form on L?(R¥), (4.15)

see Proposition 4.13 and (5.121)

Poisson bracket on L?(R*), (4.21)

k-particle extension, (5.5)

locally convex space of k-body bosonic observables, (5.1)

Lie algebra of observable N-hierarchies, (5.49)

r-fold contraction, (5.30)

Lie-Poisson manifold of density matrix N-hierarchies, (5.64)
locally convex space of k-body observables satisfying the good
mapping property, (6.7)

Lie algebra of observable oco-hierarchies, (6.8) and (6.9)
contraction operator, Lemma 6.1

Lie-Poisson manifold of density matrix oo-hierarchies, (6.78),
Definition 6.9 and (6.82)

generalized trace, Definition B.5

generalized partial trace, Proposition B.8
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4. Preliminaries
4.1. Weak Poisson structures and Hamiltonian systems

The classical notion of Poisson structure, as can be found in [25], is ill-suited outside
the Hilbert or Banach manifold setting due to the fact that for a given smooth, locally
convex manifold M, not every functional in C°° (M, R), the space of smooth, real-valued
functionals on M, need admit a Hamiltonian vector field. Since we will need to work
with Fréchet manifolds, an alternative theory is needed. We opt for the notion of a weak
Poisson structure due to Neeb et al. [33].

We recall that a unital subalgebra A C C*°(M;R) contains constant functions and is
closed under pointwise multiplication.

Definition 4.1 (Weak Poisson manifold). A weak Poisson structure on M is a unital
subalgebra A C C°°(M;R) and a bilinear map {-,-} : Ax A — A satisfying the following
properties:

(P1) The bilinear map {-, -}, is a Lie bracket and satisfies the Leibnitz rule

(F,GH} = {F,G}H + G{F,H}, VF,G,H¢c A (4.1)

We call {-,-} a Poisson bracket.

(P2) For all m € M and v € T;,, M satisfying dF[m](v) = 0 for all F € A, we have that
v=0.

(P3) For every H € A, there exists a smooth vector field Xy on M satisfying®!

XpgF ={F,H}, VE € A. (4.2)
We call Xy the Hamiltonian vector field associated to H.

If Properties 1 - 3 are satisfied, then we call the triple (M, A,{-,-}) a weak Poisson
manifold.

We now record some observations from [33] about the definition of a weak Poisson
structure.

Remark 4.2. 2 implies that the Hamiltonian vector field Xy associated to some H € A
is uniquely determined by the relation

(F,H}(m) = (XgF)(m) = dF[m](Xg(m)), VF € A. (4.3)

21 In the left-hand side of identity (4.2), we use the notation X to denote the vector field identified as a
derivation.
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Indeed, if X1 and X g o are two smooth vector fields satisfying the preceding relation,
then the smooth vector Xg := Xp 1 — Xp o satisfies

dFm)(Xg(m)) =0, VFeA, (4.4)
for all m € M, which by 2 implies that Xy =0.
Remark 4.3. For all F,G, H € A, we have that

[XFaXG]H = {{H7 G}aF} - {{H7 F}’G}
= {H’ {GaF}}
= X{G7F}H- (4.5)

Hence, by Remark 4.2, [Xr, Xg| = X(¢ py for F,G € A. Additionally, the Leibnitz rule
for {-,-} implies the identity

Xpe = FXe +GXp, VFGeA. (4.6)

Remark 4.4. If A C C*°(M;R) is a unital sub-algebra which satisfies Properties 1 and
2 of Definition 4.1, then (4.6) implies that the subspace

{H € A: Xy exists as in 3} (4.7)

is a sub-algebra of A4 with respect to pointwise product. Hence, it suffices to verify
Property 3 for a generating subset Ay C A.

We note that unlike in the finite-dimensional setting, a symplectic form w : VxV — R
on an infinite-dimensional locally convex space V' need not represent every continuous
linear functional via w(-,v), for some v € V. If the form does satisfy such a Riesz-
representation-type condition, we call a symplectic form w strong, otherwise, we call w
weak. Analogously, a 2-form w on a smooth locally convex manifold M is strong (resp.
weak) if all forms wy, : T,M x T,M — R, for p € M, are strong (resp. weak).

Definition 4.5 (Weak symplectic manifold). Let M be a smooth locally convex manifold,
and let X (M) denote smooth vector fields on M. A weak symplectic manifold is a pair
(M, w) consisting of a smooth manifold M and a closed non-degenerate 2-form w on M.

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector
fields on M by

ham(M,w) = {X € X(M) : 3H € C*°(M;R) s.t. w(X, ) =dH}. (4.8)

Similarly, we denote the larger Lie algebra of symplectic vector fields on M by
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sp(M,w) ={X e M : Lxw =0}, (4.9)

where Lx denotes the Lie derivative with respect to the vector field X.

With this definition in hand, we see that one has the desired implication analogous to
the finite dimensional setting, namely that weak symplectic manifolds canonically lead
to weak Poisson manifolds.

Remark 4.6 (Weak symplectic = weak Poisson). Let (M,w) be a weak symplectic man-
ifold. Let

A={H e C®(M;R): 33Xy € X(M) s.t. w(Xp, ) =dH}, (4.10)
then
{4} Ax A= A {F,G} =w(Xp,Xg) =dF[X¢]| = XcF (4.11)

defines a Poisson bracket on A satisfying Properties 1 and 3. If we additionally have that
for each m € M and all v € T,,, M, the condition

w(X(m),v) =0, VX € ham(M,w) (4.12)

implies that v = 0, then Property 2 is also satisfied. Consequently, the triple (M, A, {-,})
is a weak Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Pois-
son structures. This leads to the notion of a Poisson mapping, alternatively Poisson
morphism.

Definition 4.7 (Poisson map). Let (M;, A;, {-, -}j), for 7 = 1,2, be weak Poisson man-
ifolds. We say that a smooth map ¢ : M; — M, is a Poisson map, or morphism of
Poisson manifolds, if p*As C A; and

O {F,G}, = {¢"F,¢"G},, VF,G € As. (4.13)
Remark 4.8. In [33], the authors define a Poisson morphism
o (M, A {3 = (Ma, As, {- - 3y)
with the requirement that ¢*As = A;. We drop this requirement in our Definition 4.7.

As an example, we demonstrate that the Schwartz space S(R¥) is a weak, but not
strong, symplectic manifold. The following analysis also holds for the bosonic Schwartz
space Ss(RF) mutatis mutandis, which will be important for our applications in the
sequel.
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We equip the space S(R¥) with a real pre-Hilbert inner product by defining

(fl9)re = 2Re L/ dﬁk@g@k) . (4.14)

The operator J : S(R¥) — S(R*) defined by J(f) = if defines an almost complex
structure on (S(R¥), (-|-)g,), leading to the standard L* symplectic form

wr2(f,9) = (Jflg)ge = 2Im t/ dzy. f(ze)g(zy) ¢ Vf,g € S(RY). (4.15)

Proposition 4.9. (S(R*),w;2) is a weak symplectic manifold.

Proof. S(R¥) is trivially a smooth manifold modeled on itself. Moreover, it is evident
from its definition that w2 is bilinear, alternating, and closed. To see that wy2 is non-
degenerate, let f € S(R*) and suppose that

wr2(f,9) =0 Vg SRF). (4.16)

It then follows tautologically that Im {(f|g)} = 0. Replacing g by ig, we obtain that
Re{(flg)} = 0, which implies that (f|f) =0, hence f =0. O

Now given a functional F € C™(S(R¥);R), the Gateaux derivative dF|[f] at the
point f € S(R¥) defines a tempered distribution. We consider the case when dF[f] can
be identified with a Schwartz function via the inner product (-|-)g,. The next lemma
follows by the Lebesgue lemma?? and the same argument used to prove non-degeneracy
in Proposition 4.9.

Lemma 4.10 (Uniqueness of gradient). Let F € C®°(S(RF);R) and f € S(R*). Suppose
that there exist g, g2 € S(RF) such that

(9110 f)re = AF[f1(0f) = (9210 f)Re » Vof € S(RY). (4.17)
Then g1 = go.

Definition 4.11 (Real L? gradient). We define the real L? gradient of F € C™(S(R¥);R)
at the point f € S(R¥), denoted by VF(f), to be the unique element of S(R¥) (if it
exists) such that

22 We use the name Lebesgue lemma to refer to the result that if w1, us are two locally integrable functions
such that w; = us in distribution, then u; = us point-wise almost everywhere.
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dF(f)(0f) = (VE(f)6f)pe,  VOf € S(R). (4.18)
We say that F has a real L? gradient if VF : S(R*) — S(R¥) is a smooth map.

Remark 4.12. Since the Hamiltonian vector field of Xp, if it exists, is defined by the
relation

dF(f1(0f) = wr2(Xp(f),0f), (4.19)
and since Xr is unique by the fact that S(R¥) is dense in &'(R¥), we see that Xp(f) =
—iVF(f). In the sequel, we will use the notation V F := X, which we refer to as the

symplectic L? gradient.

We now use Remark 4.6 to show that the symplectic form wy2, which we recall is
defined in (1.2), canonically induces an L? Poisson structure on S(R¥).

Proposition 4.13. Define a subset As C C°(S(RF);R) by
As ={H : V,H € C*(S(R*); S(R¥))}, (4.20)
and define a bracket {-,-},;. on As x As by
{F,G},» = wr2(VF,V,Q). (4.21)
Then (S(R*), As, {-,-},2) is a weak Poisson manifold.

Proof. By Remark 4.6, we only need to check that for every fixed g € S(RF), the
condition

wr2(X(f),g) =0, VX € ham(S(R¥),wp2) (4.22)

implies that g = 0 € S(R¥). Since ham(S(R¥),wy:) contains the constant vector fields
X(-) = fo, for any fixed fy € S(RF), we see that by taking X (f) := ig for all f € S(R¥),
that the condition (4.22) implies that

0 =w(ig,g) = —2Im {m/ dzy (ig)(z)9(zy) ¢ = 2llglZ2ge)- (4.23)

Hence, g = 0, completing the proof. O
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4.2. Some Lie algebra facts

In this subsection, we collect some facts about Lie algebras for easy referencing. We
outline a canonical construction of a Poisson structure on the dual of a Lie algebra,
which is known as a Lie-Poisson structure. Furthermore, we will outline a construction
of hierarchies of Lie algebras which will serve as an inspiration for our construction of
the Lie algebra &.,. We refer the reader to [25,24] for more background and details.

We begin by recording the definition of a Lie algebra for subsequent reference in our
proofs.

Definition 4.14 (Lie algebra). A Lie algebra is a locally convex space g over the field
F € {R,C} together with a separately continuous binary operation [-,:] : g X g — g
called the Lie bracket, which satisfies the following properties:

(L1) [, ] is bilinear.
(L2) [xz,z] =0forall z € g.
(L3) [-,] satisfies the Jacobi identity

[, [y, 2]] + [z, [z, y]] + [y [2,2]] = O (4.24)
for all xz,y,z € g.

Remark 4.15. Usually (see, for instance, [34]), a Lie bracket is required to be continuous,
as opposed to separately continuous. We drop this requirement in this work, due to
functional analytic difficulties.

Definition 4.16 (Nondegenerate pairings). Let V and W be topological vector spaces over
the field I, and let

(]):VxW ST

be a bilinear pairing between V and W. We say that the pairing is V-nondegenerate
(respectively, W-nondegenerate) if the map V. — W* x — (z|-) (respectively, W —
V*,y — (-|y)) is an isomorphism. If the pairing is both V- and W-nondegenerate, then
we say that the pairing is nondegenerate.

Definition 4.17 (dual space g*). Let (g, [, ]) be a Lie algebra. We say that a topological
vector g* is a dual space to g if there exists a pairing (:|) : g x g* — F which is
nondegenerate.

Example 4.18. If g is a reflexive Fréchet space, for instance the Schwartz space S(R?),
then taking g* to be the topological dual of g equipped with the strong dual topology,
the standard duality pairing
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gxg" = F: (zlp) =p(x)
is nondegenerate.

A consequence of the existence of a dual space g* for a Lie algebra g is the existence
of functional derivatives, which is crucial to proving that the Lie-Poisson bracket in
Proposition 4.20 below is well-defined.

Lemma 4.19 (Existence of functional derivatives). Let g be a Lie algebra, and let g* be

dual to g with respect to the nondegenerate pairing (-|-) . For any functional F €

g—g*
Cl(g*;F), there erists a unique element ‘;—i € g such that

F .
(Sbou)  —arden.  moue. (4.25)
H g—g*

Proof. Let ;1 € g*. The Gateaux derivative of F' at p denoted dF[u] and defined in
Definition A.4 is a continuous linear functional on g*. Hence by the nondegeneracy of
the pairing, there exists a unique element %—5 € g such that

§F .
<5— 5u> =dF[p][op],  odpeg. O
© g—g*

We now have the necessary ingredients to define the canonical Poisson structure on the
dual space g*, which we call the Lie-Poisson structure, following Marsden and Weinstein
[23].

Proposition 4.20 (Lie-Poisson structure). Let (g, [-,"];) be a Lie algebra, such that the Lie
bracket is continuous, and let g* be dual to g with respect to the non-degenerate pairing
([)g_q=- Define the Lie-Poisson bracket

{1 C=(g5F) x C®(g% F) — O™ (g F) (4.26)
by

(F,G}(p) = <[‘;—Z %}

Then (C*(g*;F),{-,-}) is a Lie algebra.

u> , pegh (4.27)
g—g~*

Remark 4.21. Note that in the statement of Proposition 4.20, we require that the Lie
bracket [-, ] o be continuous, not merely separately continuous as in Definition 4.14. Since
the Lie brackets we consider in Section 5 and Section 6 are only separately continuous,
we do not use Proposition 4.20 directly, and therefore we have omitted the proof of it. We
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emphasize, though, that the construction of the proposition inspires our constructions
in the sequel.

4.8. Bosonic functions, operators and tensor products

We denote the symmetric group on k letters by Sy. For a permutation m € S, we
define the map 7 : R¥ — R* by

m(zy) = (@r(1), - -+ Tu(h))- (4.28)

For a complex-valued, measurable function f : R¥ — C, we define the map

(T (ay) = (fom)(zy) = [(@nq)s s Tui))- (4.29)

We denote the pairing of a tempered distribution u € S’(R*) with a Schwartz function
f € S(R¥) by

(u, f>$’(]Rk)_S(Rk)- (4.30)

Throughout, we will use an integral to represent the pairing of a distribution and a
test function. For 1 < p < oo, we use the notation LP (Rk) to denote Banach space of
p-integrable functions with norm || - ||Lp(Rk). In particular, when p = 2, we denote the
L? inner product by

(flg) = / dz Tz g(z)- (4.31)

Rk

Note that we use the physicist’s convention that the inner product is complex linear in
the second entry. Similarly, for u € S'(R¥) and f € S(R¥), we use the notation (u|f) to
denote

(ulf) = (u, f>3/(Rk),3(Rk)- (4.32)

Alternatively, the right-hand side may be taken as the definition of the tempered distri-
bution .

Definition 4.22. We say that a measurable function f : R¥ — C is symmetric or bosonic
if

m(f)=f (4.33)

for all permutations ™ € Sg.



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 29

Definition 4.23. We define the symmetrization operator Sym,, on the space of measurable
complex-valued functions by

TrESk

By duality, we can extend the symmetrization operator to S’(R¥).

Definition 4.24 (Symmetric Schwartz space). For k € N, let S,(R¥) denote the subspace
of S(R¥) consisting of Schwartz functions f with the property that

f@ray, s 2amy) = flzp), (zx) € RF (4.35)
for all permutations m € Sg.

Definition 4.25 (Symmetric tempered distribution). We say that a tempered distribution
u € 8'(R¥) is symmetric or bosonic if for all permutations 7 € Sk,

(u, 7rg>3/(Rk)—$(]Rk) = (u, g>5’(]Rk)7S(]Rk)a (4.36)

for all g € S(RF). We denote the subspace of symmetric tempered distributions by
S/ (RF).

Remark 4.26. It is straightforward to check that Sym,, is a continuous operator S(RF) —
Ss(R¥) and S'(R*) — S!(R*). Furthermore, a measurable function f is bosonic if and

only if f = Sym,(f).
Lemma 4.27. We have the identification
S/ (R¥) = (S,(RF))'. (4.37)

Proof. Let ¢ € (Ss(R¥)). For all f € S,(R¥), we have that

((f) =Lr(f)),  m€Sk (4.38)
Hence,
= 3 tla() = USymu (). (4.39)
TESK

Since Sym,, is a continuous linear operator on S(R¥), it follows that £ o Sym, € S'(RF).
Since Symy (7(f)) = Symy(f) for any permutation m € Si, it follows that £ o Sym,, is
permutation invariant, hence an element of S,(R¥). O
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Given two locally convex spaces E and F', we denote the space of continuous linear
maps E — F by L(E; F). We topologize L(E; F) with the topology of bounded conver-
gence. For our purposes, we will typically have E, F € {S(R¥), S,(R*), S'(R¥), S.(R¥)}.

Remark 4.28. In the special case where F = F = S(R¥), we will write £(S(R*), S(R¥))
to denote the vector space L(S(R¥), S(R¥)) equipped with the subspace topology induced
by L£(S(R*),S’(RF)). The same statement holds with the Schwartz space replaced by
the bosonic Schwartz space.

In the case that £ = S(RY) and F = &'(R?), the bounded topology is generated by
the seminorms

[4llo = sup AT, 0)so-smols V4 € LR, S®), (4.40)
g

where 0 ranges over the bounded subsets of S(R?). An identical statement holds with all
spaces replaced by their symmetric counterparts. We topologize S’(R™) with the strong
dual topology, which is the locally convex topology generated by the seminorms of the
form

|mm:wp/@w@mmmm (4.41)
peB -

where B ranges over the family of all bounded subsets of S(RY). Note that since S(RY)
is a Montel space, bounded subsets are precompact. An identical statement holds with
all spaces replaced by their symmetric counterparts.

Definition 4.29 (Symmetric wave functions). For k € N, let L2(R¥) denote the subspace
of L%(R¥) consisting of functions f which are bosonic a.e.

For A € L(S(R¥),S’(R¥)) and 7 € S, we define
A1y, ey =T0AoT L, (4.42)

Definition 4.30. Given A € L(S(R*),S’(R¥)), we define its bosonic symmetrization
Symy,(A) by

1
Symy,(A4) = - > A @) (4.43)
TFESk

Definition 4.31 (Bosonic operators). Let k € N. We say that an operator A : S(R¥) —
S'(R¥) is bosonic or permutation invariant if A maps S,(R¥) into S’(R¥).
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The analogue of Remark 4.26 holds for the symmetrization of operators in that sym-
metrized operators are indeed operators on the bosonic Schwartz space.

Lemma 4.32. Let k € N. If A®) € £(S(RF),S'(R¥)), then
Sym,, (AR € £(S,(R¥), S.(RF)). (4.44)

Proof. It suffices to show that for any k-particle operator A*¥) € £(S(RF), S’(R*)) and
any permutation o € Sg, it holds that

[tz (Svma(a®) ) @gto ) = [ day (Svm (495 g (049

Rk Rk

for all f € Ss(R¥) and for all g € S(R¥). To this end, observe that

/dzk (Symk(A(k))f) (Ek)g(mrlu), e 7%*1(k))

Rk

1 (k)
= /dzk (k' Z (A(ﬂ-(l)v___’ﬂ(k))f) (zk))g(gjo’l(l)v s axafl(k:))' (446)

RF TES
By definition (4.42), we have
k _
Aty o d = TAB L), (447)

Therefore,

1 _
E Z /dgk (A( ,)_,,’k) (7T lf)) (x‘n'(l)a ce 7x7r(k))g(xa_1(1)a v 7xa_1(k))

: ﬂESkRk
k' Z /dl‘k (A(k f)) (gk)g(xﬂ’ldfl(l)a s 71’#*10*1(]6))
ﬂGSkRk
1 ()
= y Z d&k (A f) (&k)g(xﬂflafl(l)a s axﬂ'*lofl(k))v (448)
: WESk]Rk

where, recalling (4.29), the second line follows from a change of variable and the third
line follows from the assumption that f is symmetric with respect to permutation of the
coordinates. Since for any fixed o € S, 7 + 7~ 1o ~! defines a bijection of the group Sy,
it follows from a change of summation index that

' Z /diE A( )f CCk) ( LTr—1g— 1(1),..., 71071(k))

TI'ESk]Rk
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TESkRK
=5 w%S:kR[ d%( Ak Wf))(xﬁ'*l(l)a-~-a177~r*1(k))g(£k)
= [ i (syme(A®)5) @z, (4.49)

Rk

where the penultimate line follows from the assumption that f is symmetric and a change
of variable. This concludes the proof. 0O

The following technical lemma will be useful in the sequel. For definitions and discus-
sion of the generalized trace, see Definition B.5.

Lemma 4.33. Let k € N, and let y*) € £(S.(R¥), S;(R¥)) and A®) € £L(S(R¥),S'(R*)).
Then for any permutation T € Si, we have that

(k) k) _ k) (k
Try, g (A(T<1>,...,T(k)ﬂ( >) - Trl,m,k(/ﬁ ) >). (4.50)

Proof. Let 7 € S;. Now let
=Y N 1) g5l (4.51)
j=1

be a decomposition for v where Yooy Nl < 1, and {51524, {g;}32, are sequences
tending to zero in Sy(R¥). In particular, the partial sums

N
SN ) (g5 o 1) i £S(RE), 5. (RE)) (152)
j=1
Since the map
Ter, (AR ) £ £ (RY), S®) > €, (4.53)

is continuous and the inclusion Ss(R*) C S(R¥) is trivially continuous, it follows that

(k k) _
Try, (A(Tu) ..... T(k))’Y( )) *A}gnooTrl k( ..... (k) (Z)‘ 1f3) {951 >>

k
= lim Z)‘ Try,. ,k( (%1)7,,,,T(k))(|fj> <9]|))

N —o0
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N
. k
= lim Aj <gj ‘AETED ‘r(k))fj> . (454)

N—oo— = \ 7| it
J=1

Since f; and g; are both bosonic, we have by definition of the notation Agle) (k) in

(4.42) that

.....

<gj‘AE21> r(k))fﬂ'> = <771(9j)‘A(’“) (T’l(fj))> = <gj‘A(’“)f]—>, Vj eN. (4.55)

Therefore,
N w N
; Ao Ak N Al AR £
ngnoo . 1)‘J <9J A(r(l),...,r(k))fj> = ngnoozg% <9J A fg>
= =

N
= i Tr (A““) (Z A 15) <gj|))
=
=Ty, (A7 ®), (4.56)

where in order to obtain the ultimate equality, we again use the continuity of the func-
tional Try (A(k)-) and the convergence of the partial sums. O

We define the usual contraction operator B;;; appearing in the literature on derivation
of quantum many-body systems.

Definition 4.34 (The contractions operator B;.;). Let k € N. For integers 1 < 4,5 < k
with ¢ # j, we define the continuous linear operators

B L(S'(RFY), S(RF)) — L£(S'(RY), S(RY)) (4.57)

by defining the Schwartz kernel of Bifj (v*+1)) by the formula

B (v ") (s ) = /dy(s(l'i — )y @y Ly 2 Y ),
R

for all (zy,z}) € R?*. Similarly, we define the Schwartz kernel of B;_(v*)) by the
formula

Bi_;j('y(k—i_l))(ﬁk;ﬁc) = /dy5(m2 - y)ly(k—‘rl)(@hjflayagj;k;g/l;jfhya&};k)a
R

for all (z,z}) € R?* We define the continuous linear operator

Byj : L(S(RM), S, (RMF1)) — L(S((RY), So(RY))
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Bij = B}, — B (4.58)

Given two locally convex spaces E and F, we denote an® algebraic tensor product of
E and F consisting of finite linear combinations

> hie ® fiy e; €E, f;eF (4.59)
j=1

by E ® F. We note that since the spaces we deal with in this paper are nuclear,
the topologies of the injective and projective tensor products coincide. Hence, we can
unambiguously write E&F to denote the completion of £ ® F under either of the afore-
mentioned topologies.

Given locally convex spaces I/; and Fj for j = 1,2 and linear maps T': F; — E5 and
S : Fy — F5, and a tensor product

B:FEi X Fy - E1 ® Es, (4.60)
the notation T'® S denotes the unique linear map T ® S : By ® Fy — E5 x Fy such that
(T'®S)oB=TxS. (4.61)

Note that the existence of such a unique map is guaranteed by the universal property of
the tensor product.

When E and F are subspaces of measurable functions on R™ and R"™ respectively,
and e € F and f € F, we let e ® f denote the function

e@f:R"XR" = C,  (e® f)(z,n;2,) = e(z,,) f(z,), (4.62)

which induces a bilinear map E x ' — E ® F. Similarly, if £’ and F’ are the duals of
spaces of test functions E and F, for instance E' = D'(R™) and F’' = D'(R"™), we let
u ® v denote the unique distribution satisfying

(u@v)(e® f) = ule) - v(f). (4.63)

Finally, if ¢ : R™ — C is a measurable function, we use the notation ¢®¥, for k € N, to
denote the measurable function ¢®* : R™* — C defined by

k
O (L s L) = [ Oam o). (4.64)

=1

23 The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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5. Geometric structure for the N-body problem
In this section we establish proofs of the results stated in Section 2.1.
5.1. Lie algebra &y of finite hierarchies quantum observables

We begin by defining a Lie algebra g of k-body observables. We have some freedom
to choose our definition of this Lie algebra, provided that our choice is large enough to
include the Hamiltonian of the N-body problem yet small enough so that operations
such as composition and taking adjoints are well-defined. We find that continuous linear
maps from the bosonic Schwartz space to itself forms a convenient choice.

For k € N, define

g = {A®) € L(S,(R"), S, (RF)) - (AW)* = — 4™y, (5.1)
where we recall that £(S,(R¥),S’(R¥)) is defined in Remark 4.28. Let
[ '}gk POk X Bk = Ok
be the usual commutator bracket scaled by a factor of k:
[A, B],, = k[A, B] = k(AB — BA). (5.2)

Note that the commutator is well-defined since the space L£(Ss(R¥), Ss(R¥)) is closed
under composition. We refer to the elements of gi as k-body observables.

The first goal of this subsection is to verify that (g, [, ']gk) is a Lie algebra in the
sense of Definition 4.14. Namely, we prove the following proposition.

Proposition 5.1. (g, [, -]gk) is a Lie algebra in the sense of Definition J.1/

Proof. That [,-]  is algebraically a Lie bracket is immediate from the fact that the
commutator satisfies Properties 1, 2, and 3. Therefore, it remains to verify that the
commutator is separately continuous with respect to the topology on gi. By symmetry,
it suffices to show that for fixed A®) € gy, the map B® — A®) B(*) is continuous on
L(S(R*), S;(R¥)), which amounts to showing that for any bounded subset %t C S,(R¥),
there exists a bounded subset R C S,(R¥), such that

o {a4595) < s o) o3

Now note that <g‘A(k)B(k)f> = <(A(k))*g|B(k)f>. Since (A®)* = —A®) it follows
from the continuity of A®) that (A%*))*(R) it a bounded subset of S,(R*). Choosing
R =R U (AR)*(R) completes the proof. O
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We next introduce some combinatorial notation used frequently in the sequel. For
N € N and k € Ncy, let PV denote the collection of k-tuples (ji,...,Jj) with k
distinct elements drawn from the set N<y. Given an element (ji,...,jk) € P,iv, let
(m1,...,my—i) denote the increasing arrangement of N<x \ {J1,-..,jr}. We denote by
Tj..j, € Sy the permutation
{i, a=jifori€ N 5.0

k+1i, a=m;forie Ncy_g

Our first lemma defines a continuous linear map € y which allows us to regard a k-
particle observable as an N-particle observable. This map €y n is crucial to the definition
of the Lie bracket between two observable N-hierarchies and by duality, to the Poisson
bracket of two density matrix N-hierarchies.

For A®) € £(S;(RF),Ss(R¥)), N € N with 1 <k < N, and (ji,...,jx) € P/ we can
define the operator

AG) ) € LS(RY), SERM)) (5.5)

(J1seesd

which acts only on the variables {j1,...,jx} by defining

AE’f?”_vk) =A® @ Idn_j

and setting

k — k
AEjl)vvjk) =7 : © AEL)JC) © Trjl]k (56)

JiJk
We establish some properties of such operators, which we call k-particle extensions, in
Proposition B.10. These k-particle extensions are used to define a map €, n. We will
show first, in the following lemma, that €5 y have the desired mapping properties, and
then subsequently that the €, ny are injective, and hence they are proper embeddings of
the space gy into gy.

Remark 5.2. Although A®*) is a priori only defined on the proper subspace S,(R*) C
S(R¥), this operator admits an extension to the space S(R¥) since we may always con-
sider A®) 0Sym, . We agree going forward to abuse notation by identifying A®*) with this
extension. Consequently, we may regard AEf) gy € L(SRY),S(RYN)). As the reader

1y
will see, though, all our constructions are independent of the choice of extension.

Lemma 5.3. For integers 1 < k < N, there is a continuous linear map
ek L(Ss(RY), SURY)) — L(S(RY),S{RY)) (5.7)

defined by
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an(@®)=Con D AL (5:8)
(J1yeemsiin) EPY
where**
M ! 1
= | —
o= () = e o5

Moreover, if A € L(S,(RF),S,(R¥)), then ex n(AF) € L(S,(RN),S(RN)), and if
AR s skew-adjoint, then ek’N(A(k)) is skew-adjoint. In particular, ex n(gx) C gN-

Proof. Fix 1 < k < N. From Proposition B.10, it follows that if A®%) € £(S,(R¥), S’(RF)),
then ex v (A*)) as given in (5.8) is a well-defined element of £(Ss(R™), S/(R™Y)) and the
map € n is linear. Furthermore, it follows from Lemma B.11 that skew-adjointness is
preserved. So it remains for us to show that

ern (L(Ss(RF), S, (RF))) € L(Ss(RY), So(RY)) (5.10)
and that € n is continuous.

o Consider the assertion (5.10). By properties of tensor product and the continuity of
A®) it follows that AET)M K = AR &Idy _y is a continuous map of Ss(R*¥)@S(RN—F)
to itself, and hence that

k
Agjl)w..}jk) : Ss(RY) — S(RY)

is a continuous map follows directly from (5.6). We thus need to show that
er.nv (AR (f) is bosonic.

Let m € Sy. It is straightforward from the definition of AEZ)
for any test function f € Ss(RY), we have

Ly and (4.20) that,

W) G
Grrod) F) = Aoy TF) = A, i () (5.11)

..........

where the ultimate equality follows from f being bosonic. Since Sy induces a left
group action on P, it follows that

(k) _ (k)
Z A(jl»--wjk) - Z A(Tr(jl),...,Tr(jk)) (5.12)

(J1»--2dK)EPY (J1,---dK)EPYN

on Sy(R¥), which implies together with (5.11) that

24 Note that Cy,n = 1/|P}|.
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ran( A (N =Con Y mAL (D =anx(A®)(),  (513)

(J15--dn)EPN

as desired.

* Now we will prove the assertion that € n is continuous. Let i 5 be a bounded subset
of Ss(R¥Y). We need to show that there exists a bounded subset Ry C Ss(R¥) such
that

sup ‘<g(N)
PO g(N) Ry

F®) gk emy,

Using the fact that there are finitely many terms in the definition of € x and that
the finite union of bounded subsets is again a bounded subset, it suffices to show
that, for Ry as above and any tuple (j1,...,jx) € P,iv, there exists a bounded subset
R(jr,....in) C S(RF), such that

Ik

sup ’<9(N)‘AE’“) ,‘,jk>f(N)>‘5 sup ‘<g(k)'A(k)f(k)>" (5.15)

FON g eny T T I ) gmemy, 0

since then the desired bounded subset Ry C Ss(R¥) is obtained by taking

Ry = Symy, U Rjy,dn)

3 EPY
Now (5.15) is a consequence of the fact that

L(S,(RF), S (RF)) = L(S;(RF)GS(RYF), S'(RYN)),  A® — AW @ Idy_y
(5.16)
is continuous, (5.6), and the fact that for any j, € PN, the map 7;,._j, defined by
(5.4) and duality is a continuous endomorphism of &’'(RY). O

We next show that the maps € n are injective. This property is crucial as we will
ultimately construct our Lie bracket on the hierarchy algebra by embedding elements of
the sequence into the ambient algebra gy, taking the bracket in gy, and then identifying
the output as an embedded element of gy, for some k € N<y.

Lemma 5.4 (Injectivity of ex n ). For integers 1 < k < N, the map €x N : 9k — ON 1S
injective. Consequently, ex.n has a well-defined inverse on its image, which we denote
by 61;%\7

Proof. Fix 1 < k < N. We will show the contrapositive statement: if A®) = 0, then
e, (AM) #£0.



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 39

We introduce a parameter n € Ny, with n < k. We say that A®*) has property P, if
the following holds: there exists f, g1,...,gr—n € S(R) such that

4 (Symk <f®’“" ® ®g)) 40, (5.17)
a=1

where the tensor product is understood as vacuous when n = 0. We define the integer
Mmin by

25

Nmin ‘= max{min{n € N, : A®) has property P,}, k}. (5.18)

Note that we must have nyy, < k, else, by definition of property P,,, we would then
have that for all g1, ..., gr € S(R),

A®) (Symy (g1 ® - @ gx)) = 0. (5.19)

By linearity and continuity of A®*) together with density of finite linear combinations of
symmetric pure tensors in S;(R*), (5.19) implies that A*) = 0, which is a contradiction.

To avoid notation confusion, we first dispense with the trivial case npyj, = 0. The
definition of property Py implies that there exists an element f € S(R) such that
AF)(f®F) £ 0. Tt then follows trivially from the definition of each summand AE;?M)

in the definition of e; n(A®)) that
e N (AP)(fON) £ 0 € SL(RN). (5.20)

We now consider the case 1 < npy;, < k. The definition of property P implies that

Mmin

there exist elements f,¢1,...,gn,., € S(R) such that

A) (Symk ( fOk—mmin ® ga>> #£0 e S (RY). (5.21)

a=1

Define an element h(Y) € S,(RN) by

MNmin
hN) = Sym <f®’“—"mm ® () ga) ® f®N—’“). (5.22)
a=1

We claim that e n(A®)(AN)) £ 0 € S/(RY). Indeed, unpacking the definition of
er.N(A®)) and Sym, we have

25 We adopt the convention that the minimum of the empty set is 0o, and therefore we take the maximum
with k£ to ensure that n;, is finite.
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6k7N(A(k))(h(N)) = Cka Z Agfl)7,]k)( Z 7T(f®k7nmi“ ® (® ga) ® f®N/€)>.
a=1

i €PY TESN
(5.23)
We first examine the interior sum. For each j i € P,iv , we can partition Sy into the sets

Sj o =A{m€Sn: [{m(k = numin +1),...,7(k)} N {j1, ...k} =71} (5.24)
forr =0,...,nmin. We write
Z 7T(]t'(XJk—nmm ® (® Ga) ® f®N—k) _ Z Z 7T(f(X)k—nm;n ® (® 9a) ® f®N—k).
TESN a=1 r=0 WGSZ;WT a=1
(5.25)

By symmetry considerations, we may suppose that (j1,...,jx) = (1,...,k). It is a short
counting argument that for each r € {0,..., nyin}, we have that

Mmin

Yoo AT e (R ga) @ FON

TE€SH,.. k), a=1
= C(kanminﬂ", N) Z Symk <f®k7’ X ®gga> (526)
b i € P a=1
® Sympy _p, <( ® 9e,) ® f®N_""““_k+T> ,
a=r+1
where C(k, nmin, 7, N) is another combinatorial factor depending on the data (k, nmin, 7, IV).
Each term
r Nmin
Sym,, <f®k_T ® ®gga> ® Sympy_p <( ® ge,) ® f®N—nmm—k+r> (5.27)
a=1 a=r-+1

is an element of Sy(RF)&Ss(RNY~F), and therefore (5.27) belongs to the domain of
Aglf)___ K- Now by definition of ny,, we have that for each r € {0, ..., npi, — 1} that

Agllg,)---,k) (Symk <f®k_r ® ®9£a> ® Sym g, <( ® ge,) @ f®N_"“““_k+T>>

a=1 a=r+1

T Mmin
= AW (Symk<f®k_r ® ®9€a)> ® Symy _j, << Q) 9. ® f®N_""““_k+T>
a=1

= a=r+1

=0 € SL(RF)BS,(RVH).

When r = nyin, we have that
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Mmin
AEf?k) (Symk(f@)knlnin ® ® gga’) ® f®Nk)>
a=1

Mmin

= 40 (Symy (£ () ) £

a=1

is a non-zero element of S (R*)&S,(R™~*) by choice of the elements f,g1,...,0n,,. €
S(R). Consequently, for a possibly different combinatorial factor C’(k, N), we conclude
that

Mmin

ekyN(A(k))(h(N)) _ C(k, N)/ Sym (A(k) <Symk(f®k"m‘" ® ® ga)> ® f®Nk>
- (5.28)

is a nonzero element of S,(RY), completing the proof of the lemma. 0O

We next show that the bracket [-, -] g lespects the hierarchy in the sense that

[GZ,N(QE)a Ej,N(gj)}gN C emin{ﬂ—‘,—j—l,N},N(grxlir1{£+j—17N}) C gnN- (529)

This filtration or gradation property is crucial to our definition of the hierarchy Lie
bracket in the sequel.

Before proving Lemma 5.7 below, we introduce some contraction and commutator-
type notation used in the proof and in the sequel. Consider integers N € N, £, j €
Ny, k= min{¢ + j — 1, N} and r > 1 satisfying appropriate conditions. Let AWO ¢
L(Ss(RY),S,(RY)) and BY) € L(S,(R7),S,(R7)). We define the r-fold contractions

A , .
A® o, BU) = AEJH_,Z)( 3 BéQﬂHL”M_T)) € L(S.(R*),8'(RF))  (5.30)

a,EPf
j 0 . W) (€) k k
B o, AW = Bd,...,j)( Z_A(gwj+l,_”7j+g_r)> € L(S,(R*),S'(RF)). (5.31)
,€P

Note that the compositions are well-defined since

(4) (&)
Z B(gr,é—ﬁ-l,...,@-‘rj—r) and Z A(gr7j+1,4..,j+€—r) (532)

a,ePf a,€P!

have targets which are symmetric under permutation in the first £ and j coordinates,
respectively. We then set

(40, 50) (J) A® o, BO) _ (‘)3@ o AW, (5.33)

r T
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The motivation for the combinatorial factors in (5.33) will become clear from the proof
of Lemma 5.7 below.

Remark 5.5. We may also proceed term-by-term to define (5.30) and (5.31) by consider-
ing extensions of A®) and BY) to L(S(R?),S(R*)) and L(S(R7), S(R7)), so that AE? 0

and B(({)___ ;) are then elements of L(S(RF), S(R¥)). The choice of extensions is immate-

rial by the target symmetry of operators with which the extensions are right-composed.

In the sequel, we will need a technical lemma concerning the separate continuity of
the binary operation o,. The proof of this result is quite similar to that of (the more
general) Lemma 6.1 below, so we omit the proof.

Lemma 5.6. Let £, j, k, N > 1 be integers such that £,j < N and min{¢+j—1, N} = k.
Let r be an integer such that ro < r < min{{, j}, where

ro = max{l, min{¢, j} — (N — max{¢,j})}. (5.34)
Then the bilinear map

() or () L(S(RP), S(R)) x L(S(R’), S(R)) — L(S(RF), S(RY)) (5.35)

is separately continuous.?’

Lemma 5.7 (Filtration of hierarchy). Let N € N and let 1 < £,5 < N. Then for any
A®) e g, and BY) e g, there exists a unique C™*) ¢ gy, for k == min{l +j — 1,N},
such that

[0 (A©), 0 (BD)] = e n(C®). (5.36)

gN

Proof. By definition,

GE,N(A“)), €j7N(B(j)):|

[y
_ (© (4
= NC@ NCJN Z A(nu,...,mg)( Z B(n1 ..... n,))
m,ePN n;ePN
(1) (&
> B (X Al )
ﬂjePJN mZEPeN

26 We recall that £(S(R*), S(R*) denotes the space L(S(R¥),S(R*)) of continuous linear maps from
Schwartz space to itself equipped with the subspace topology induced by L£(S(R¥),S’(R¥)).
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min{¢,j} .
TGS S (5 IR GRD SN

= N N
r=1 m, € P} n;€P;
[{mu,...me}N{n1,...;n; }=r

(4) (0
- Z B(nl,...,’ﬂj) ( Z A(ml,...,mg)>>' (537)

ﬂjEPjN meePgN
[{m1,....me}0{n1,....;n; }=r

Without loss of generality, suppose that £ > j. We consider the case £ +j — 1 < N. For
each integer 1 < r < j, we have by the S;-invariance of the operator BU) that

(4) _ J G)
> B(nl,...,nj)—<r> > B . (5.38)

n;ep n; €P
H{ma,...ome}n{ni,...,n;}=r {n1,...,nr}C{ma,...;.me}
{nrt1,.mi p{ma,....m¢}=0

Similarly, by the S,-invariance of the operator A“), we have that

(0 _(* ()
Z A(mh...,mg) - <T> Z A(mh___,ml). (539)

m,ePlN m,eP}
H{n1,...,n;}n{m1,...,mg}|=r {m1,...m.}C{n1,....,n;}
{mri1,...ometn{ni,...,n; }=0

Upon relabeling the summation, we see that

min{¢,5} .
E a7y — ) MAWNO) )
(0'37) - NCZ’NCJ’N Z Z (( )A(m ,,,,, P1) ( Z B(Pel yer s Pl P15y p£+j—r)>
1<6,

. T
r=1 erPy,;_, vl <E

p _ s =
o {1, }[=r

& g @)
- (T‘) B(Pl ----- ;) Z A(le yeesDgip sy Pjglseees Pjte—r) :

1<g1,00§r <5
[{715--5r =7

(5.40)
If r = 1, then the summand of (5.40) equals

0 J
. - 4 (6) () _ p® (0)
NCZ*NCJ*N Z ]A(:Dl ----- Pe) <Z B(Pa Dl Pk)) éB(Pl »»»»» Pe) (Z A(Pa,pj+1 ,,,, Pk))

Bkepé\f a=1 a=1

= NCinCin D, §(AYD 01 BD) g, py = UBY 0y AD) 0 by

P, EPY

N ; . .
= exN (% Sym,, (j(A(Z) o1 B(J)) _ g(B(J) 01 A(@))). (5.41)
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Now suppose that r > 1. Observe that

AWRO) ()
Z <(T> A(P1,---7:Ue) ( Z B(pzl7~~7m1,7m+1,-~7p/3+1r))

N 1<0r 00 <O
Py P \{Zl»l---/rH:T (5.42)
6\ go) )
- (7’) B(leij) Z A(lewijr,Pj+17~~,17j+z—r)
1<j1,-dr<j
{1 dr }=r

cannot be immediately identified as an embedded element of g, because the summation
is not over tuples P, € P,iv. Indeed, we are missing k — ({+j —r) = r — 1 coordinates. To
address this issue, we observe that we can write p, € Pl as P, = (

N
€ Py, , and

Bé+j—r’ gr—l)’ where

B€+jfr
g, , € Nen\{p1,... Derj—r )Y with [{q1, ..., g1} =7 — 1. (5.43)

For each B€+j—r_ € Pzﬁjfw the number of (r — 1)-cardinality subsets of N<y \
{p1,. - pegj—r}is
N—-l—j+r
r—1 '

Since there are (r — 1)! ways of permuting r — 1 distinct elements, we conclude that for

N
Py € PZ-‘rj—T’

g, _, € (Nax \ D1 spers et Harse oy} = 7 = 1))

:<N—£—j+r)(r_1)!

r—1
= i:[ (N —k+m), (5.44)

where we use that £ 4+ j — 1 = k. Hence, the summand of (5.40) equals

NCuxCin (J) A4 <Z BY )
H:n_:11(N —k+m) r ) (Prsepe) (Pey s+ sPly Py sPetj—r)

D, epN L,.€ePt

6\ 50) )
o (r)B(Pl,--ij) Z A(pjl,--~7;Djij+1,--~7;Dj+zfr) ’

R
(5.45)

and by definition, we obtain that this expression equals
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&N ]\ch’NCj’N Sym,, < (J) AW, BU) (€> BW o, A“)> . (5.46)
CrN L2t (N =k +m) r r

Now suppose that £ + j — 1 > N. Then proceeding as above, we see that » > 1 must

in fact satisfy the lower bound
r > min{l,j} — (N —max{{,j}) = ro. (5.47)
Combining these results, we conclude that

|:64,N(A(€))7 fj,N(B(j))}

gN

N .
= enN (Symk >, NCeN Gy <<J>A(5> o, BY) — (5) B o, A(l)) ,
’ Crv [Ty (N =k +m) \\r r
4

T=T0

which concludes the proof of the lemma. 0O

We now have all the technical lemmas needed to define the Lie algebra & y of observ-
able N-hierarchies. For N € N, let & denote the locally convex direct sum

N
6y =P o, (5.49)
k=1
where we recall that
ar = {AP) € L(S,(RF), S (RF)) : (AW)y = —A®)} (5.50)

We define a bracket on Ay = (Ag\l,c))kENSN,BN = (BJ(\],C));CGNSN € &y by

[AN’BN]QSN = CN = (CI(\I;))]CGNSN, (5.51)
where
k - ¢ j
o= ([ ans)] ). (552)
1<Cj<N aN

min{¢+j—1,N}=k

It remains for us to check that &y together with its bracket is actually a Lie algebra
in the sense of Definition 4.14, as we have so claimed above. Before doing so, we collect
a result which will be useful in the sequel. Namely, that as a byproduct of the proof
Lemma 5.7, we have the following explicit formula for the Lie bracket [An, By, for
two observable N-hierarchies, which is quite useful for computations.
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Proposition 5.8 (Formula for [AN,BN}(&)V), Let N € N, and let Ay = (Ag\l,c))keNSN,

By = (Bz(\];))keNSN be observable N -hierarchies. Then for integers 1 < k < N, we have
that

min{¢,j}
k ¢ j
Av BN, = Y Symk( > Curen | AV, B%)]T), (5.53)
1<t,j<N r=ro
min{¢+j—1,N}=k
where””
NCynCjNn . : .
Cejkrn = 1 ; ro=max{l,min{/,j} — (N —max{/,j})},
! Ck N Hm:ll(kaer) 0
(5.54)
and where [-, -], is defined in (5.33).

We now establish Proposition 2.1, which is our first main result of this section.
Proposition 2.1. (&, [, ']@N) is a Lie algebra in the sense of Definition 4.14.

Proof of Proposition 2.1. There are two parts to the verification: an algebraic part and
an analytic part.

e We first consider the algebraic part, which amounts to checking bilinearity, anti-
symmetry, and the Jacobi identity. The first two properties are obvious from the
definition of &y. For the third property, let Ay, By,Cny € &xn. We need to show
that

[AN7 [BN’CN]QNV]Q&N + [C’N7[AN7BN]®N:|Q§N + [BN, [CN,AN]QSN} =0. (5.55)

SN
Since €,y is injective, it suffices to show that € y applied to the left-hand side of the
preceding identity equals the zero element of gn. We only present the details when
the component index satisfies 1 < k < N and leave verification of the remaining
k = N case as an exercise to the reader. Using the definition of the Lie bracket and
bilinearity, we have the identities

fk,N([AN7 (B, CN]@N](Q;CZJ

= Z [ejl,N(A%I))’6j27N([BN’CN]gi’))}

Jitjz2—1=k o

= 22 [ejl,N(A%”), [ejs,N<B§33>),ej4,N<c§é4>>L]

Jit+j2—1=k jz+ja—1=j2 aN

27 Recall that Cp,n = 1/|P}|.
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= X |l [ B )] ]
O+l +l3=k+2 INlgn

et ([On: 43, Bila, )
= Y [ O el BIG)

Jitj2—1=k

Nlgn

J1+je—1=k jst+ja—1=j2

aN

b1 +Lo+Ll3=k+2 gN

fk,N([BN7 [CN7AN]®N}$) )

= > B v (O, ANIED)]
Jjitj2—1=k

e 2 [Ejl’N(BJ(\?I))v |:Ej3,N(OJ(\?3))7€j4,N(A%4))]

Jit+je—1=k js+ja—1=j2

gN

QN:|QN

= X B, [ e )] |

l1+Lla+Ll3=k+2 gN

Since [-, -], is a Lie bracket and therefore satisfies the Jacobi identity, it follows that
for fixed integers 1 < £1,05,03 < N,

0= [eél,N(A%”), {éez,N(Bz(fz)),Eea,N(OJ(\fS))L }
N

gN

+ |:643,N(CI(§3))7 [Ezl,N(A%l)),6[2,N(BI(52)):|9 } (5.56)

[thy

+ |:652,N(B](\§2))7 [Eza,N(C%S)),ézl,N(A%'l))L ]
N

gN
Hence,

€k, N ([AN» [BN,CN]qu] + [Cw, [ANaBN]asN](k) + [Bw, [CNvAN}@N](k))
=0 € gy. (5.57)

We now consider the analytic part, which amounts to checking the separate continuity
of [, "], - Using the anti-symmetry of the bracket, it suffices to show that for Ay €
&y fixed, the map

Q5N—>Q5N, BN'—> [ANvBN]QSN (5.58)
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is continuous. Moreover, it suffices to show that for each £ € N<y, the map
& By + [An, BN]Y)
N — Ok, N+ [AN, BN]g

is continuous.

Let (Bn,q)aea, Where By, = (B$7L)keN<N, be a net in &y converging to By =
(B](\I;))keN<N € & y. By the continuity of the projection maps &y — g for each
k € N<n, we have that (BE\’Z)a)aeA is a net in gg converging to Bj(\lf) € gk.
Unpacking the definition of [Ayx, B N’a]gcj)v and using the continuity of the Sym,
operator and the operations of addition and scalar multiplication, together with the
fact there are only finitely many terms, it suffices to show that for any integers
1 < £,5 < N satisfying min{¢ + j — 1, N} = k, any integer ro < r < min{/, j}, we
have the net convergence

[40.50] — [49.59] (5.59)

in £(S,(R¥),S(R*)). But this convergence is a consequence of Lemma 5.6, thus
completing the proof. O

5.2. Lie-Poisson manifold &7 of finite hierarchies of density matrices

In this subsection, we define the Lie-Poisson manifold g}, of N-body density matrices
and the Lie-Poisson manifold &% of density matrix N-hierarchies. A good heuristic to
keep in mind is that density matrices are dual to skew-adjoint operators. We remind
the reader that the superscript * does not denote the literal functional analytic dual
of gn (respectively, ) as a topological vector space, but rather a space in weakly
non-degenerate pairing with gx (respectively, &y ).

To begin with, we define the real topological vector space

gy = {Un € L(S{RY),Ss(RY)) : ¥}y = Uy} (5.60)
endowed with the subspace topology.

Remark 5.9. Our definition of g}, is quite natural as it is isomorphic to the strong dual
of gn. The proof of this fact is quite similar to that of Lemma 6.8 shown below.

We now define a suitable unital sub-algebra Apy v C C*(gh; R) of admissible func-
tionals to build a weak Poisson structure for gj;.

Definition 5.10. Let Apys, n be the algebra with respect to point-wise product generated
by the functionals in
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{FeC®gyiR): F(-)=iTry,. n(AM), AM € gy}
U{F € C®(g%:R) : F(-) = C € R). (5.61)

In words, Apas,n is the algebra (under point-wise product) generated by the constants
and the image of gn under the canonical embedding into (gi)*.

We record the following result, whose proof we omit since it is similar to and simpler
than that of Proposition 2.8, which will be used in Section 5.3 below.

Proposition 5.11. (g%, Apam N {+ '}9}%) is a weak Poisson manifold.

Before proceeding, it will be useful to record the following lemma regarding the dual
of g} . In particular, we note that the dual of g} is not isomorphic to gy.

Lemma 5.12 (Dual of g% ). The topological dual of g, denoted by (gi)* and endowed
with the strong dual topology, is isomorphic to

{A) € L(S,(RY), S{RT)) : (AM)" = AN}, (5.62)

equipped with the subspace topology induced by L(Ss(RY),SL(RN)), via the canonical
bilinear form

iTry, N (AN ), Uy € gl (5.63)

Proof. The proof follows from the duality £(Ss(RY),SL(RY))) = L(SLRY), S,(RY))*
together with a polarization-type argument. We leave the details to the reader. 0O

Remark 5.13. The previous lemma implies that, given a functional F' € C*(gh;R)
and a point Uy € g, we may identify the continuous linear functional dF[¥y],
given by the Gateaux derivative of F' at the point Uy, as a skew-adjoint element of
L(Ss(RY), S’ (RY)). We will abuse notation and denote this element by dF[¥ y]. More-
over, as we will see below, it is a small computation using the generating structure of
-ADM,N that dF[‘I’N] € gnN-

We next define the Lie-Poisson manifold of density matrix IN-hierarchies. To begin,
define the real topological vector space

N
& = {Tn = O\ )keny € [] L(SUR), S.(RR) 1) = (1)) ¥k e N} (5.64)
k=1

endowed with the subspace product topology. We first note that our definition of &%, is
quite natural, as it is isomorphic to the topological dual of &y, a fact we prove in the
next lemma.
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Lemma 5.14 (Dual of ). The topological dual of &, denoted by (&n)* and endowed
with the strong dual topology, is isomorphic to & .

Proof. Using the isomorphism

(L(S,(RF), S, (RM)))" = (L(S,(RF), SL(R)))" = L(S/(RF), S,(RY)), Wk eN,
(5.65)
which follows from the proof of Lemma B.15 together with the duality of direct sums
and direct products, see for instance [17, Proposition 2 in §14, Chapter 3|, we have that

N * N
A E k ~ Ik E
( L(S:(R"), S, (R ))) > T £(siRY), S:(RY)), (5.66)
k=1 —d’ k=1
via the canonical trace pairing

(AN,FN) — iTI“(AN . FN).

Thus elements of (&x)* may be identified with functionals ¢ Tr(-I'y), and so to prove
the lemma, we will show that the map

6% = (6y)", Ty iTr(Ty), (5.67)

is bijective and that both ® and &' are continuous.
First, we show surjectivity of ®. Given any functional F' € (&y)*, we need to find
some density matrix N-hierarchy I'y € &3, such that

F(AN) = iTI‘(AN . FN) (568)

To accomplish this task, we define a functional

N *
Fe (69 LS (R’ﬂ,ss(R’“))) (5-69)
by the formula

F(Ax) = LF(Ax — AY) — SP((Ay — A) + 3FU(Ax + AY)) — LF(i(Ax + 43).
(5.70)

By the canonical dual trace pairing, there exists a unique

N
Ty € ] £(SIRF), S, (RF))

k=1
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such that

F(Ay)=iTr(Ay -Ty), VAye€ Ss(R¥)). (5.71)

@2

k=1
Evaluating F on AN € By, that is assuming Ay = —A%,, we obtain from (5.70) that
(1-9)F(An) =1Tr(An - T'n), (5.72)
and adding this expression to its conjugate implies that
F(Ay) = z'(Tr(AN Ty) - Tr(Ay - rN)).
Since
(k) Ik k
(Ay -Tn)® = AW E ¢ £(S/(RF), S,(R¥)),  VEk € Ney,
its trace exists in the usual sense of an operator on a separable Hilbert space. Fur-
thermore, the adjoint of Ag\l,c)”y](\]f) as a bounded linear operator on L2(R¥), denoted by
(AS\’,C)%(\I,C))*, belongs to £(S:(R*),S(R¥)). A short computation using the skew- and self-
adjointness of ASI\;) and 71(\][6)7 respectively, shows that

k) (k)\x k k
(AR =040,

where we abuse notation by letting AX,C) also denote the extension to an element of
L(SL(RF), SL(RF)). Consequently, we are justified in writing

Trr, k(A ) =Tk (AR ) == T (A0 AR ) == T (ARA1))),

where the ultimate equality follows from an approximation of Ag\’;) and the cyclicity of
trace. Therefore,

~ 1
Iy = 5Ty +T5) (5.73)

is the desired density matrix N-hierarchy. Injectivity of ® follows from the polarization
identity by considering elements of &y of the form

;| £(Kko) (ko) =
- [ 5 -

. 9
, otherwise

where ko € N<y and f(*0) € S (R*0). Hence @ is bijective.
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Next, we claim that both ® and ®~1 are continuous. Since ®% is a Fréchet space, it
suffices by the open mapping theorem to show that ® is continuous. Let te5,, denote the
canonical inclusion map

By C @c S.(R¥)), (5.75)

which is continuous by definition of the subspace topology, with adjoint

Ly (@ﬁ (Rk))> — (&n)", (5.76)

and let 1@+ denote the canonical inclusion map

N
v C ] £(SUR), S.(RY)), (5.77)

k=1

which is also continuous by definition of the subspace topology. Then we can write
® =15, 0(2) oy, (5.78)

where @’ is the canonical isomorphism described in (5.66). Since v  is continuous, as
can be checked directly or by appealing to the corollary of Proposition 19.5 in [42],
it follows that ® is the composition of continuous maps, completing the proof of the
claim. O

We now need to establish the existence of a Poisson structure for &3%,. As before, we
choose a unital sub-algebra Ay y C C®(&%;R), generated by trace functionals and
constant functionals, to be the algebra of admissible functionals.

Definition 5.15. Let Ay n be the algebra with respect to point-wise product generated
by the functionals in

(F eC®®5;R): F(-) =iTr(Ay"), Ay € By}U{F € C®°(®3:R): F(-) = C € R}.
(5.79)

Remark 5.16. Our definition of Apg n is not canonical in the sense that one may in-
clude additional functionals in it. However, since we are really only interested in trace
functionals, we will not do so in this work.

Remark 5.17. The structure of Ay n will be frequently used in the following way: it will
suffice to verify various identities for finite products of trace functionals and constant
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functionals. Moreover, by Remark 5.18 below and the Leibnitz rule for the Gateaux
derivative, it will often suffice to check identities on trace functionals.

Remark 5.18. By the linearity of the trace and the definition of the Gateaux derivative,
a trace functional has constant Gateaux derivative. Similarly, a constant functional has
zero Gateaux derivative.

To define the Lie-Poisson bracket on Agy n x Ag n using the Lie bracket ["']c’ﬁw
constructed in Section 5.1, we need the following identification of continuous linear func-
tionals with skew-adjoint operators, given via the canonical trace pairing. We note, in
particular, that (&%)* is not isomorphic to &y .

Lemma 5.19 (Dual of &% ). The topological dual of &%, denoted by (&3)* and endowed
with the strong dual topology, is isomorphic to

Gy = {Ay € @c ), SLRFY) : (AR = —a(PY. (5.80)

Proof. We omit the proof as it proceeds quite similarly to that of Lemma 5.14. O

We continue to abuse notation by using dF[I'y] to denote both the continuous linear
functional and the element of &y. We are now prepared to introduce the Lie-Poisson
bracket {-, '}6?\1 on Ag n X Ag.n.

Definition 5.20. Let N € N. For F,G € Ay, v, we define

{F,G}gs (Tn) =i Tr([dF[Cn], dG[CN]lg,, - T'n)

—ZzTrl (dF[I‘N] dGIr N E) }V’“), (5.81)

for 'y = (’YJ(\’;))keNSN c oy

We now turn to the second main goal of this subsection, that is, proving Proposi-
tion 2.2, the statement of which we repeat here for the reader’s convenience.

Proposition 2.2. (&, Au,n,{-; -}z ) is a weak Poisson manifold.
We begin with the following technical lemma for the functional derivative of {-, ~}®1*V.
Lemma 5.21. Suppose that G; € Au,n is a trace functional G;(I'y) = i Tr(dG,[0] - T'n)

for 5 = 1,2. Then for all Ty € &%, the Gdteaur derivative d{Gl,Gg}QsR’[FN] at the
point I'y may be identified with the element
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[AG1[0], dG5[0]] . € B (5.82)

via the canonical trace pairing. If G is a trace functional and Gy = G21Ga2 is the
product of two trace functionals in Ay n, then d{G1, GQ}ijV[FN] may be identified with

G271(FN)[dG1[O},ng,z[OHQSN + G22(T'n)[dG4 0], dG2,1[0]]Q5N (5.83)
for all 'y € &% via the canonical trace pairing.

Proof. The first assertion follows readily from the definition of {G1, Gg}qm. To see the
second assertion, observe that by the Leibnitz rule for the Gateaux derivative and the
bilinearity of the bracket [-,-] ,

AG1[Tn]®), dGa[Ty] Y| = G0 (T) [dGA[0]®), dG2[0) ) |

T s

+ G22(T'N) [dG1 [0](6)’ dGo 1 [0](]‘)} )

T

Hence using Proposition 5.8 and introducing the notation

NCynCj N . . .
CritrnN = ki , ro = max{l,min{¢, j} — (N — max{/, )
LikrN Ck,NH:,::ll(N*kJFm) 0 { {65} —( {4,351}
(5.84)
we obtain that
(k)
[dG1[IN], dG2 LN ]]gs
min{¢,j} ‘
- > Symk< > Cujkrny [dGl [FN](Z)’dGﬂFN](j)} )
1<6j<N r=ro "
min{¢+j—1,N}=k
min{¢,j} ‘
= G2,1(FN) Z Symk< Z CéjkrN [dGl [O](e),dGQ,Q[O}(])} )
1<j<N r=ro !
min{¢+;j—1,N}=k
min{¢,j} ,
G22(T'N) Z Symk< Z CejkrN {dGl[O](Z)7dG2,1[0](])] )
1< <N r=ro "
min{¢+j—1,N}=k
= Ga,1(TN)[dG1[0], dG22[0]]%) + G n(Dy)[dG1[0], dG2 [0, (5.85)

where the ultimate equality follows from another application of Proposition 5.8. O

We divide our proof of Proposition 2.2 into several lemmas. We first show that {-, '}(’5}‘v
is well-defined and is a Lie bracket satisfying the Leibnitz rule.
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Lemma 5.22. The formula
{F‘7 G}@}](FN) = iTI‘([dF[FN], dG[FNH@N . FN), VI'y € @7\/ (586)
defines a map Ay n X Ag.n — Ap n which satisfies Property 1 in Definition 4.1.

Proof. We first show that for F, G € Apy v, one has {F, G}ijV € Ag,n- Recall that Ay n
is generated by constant functionals and trace functionals, hence using the Leibnitz rule,
bilinearity of [, ], , and the linearity of the trace, it suffices to consider the case where
F, G are both trace functionals. Indeed, elements of Ap y are finite linear combinations
of finite products of trace functionals and constant functionals, hence using that the
derivative of constant functionals is zero, upon applying the Leibnitz rule, the elements
of the product which are not differentiated can be treated as scalars when evaluated at
a point I'y and hence can be pulled out of the Lie bracket and then out of the trace by
bilinearity.

When F,G are both trace functionals, dF[I'y] and dG[I'y] are constant in I'y by
Remark 5.18, hence

{F.G} gy (Tn) = i Tr([dF[0],dG (0], - T'n), VIy € &y. (5.87)

So, we only need to show that the right-hand side defines an element of Ay n. Since dF'[0]
and dG/[0] both belong to & v, it follows from Proposition 2.1 that [dF'[0], dG[0]]¢ € & .
Hence, {F, G}Qﬁv € Ap,n, which completes the proof of the claim.

Bilinearity and anti-symmetry of {-, -}(,57V are immediate from the bilinearity and anti-
symmetry of [-, ] , S0 it remains to verify the Jacobi identity. Let I, G, H € Ay n. As
we argued above, it suffices to consider the case where G and H are trace functionals
and F' is a product of two trace functionals, that is, F' = F} F,, where F1, Fy € Ay n are
such that

Thus, we need to show that for all Ty € G,
0= {FAG o b (0n) +{GAH. Py |, (On) + {HF.Ceg |, (O)
= 1o ([aF (0. a(G. )y 1] T
+¢Tr<[dG[rN] d{H,F}g. FN} )
+m<[dH[FN] A{F. G, [0N]], ) (5.89)

We show the desired equality by direct computation:
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First, since dF[I'y] = F1(T'n)dF5[0] + F5(T'ny)dF1[0], where we use that Fy and F
have constant Gateaux derivatives by Remark 5.18, it follows from the linearity of the
trace that

iTr<[dF[rN],d{G,H}%[rN}LsN .I‘N>
— iFy(Ty) Tr<[dF2 0, d{G, H} . [FN]} N FN>
+iFQ(FN)Tr([dFl[O],d{G,H}wv[FN]}QsN .rN>
= iFy () T ([dF2 0], [4GT0], dH 0] ] T )

+iFy(Ty) Tr([dF1 (0], [AG[0], dH[0]] g, ] . -FN), (5.90)

where we use Lemma 5.21 to obtain the ultimate equality.
Next, since F' is a product of two trace functionals, we have by Lemma 5.21 that

d{H, F}g. [[n] = Fy(Ux)[dH[0], dF2[0] g + Fa(Tx)[dH[0] dF1[0]l s, VI € B}

(5.91)
Hence by bilinearity of the Lie bracket and linearity of the trace,
iTr<[dG[FN],d{H,F}%[PN]LjN -PN)
— iF (Ty) Tr([dG[O}, [dH[0], dF>[0]] 5, ] - rN)
+iFy(Ty) Tr([dG[O], [dH[0], dF3[0]] 5, ] . - rN). (5.92)
Finally, similarly to the preceding case,
A{F, G}, [Cn] = Fy (Cn)[dF5[0], dG[0]]g , + Fo(Tn)[dF [0, dCI0]lg, . (5.93)
and therefore,
iTr<[dH[rN},d{F,G}%[FN]LN ~FN>
= iFy(Ty) Tr([dH[0), [dF>[0), dG[0]],, ], - T
iRy (Ty) Tr([dH[O], [dF1[0], dG[0])g,, ] - FN). (5.94)

Combining the preceding identities, we obtain that

iTr([dF[FN},d{G, H}g: [rN]} o .PN) +¢Tr<[dG[PN], d{H, F}Qs;«v[FN]} o rN>
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+iTr<[dH[I‘N],d{F, G}%[FN]LN .FN)

= iFy(Ty) Tt (([sz[o], [AG[0), dH[0]lg,, ] . + [dG[0], [dH[0], dF3[0]]s ]

& SN

+[dH[O], [dF2[0]7 dG[O]](’SN]GﬁN) . FN)

+ [dG[0], [dH[0], dF1[0]] . |

&N (o3

4 iFy(Dy) T (([m [0], [dG[0], dH[0]], . ]
+[dH[0], [4F [0, dG[0]],, ], ) - T¥)

=0, (5.95)

where the ultimate equality follows from the fact that both lines in the penultimate

equality vanish by virtue of the Jacobi identity of the Lie bracket [, ] .
Finally, we claim that {-,-}. satisfies the Leibnitz rule:

{FG,H}gy (Un) = GINHF, H} g (Pn) + F(Un){G, H} s (Iy), VI'n € 8.
(5.96)
Since d(FG)[I'y] = F(I'n)dG[I'n]+ G(T'n)dF[T'n] by the Leibnitz rule for the Gateaux
derivative, we see that

{FG,H}g, (Tn) =i Tr([d(FG)[Tn],dH[Tn]]g, - Tn)
= iF(Cy) Tr([dG[Tn], dH[n ], - T)
+iG(Cn) Te([dF[Tn], dH[TN]]g - Tv)
= F(Tn){G, H}gy (Tn) + GIN{F, Ht s (Tw),  (5.97)

where the penultimate equality follows by bilinearity of the Lie bracket and linearity of
the trace and the ultimate equality follows from the definition of the Poisson bracket. O

We next verify that Ay y satisfies the non-degeneracy Property 2.
Lemma 5.23. Ay n satisfies Property 2 in Definition 4.1.

Proof. Let I'y € &% and v € Tp, 6%, and note that Tt &3 = &5. Suppose that
dF[T'n](v) =0 for all F € Ay y. We will show that v = 0.
Consider functionals of the form Fy ,(-) =1 Tr(An x,-),

Nk = (5.98)

= [ b

. K
0, otherwise

for kg € Noy and f(0) € S (R*). By Remark 5.18, we have dFyx, [[n](-) = Fr.x, (),
so if v = (U(k))keNSN € B}, is as above, we have by definition of the trace that
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Fip(v) = <v(k0) ko)

f<k0>> = 0. (5.99)

Since v(*) extends uniquely to a bounded operator on L2(R*) and S,(R¥) is dense in
L%(RF¥), it follows from a standard polarization argument that v(*) = 0 for all k € N<w,
which completes the proof. O

Lastly, we show the existence of a unique Hamiltonian vector Xy for H € Ay y with
respect to the Poisson structure {-, '}%. With this last (most difficult) step, the proof
of Proposition 2.2 will be complete.

Lemma 5.24. (&%, Au N, {- '}057\,) satisfies Property 3 in Definition 4.1. Furthermore, if
H € Ap n, then we have the following formula for the Hamiltonian vector field X :

N min{4,j}
; Kk

XH(]_—‘N)(Z) = Z Z CéjkrN Tré—i—l,.,.,k Z dH[PN}Ejg)r,l+1,...,min{l+j77“,k})’ ’YI(V) ’

j=1 r=rg Qrepf

(5.100)
where
kE=min{f{+j—1,N}, ro = max{l, min{¢, j} — (N — max{¢,j})}
and where
o . (]) NC@)NCJ')N
LikrN "= r—1 ’
T Ck,NHm:l(N_k+m)

for Co.n,Cr n as in (5.9).

Proof. Given F,H € Ap n, we first identify a candidate vector field Xy by directly

computing {F, H}. . Once we have found the candidate and verified its smoothness as

a map B3 — &}, the proof is complete by the uniqueness guaranteed by Remark 4.2.
By definition of the Poisson bracket on &3;, we have that

{F, H}@?V(FN) = iTI“([dF[FNLdH[FN]]éN . FN>

=iy Tk ([P0, dH DN AR ), (5.101)
k=1

for Ty = (Y\")N_, € ®%. Using the linearity of the Sym,, operator, we have by the
formula from Proposition 5.8 that

min{¢,j}
[dF[DN], dH[DN]lG ), = > > Cojer Symy ([aFION] Y, aHTN D] ),
1<0,j<N r=ro "

min{{+j—1,N}=k
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and
Symy ([dFICN]®,aH[TN])] )

J ¢ :
- Symk<<r>dF[FN]El)w,f)< Z dH[FN]EQ,,,E+1,...,e+jr)))

a, Pt

Y4 G [
_Symk((r>dH[FN](i?...,j)< Z dF[FN}Ea)r,j+1,<..,j+e—r))>’

a,eP}

where we have used the combinatorial notation Cyjxrn defined in (5.84). Recall from
Remark 5.5 that we are justified in writing

; 4
dH[FN]g?...,j)< Z dF[FN]Ea)r,j+1,...,j+6—r))

a, P}
= dH[T N9 dF[ry] (5.102)
N5 Nag g+, gt+e=r) '
a,€P}
Let (mq,...,m;_,) be the increasing arrangement of the set N<;\{aq,. .., a,}. Defining

the permutation 7 € Sy by the formula

1, a=q;for1<i<r
a—j+r, jH+l1<a<j+Ll—r
(a) = J JTi=a=d : (5.103)
0+, a=m;forl <i:<j—r
a, otherwise

we find that for each o, € P/ fixed,

) (0)
(dH[FN](1,...,j)dF[FN](g,.,j+1,...,j+zfr))(T(l)ww(k))

_ (3) ()
=dH[N) oo dFINIE (5.104)

Since the Sym; operator is Si-invariant, it then follows that

() (0)
Symy, (dH[FN](Jl»---J)dF[FN](gr,é+1,...,e+j—f’))

j 14
= Symy (dHIONIE o,y dFIONIE ) ). (5.105)

Consequently, using that |P/| = (i )r!, we obtain that
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/ G ‘
Symk(<r>dH[FN](J1?...,j)< Z dF[FN]ga)r,j+1,...,j+e—r)>)

a,€Pf (5.106)

N (7 () ()
= (r) (T)T!Symk (dH[FN](1,...,r,Z+1,...,€+j—r)dF[FN](1,..475))'

Now given a,. € P, let (my,...,my_,) be the increasing arrangement of the set Ncg \
{a1,...,a,}. We recycle notation to define a new permutation 7 € Sy, by
a;, 1<+ <r
T(1) =S my_yp, T7+1<i<L. (5.107)
i, otherwise
Then

©)) (0)

j 4
— Sym, (dH[rN]ngwmmfr)dF[rN]( ) 2)),

(5.108)

where we can ¢

‘undo” the permutation 7’s effect on dF[FN]E?__ ¢y by its S-invariance.

Using that |Pf| = (f)r!, we obtain that

e\ (7 ) )

j 0 " (5.109)
= (r> Z Symy, (dH[FN}(jgr,£+1,...,f+j—r)dF[FN](1,...,@))'
a,EP!
Substituting the preceding identity into the expression Tr1 g ([dF[['n], dH[T N]]g}V 7](\’;))

and using Lemma 4.33 to eliminate the Sym,, operator, we obtain that
iTrr,.. ([P D), dHCN]E AL )

min{¢,j5} j
=i Xy ()
min{l+j—1,N}=k r=ro

(5.110)
(0) (9) (k)
X Z (Tr17---,k(dF[FN](1,_.4,e)dH[FN](Jar,e+1,4..,£+j—r)7N )

a, EPf

j 14 k
- Trl,u.,k (dH[FN]Ei)r,ul,.“,e-s-j—r)dF[FN]51),4..,13)71(\7))) :
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Since dH [I‘N}Ea) 41, =) is skew-adjoint and therefore by duality extends to an

element in L(S;(R’“) S’(Rk)), it follows from the cyclicity property of Proposition B.7iii
that

4 k
Tr.., (dH[FN]mT,eH e+j—r>dF[rN]El),...,eﬂf(\f)) (5.111)
5.111
14 k j
=Ty (AFION]E NN oy )
Since
. .
AHION]E o ey WAHITNE () € LSURY), S(RY), (5.112)

the usual partial trace Trgy1, . 5 of each of these operators exists and defines an element
of L(S!(R?),S(R*)). Moreover, since dH[I'y]¥) and fy](\’;) are skew- and self-adjoint, re-
spectively, these partial traces are self-adjoint.

Returning to the expression i Tr([dF[[n],dH[I'x]]g, -Tn) and interchanging the
order of the k£ and ¢ summations, we see that

N
> i, ([AFON] dH TN E) AL
k=1
N N min{{, .
=iy ¥ Z CW”N(Trl ,,,,, (dF[FN]u)( 3 TrHL____’,-C(dH[I‘N]E;)“HI et Tk}ﬂ](\;a)))
£=1j=1 r=r a, P!
F %)
—Trq,.., (dF FN](Z) <a;[ Tropq.., <’YI(VI§)dH[FN](gr,2+1,..A,Inin{[#»jf‘r,]"c})))))’
where
k:=min{¢+j—1,N}, (5.113)
NCz ~NCj N J
! — 7y
Chiten = = : (5.114)
C’k N H (N k+ m) \”

Note that since 7](\’;) admits a decomposition

4B = Z A, ‘fu@ >< (5.115)
where Y °_ |\, <1 and f ,gm converge to zero in S,(RF), we see that
(K (@)
Tror, (’YNdH[PN](arl-‘rl?...,min{@-l—j—r,fc}))
(5.116)

- Z Am <f(k))dH (ar,e+1, min{f+j— rk})f@>’
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which is independent of the choice of extension of dH[I'y]) to domain S(R’) by the

permutation invariance of each fr(nk) Furthermore, the operator

(B ()
> Trl-i—l,.wk(’yN dH[FN](QT,E-H,...,min{l-i,-j—r,}}})) (5.117)

. €EPf

is invariant under the S, action, since P is invariant under the S, group action. Hence,
it maps into Sy(R?), and its left-composition with dF[I'x]®) is well-defined.

Using the bilinearity of the generalized trace, we obtain the candidate Hamiltonian
vector field

N min{£,j} ~
0 ._ ~ ) (k)
Xp () = Z Z Céjz%rzv Z (Tréﬂ,m,k (dH[FN](g,r,erl,...,min{ZJrjfr,l;})rYN )
j=1 r=ro a,€eP!

(k) €))
ook (%V dH[FN](Q,r,E+1,u.,min{€+jfr,lz})) :

(5.118)

We now verify that X, as defined above, is a smooth map &3, — &7, so that we may
conclude the proof by Remark 5.18. We claim that the right-hand side of the preceding
identity defines a continuous linear (hence, smooth) map

&y — P LISL(RF), S.(RY)). (5.119)
k=1

Linearity is obvious, and the map is continuous from

N
&y — P L(SL(RF), S(RF))

k=1

by Proposition B.8. That we may replace the target S(R*) by the bosonic subspace
Ss(R¥) is a consequence of the following facts: P! is invariant under the S, group ac-
tion, dH[T' x]¥) is Sj-invariant, and ’y](\l,c) is a fortiori Sy-invariant. The self-adjointness
of Xy (T N)(é) follows from the skew- and self-adjointness of dH[I" N}(j) and 'y](\l,}), respec-

tively, and the adjoint properties of the generalized partial trace. O
5.8. Density matriz maps as Poisson morphisms

We close this section with the observations that the well-known operations of forming
a density matrix out of a wave function and forming an N-hierarchy of reduced den-
sity matrices from an N-body density matrix respect the geometric structure we have
developed, in the sense that these operations define Poisson morphisms.
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We first define the density matriz map or ket-bra map from N-body bosonic wave
functions to N-body bosonic density matrices.

Definition 5.25 (Density matriz map). We define the density matriz map or ket-bra map
by

LDM,N ZSS(RN)—)g}kV LDM,N(@N) = ‘CI)N> <(I)N|:(I)N®E (5120)

It is easy to verify that ¢pys v is a smooth map from Ss(R¥) to gi,. We now show that
the density matrix map is a Poisson map. To prove this property, we recall from Defini-
tion 4.7 the requirement that ¢}, ), yApm,n C As. If F is smooth, then the smoothness
of tpap, n implies by the chain rule that f = Foipy n € C(Ss (RN); R). However, it is
not a priori clear that f € As, where we recall that As C C®°(S(RY);R) is defined by

As ={H : V,H € C*°(S(RV);S(R™))}, (5.121)
In the sequel, we will use the notation As y to make the dependence on N explicit.

Lemma 5.26. Let N € N. For any F' € Apm,n, the functional f = Foiwpun €
C>®(Ss(RN);R) belongs to As, . Furthermore,

st(q)N) :dF[LDM,N((I)N)]((I)N)a Vo ESS(RN), (5122)
where we identify dF[tpy,n(PN)] as a skew-adjoint operator by Remark 5.13.

Proof. Observe from the chain rule that for ®y, @y € Sy(RY),

df[@n](6@N) = dF[tpym, N (PN)(depy, N [PN](6PN))
= dF[tpm,n (PN)](|PN) (6P| + [0Dn) (D)), (5.123)

where we use the elementary computation
dLDM’N[(I)N](é(I)N) = |Dy) <5(I)N‘ + |0Pn) <(I)N‘ . (5.124)

Identifying the functional dF[ipyn(®wn)](-) with a skew-adjoint DVO given by
dF[tpm,n(®n)] as in Remark 5.13, we have that

dF[epa,n (PN)|([Pn) (6PN |+ [0Dn) (PN ])
=i Try,. N (dF[pam,n (PN)]([N) (6PN | + 6D n) (DN ]))
= 7;<5‘1>N‘dF[LDM,N(‘1>N)](I>N> +1 <‘I)N|dF[LDM7N[(I>N]5(I)N> .

Since dF[tpa,n (®n)] is skew-adjoint, the preceding expression equals
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i((S(I)N|dF[LDM’N((I)N)](PN> —1 <dF[LDM7N((I)N)](I)N‘5q)N>
= —-2Im <(5(I)N|dF[LDM,N((I)N)]CDN>
= Wrz2 (dF[LDJV[,N(q)N)}q)N; (5(1)1\[)
We claim that the map ®y +— dF[tpy n(Pn)] Py is a smooth map of Ss(RY) to itself,
which justifies our preceding manipulations. Indeed, suppose first that F' € Apun
is a trace functional. Then dF[tpy,n(Pn)] = dF[0], and therefore the claim follows
since dF[0] is a continuous linear map of Ss(R¥) to itself by definition of Apas n. The

general case then follows by the Leibnitz rule for the Gateaux derivative. Therefore, the
functional f has symplectic L? gradient

Vf(®n) =dF[tpm,n(PN)] PN,
and Vf is a smooth map of S,(R™) to itself, which implies that f € As y. O

We recall from (1.3) the definition for {-,-},., and we consider the rescaled Poisson
bracket

{~,~}L2’N = N{, } - (5.125)

Proposition 5.27. Let N € N. Then

oy ¢ (Ss(RY), As v, { }pe ) = (08 Apaws {3 gs,) (5.126)
is a Poisson map.

Proof. As observed above, the smoothness of tpy n is evident, and by Lemma 5.26,
Fouwpmn € As,y for any F € App,n. Hence, it remains for us to show that for all
Fa Ge ADM,N,

{Fowmn,Goipmun}tz n(Pn) = {F, G}g}‘v otpm,N(PwN), Vo € So(RM).
(5.127)
For convenience, we introduce the notation f := Foipy ny and g := G otpy,n. We
first consider the expression {f,g};. y(®n). Observe that by definition of the Poisson
bracket {-,-},2 y»

{f:9} 2 N(®PN) = Nwr2 (Vs f(Pn), Vsg(Pn))
= 2N Im <dF[LDM,N(q)N)]®N|dG[LDM7N(<I)N)](I)N> . (5128)

Now using the skew-adjointness of dG[tpy n(®n)] and dF[par,n(®n)], we conclude
that the last expression equals



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 65

N{@N|dF[tpm,N (PN)dG[epm, N (PN)]PN) — (PN [dGepr, N (PN)]AF o, N (PN)]PN))
=i Ty, ([P oarn (@3], dGlepar v (@) [€8) (@)
={F,G}y o tomn(Pn), (5.129)

which is exactly what we wanted to show. O

We next show that there is a linear homomorphism of Lie algebras &y — gxn induced
by the embeddings {ex v }ren. - We will then combine this fact with a duality argument
to prove that the reduced density matrix operation is a Poisson mapping

(g)lk\hADM,Na {'a }97\1) — (QﬁRvAH,Na {'7 }QS}‘V) (5130)

Proposition 5.28. For any N € N, the map

enn (AW, (5.131)

Mz

te Nt ON = gN, te N(AN)
=1

s a continuous linear homomorphism of Lie algebras.
Proof. Continuity and linearity are evident from the continuity and linearity of the maps

ex, v (recall Lemma 5.3). To show that tsym,n is @ homomorphism of Lie algebras, we
need to show that for any

An = (AD)keno . By = (BW )reny € G, (5.132)
we have that
te.n ([An, Brls, ) = [te.n(AN), ten (Bl - (5.133)

Consider the left-hand side expression. By the definition of the map ¢, the definition
of the Lie bracket [-,-]4 ~from (5.52), and Lemma 5.7, we obtain that

N
te,n ([An: Byl ) ZGkN(AN,BN](k)>

o
—

ern (CF))

M -

> [ena) (B

1 1<0,j<N
min{¢+j—1,N}=k

gN

>
Il

Using the partition
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N
{(4,5) € (Nen)? U € (Ney)? :min{l +j —1,N} = k}, (5.134)
we see that
N N N
Z Z |:6€N(A()> €]N B(J) } :ZZ{QN A() EJN(B(J))}
k=1 1<¢,j<N =1 j=1 aN

min{{+j—1,N}=k
(5.135)
By the definition of the map ¢,y and the bilinearity of Lie brackets, we observe that

N
> [een () e (BY)] = len(An). tex By, (5.136)
1j=1 N

WE

o~
I

which completes the proof. O

Finally, we show that there is a canonical Poisson mapping of g3, — &7} given by
taking the sequence of reduced density matrices.

Proposition 5.29 (RDM Map is Poisson). The map trpm,n : 9 — B given by

trpM N(¥N) =Tn = (%(\Izc))keNgNa 71(\1;) = Trpq1,. . N(Un) (5.137)

is a Poisson map.

To prove Proposition 5.29, we will show that trpas,n is the dual of the map tsum, N,
which, by Proposition 5.28, we know is a continuous linear homomorphism of Lie alge-
bras. We then appeal to the following general result, the statement of which we have
taken from [25, Proposition 10.7.2].

Lemma 5.30. Let (g,[,"],) and (b,[,]y) be Lie algebras. Let o : g — b be a linear
map. Then the map « is a homomorphism of Lie algebras if and only if its dual map
a* 1 b* — g* is a (linear) Poisson map.

Proof of Proposition 5.29. As stated above, we want to show that the reduced density
matrix trpar,n is the dual of the map

N
e Oy = oy, Av =AY, AR = Y G (Al (5.138)
k=1

Indeed, observe that for ¥y € gy and Ay = (Ag\];))keNSN € &, we see from unpacking
the definition of ¢¢ ;y and using the bilinearity of the generalized trace that
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N (U (An) = i Trr y (ten(AN)T ZzTr (c (AW ) (5.139)
NYN)(AN 1, N(te, N(AN)TN) 1. Nl€NAN)YN ). .

Unpacking the definition (5.8) of the map e, N(Ag\];)) and using the bilinearity of the
generalized trace again, we see that

k=1 k=1p epN
Hence using that ¥ is bosonic and Lemma 4.33, we have that

Try, N (A(k)

k k
Ny(pryepr) ©N ) = A1, N (ASV,)(l,...,k)‘I’N> =Tr1, K (AEV) Treta,.., N(‘I’N))

- Trlwk<A§§>~y§§>), (5.141)

where the ultimate equality follows by definition of fy . Since |PN| = 1/Cy N, we
conclude that

L:) ZlTI‘l k( ]\I;)’)/](\],C)> = iTI‘(AN . LRDM,N(\I/N))a (5142)

which completes the proof of the proposition. O
6. Geometric structure for infinity hierarchies

In this section, we compute the limit of the N-body Lie algebra (&, [, ]s, ) as
N — oo. We then show that in this limit, the higher-order contractions appearing
in formula (5.53) vanish. Consequently, the domain of definition of the Lie bracket
may be enlarged, for which we construct the Lie algebra (&o, [+, ] ) of observable
oo-hierarchies and dually, the weak Lie-Poisson manifold (&%, A, {-, -} 4. ) of density
matrix co-hierarchies. h

6.1. The limit of By as N — o0

In order to pass from the N-particle setting to the co-particle setting, we first study
the limit of the Lie algebra (&n, [, g, ) as N — ooc.

Via the natural inclusion map, we can identify &p as the subspace of the locally
convex direct sum

Foo = |J 6 =P ax (6.1)
N=1 k=1
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consisting of elements A = (A(k))keN7 where A®) =0 for k > N + 1. In our next result,
Proposition 2.4, we establish a formula for the limiting bracket structure for &...

Proposition 2.4. Let Ny € N. For A = (A(k))keN, B =(B®),cy € &N, , we have that

Jim [4, By, =C = (C")en, (2:20)
where
(k) .— GIE))
W= 3 Symk([A B L) (2.21)
0,5>1
L+j—1=k

in the topology of Foo-

Proof. Let k£ € N. For M > k, we have by Proposition 5.8 and the linearity of the map
€k, N that

Z 6];}\/1 < [EZ’M<A(£))’ Ej’M(B(j))} gM>

4,521

(+j—1=k
min{¢,j}
MCLMC'7M :
= Z Sym,, Z ——— [A(Z)’B(J)}
0,5>1 r=1 Ck:,M Ha:l(M —k + a’) T
(4+j—1=k
_ Z Sym, (MCé,MCj,M {A“),B(j)] )
01 k,M 1
(4j—1=k
min{¢,j}
MCy 3 C; )
+ ) Ssym| Y M5, M {Aw)73<a>}
05>1 = Cemllm(M —k+a) r
+j—1=k
=: Term; ps + Terms pr. (6.2)

We first consider Term; ;. Since

. MCymCjm . MHk:1(M +1—a) M
lim ——————— = lim 7 @ . = lim —= =1
Moo Cim M=o ([T, (M +1—a)([)oy (M +1—a)) Mmoo M
we see that
T = S ({A(Z),B(j)] ) 6.3
ermy s Z ymy, ) (6.3)

£,j210+j—1=k

as M — oo, in gg.
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We next consider Termg pr. Let 2 < < min{¢, j}. Since

y MCynCj m
1m 1
M=o Cyonm [[o=1 (M — k + a)

M][o_, (M +1-a)

= lim : _
M=o ([T (M +1 = a))(ITh—y (M + 1 — a)([[,Z1 (M — k + a))
_ Mk+1
T M M1
= N}im M-
—00
=0 (6.4)
we see that
Symy, MgfiMCj - {A“), BU)} —0, (6.5)
Ok,MHa:l(M7k+a) T

as M — oo, in gi. Summing over the ranges 2 < r < min{¢,j} and £ +j — 1=k, for a
total of finitely many terms, we conclude that

Termsg ps — 0, (6.6)
as M — oo, in gg, proving the result. 0O
6.2. The Lie algebra &, of observable co-hierarchies

As mentioned in the introduction, the simplified form of [-, ], allows us to take
advantage of the good mapping property and extend this bracket to a map on a much
larger real topological vector space, which we redefine &, to be, to obtain a Lie algebra
of observable oco-hierarchies. We rigorously construct this extension now.

We define gx gmp to be

Ok,gmp = {A") € Lgmp(Ss(RF), SI(RF)) : A®) = —(AW)7}, (6.7)
In words, gi, gmp is the real, locally convex space consisting of skew-adjoint elements of

Lgmp(Ss(RF), S2(RF)). We will hereafter refer to the elements of g gmp as k-particle or
k-body observables. We define the locally convex direct sum

Goo = P gk .gmp- (6.8)
k=1

We refer to the elements of &, as observable co-hierarchies. For
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A= (A")en, B=(BW)en € 60,

we define

o) = Symk( ) [A<e>,Bu>L>, (6.9)

where Sym; denotes the bosonic symmetrization operator defined in Section 4, which
we recall is given by

ne ¥ o ma
Symy, (A7) = - Z (r(1), (k) A1),y = TOALL g OT (6.10)
TESK

and where [A(Z), B(j)]1 is given according to (5.33) by

[A<z>73<j>} — A0 o, B — B o, AW

(0) (¢
—JA ..... z)(szﬂ ..... E+j1)>_£B (ZA(MH ..... j+£1))'

- (6.11)

The main goal of this section is to establish the existence of a Lie algebra of observable
oo-hierarchies, namely, to prove Proposition 2.7:

Proposition 2.7. (8, [-,]s_) is a Lie algebra in the sense of Definition 4.1/.

The construction follows closely our N-body approach in Section 5; however, there are
new technical difficulties that have to be considered. Indeed, &, contains more singular
objects than &y, and we have to heavily exploit the good mapping property in order
to handle this issue. We remind the reader the enlarged definition of &, as opposed to
simply the union of the &y, is necessary to accommodate the observable oco-hierarchy
—iW ¢ p which generates the GP Hamiltonian functional.

We first need to establish that the Lie bracket given by (6.9) is well-defined on &,
To this end, we must begin by giving meaning to the composition

(é) ©))
Al (ZBMH, i 1>> (6.12)

as an operator in £(S(R¥), S’(R*)), for which it will be convenient to proceed term-wise
by extending A®) and BU) to operators defined on the entire space S(R?) and S(R7),
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respectively, as described in Remark 5.5.%° For general A®) ¢ L(S(R?),S’(R?)) and
BU) € £(S(R7),S'(R7)), such a composition may not be well-defined, see Remark B.12,
and hence we appeal to the good mapping property of Definition 2.5 to give meaning to
(6.12). Tt will be useful in the sequel to observe that the definition of the good mapping
property says the following: let A € £(S(R?),S'(R?)) and (£, ¢0) € S(R?) x S(RY),
and for fixed z/, € R, consider the distribution in S’(R) defined by

() £(0) @ 4 .
o <A 7 <¢ Da g Ta, ))>S'(R@)78(R2)’ (6.13)
where
(¢ Oa g(é)('a ‘T/om )) (y@) = (b(ya)g(o (gl;a_lﬂ xixvga_i_l;g)» Qe € Re' (6‘14)
Then A € £,,,(S(R?),S'(R?)) if the element of S(R;S’(R))* defined by
o AOFO (Y g O o 1
v (A0, 0 @0 g0l ) o (6.15)

may be identified with a (necessarily unique) Schwartz function ®(f©, () in S(R?) by

(010,000 90C,a0) = [ bl o), T e R
R

(6.16)
and the assignment ® : S(R?) x S(R*) — S(R?) is continuous.

Lemma 6.1 (o2 contraction). Leti,j € N, letk =i+ j—1, and let (o, 3) € N<; x Ng.
Then there exists a bilinear map, continuous in the first entry,

o L L(S(RY),S'(RY)) X Lymp(S(RY), S'(RY)) — L(S(RF), S'(R¥)), (6.17)

[e%

such that A® of BU) corresponds to

NG

1) (1, i - B—1,ani+ B, k) (618)

49 of B = 4
when AW € L(S(R?),S(R?)) and BY) € L(S(R’),S(R7)) or AW € L(S(R?),S'(R?))
and BY) € L£(S'(R7), S8 (RY)). If we replace the domain space L(S(R?),S'(R?)) for the
first entry by Lgmp(S(RY), S'(R?)), then the bilinear map

28 We will see later that the choice of extension is immaterial.

29 Given a Hausdorff locally convex space E, we let S(R?; E) denote the space of functions f € C°(R%; E)
such that for each pair of d-dimensional polynomials P and @ with complex coefficients, the union
Uzere {P(2)Q(02) f(x)} is contained in a bounded subset of E. We endow S(R%; E) with the topology
of uniform convergence of the functions P(z)Q(9,)f(x), for all P and Q.
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0%+ Lomp(S(RY), 8'(R")) X Lgmp(SR?), 8'(R?)) = Lgmp(S(R®),S'(RF))  (6.19)
is continuous in the first entry.

Remark 6.2. Using this lemma and bosonic symmetry, we note that we can rewrite our
definition of [+, -], from (5.33) using the contractions of as follows: Let 4,j € N and set
k:=1i4j—1. We extend [+, -], to be the bilinear, continuous in the first entry, map

[y Lamp(SRY), S'(RY)) X Lip(S(RT), S'(RT)) = Lyinp(S(RY), S'(RY))

o LNNE R . . , 6.20

(A(l)’B(J)) — Z ZA(Z) o B _ gU) 0% AW, ( )
a=1p8=1

for o8 and o3 as in Lemma 06.1.

Proof of Lemma 6.1. We first show that for fixed f € S(R¥), there is a well-defined
element

(AW o8 BUY(f) € S'(R¥) (6.21)
corresponding to
AW BW (f) (6.22)
(1,0i) P (i+1,. i+ B—1, 0,54 B, k) \ ) :

Let g € S(R*). Now it follows from the assumption that BU) has the good mapping
property and Remark B.13 that the bilinear map

(F19) = (BEL st T Eamtr s Zasn D), O @9 ) o (6.23)
which is a priori a bilinear continuous map
S(R*) x SR¥) = Sz, 12 1xny(RTXRT X RS, (R)), (6.24)
is identifiable with a unique smooth map
D) ap : SRY) x S(RF) = Sy, 1) (R¥). (6.25)
Since we have the canonical isomorphism
L(S(RY),S'(RY)) = S'(R%) (6.26)

by the Schwartz kernel theorem, we therefore define the composition (6.21) by

<(A(Z) Og B(j))fa g>5'(]Rk)—S(]Rk) = <KA(i) ’ (PBU),a,,B(f, g)t>8/(R2i)_S(R2i)3 (627)
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where

P ap(fr9) (@i 2)) = Ppuas(fr9) (@) z;), (z;,z) € R*.

Hence, taking (6.27) as the definition of (6.21) for f € S(RF), we have defined an
evidently linear map

AD o8 BU) ;. S(RF) — S'(RF). (6.28)

The continuity of this map follows from its definition as a composition of continuous

maps. Bilinearity of of in A®) and BU) is obvious. Moreover, it is clear that if B() has

the good mapping property, then A(*) o8B () has the good mapping property. Lastly, the

reader can check from the distributional Fubini-Tonelli theorem that our definition of

A® o8 BUY) coincides with the composition (6.22) in the cse where A®) € £(S(R?), S(R?))

and BY) € L(S(R7),S(R7)) or AW € L(S(R?), S’ (R?)) and BY) € L(S'(R7),S'(R7)).
We now prove that the map

() oa () LIS(RT),S'(RY) % Lgmp(S(R?),S'(R?)) = Lamp(S(RY),S'(RY))  (6.29)
is continuous in the first entry, that is, for fixed BY) € £y,,(S(R?), S’(R?)), the map
L(S(RY),S'(R)) = Lomp(S(R¥),S'(R¥)), AW A o BU) (6.30)

is continuous. By considerations of symmetry, it suffices to consider the case (a, ) =
(1,1). To this end, it suffices to show that given a bounded subset }’*) € S(R¥), there
exists a bounded subset /() € S(R?) such that

sup
F) g(R) er ()

<(A<z'> ol B<j>)f(k>’g<k>>’ < sup
£ g(0) eR()

< AD @)

g(i)>’ . (6.31)
To see how to obtain the desired seminorm, first observe that

’<(A(i) o} B(j))f(k)‘g(k)>‘ = ‘<KA(1'>’¢B<1>,1,1(f(k),g(k))t>

S’ (RQI)_S(RQ’L)

= ‘Tl"l ..... i (A(i)q’3<j>,1,1(f(k)ag(k))) ’ ) (6.32)

where the ultimate equality follows from the definition of the generalized trace (recall Def-
inition B.5) and we commit an abuse of notation by using ® ;) 1.1 (f*, g*)) to denote
the operator in £(S'(R?),S(R?)) defined by this integral kernel. Since R*) is bounded,
the image ® o) 11 (R® x RK)) is a bounded subset of S(R*) = L(S'(R?), S(R?)), and
since A is continuous, it follows that

sup
L0 xR (R

Try (A(i)'y(i)ﬂ < oo. (6.33)

TDER L) 4,
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Hence, there exists an element véi) € @B(j),lvl(%(k) x /)Y such that

> sup
2 e ) 1.0 (RO X))

Try,.. (A(i)%()i)) ’

Try,. (A(i)’y(i)> ‘ . (6.34)

Since each element of S(R%) can be written as Y, ; )\efg(i) ® géi), where >,° [A| <
1, and féz),géz)
continuity of the generalized trace that

are sequences in S(R") converging to zero, we see from the separate

[Ty (A950)| < S0l [T (A0 @ 6]

< sup ‘<A(“f“), 9 sirey—smo| - (6-35)
f) g0 )E{f“gugég/}y:l

We claim that { g, 90 e}z 1 is a bounded subset of S(R"), which then completes the
proof. Indeed, this follows readily from the fact that f, (zz’ g( 0,¢ converge to zero. O

Remark 6.3. If we restrict the domain of the map of to the space

Lgmp+(SR),S'(R")) X Lgmp,»(S(R7), S'(R7))

consisting of distribution-valued operators satisfying the good mapping property such
that their adjoints also satisfy the good mapping property, which we endow with the
subspace topology, then it follows by duality that o is separately continuous on this
space.

Remark 6.4. If BY) € £,,,,(S5(R7), S/ (R7)), then it follows from bosonic symmetry that
for any (o, ) € N<; x Ngj,

AW B BU) = A4 o1 BU), (6.36)
Remark 6.5. If A() € E(S (R%),S'(R%)) and BY) € Lg,,(Ss(R7),S,(R7)), then given
two extensions A1 LA € L(SR?),S'(RY)) of A(Z , we claim that
ZA( Dol BU ZA( Dol BU) € £(S,(RF),S'(RF)). (6.37)
a=1

Indeed, for f € S;(RF), g € S(R¥), we have that

i

Z(Qa (Aﬁi) o4 B(j))f>$(]Rk)7$’(]Rk)

a=1
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Z< K405 ®p0,a,1(f) 9) >S, (R S(R2)’ (6.38)

Since cach ® i) o1 (f,9) € S(R?) and f € Sy(R¥), we see that

Z(PBU) a,l f7 Z(I)B(J) a, 1 f7 ( L3 z) ( Ly z) € RQZ (639)

for any permutation 7 € S;. Consequently, for fixed 2! € R? the functlon
Zlazl P .a1(fr9)(,z}) belongs to Ss(R*) on which the two extensions A( ) and A
agree. It then follows from the Schwartz kernel theorem that

i t
<KA§i>7 (Z q)B(j),a,l(f? g)) >
a=1 S'(R2i)—S(R27)
i t
= <KA;7:>7 (Z i) a1 (f; g)) > ; (6.40)
a=1 8’ (R2)—S(R2%%)

4 %

Z<g’ (A ol B f) sy i) = Z(% (A o} B f)smey-simrys  (6.41)

a=1 a=1

and therefore

which establishes our claim.
By Lemma 6.1,
AO B BUY e £ (S(R¥), S (RF)),  for b+j—1=k (6.42)
Hence, by definition of the bracket [-,-]; and Remark 6.2,
3 [A“), B(j)] € Lymp(Ss(RF), S'(R¥)). (6.43)
£5>1 !
Cj—1=k

Thus it remains to show two properties: first that the symmetrization of an oper-
ator preserves the good mapping property, which will then establish that C®) <
L ymp(Ss(RF), S!(RF)), where C®) is defined according to (6.9), and second that C*) is
skew-adjoint. We begin with the following lemma which establishes the desired property
of the symmetrization operators.

Lemma 6.6. If A = (A®),cn € Doy Lomp(S(RF), S’ (RF)), then

Sym(A) € @,cgmp ), S!(RF)).
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Proof. It suffices to show that for each k € N, if A®) € £,,,,.(S(RF),S'(RF)), then
Symy,(A™)) € Lomp(Ss(RY), SLRY)).
Let o € N<. We need to show that the map

S (R¥) x 8,(R*) — S(R; S'(R))

(f ) g®)) <Symk(A(k))(f(k)), () ®a g(-, 2, )> (6.44)

S/ (RF)—S(R¥)

may be identified with a continuous map S(R*) x Ss(R¥) — S(R?). By definition of the
Sym,, operator and bilinearity of the distributional pairing, we have that

<Symk(A(k))f(k), () Qa g(k)(" l‘;, .>>8/(Rk)—S(Rk)

(k) (. By (. o .
= 2 (A8 f PO @ag P ) (6.45)

TESEK

By definition of the notation AE:)( =T7o Agk)k o1, we have that

1), (k)
(k) *) (. k) (. 4

<A<w Werin > () @a g (5 2, )>S'(]Rk)7$(]Rk)

_ <A(k)(f(k) or Vo () ® g™ (2, .)>

= (AW om, () ®ag® (2l

S/ (RF)—S(RF)
7 6.46
)>$’(Rk)—S(R’C) (6.46)

where the ultimate equality follows from the assumption f*) € S,(R¥). Let ¢ € S(R)
be a test function. Then by definition of the permutation of a distribution,

(AW (FO) o, 6@ g (0 a,->>s,(Rk)_S(Rk)

= (AW ), (6 @q g (2 )) o) . (6.47)

S'(R¥)—S(R¥)
Observing that
((¢ Ra g(k)('v LU/D” )) o ﬂ—_l)(gk)

= g(k) (x‘n'_l(l)a sy Tr—1l(a—1)s x:)m Tr—1(at+1)s -+ ajﬂ'_l(k))(b(xﬂ'_l(a))7 Ty € Rk?
(6.48)

upon setting j := 7~ (a) and using the bosonic symmetry of g*), we obtain that

(((b Oa g(k)('v xlcw )) © W_l)(gk) = g(k) (ijlﬂ x/omzj+1;k)¢(wj) = (d) ®j g(k)('7 x/cw ))(gk)
(6.49)
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Since A®) has the good mapping property, we have that

<A(k)f(k)7 (b ®j g(k)('vxfxv . = <®A(k),j(f(k)7g(k))('vl‘/a

), ¢>S’(R)78(R)’
(6.50)

)>S’(Rk)7$(Rk)

where ® 40 ; : S(RF) x S(R*) — S(R?) is a continuous bilinear map. Since Sy(R¥)
continuously embeds (trivially) in S(R*) and since o € N<j, was arbitrary, we conclude
that (6.45) is identifiable with a finite sum of continuous bilinear maps S;(R*) xS, (RF) —
S(R?), and the proof of the lemma is complete. O

Finally, to conclude our proof that the Lie bracket is well-defined, we only need to
verify that C*) defined according to (6.9) is skew-adjoint. This is a consequence of
Remark 6.2, Remark 6.5, and the following lemma.

Lemma 6.7. Let i,j € N, and define k =i+ j — 1. Let AW € L,,,,(S(R?),S'(R?)) and
BY) € Lymp(S(RT),S'(R7)) be skew-adjoint distribution-valued operators. Then for any
(o, B) € Ng; x Ngj,

(A(l) Og B(]))* = (B(J) Og A(i))(i+1,...,i+,8—1,a,i+/3,...,k,l,“.,i) € Cgmp(S(Rk)aS/(Rk))'
(6.51)

Proof. By considerations of symmetry, it suffices to consider the case where (a, ) =
(1,1). Recalling the definition of the adjoint of a distribution-valued operator, see
Lemma B.1, we need to show that

(B(j) o% A(i))(1,i+1 ..... k2,..., i)g7f>
< S/(R*)—S(RF) (6.52)

J )fﬂ§>s/(Rk)_S(Rk)7
for any f,g € S(R¥). By Lemma B.11,

(4) (4)
Ay and By g
are both skew-adjoint elements of Lg.,,(S(R), S’ (R¥)). Now by density of linear
combinations of pure tensors, linearity, and the continuity of the operators AE?M i)

B

(Lit1... k) and A o BU) it suffices to consider the expression

((A®) of BU)F, §>5/(Rk)7$(Rk) (6.53)

in the case where f,g € S(R¥) are pure tensors of the form
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k k
= ®fa and g = ®ga, (6.54)
a=1 a=1

respectively, where f1,..., fx, 91, ., grx € S(R). Recalling the definition (6.27) for Ao}
B we have that

<(A(Z) O% B(j))f7 §>31(Rk),3(]Rk) = <KA(1?)7CI)B(j),1,1(f7 g)t>sl(R2i)_S(R2i)'

An examination of the ® 5 (f, g) together with the tensor product structure of f and
g reveals that

(I)B(J)ll(f7 _7,’ z ®fa .’1721 ®97a) (QD

a=1
=:fG- —gD gD
k k
X <B(J’> <f1® X fa>,(~)® X g—a> (z1).
a=i+1 a=1i+1 S’ (R3)—S(R7)

(6.55)

Since BUY) has the good mapping property, it follows that the element of S, L (R) defined
by the second factor in the right-hand side of (6.55) is in fact an element of S(R), which
we denote by

k k
$B6) 1 <f1® ® fa, ® ga> = ¢B(J’),1(f(j)ag(j_1))' (6.56)
a=i+1 a=i+1

Thus, using (6.56) and (6.55), we can write

q)B(f) 1 1(fa )(gwgz)
= 6pw 1 (9,90 D) (@) O (@y,)9M (@))g D (ah),  (2;,2)) € R,
(6.57)

and

<KA(1) ; ¢B(j>71,1(f7 g)t>8’(R2i)—S(R21)

_ <A<i> (¢B(j),l(f< ), gG-D) @ fli- 1) W> o (6.58)

5/(R)-S(RY)

by the Schwartz kernel theorem. Since A is skew-adjoint, we have that this last ex-
pression equals
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(A0 (3 @ 171, 6p0) 1 (F0), g0D) & f6-D)) (6.59)

S'(Ri)—S(Ri)

Now since A also has the good mapping property by assumption, the element of S, (R)
defined by

_<A(z‘) (gm ® g<i—1>)7 ()@ W>S/(Ri%$(w) (6.60)

is identifiable with a unique element of S,, (R), which we denote by
—pama(g" @ gV, i), (6.61)

Using (6.61), we see that

(6.59) = — / dzg 4 1 (g™ @ gV, FED)(@)d i 1 (fO), gU—D) (). (6.62)
R

After unpacking the definition of the Schwartz function ¢B<j>71(f(j),g(j*1)) given in
(6.55) and (6.56), it follows that

6.62) = { B f0), ¢ 400 (gD @ g1, f-D) @ gli=1)
(6.62) < F9O 04019V @ g0, 7D @ g >$’(]RJ')*S(R")

—(BY (4,0 (g0 @ gD FGE1) g gi=DY) F&)
<B (¢A<1>,1(g ®g"V [V @y )’fj>5f<m)fs<m>

5/(R2)—S(R2)
(6.63)

where we use the skew-adjointness of B(Y) to obtain the penultimate equality and the

Schwartz kernel theorem to obtain the ultimate equality.
Our goal now is to show that

(¢A(i),1<g(1) ® g0V, fiD) ® g(j‘”) ® fO) (2 2)

_ (6.64)
= <I’A<i>,1,1(9 om, fo W)(lj;ig-)
where m € Si, is the permutation
1, a=
ma)=<a+j—1, 2<a<i (6.65)
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With (6.64), we then have by definition of the composite distribution BU) o} A% see
(6.27), and the notation

(B(j) O% A(i))(1,i+1,...,k,2,4..,i)7

see Proposition B.10, that

(()03) = <KB(J') ) (I)A(ﬂ,l,l(g o, f_o Tr)t>5/(R2j)_S(]R2j)

_ /(B o 46
<(B o1 A )(QOW)’fOﬂ>s/(R’“)—S(R’“)

_ ((BYD) ot AD)Y,, . . > 6.66
<( o] )(17 +1,..,k,2,...,0) 95 f SR SRF)’ ( )
which is exactly what we needed to show.

Turning to (6.64), observe that

i k
(g o W)(@k) = g(l‘1,l'j+1, ceey Tk L2y - - ’xj) = 91<x1)(® ga)(QjJrl;k)( ® ga)(£2;j)’
a=2 a=1+1
(6.67)

and similarly for (f o 7). By the same analysis as in (6.55), it then follows that

Dy qa(gom fom)(zial) = ( ® 9a)(&25)( ® fa)(xa) (1)

a=i+1 a=i+1
o -1
X <A(1)(®ga)7(')®®fa> (1'1)
a=1 =2 [ sR)-S®RY)

= ¢A(i)71(g(1) ®gli=h, f(i‘l))(fcl)g(j‘l)@z;j)f(j)(w}),
(6.68)

as desired. O
We now turn to the proof of Proposition 2.7.

Proof of Proposition 2.7. We first verify the Lie bracket Properties 1-3 in Definition 4.14.
Bilinearity and anti-symmetry are immediate from the linearity of the bosonic sym-
metrization Sym operator, see (6.10) above, and the bilinearity and anti-symmetry of
the bracket [-,-];.

To verify the Jacobi identity

(A, [B,C)|® +[c,[4, B]™ + [B,[C, A|® =0, (6.69)
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we use our convergence result Proposition 2.4 together with the fact that [, ']QSN is
a Lie bracket by Proposition 2.1. Let A, B,C € &, where A = (A®),cn,B =
(B®)en, C = (C)en. Note that since B, is a direct sum, there exists an Ny € N
such that A®) = B®) = C®*) = 0 for k > Ny. Now by mollifying and truncating the
Schwartz kernels of the k-particle components A®*), B() (%) e obtain approximating
sequences

Ap, = (AN, Bny = (BY))ken, Cny = (C)ren € 0o N EP LIS (RY), S, (RY))
k=1
(6.70)
such that for all (ny,ns,n3) € N3, ASZ? = B,(LIZ) = C’r(Ll;) =0 € gr,gmp for K > Ny. In
particular, A, , By,, Cp, € &) for any integer M > Ny. Now for such M, we know from
the Jacobi identity for [+, ]~ that

[A7L17 [Bn27Cn3]@M]®M + I:C’nga [An”an]@M]QﬁM + [an’ [CTLS’AH1]®JVI]QSM
=0€ 6y C By (6.71)

Consequently, for fixed (ny,n2,n3) € N?, we obtain from Proposition 2.4 that

O = hm ([An17 [anvcns}éM]@M+ [Cns’ [An1’Bn2}®M]@M+ [an [On37An1]®M]Q§M)

M—o0

= [Anlv[anvcng]ajoo]@ +[Cn37[An1’Bn2]Qjoo]@ —&—[an,[CnS,Am]@w}@ : (672)

oo oo oo

Next, using three applications of the separate continuity of the bracket [-, -] .. established
below, we have that

A5 oo, = i o A B OlasJo - (679)
[Ca [Av B]ﬁm] & = n}gnoo nlgnoo nlli)noo [Cn3’ [An1 ’ BHQ]QS:XJ B’ (674)
[B7 [07 A]st’jl Goo - n}linoo nlgnoo nlli)noo [an [Cn3 ’ Anl]@“’} Goo (6.75)

Summarizing our computations, we have shown that

Mn1—>00 Ng—00 N3 —00 M —00 M

0= lim lim lim lim ([Anl,[Bn2,Cn3]®M]®M+[Cns,[Am,Bm]@M]@

+[B7127 [Cnsﬂ Anl]QSM}ﬁM)

=[A,[B,Clg_l], +[C.[ABlg_]s +[BC Als_] (6.76)

(G288 (G288 6o’

which completes the proof of the Jacobi identity.
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Finally, we check that the map [, ~]Q500 is separately continuous. By linearity, it suffices
to show that for each fixed £,j € N and fixed a € N, the binary operation o} is
separately continuous as a map

Oi P 8e,gmp X Bj,gmp 7 ﬁgmpy*(S(Rk),Sl(Rk)) (6.77)

where k := ¢+ j — 1 and where the space Ly, «(S(R¥), S'(RF)) consists of distribution-
valued operators satisfying the good mapping property such that their adjoints also
satisfy the good mapping property, endowed with the subspace topology. This property
follows from Remark 6.3 together with the fact that the adjoints of elements in gs gmp
and g, gmp also satisfy the good mapping property by skew-adjointness. Thus, the proof
of the proposition is complete. 0O

6.5. Lie-Poisson manifold &% of density matriz oo-hierarchies

In this subsection, we define the Poisson structure on &% , which will be used in the
sequel in order to establish Hamiltonian properties of the GP hierarchy. Since many of
the proofs from Section 5.2 carry over with trivial modification, as they do not make
use of the good mapping property, we focus instead in this section on the parts of the
construction which require the good mapping property. To begin, we define the real
topological vector space

6% ={T=(1")ken € ﬁ L(S{RY),S,(RM) : 4™ = (1*)* vk e N}, (6.78)
k=1

endowed with the product topology.”’ Analogous to Lemma 5.14, it holds that &7, is
isomorphic to the dual of (&.)*.

Lemma 6.8 (Dual of B,). The topological dual of &, denoted by (Go)* and endowed
with the strong dual topology, is isomorphic to &% .

We now need to establish the existence of a Poisson structure on &% . We start by
specifying a unital sub-algebra of C*(&*_; R).

[o'eR]

Definition 6.9. Let A, be the algebra with respect to point-wise product generated by
functionals in

(FeC™=(®;R): F(-)=iTr(A), A€ &} U{F € C®(®";R): F(-)=C € R}.
(6.79)

30 We remark that &7_ is the projective limit of the spaces {&% }nen directed with respect to reverse
inclusion.
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In other words, A is the algebra (under point-wise product) generated by constants
and the image of &, under the canonical embedding into (&} )*. We note that our
previous remarks Remark 5.16, Remark 5.17, Remark 5.18 carry over with Ay y replaced
by As.

We now wish to define the Lie-Poisson bracket {-,-}4. on A. x Ay using the Lie
bracket constructed in Section 6.2. In order to so, we first need an identification of
continuous linear functionals as skew-adjoint operators, which follows from Lemma 5.19.

Lemma 6.10 (Dual of &% ). The topological dual of &%, denoted by (&% )* and endowed
with the strong dual topology, is isomorphic to

B ={Ac éz(ss(mk),sg(w)) S(ARYy = — ARy (6.80)
k=1

equipped with the subspace topology induced by @re, L(Ss(RF), SL(R¥)), via the canon-
ical bilinear form

iTr(A-T)=iY Ty x(ADH), T =(W)en € 6% (6.81)

Remark 6.11. The previous lemma implies that, given a smooth real-valued func-
tional F' : &% — R and a point I' € &%, we may identify the continuous linear

oo

functional dF[T'], given by the Géateaux derivative of F' at I', as a skew-adjoint ele-
ment of @ro; L(Ss(R¥),S,(R¥)). We will abuse notation by denoting this element by
dF[[] = (dF[I]®™)yen.
We are now prepared to introduce the Lie-Poisson bracket {-, }4. on As X Ax.

Definition 6.12. For F,G € A, we define

{F,G}g. (I')=iTr([dF[[],dG[I]s_-T), VI € &7%,. (6.82)
Remark 6.13 (Ezistence of Casimirs). The functional F(T') := Try(y?)) is a Casimir®!
for the Poisson bracket {-,-}4. . Consequently, the Poisson bracket {-,-}4. is not canon-
ically induced by a symplectic structure on &%_.

We now turn to our ultimate goal of this subsection, that is, proving the following:

Proposition 2.8. (&%, A, {-, -} s+ ) is a weak Poisson manifold.

31 j.e. it Poisson commutes with every functional in A.
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Properties 1 and 2 in Definition 4.1 for weak Poisson manifolds are readily proved using
the same arguments in the proofs of Lemma 5.22 and Lemma 5.23, respectively, together
with the following technical result, which in turn follows from the same argument as in
Lemma 5.21. We omit the details of the verification of these properties.

Lemma 6.14. Suppose that G; € A is a trace functional G;(I') = i Tr(dG,[0] - T') for
J =1,2. Then for all T € &, the Gateaux derivative d{G1,G2}g. [I'] at the point T
may be identified with the element

[dG1[0], dG2[0]] s € Goo (6.83)

via the canonical trace pairing. If G1 is a trace functional and Gy = G2,1G2z2 is the
product of two trace functionals in A, then d{G1,Ga}g. [I'] may be identified with

G2,1(D)[dG1[0], dG2,2[0]] g + G2,2(I)[dG1[0], dG2,1[0]] (6.84)
for allT' € & wvia the canonical trace pairing.

Property 3 is more delicate: to show that the Hamiltonian vector field is well-defined,
we have to exploit the good mapping property. Analogous to the proof of Proposition 2.7,
rather than prove directly the well-definedness of the Hamiltonian vector field, we can use
our earlier investment of work in proving Lemma 5.24, which gives an explicit formula
for the N-body vector field, together with our convergence result Proposition 2.4 and an
approximation argument.

Lemma 6.15. (&%, A, {-, } - ) satisfies Property 3 in Definition j.1. Furthermore, if
H € A, then we have the following formula for the Hamiltonian vector field X :

00 4
Xp(M)'D =3 jTreen evj ( [Z H [F}Ei),eﬂ,...,ﬁj_lyv“”’”] ) (6.85)
a=1

j=1

Proof. Let F, H € A. In order to find a candidate Hamiltonian vector field, we compute
{F,H}. using an approximation to reduce to the case where F' and G belong to Ax v,
for all N Oguﬁiciently large, together with the N-hierarchy Hamiltonian vector field result
Lemma 5.24 and our convergence result Proposition 2.4. Once we have found a candidate,
we then verify that the vector field is a smooth map &}, — &7, which then completes
the proof by the uniqueness guaranteed by Remark 4.2.

By definition of A, the functionals F' and H are finite linear combinations of finite
products of trace functionals generated by elements in &:

Ma,F Ma,H

Mp My
F(T) =Y Cop [[ iTr(Apr-T),  HT) =Y Con [] iTr(Apu-T), (6.86)
a=1 a=1

b=1 b=1



D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054 85

where MF;MHvMa,F;Ma,H S N, Ca,FacaA,H S R, and Ab’p = (A[(){C[):‘)keNva,H =
(Al(,k]){)keN € B4 . Additionally, since B, is a direct sum, there exists an integer Ny € N
such that for each 1 <a < Mp and 1 <b < M, f,

AIEkI)? =0 € gk, gmp> V1<k< Ny (6.87)

)

and similarly for Agk}{ So by mollifying and truncating the Schwartz kernels of each
Ag?},AIE?{, we obtain approximating sequences A, p = (Asfl)),F)kGN and AppH =

(Agfz)),H)keN, such that

An,b,Fa An,b,H € 600 N @ ‘C(S; (Rk)ass(Rk))7 (688)
k=1

Appr = App,and Ay p g — Ap g in B as n — oo. In particular, each Ay, 4 7, App o €
&y for every integer M > Ny. Now using the approximants A, p 7 and A, g, we can
define sequences (F),)nen and (H,)pen of functionals in Ay, by

Mp Ma,,F My Ma.,H
FoM) =Y Cor [[ iTr(Anpr-T),  Ho(M) =) Con [[ iTr(Ansn 1),
a=1 b=1 a=1 b=1

(6.89)
such that F,(I') — F(T') and H,(I') — H(T') as n — oo uniformly on bounded subsets
of &% . Lastly, note that by the Leibnitz rule for the Gateaux derivative,

dF,[T),dH,[T] € &y, VM > N, (6.90)

and dF,[I'l — dF[I] and dH,[I'] — dH[T] in @2, L(Ss(RF),SL(R¥)), as n — oo,
uniformly on bounded subsets of &_.

Now by separate continuity of the Lie bracket [, ~](,500 and the separate continuity of
the generalized trace (see Proposition B.7), we obtain from the definition of {-, -} o that

{F,H}g. (V) =i Tx([dF[),dH[lg_ -T)
=i lim lim Tr([dF,,[I),dH,,[[Y]s_-T)

nig—0o00 Ng—00
= lim lim {F,, Hy,}e. (D), (6.91)

n1—00 Ny —00

for each I' € &} . Since
dF,,[[)® = dH,,[[]™ =0 € grgmp, Yk > No, (n1,m2) € N2, T e &%, (6.92)

it follows from an examination of the definition of [dF,, [I'], dH,, [F]]Qim that

[dFy, [T),dH, [T =0 € grgmp, Yk >2No+1, (ny,n2) € N2, T € & (6.93)
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Therefore, if I' = (y*)) ey € &7, then letting T'pr = (v*))M | be the projection onto
an element of &3,, for M > 2Ny + 1, we see that

Tr([dFy, [T], dHn, (D] - T) = Te([dFp, [T], dHp, [T - T2ng+1)
= Tr([anl [F2N0+1]a dHn2 [F2N0+1HQSOO : F2N0+1)'
(6.94)

For each (n1,m2) € N2, we have by Proposition 2.4 and the separate continuity of the
generalized trace that

TI‘([anl [F2N0+1]7 dan [F2N0+1]]QSOO ' I—‘21\704-1)
= Jim Tr([dF, [Cang 1], dHn, [Dang 41l - Tang+1)- (6.95)

For M > 2,41, we have by Lemma 5.24 that

iTr([dF"Ll [F2N0+1]’ dan [F2N0+1HQSM . F2No+1)
= {Fnl?an}ai}*w (F2N0+1)

No
= Ty . (dFm Fong+1] X, o3, (F2N0+1)(6)>7 (6.96)
(=1
where
Xn,, o5 Cang+1)”
M min{¢,j} ) ®)
= Z Z CéjkrM Tropr, ok Z dHp, [F2N0+1}(JQT,£+1,...,111in{€+j—r,k})’72N0+1
j=1 r=ro a,EP!
(6.97)
and where

E=min{{+j—1,M}, ro:=max{l,min{l,j} — (M —max{{,j})}, (6.98)

and

J ) MConCim (6.99)

Clirrns = < .

Lakr M r Ok,M Hrm_:ll(M—k—Fm)
Since anl[FQNOJrl](e) =0 € gy and dH,, [F2N0+1](j) =0 € g;, for £,7 > Ny, we see
upon substituting the right-hand side of (6.97) into (6.96) that, for any M > 2Ny + 1,
only pairs (¢, ) satisfying £+ j — 1 < M give a nonzero contribution to the resulting
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expression. Similarly, only pairs (¢,j) such that rg = 1 give a nonzero contribution to
(6.96). Therefore, we may write

Xu,, o3, (Tang+1)
M min{¢,j} ) @ )
j +i—1
=Y > Chren Tresrerj—1| | D dHu[Tongs1)(h rirosjory Yongs
Jj=1 r=1 a, Pt
(6.100)
By the analysis from the proof of Proposition 2.4, we have that
. J, r=1
lim Cpipppr = . 6.101
Moo HIkTM {0, 2 <r < min{/, j} ( )

Since the summands in (6.100) are zero for j > Ny, it then follows that

Xn,, e Tang+1)"

oo 14
—>g* i ] 04j—1
e LSRR (D SYLNUSS AN 7
Jj=1

a=1

::XHnQ‘QS;o (F2N0+1)([)

(6.102)

The preceding convergence result implies, by the separate continuity of the generalized
trace, that for fixed (ny,ns) € N2,

M—o00

No
lim ZiTrL---,/f(dFm[F2N0+1](€)XH7127634(F2No+1)“))
(=1
N (6.103)

=i M1 (dF Can 1] X, 0, (Tavgs1) )
=1

Recalling from (6.92) that dH,,[Tan,11]Y) = dH,,[[]Y), for all j € N, and
WAIED =D for 04§ — 1< 2Np + 1,

by definition of the projection I'an,+1, we obtain that

[e%S) 4
Xu,, e, Tang+1) = Zj Tropr, evj—1 ( [Z dHy, [T Ei),eﬂ ..... t+5—1)’ V(HJD] ) '
a=1

j=1

::Xan (F)(@
(6.104)



88 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054

for £ € N<y,. Similarly, by (6.92), dF,, [Tan,+1]* = dF,, [[]®, and so we have that

No No
S iTr (dFm Cong41]© X s, 62 (F2N0+1)<€>) =Y iTr (anl 01O X, (F)“f)).
/=1 =1

(6.105)
We now proceed to the analysis of the iterative limits ny — oo followed by ny — oc.
Since

dH,,[I'] — dH|T]

in &, as no — o0, it follows from Proposition B.10 and the universal property of the
tensor product that the (¢ + j — 1)-particle extensions

— dH [TV (6.106)

()
dHp, [T (b1, j—1)?

J
(41, 045—1)
in Lymp(SRHI7L) S(RAHI7L)) as M — oo for I' € &%, fixed. The continuity of the
commutator bracket, the good mapping property, and the separate continuity of the
generalized trace imply that

X, (') — Xu(), (6.107)

in [To2, £(S,(R¥),Ss(R¥)) as ny — oo. Moreover, the continuity of the adjoint operation
(see Lemma B.1) and the self-adjointness of X, (') imply that Xp(I') is self-adjoint,
hence an element of 8. We note that writing X (I") is a slight abuse of notation since
we have not yet verified that Xy satisfies all of the desired properties, but this limit,
Xpg, will be our candidate Hamiltonian vector field from the statement of the lemma.

For each n; € N fixed, the separate continuity of the generalized trace and the fact
that dF,, [T']) =0, for £ > Ny, then implies

nignoo i Tr(dF,, [T - Xu,, (1)) =i Te(dF,,[I'] - Xg(I)). (6.108)
Since dFy,, [['] = dF[[] in &, as n; — 00, by construction of the approximations F,,,
another application of the separate continuity of the generalized trace yields

lim iTr(dF,, [[]- Xg(T)) =i Te(dF[T] - Xg(T)). (6.109)

ni—00

After a little bookkeeping, we have shown that for every I' € &% _,

{F7G}®&(F) = hm hm hm iTl"([anl[F2N0+1]7dHng[F2No+1]]@M . F2N0+1)

ni1—00 ng—00 M—00

= lim lim lim iTI‘(dF[FQNU_;,_l] . XHn27®1\/I (F2N0+1))

ni—00 ng—+00 M—o00

= lim lim i Tr(dF,[I]- Xp,, (I))

nip—>00 Ng—> 00

— i Te(dF[L] - X5 (D). (6.110)
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We now verify that Xz is a smooth map &%, — &% in order to conclude by Re-
mark 4.2. It remains only to check the smoothness property. If H is a trace functional,
then since dH[[|V) = dH[0]V) satisfies the good mapping property, the desired conclu-
sion is immediate. The general case then follows by the Leibnitz rule for the Gateaux
derivative, since constant functionals and trace functionals generate A.,. O

6.4. The Poisson morphism ¢ : S(R) — &%,
We now turn to the proof of Theorem 2.12. We recall that we are considering the map

LiSMR) = &, ue) = (|6%F) (6%]) e (6.111)

which sends a 1-particle wave function to a density matrix oo-hierarchy. We recall the
definition

As ={H : V,H € C®(S(R); S(R))} € C=(S(R);R),
and we restate Theorem 2.12 here for the reader’s convenience.

Theorem 2.12. The map ¢ is a Poisson morphism of (S(R?), As, {+,-},2) into (&%, A,
{, }&« ), i-e. it is a smooth map such that

{Fou,Gou}a(9) = {F,Gle. (((9), Vo SRY, (2.39)

for all functionals F,G € As.
We recall that although we set d = 1 in the proof, it works in any dimension. To prove
Theorem 2.12, we will need the following technical result which gives a formula for the

Géateaux derivative of ¢.

Lemma 6.16 (Formula for dv). Let ¢,v € S(R). Then for all k € N,

A=Y 650D @ g @ pBE ) (9F |4 5 1oy (6" @y @ Pt
m=1 m=1
(6.112)
Proof. The desired formula follows readily from the product rule. O
Remark 6.17. We record here the observation that for ¢ € S(R) fixed, each sum in

(6.112) has co-domain L(S(R¥), S;(R*)). We will use this observation throughout the
proof of Theorem 2.12 below.
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Proof of Theorem 2.12. Smoothness of ¢ follows readily from Lemma 6.16 and induction
on k, therefore, it remains to check that

(i) *As C As,
(i) L*{'a'}@; = {L*'vb*'}S(R)'
We prove assertion i. Let F' € A,,. We need to show that f:= F o € Ag, that is, we

need to show the symplectic L? gradient of f exists and is a smooth S(R)-valued map.
To this end, observe that by the chain rule, for any ¢,d¢ € S(R), we have

df[¢](6¢) = dF[.(9)](de[8](69))
= i Te(dF[1(9)] - di[¢](5¢))

=i Y Tk (AP Tu(6)] P el P (59) ), (6.113)
k=1

where the penultimate equality follows from the identification of dF[.(¢)] as an element of
(75;, the bi-dual of &, via the canonical trace pairing and the ultimate equality follows
from the definition of the dot product. Now applying Lemma 6.16 and the bilinearity of
the generalized trace, we see that

k
=Tri . % (dF[L(qS)](k) <Z ‘(b@(m—l) R0 ® ¢®(k—m)> <¢®k|>>
m=1
k
+ Try,. <dF[L(¢)](k) (Z |¢®k> <¢®(m_1) ® 5 ® ¢®(k—m) D)

m=1
— <¢®k

k
+ < > P @ g @ pP )

m=1

k
dF[u(¢)]® (Z 61 ® 66 ¢®(km)> >

m=1

dF[L(¢)](k)¢®k> , (6.114)

where the ultimate equality is just applying the definition of the generalized trace. Since
dF[1(¢)]* is skew-adjoint, we have that

-

=—mewwwm

k
dF[u(¢)]® (Z #2Mm=D @ 56 ¢®(km)> >
m=1

(6.115)

i ¢®(m—1) R PR ¢®U€—M)> .

m=1
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Since dF[1(¢)]**) satisfies the good mapping property, the preceding expression can be
written as — (Y |0¢), where ¥p € S(R) is the unique Schwartz function coinciding
with the bosonic tempered distribution

k
<Z() R ¢®(’f—1)

a=1

dF[L(qb)](k)¢®k> , (6.116)

and we recall the notation (-) ®4 ¢®*~1 introduced in (6.14). Similarly,

<zk: ¢®(m—1) ® 5¢ ® ¢®(k—m)

m=1

dF[L<¢>]<’“>¢®’“> = (0p|vrr) - (6.117)

Therefore, we have shown that

-

k
+ <Z ¢®(m—1) Q6 R ¢®(k—m)

m=1

k
dF[L(qb)](k) (Z ¢ V ® 5 @ ¢®(k—m)> >

m=1

dF[L(¢)](k)¢®k>
= 2iIm {(6[¢rr)}
= iwr2 (60, Yrk) (6.118)

and consequently by (6.113), (6.114), (6.118) and bilinearity
iZTrlw’k(dF[L(qb)](k)dL[qS](k)(6(;5)) = =S w66 vr) = wie (Y, 59),  (6.119)
k=1 k=1

where we have defined ¢r = >~ | ¢p i and used the anti-symmetry of wy2 to obtain
the ultimate equality. Note that moving the summation inside the second entry of w2 is
justified by the bilinearity of the symplectic form since dF[1(¢)]*) = 0 for all but finitely
many k, by assumption that F' € A, and the generating structure of A.,. Consequently,
Yr = 0 for all but finitely many k. We conclude that

df[#)(6¢) = wr2(¢r, 09), (6.120)

and hence, recalling the definition of the symplectic L? gradient in Remark 4.12, we have
that

V.f(¢) = vr € S(R). (6.121)

Lastly, using the identity (6.121), we prove assertion ii. By definition of the Hamil-
tonian vector field X (¢(¢)) in 3 together with Lemma 6.15, which gives a formula for
Xc(t(h)), we have that for F,G € A,
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{F,G}g- (1(9))
= dF[L()](Xa((9)))
= zi Tri,...k (dF[L(@](k) ijTr’““ """ o < {Xk: NP ... kﬂ'l)’b(q&)(kHU} >>

=1

(6.122)

Observe that

dG[L(gb”Ei),kJrl,...,kJrjfl)L(¢)(k+j_1) = ’¢®(k_1) ®~ dG[L(¢)](j)(¢®j)> <¢®(k+j_l)‘ ;
(6.123)
where ¢®*F=1) @ dG[1(¢)]9) (¢7) is the tempered distribution in &'(R*¥+7~1) defined
by

(#°04) @ dGlu(@) 9 (6°) ) (s j-1)
= ¢®(a_1)(£a—1)¢®(k_a)( )dG[ (¢)] (xa,ka k4j— 1)-

(6.124)

Since dG[1(¢)]Y) has the good mapping property by assumption G' € A, it follows from
Remark B.13 and the definition of the generalized partial trace that

Triq1,.. ktj—1 (dG[L(¢)]EZ¢),k+1 k+j71)b(¢)(k+j—1)>

.....

(6.125)
_ ‘¢®(o¢—1) ® Y ja® ¢®(k—a)> <¢®k} 7
where ¥ j.o € S(R) is the unique Schwartz function such that
(6[Y6,5.0) = (86 @0 6°0D|dGLUO)V (@), Voo € S(R).  (6126)

Moreover, since dG[i(¢)]9)(¢®7) € S,(R7), it follows from Lemma 4.27 that

(66 0 0°0 V|GV (6%7)) = (66 Gar 67UV |dGL(6)] D (6™) ), (6127)

for any 1 < o, < j, and therefore 1 j o = ¥¢ jo - Hence,

Tryq1,. ktj—1 (dG[L(gﬁ)]EQk_H ..... k+j_1)L(¢)(k+j71)>

) ) ) (6.128)
= ‘¢®(a D @ g, @ o3 a)> <¢®k‘ 7

where 9 ; is defined the same as g above, except with (F,k) replaced by (G, j).
By completely analogous reasoning together with the skew-adjointness of dG[(¢)]7), we
also obtain that
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Tl"k+1,..‘,k+j71<b(¢)(k+] DdG[ (¢)}(a)k+1, Lkti— 1))

) ) ) (6.129)
== [6%) (657 @ gy © 674

Substituting the identities (6.128) and (6.129) into (6.122), we obtain the expression

P> Ty (aF (arle <k>(fj fj 65D @ig; © 924 (6°H]
k=1

J:1 a=

—

n ’¢®k> <¢®(a—1) ®Ye, ® P k=)
k
dF <Z (a—1) ® vaj ® ¢®(ka)) >

k
<Z (a—1) ® wGJ ® ¢®(k—a)

)
S (o arlas

j=1k=1

dF[L(¢)](k)¢®’“>

oo o k
:_zzzlm{<z a1)®wG’j®¢®(k—a)

j=1k=1

dF[L(¢)](k)¢®k>}

=2 Im{(Wa,lvrr}, (6.130)

j=1k=1

where the penultimate equality follows from the skew-adjointness of dF[1(¢)]*®) and the
ultimate equality follows from the definition of ¢ r . Since ¥ p i = g, ; = 0 for all but
finitely many j, k, we are justified in writing

=2) > Im{e,lvrr} = —2Im {(¢elvr)}, (6.131)
j=1k=1

where 1 is defined as above and g = Z;’il Yq,; is defined completely analogously.
Recalling (4.15) for the definition of wz > and identity (6.121) for the symplectic gradient,
we obtain that

—2Im {(Yclvr)} = wi2(Vsf(8), Vsg(9)). (6.132)

After a little bookkeeping, we realize that we have shown that

{F, Gles (1(8)) = wi2(Vsf(9), Vsg(9)). (6.133)

Since the symplectic form wy> canonically induces the Poisson bracket {-,-},. through

{f,9}12(¢) = wr2 (Vs f(9), Vsg(9)), (6.134)

the proof of assertion ii is complete. O
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7. GP Hamiltonian flows
In this last section, we prove Theorem 2.3 and its limiting version Theorem 2.10.
7.1. BBGKY Hamiltonian flow

For the reader’s benefit, we recall that the BBGKY Hamiltonian Hppcky,n is the
trace functional given by

Hepery,NnT'n) = Tr(Wepaky,~ - I'n), (7.1)
where
Wepery N = (—A4, 6V (X7 — X2),0,...), (7.2)
with k and Vi as in (2.3). We also recall here the statement of Theorem 2.3.

Theorem 2.3. Let I C R be a compact interval. Then I'y = (7](\’;))27:1 e C™(I;6y) is a
solution to the BBGKY hierarchy (2.4) if and only if

d

EFN = XHBBGKY,N(FN)V (2'18)

where X3y, oy n 95 the unique vector field defined by Hppary,n (see Definition 4.1)
with respect to the weak Poisson structure (&, Au.n, {-, -} )-

We now proceed to proving Theorem 2.3. Since by Lemma 5.24, we have the formula

XHBBGKY,N (FN)(Z)

N min{£,j}
j k
:Z Z CéjkrNTf‘“ww’f Z dHBBGKY’N[FN]éjg)r,E+1,..‘,min{€+jfr,k})77](\7) )
j=1 r=rg «a,ePt
(7.3)
where

E=min{{+j—1,N}, 7ro:=max{l,min{¢ j}— (N —max{l,j})}, (7.4)

and

NCy nCj N (])

C/, N =
bgkrN Cka H;_:ll (N —k+ m) r

our task reduces to simplifying the expression in the right-hand side of (7.3).
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To this end, we first need a formula for the Gateaux derivative dHppgky,n of
‘Hppary,n and its identification with an observable N-hierarchy via the canonical trace
pairing. Indeed, let N € N. Then for any I'y = (’yj(\]f)) ", € 8%, we have that

d’HBBGKy,N[FN]((SFN) = TY(WBBGKKN . (SFN), V(SFN < QS*N (75)

Therefore, dHppery,n[['n] = dHBBcKy,n[0] is uniquely identifiable with the observ-
able 2-hierarchy —iW gpcky,n. As a consequence, we see that

dHBBGKYvN[FN}E]g)r,ZJrl,...,min{lJrjfT,k}) =0 (7.6)

for 3 < j < N. Therefore, by (7.3), we have

XHBBGKYN(FN)(Z)
14
ZCZIZlNZ[ w1) () z(v)}
min{¢,2}
— ik Z Clokrn Z Trop1,. ok ([VN(X1 X2))(a, £+1,..., min{£+2—r,k})7%(\lz€)D
T=T0 a,ePt
=: Term; 4 + Terms 4. (7.7)

We first consider Term; . Note that (—=A;)(q) = —As, . Now unpacking the definition
of the normalizing constant Cj,,, 5, we find that

NCy nC'
Cohnn = 72\]]\[ 2L = NCiy =1, (7.8)

where the ultimate equality follows from the fact that C; y = 1/|P{¥| = 1/N. Hence,

‘
Term; o = —i Z [ Ama,’y%)} (7.9)
a=1
We next consider Terms o. We divide into cases based on the values of £ € {1,...,N}.
e If /=1, then
Termz,1 = —ikChygy Tra ([ (Viv(X1 = X2) (12078 ) (7.10)

where we use that k& = 2. Since (Vn (X1 — X2))1,2) = Vv (X1 — X2), it follows that

Terma,; = —ikClyg1n Trg([VN(Xl - XQ),%(\?D. (7.11)
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Unpacking the definition of the constant C1,,; y, We see that

NC; NC 2
Clogiy = — 28 =2NCi N =2, (7.12)
CQ’N 1 ’
hence,
Terms,, = —2ik Tr2([VN(X1 - XQ),%(\?)D. (7.13)

If2<¢<N -1, then
ro = max{min{¢,2} — (N — max{/{,2}),1} = max{2 — (N —¥¢),1} =1 (7.14)

and therefore

2
Termae = —ir Y Cpyrnyen Y, Tren ([VN(Xl - Xz)(gT,EJrl)’%(\fH)Dv (7.15)
r=1 «a,ePt

where we use that kK =/ + 1. If r = 1, then

> Treg ( [VN(Xl - X2)(g1,6+1)»71(\€+1)}) - ZejTrm ( [VN(Xa — Xey1), %(\fﬂ)] >,

af P! a=1
(7.16)
and recalling (5.9), we have
NCynCo N <2> 2(N — )
c — SLNTRN () S T 7.7
£2(0+1)1N Conn 1 (N—1) (7.17)
If r = 2, then min{¢ 4+ 2 — r, k} = ¢, which per our notation implies that
Z Tryqq ([VN(Xl - Xz)(gweﬂ),%(\fﬂ)})
a, EPf
= > T ([ = X)) (7.18)
(al,ag)EPf
Since oy, a2 € N<p and V(X1 — X2)(a1,00) = VN(Xa;, — Xa,), we have that
Tresr ([(V(Xn = X)W ) = [ (Kay = Xa) W] (7.19)

Now since k = £ + 1, it follows from our computation in (7.17) that
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NCy nCoy N 2 1
c) - N2 =, 7.20
202N 7 0 N(N — k4 1) (2) N -1 (7.20)

Since VN (Xo; — Xa,) = VN (Xa, — Xa, ) by the evenness of the potential V', it follows
that

Z {VN(XVQ1 - Xa2)7’71(§)} = % Z [VN<X041 - Xaz)a%(\?} (7.21)

a,EPf 1<a1 <ap<t

After a little bookkeeping, we obtain that

. 2(N =20
Termsy p = — Iﬂ;g\fi Z Trg+1<[VN(X - Xot1), (EJFI)D
(7.22)
ik 3 [VN(XQ — Xa,) y“)]
N—1 1 2/0 IN
1< <a<t
e Lastly, if £ = N, then
ro = max{min{N, 2} — (N — max{N, 2}),1} = 2. (7.23)
Moreover, k = N, so that
TermgN = —mCNQNQN Z [ VN X1 — X2))(g2)>7](vN)]- (7~24)
a,epPy
Since
NCNNCon (2 1
C} = — = — 7.25
. o t (7.25)
we can again use the evenness of the potential V' to conclude that
2iK
Termyy = —7—= [VN(Xal — X)W )}. (7.26)
1<ai<as<N
Putting our case analysis together, we obtain
XHBBGKY,N(FN)(l) = _Z|: AI17’YJ(\}):| - ZZK/TI‘2<|:VN(X1 B XQ))’-Y](\?):|)’ <7.27)

while for 2 </ < N — 1 we have



98 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054

14 .
) 2iK ¢
XHBBGKY,N (T'w) ©=_ Z { xa;')/j(v)} N_1 Z |:VN(X01 = Xa,), ’Y](V)}

a=1 1<ai<az<t

O (X ]

(7.28)

and finally

N .
. ¢ 2ik N
XHBBGKY,N(FN)(N) = _ZZ {_ Qfoﬂ'yl(\f)} N -1 Z [VN(X&I ~ Xaw), AVJ(V )}7
a=1

1<ai<as<N
(7.29)
which we see, upon comparison with (2.4), are precisely the equations for solutions to

the BBGKY hierarchy, thus completing the proof.
7.2. GP Hamiltonian flow

In this subsection, we prove Theorem 2.10. For the reader’s benefit, we recall that the
GP Hamiltonian Hgp is the trace functional given by

HGP(F) = TI“(WGP-F), I'e 620; Wep = (—AQJ,E(S(Xl —XQ),O,...). (7.30)
We recall the statement of the theorem.

Theorem 2.10 (Hamiltonian structure for GP). Let I C R be a compact interval. Then
I' e C*(I; &%) is a solution to the GP hierarchy (2.5) if and only if

(7)© = Xuer ), weer (231)

where Xy, 1s the unique Hamiltonian vector field defined by Hap with respect to the
weak Poisson structure (&%, Aso, {-; } o+ )-

The proof is similar to the proof that the BBGKY hierarchy is a Hamiltonian equation
of motion, and Theorem 2.10 may be viewed as the N — oo limit of Theorem 2.3. In
our companion work [28], we will obtain Theorem 2.10 for the 1D cubic GP hierarchy
as part of a more general theorem which connects the Hamiltonian structure of an
infinite coupled system of linear equations, which we call the n-th GP hierarchy, to
the Hamiltonian structure of the n-th equation of the nonlinear Schrédinger hierarchy,
which is of fundamental interest in the study of the NLS as an integrable system (see,
for instance, the survey of Palais [35]). The GP hierarchy under consideration here then
corresponds to the n = 3 equation of the aforementioned family of equations.
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We now proceed to proving Theorem 2.10. Recalling equation (2.5) for the GP hier-
archy, we need to show that

Xotep (D)® = —i([—A&m(’ﬂ + 2chk+w<’““’), k€N, (7.31)

for any I' = (y(*)) € &*_, which we do by direct computation.
Let I' € &%,. By application of Lemma 6.15 to Hgp together with the identification

dHgp[l'] = —iWgp, (7.32)

which is immediate from the fact that Hqgp is a trace functional, we know that

Xpp(T) )_ZJTrk+1 ..... ktj— 1<ldeGP ak+1 ,,,,, kﬂ-l),v(k“_l)]) (7.33)

j=1

Since —iW(GJgD =0 € gj,gmp, for j > 3, we see from (7.30) that the formula for Xy, (I")
simplifies to

k
Xptp(D® = — Z( Ay r™ = V(k)(*Am)(a))

) 7.34
— 9% Z Trjst (5()(1 _ X2)(a,k+1)’7(k+1)> (7.34)

— Trra1 (7(k+1)5(X1 - X?)(a,k-{—l))v

for k € N.
Since (—Az,)(a) = —Az, and A, = 22:1 A, by definition, it follows that
k
Z ( 1 (a k) - V(k) (_Aan )(a)) =—1 {_Agk ) ’Y(k)] . (735)

Since 0(X1—X2)(a,k+1) = 0(Xo—Xp+1), it follows from Proposition B.8 for the gener-
alized partial trace that Try1(0(Xa — Xpy1)7*TY) is the element of £(S’(R¥), S(R¥))
with Schwartz kernel

/dxk+15( = Tp+1)Y (k1 )(-rkJrlv-rkvxk-H) ( +1)($kvxa;£§wﬂ$a)
R

=B, 7" (@ah).  (7.36)

Similarly, Tr;H_l(y(k‘*‘l)é(Xa — Xj+1)) is the operator with Schwartz kernel
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k+1 /AN /
( )(Qk,l‘a,ik,l‘a)

/d”3§c+15(x’a — 2 )Y (@, w15 Zhy) =
R

=B " (@ h). (7.37)

Since By, =S¢, Bt B

a=1Baki1 — by definition, we conclude that

azk+1

k
— 263 Tre (5(X1 - X2)(a,k+1)’y(k+1)) ~ Tkt (7(k+1)5(xl N XZ)(“”““)) (7.38)
a=1 .

= —2kiBj 41y * Y,
After a little bookkeeping, we see that we have shown (7.31), thus completing the
proof of Theorem 2.10.

Appendix A. Locally convex spaces
A.1. Calculus on locally convex spaces

The following material is intended as a crash course on calculus in the setting of
locally convex topological vector spaces. Since we are in general not dealing with Banach
spaces or Banach manifolds, the usual notion of the Fréchet derivative is not suitable for
our purposes. Indeed, the prototypical example we ask the reader to keep in mind is the
Schwartz space S(R).

One main issue posed by this more general setting is that there are several inequiva-
lent notions of the derivative for maps between locally convex spaces. Here, we use the
definition which is typically called the Gateaux derivative, which has the property that
C' maps are continuous,*? and hence enables us to regard the derivative of a smooth
real-valued functional f at a point x € X, which we denote by df[z], as an element of
the topological dual X*.

The following material can be found in lecture notes by Milnor [29]. Many of the
definitions we record are standard, but we include them for completeness. The proofs
are omitted, but can be found in [15].

Definition A.1 (Topological vector space). A real or complex topological vector space (tvs)
X is a vector space over a field K € {R,C} with a topology 7 which is Hausdorff and
such that the operations of addition

+: X xX =X, (x,y) —»x+y (A.1)

and scalar multiplication

32 For a notion of smoothness which allows for maps to be smooth but not continuous, we refer the reader
to the monograph [19].
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G Kx X = X, M\ z) = Az (A.2)
are continuous (the domains are equipped with the product topology).

Definition A.2 (Locally convex space). A tvs X is said to be locally convex if every
neighborhood U > 0 contains a neighborhood U’ 3 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type
result.

Proposition A.3 (Hahn-Banach). If X is locally convez, then given two distinct vectors
x,y € X, there exists a continuous K-linear map £ : X — K with ¢(x) # {(y).

Definition A.4 (Gateaux derivative). Let X and Y be locally convex R-tvs, let Xg C X
and Yy C Y be open sets, and let f : Xg — Y be a continuous map. Given a point
r € X and a direction v € X, we define the directional derivative or Gateaux derivative
of f at x in the direction v to be the vector

flz +tv) = f(z)

, (A.3)

if this limit exists. We call the map f. : X — Y the derivative of f at the point z. We
use the notation df [z](v) = f'(z;v).

Definition A.5 (C! Gateaur map). Let Xo, Yo, and f be as above. The map f : Xo — Y
is C1if f/(x;v) exists for all x € Xo,v € X and is continuous as a map

fliXox X =Y, (A.4)
where the domain is equipped with the product topology.

The Gateaux derivative f. of a map f between two locally convex spaces may fail to
be linear in the direction v. However, C'' smoothness is enough to ensure linearity in
the direction variable. We always work with C'* functionals (see Definition A.7), so the
requisite C'! smoothness is not problematic for our purposes.

Proposition A.6 (Linearity of derivative). If f is Ct, then for all xq fized, the map
X =Y, v f(xo;0) (A.5)
is linear.

Having defined the derivative and C! regularity, we can inductively define higher-order
derivatives and regularity.
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Definition A.7 (Higher derivatives). The map f : Xg — Yy is C? Gateaus if f is a C*
Géateaux map and for each v; € X fixed, the map

Xo =Y, x— f'(z;v1) (A.6)

is C! with Gateaux derivative

P i) — fay)
t—0 t

(A7)

depending continuously on (z;v1,v2) € Xo X X X X equipped with the product topology.
If this limit exists, we call it the second Gateaux derivative of f at x in the directions
v1,v2 and denote it by f”(x;v1,vs). We inductively define C™ maps Xy — Yo. If a map
is C™ for every r € N, then we say that f is a C'>® map or alternatively, smooth map.

Proposition A.8 (Symmetry and r-linearity of féﬁ)) If for r € N, the map f is C", then
for each fixed x¢ € Xg, the map

Xx-xX=2Y, (1,...,00) = f(zgi01,...,0,) (A.8)

T

is r-linear and symmetric, i.e. for any permutation ™ € S,.,

f(T)(xO’ vﬂ'(l); cee 7U7T(T')) = f(T) (xoﬂha cee 71)7”)' (Ag)

Proposition A.9 (Composition). If f : Xo — Yy and g : Yo — Zy are C" maps, then
gof:Xo— Zyis C" and the derivative of (g o f) at the point x € Xy is the map
g}(x)Ofg’D:X—>Z.

A.2. Smooth locally conver manifolds

In this subsection, we use the calculus reviewed in the preceding subsection to intro-
duce the basics of smooth manifolds modeled on locally convex topological vector spaces,
which is needed for the construction of the Lie-Poisson manifold structure in Section 6.
Much of the theory parallels the finite-dimensional setting, where the model space R¢
is now replaced by an arbitrary, possibly infinite-dimensional locally convex tvs. Con-
sequently, many of the definitions below will be familiar to the reader with a minimal
knowledge of differential topology, but we record them for completeness. As in the last
subsection, we closely follow [29] in our presentation.

Definition A.10 (Smooth manifold). A smooth manifold modeled on a locally convex
space V consists of a regular, Hausdorff topological space M together with a collection
of homeomorphisms ¢, : V, — M, satisfying the following properties:
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(M1) V, C V is open.

(M2) M, C M is open and |J, M, = M.

(M3) @El 0pn 1 5 H(MyNMpg) — @El(MaﬁMg) is a smooth map between open subsets
of V. We refer to the maps ¢, as local coordinate systems on M and the maps
oot as coordinate charts.

Remark A.11. We will sometimes say that the manifold M is a Fréchet manifold if the
locally convex model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we
can define the notion of a smooth map between manifolds.

Definition A.12 (Smooth map). If M; and Ms are smooth manifolds modeled on locally
convex spaces V7 and Vs, respectively, then a continuous function f : My — Ms is smooth
if the composition

90512 o fopan: 90;,11 (MyoN f7H(Map)) — Voz (A.10)

is smooth whenever f(Mi o) N Myg # 0. We say that f is a diffeomorphism if it is
bijective and both f and f~! are smooth.

Definition A.13 (Submanifold). A subset N of a smooth locally convex manifold M is a
submanifold if for each m € N, there exists a chart (M,,p_!) about the point m, such
that o 1 (M, N N) = ¢, (M,) N W, where W is a closed subspace of the space V on
which M is modeled.

Remark A.14. The submanifold N is smooth locally convex manifold modeled on W.
Indeed, the reader may check that the maps ¢ |v,.aw : Vo N W — M, N N are homeo-
morphisms which satisfy Properties 1 - 3.

In this work, we use the kinematic definition of tangent vectors (i.e. equivalence classes
of smooth curves), as opposed to the operational definition (i.e. derivations). While
these two definitions are equivalent in the finite-dimensional setting, they are in general
inequivalent in the infinite-dimensional setting.

Definition A.15 (Tangent space). Let ¢, : Vo, = M, be a local coordinate system on M
with zg € M,. Let p1,ps : I — M be smooth maps on an open interval I C R with
pi(0) = xo for i = 1,2. We say that p; ~ py if and only if

d d
ezt om)li=o = 2 (¢3" o p2)li=o. (A.11)
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The reader may verify that ~ defines an equivalence relation on smooth curves p : I — M
with p(0) = xo. The set of all such equivalence classes is called the tangent space at xo,
denoted by T, , M.

Definition A.16 (Tangent bundle). We define the tangent bundle TM as a set by

]_[ T, M.

zeM

We define a smooth locally convex structure on T'M modeled on V' x V by the local
coordinate systems

Vo : Voo xV —=TM, CTM, (A.12)
where 1, (u,v) is defined to be the equivalence class containing the smooth curve ¢ —

Yo (u+tv) through the point ¢, (u) € M. The reader may verify that ¢, maps {u} x V
isomorphically onto the tangent space T, () M.

Definition A.17 (Derivative). Let M; and Ms be smooth locally convex manifolds.
A smooth map f: M; — Ms induces a continuous map

fo: ToMy = Ty Mo, [p1] = [f o p1] (A.13)
called the derivative of f at x. Together, the maps f. induce a smooth map
fo i TMy = TMy,  (z,0) = (f(), f.(v)) (A.14)
which maps T, M linearly into T, Ma.
Definition A.18 (Smooth vector field). A smooth vector field on M is a smooth map

X : M — TM such that X (z) € T, M. We denote the vector space of smooth vector
fields on M by X(M).

Appendix B. Distribution-valued operators

We review and develop some properties of distribution-valued operators (DVOs), that
is, elements of £(S(R¥),S’(R¥)), which are used extensively in this work. Most of these
properties are a special case of a more general theory involving topological tensor prod-
ucts of locally convex spaces for which we refer the reader to [38,17,42] for further
reading.
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B.1. Adjoint

In this subsection, we record some properties of the adjoint of a DVO as well as some
properties of the map taking a DVO to its adjoint. The proofs follow more or less readily
from the definition and standard arguments, and are left to the reader.

Lemma B.1 (Adjoint map). Let k € N, and let A®) € L(S(RF),S'(R¥)). Then there is
a unique map (A®R)* € L(S(RF),S'(RF)) such that

ViR o) e S(RF).
(B.1)

S'(R*)—S(RF) S'(R*)—S(R*)
Furthermore, the adjoint map

«: L(S(RF),S'(RF)) = L(S(RF),S'(RF)),  A®) 5 (AP (B.2)

is a continuous involution.
Additionally, for B ¢ L(S'(RF),S'(R¥)), there exists a unique linear map in
(B®)* € L(S(R¥),S(R¥)) such that

(ut, B )

V(g™ u®) e S(RF) x S'(R¥). (B.3)

— <B<k>u(’<>,ﬁ>

S'(R*)—S(RF) S'(R*)—S(RF)’

Moreover, the adjoint map
1 L(S'(RF),S"(R*)) = L(S(R¥), S(RF)) (B.4)
1s a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps. We
omit the proof, which is standard.

Lemma B.2. Let A®) ¢ £L(S(R¥),S'(RF)) and B® € L(S'(R*),S'(R¥)). Then
(B(k)A(k))* = (AR (BR))*, (B.5)

Definition B.3 (Self- and skew-adjoint). Given k € N, we say that an operator
A®) ¢ L(S(RF),S'(RF)) is self-adjoint if (A¥))* = A®)  Similarly, we say that
A®) ¢ £(S(RF),S'(RF)) is skew-adjoint if (AK))* = —A®),

Remark B.4. Note that if A®) € £(S(R*),S’(R¥)) is an operator mapping S(RF) —
L?(R*), then our definition of self-adjoint does not coincide with the usual Hilbert space
definition for densely defined operators, but instead with the definition of a symmetric
operator.
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B.2. Trace and partial trace

In this subsection, we generalize the trace of an operator on a separable Hilbert space
to the DVO setting. First, we record some remarks to motivate our definition. Since the
operator |f) (g|, where f,g € L?(R¥), has trace equal to (f|g), we might try to generalize
the notion of trace to pure tensors of the form f ®wu, where u € §&'(RY) and f € S(RY),
by defining

Try, N(f ®@u) = (u, f>3/(RN),S(RN) (B.6)

and hope to extend this definition to S(R™)@S’(RY) through linearity, continuity, and
density. However, the evaluation map

SEY) x S'RY) 5 C,  (fou) = {u g ) scan): (B.7)

is not continuous, but only separately continuous, preventing us from appealing to the
universal property of the tensor product to guarantee the existence of a unique general-
ized trace

Try,. .~ : SRY)SS' (RY) — C (B.8)

satisfying (B.6).
Nonetheless, by viewing the trace as a bilinear map and using the canonical isomor-
phisms

L(SRYN),S'(RY)) = &' (R?N) and L(S'(RY),S(RY)) = S(RY), (B.9)

we can uniquely define the generalized trace of the right-composition of an operator in
L(S(RYN),S'(RY)) with an operator in £(S'(RY),S(RY)) through the pairing of their
Schwartz kernels. More precisely,

Trl,...,N(A(N)’V(N)) = <A(N), (’Y(N))t>3/(R2N)_S(R2N) (BIO)

is, with an abuse of notation, the distributional pairing of the Schwartz kernel of AMN),
which belongs to S’(R?V), with the Schwartz kernel of the transpose of v(¥) 33 which
belongs to S(R?N). Equivalently, for each fixed ANY) € £L(S(RY),S’(RYN)), the Schwartz
kernel theorem implies the existence of a unique linear map £(S'(RY),S(RY)) — C,
such that

TI‘l ..... N (A(N)(f ®g)) = <A(N)f; g>5/(RN)_S(RN) (Bl].)

for all f,g € S(RY).

33 (vt is the operator f S~ dzyy (@ zn) Fzhy)-
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Definition B.5 (Generalized trace). We define

Try..n o LISRY), S'(RY)) x L(S'(RY), S(RY)) - C

(B.12)

Ty~ (A(N)’Y(N)> = (AN, (Y g (mawy _sram)-
Remark B.6. The reader can check that if AV ¢ L£(S(RN),S'(RY)) and V) ¢
L(S'"(RN),S(RM)) are such that AXN)4(N) ig a trace-class operator p(™) then our def-
inition of the generalized trace of AN)~(V) coincides with the usual definition of the
trace of p(™) as an operator on the Hilbert space L*(RY).

We now establish some properties of the generalized trace which are reminiscent of
properties of the usual trace encountered in functional analysis.

Proposition B.7 (Properties of generalized trace). Let AN) ¢ L(S(RN), S (RYN)), and let
7N e £(S"(RN),S(RY)). The following properties hold:

(i) Tr1,... n is separately continuous.
(ii) We have the following identity:

Ty v ((A(N))*,Y(N)) = Try (A ()", (B.13)
(iii) If BN) € £L(S'(RN), S (RN)), then Try N satisfies the cyclicity property

TrlMN((BW)A(N))%N)) - TrL,,,,N(A(N) (%N)B(N))). (B.14)

Proof. Assertion i follows from the separate continuity of the distributional pairing
() s/ (R2V)—s(R2NY -

To prove assertion ii, it suffices by density of finite linear combinations of pure tensors
together with bilinearity and separate continuity of the generalized trace to consider the
case where (V) = f(N) @ g(N) for f(N) g(N) ¢ S(RN). By definition of the generalized
trace,

Tr AN £(N) (MY = (AN y* £(N) o (N) B.15

1,...,N (( ) (f ®g )) <( ) f 9 >S/(RN),S(]RN)’ ( )
and by definition of the adjoint in Lemma B.1,

AN* £(N) o(N) = { AN) g(N)_f(N) ) B.16

<( A >S’(]RN)—S(RN) < g1 >$’(RN)—S(RN) (B.16)

Since (vy())* = g(V) @ f(N) the desired conclusion then follows from another application
of the definition of the generalized trace.



108 D. Mendelson et al. / Advances in Mathematics 365 (2020) 107054

To prove assertion iii, we note that since

BM AW ¢ £(S(RN),S'(RY)),  AMBW) ¢ £(S'(RN), S(RN)), (B.17)

all expressions are well-defined. As before, it suffices to consider the case where y(V) =

fMN) @ g for fN) ¢(N) ¢ S(RN). The proof then follows readily using the involution
property of the adjoint and the definition of generalized trace. O

We now extend the partial trace map to our setting using our bilinear perspective.

Proposition B.8 (Generalized partial trace). Let N € N and let k € {0,...,N —1}. Then
there exists a unique bilinear, separately continuous map

Trpp. v LSRY),S'(RY)) x L(S'(RY),S(RY)) — L(S(R¥),S'(RF)),  (B.18)

which satisfies

Trgyr,. N (A(N)(f(N) ® Q(N))) = / d£k+1;N(A(N)f(N))(£k7£k+1;N)9(N) (£2,£k+1;1\/)7

RN—k
(B.19)
for all AN) € L(SRN),S'(RN)), and f™), g) € S(RYN). That is,
(N (V) ) g (NY) (B) (k)
<'IT1€+1,...,N(A (fVeg ))¢ U >S'(Rk)ﬂs(Rk)
(B.20)

= <A(N)f(N)v'l/}(k) ® <g(N)7 ¢(k)>5ék (Rk)_sik (Rk)>8’(RN)7S(RN)’

for all ¢ p*) € S(RF).

Remark B.9. Our notation Try4q .. n implies a partial trace over the variables with
indices belonging to the index set {i : k+ 1 < i < N}. To alleviate some notational
complications, we will use the convention that if the index set of the partial trace is
empty, we do not take a partial trace.

Proof. We first show uniqueness. Fix N € N and k& € {0,...,N — 1}. Fix AW ¢
L(S(RY),S'(RY)). Suppose that there are two maps Try41,.. v and Trg 1,y satisfying
(B.19). Since every element 4(N) € £(S"(RN),S(RY)) is of the form

oo
k —k k —k
M =30 @ fINTY @ g @ gV, (B.21)

j=1
where {\;}jen € €' and f;k), 95“ and f;Nﬁk), gJ(-ka) are sequences converging to zero in
S(R*¥) and S(RN~*), respectively. Since the partial sums converge in £(S'(RY), S(RY)),
we have by separate continuity that
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o0
Triy1,..N (A(N)V(N)> = Z Aj Triq,. N (A(N) (f;k) ® f;Nﬁk) ® g](-k) ® gj(-ka)))
j=1

(o)
- AjTreqr,.N (A(N) (f](k) ® f](N*k) ® gj(_k) ® gj(_ka)))
j=1
(A1) e

which completes the proof of uniqueness.
We now prove existence. Let N, k and AY) be fixed as above. For f#) ¢(k) ¢ S(RF¥)
and vV) € £(S'(RY),S(RYN)), we define the integral kernel

K g0 o0 (Zy: Zhy) = g(k)(zﬁf)/dgkv(N)(zN;gk@%ﬂw)f(k)(gk),
Rk

(zy,2zly) € R, (B.23)

It is evident that Ku) g0 v € S(R2Y). Moreover, it is straightforward to check that
the trilinear map

S(RF) x S(R*) x S(RHY) — S(RZY), (f®, g% v M) s K gao yon (B.24)

is continuous, where we abuse notation by using ) to denote the Schwartz kernel
as well as the operator. Therefore by the Schwartz kernel theorem and the fact that
AN € £(S(RN), S (RY)) by assumption, for fixed f*) € S(R¥), the map

S(Rk) — C, g(’f) — <KA<N>’K’tc(k)’g(k)”(m>S’(R2N)7$(R2N) (B.25)

defines an element of &’(R*) and the map

SRY) » S'RY), [P <KA(N)7Kt (B.26)

k) . ~(N
AR )>S/(]R2N)_S(]R2N)

is continuous. We therefore define Tryy 1 n(AN)y V) to be the element of £(S(RF),
S'(R¥)) given by

<Trk+1,...,N(A(N)’Y(N))f(k), g(k)> = <KA(N) K

FE),g(R) (V) >S/(R2N),S(]R2N)’
(B.27)

S’ (R¥)—S(R¥)

which is evidently bilinear in (A(N), (V).

It remains for us to prove separate continuity. Implicit in our work in the preceding
paragraph is continuity in the second entry for fixed AY). Continuity in the first entry
for fixed v(N) € L(S'(RN),S(RY)) then follows by duality. O
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B.3. Contractions and the “good mapping property”

Given A®) ¢ L(S(R?),S’(R?)), an integer k& > 4, and a cardinality-i subset
{l1,...,4;} C Ny, we want to define to an operator acting only on the variables asso-
ciated to {¢1,...,¢;}. We have the following result.

Proposition B.10 (k-particle extensions). There exists a unique AEZ ..... o) € L(S(RF¥),
S'(RF)), which satisfies

D pfie 9 00(e) = A fi)anwn) (T )

feNSk\{Zl,UWZi}
(B.28)

in the sense of tempered distributions.

Proof. We first consider the case (¢1,...,4;) = (1,...,%). By the universal property of
the tensor product, there exists a unique continuous linear map

A =AY @ Id_; : SRHES(RF) - §'(R)BS' (R), (B.29)
satisfying

AR U@ g% N (gy) = AD(FD)(@)g* D (@y,),  Vf € S(RY),g € S(R).

(B.30)

For the general cases where (¢1,...,4;) # (1,...,%), we set
(1) -1 (4)
A([1 ____ gy =T © A( Hom, (B.31)
where 7 € Sy, is any permutation such that w(¢;) = j for j € N<; and we let m act
on measurable functions by (4.29) and on distributions by duality. Let (¢5,..., 05 )
denote the increasing ordering of the elements of the set N<j \ {f1,...,¢;}. Then for test

functions f1,..., fk,g1,---,9x € S(R), we have

k k
<<w1 0 AL om( fo), ®gz>
S'(RH)—S(R%)

{=1 {=1

i k—1 k
(4@ @1 @)
j=1 j=1 j=1 S/(RE)—S(RF)
k—1 k—1

<A(l)(®f4)7®g€]> <®f€ja®g€j
=t = D e -sRi)

j=1 j=1 >5/(Rki)_5(Rki)

Am(@ f/fj)7®g£j> : H <fjagj>5/(]R)_S(]R)7 (B.32)
j=1 j=1

S'(R)—S(Ri) FEN<p\{l1,....6:}
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where the penultimate equality follows from the definition of the tensor product of two
distributions. By the density of finite linear combinations of pure tensors in S(R¥), it
follows from the preceding equality that our definition (4.42) is independent of the choice
of permutation 7 € Sy, satisfying m(¢;) = j for every j € N<;. O

An important property of the above k-particle extension is that it preserves self- and
skew-adjointness.

Lemma B.11. Let i € N, let k € Ns;, and let AW € L(S(R¥),S'(R?)) be self-adjoint
(rgsp skew-adjoint). Then for any cardinality-i subset {{1,...,¢;} C N<, we have that

AEZ ) B8 self-adjoint (resp. skew-adjoint).

Proof. Replacing A® by iA® | it suffices to consider the self-adjoint case. By consider-
ations of symmetry, it suffices to consider the case (¢1,...,¢;) = (1,...,4). The desired

< )o@ >< FO=0) g<k7i)>
<f A g0) > <f<;H-)

— <f 1) ®f(k—z) A

conclusion then follows from the fact that

<A8)7_,,,i)(f(i) ® f(kfi))‘g(i) ® g(kﬂ*)> Af

,,,,,

for all (f@), f= ¢ ¢k=dy ¢ (S(R?) x S(R¥~%))2, linearity, and density of linear
combinations of such pure tensors in S(R¥). O

Now let 4,5 € N, let k :=1i+ j — 1, and let (o, 8) € N<; x N<;. To construct a Lie
bracket in Section 6.2, we need to give meaning to the composition

4D @)

(L) Blivt, it taits. k) (B.34)

as an operator in L(S(RF),S'(R¥)), when A® ¢ L(S(R?),S(RY)) and BY) ¢
L(S(RY),S'(R7)).

Remark B.12. Without further conditions on A® or BY)  the composition (B.34) may
not be well-defined. Indeed, consider the operator A € £(S(R?),S’(R?)) defined by

Af =06of,  Vfe SR, (B.35)

where §y denotes the Dirac mass about the origin in R2. Then for f,g € S(R),

/dfﬂz(Af®2)(:E1, w2)g®% (2}, 22) = £(0)g(0)f(21)g(21)d0(z1) € S'(R) ® S(R). (B.36)
R

It is easy to show that fdp € S'(R) does not coincide with a Schwartz function.
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This issue leads us to a property we call the good mapping property. The intuition for
the good mapping property is the basic fact from distribution theory that the convolu-
tion of a distribution of compact support with a Schwartz function is again a Schwartz
function. We recall the definition of the good mapping property here.

Definition 2.5 (Good mapping property). Let i € N. We say that an operator AW ¢
L(S(R¥),S'(R¥)) has the good mapping property if for any o € Ng;, the continuous
bilinear map

S(R%) x S(R¥) — S'(RHES(R?)
(f%,9")

— / dry ... deg_1drasy ... de; AD(FO) (@, )90 (@1, Tae1, 2 Tagts - - Ti),
Ri-1

may be identified with a continuous bilinear map S(R%) x S(R%) — S(R2?).3*

Remark B.13. By tensoring with identity, we see that if A(®) has the good mapping
property, then AEZ ) has the good mapping property, where ¢ is replaced by k and
(S Ngk.

B.J. The subspace Lgmp(S(R¥), S’ (RF))

In this subsection, we expand more on L m,(S(R¥),S’(R¥)) as a topological vector
subspace of L(S(R¥),S’(R¥)) and more on the identification of its topological dual.

Lemma B.14. £,,,(S(R¥),S'(R¥)) is a dense subspace of L(S(R¥), S’ (RF)).

Proof. We first show density, beginning by recalling that Lg,,(S(R¥),S'(R¥)) is
endowed with the subspace topology induced by L(S(RF),S'(RF)). Let A®) ¢
L(S(RF),S'(R¥)), and let K 44 € S’(R?*) denote the Schwartz kernel of A*). Since
S(R?*) is dense in S'(R?*), given any bounded subset B C S(R?*) and € > 0, there
exists Kgn . € S(R?) such that

§up <KA(’€) - K%,ea K>Sl(R2k)_s(R2k) <e. (BS?)
KeR

Since the integral operator defined by the kernel Ky . is a continuous endomorphism of
S(RF), it belongs to Lgm,(S(RY),S'(R¥)). Since any bounded subset & C S(R*) induces
a bounded subset R C S(R?*) by

3% We use ® to denote the completion of the tensor product in either the projective or injective topology
(which coincide). See Section 4.3 for further discussion.
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R=606={f®7: f,gec 6}, (B.38)

we conclude that given any ¢ > 0 and bounded subset & C S(R¥), there exists an
element A(Gk?e € L(S'(R*), S(R¥)) such that

f?;epe ’<(A(k) - Ag’)g)f’gﬂ <e. (B.39)

Since the preceding seminorms generate the topology for £(S(R¥), S’(R¥)), the proof of
density is complete. O

Using the preceding lemma, we can show that the strong dual of the subspace
Lymp(S(R¥),S'(R¥)) is isomorphic to the space of linear operators with Schwartz-class
kernels.

Lemma B.15. The space L gmp(S(RF), S (R¥))* endowed with the strong dual topology is
isomorphic to L(S'(R¥), S(R¥)).

Proof. Since the canonical embedding ¢ : £, (S(RF), S’ (R¥)) — L(S(RF),S’'(R*)) is
tautologically continuous, the adjoint map

L LSRR, S (RF))* = Lymp(S(RF), S’ (RF))* (B.40)

is continuous. Now since Ly, (S(R¥), S'(R¥)) is dense in £(S(R*),S'(R*)), any linear
functional

0 € Lymp(S(RF), S"(R¥))* (B.41)

extends to a unique element 7 € £(S(R¥), S’ (R*))* by the Hahn-Banach theorem. Hence,

*

t* is a continuous bijection. Since the domain of the canonical isomorphism

® : L(S'(RF), S(RF)) — L(S(RF), S’ (RF))* (B.42)
is a Fréchet space, it follows from the open mapping theorem that +* o ® is an isomor-
phism. O
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