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Abstract— In safety-critical environments, robots need to
reliably recognize human activity to be effective and trust-
worthy partners. Since most human activity recognition (HAR)
approaches rely on unimodal sensor data (e.g. motion capture or
wearable sensors), it is unclear how the relationship between the
sensor modality and motion granularity (e.g. gross or fine) of the
activities impacts classification accuracy. To our knowledge, we
are the first to investigate the efficacy of using motion capture
as compared to wearable sensor data for recognizing human
motion in manufacturing settings. We introduce the UCSD-MIT
Human Motion dataset, composed of two assembly tasks that
entail either gross or fine-grained motion. For both tasks, we
compared the accuracy of a Vicon motion capture system to
a Myo armband using three widely used HAR algorithms. We
found that motion capture yielded higher accuracy than the
wearable sensor for gross motion recognition (up to 36.95%),
while the wearable sensor yielded higher accuracy for fine-
grained motion (up to 28.06%). These results suggest that
these sensor modalities are complementary, and that robots
may benefit from systems that utilize multiple modalities to
simultaneously, but independently, detect gross and fine-grained
motion. Our findings will help guide researchers in numerous
fields of robotics including learning from demonstration and
grasping to effectively choose sensor modalities that are most
suitable for their applications.

I. INTRODUCTION

Robots demonstrate great potential for decreasing physical
and cognitive workload, improving safety conditions, and
enhancing work efficiency for their human teammates in
a variety of areas including hospitals and manufacturing
environments [1], [3], [27], [35]. Particularly in safety-
critical environments, robots need the ability to automatically
and accurately infer human activity. This will allow them to
operate either autonomously or with minimal user input to
avoid distracting their human teammates.

Robots can learn valuable information about the activities
of their human partners from their motion [4], [12], [14],
[20]. Gross motion detection (e.g. movement of the arms,
legs, or torso) is the primary area of focus for most human
activity recognition (HAR) approaches, traditionally using
RGB cameras, depth sensors, or motion capture systems [4],
[20]. Thus, robots can recognize gross motion daily living
activities, such as walking or lifting items, with accuracies
of as high as 99% [9], [13], [15], [33].
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However, recognizing fine-grained motion (e.g. movement
of hands or fingers) is imperative for enabling robots to
accurately understand human intention in safety-critical in-
dustrial environments. For example, in order to infer how a
person is using a screwdriver or placing an item, the robot
needs to perceive their hand and wrist motion. However, most
conventional sensors do not provide adequate information to
accurately detect these movements, so fine-grained activity
recognition is unreliable using traditional HAR approaches.

To recognize these minute movements, one approach
researchers have employed is hand-centric motion capture
[18], [21]. However, motion capture often requires expensive
equipment and a cumbersome installation procedure [20].
Furthermore, these sensors are easily occluded in dynamic
environments, resulting in reduced recognition accuracy [20].

Thus, many researchers instead employ wearable sensors
such as accelerometers, gyroscopes, or surface electromyog-
raphy (sEMG) sensors for fine-grained motion detection [20],
[26]. Recent examples include automatically recognizing
American Sign Language, identifying gestures to interface
with technology, and detecting different types of grasps to
control robotic arms [2], [23], [41].

Both motion capture and wearable sensors have proved
effective for HAR when recognizing different granularities of
motion. However, especially in the context of robotics, their
relative efficacy for detecting gross and fine-grained motion
is unclear. If their relative capabilities were known in this
context, then it may be possible to combine multiple sensor
modalities in a complementary fashion to more accurately
detect a wider variety of activity.

To our knowledge, we are the first to directly compare the
efficacy of motion capture and wearable sensors for recogniz-
ing gross and fine-grained motion in the context of assembly
manufacturing. We employed three common classification
algorithms for HAR (support vector machine (SVM), linear
discriminant analysis (LDA), k-nearest neighbors (KNN)).
We chose these classifiers due to their success in recognizing
activities using motion capture or wearable sensor data [4],
[19], [20]. To evaluate these modalities on both granularities
of motion, we introduce the new UCSD-MIT Human Motion
dataset. We used a Vicon motion capture system and a Myo
armband to record participants completing two assembly
tasks. The first is an automotive assembly task consisting
of primarily gross motor movements. The second is a block
assembly task which required fine grasping movements.

Our empirical evaluations on the two tasks suggest that
these two sensor modalities are complementary: motion cap-
ture yields better accuracy for gross motion, while wearable
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sensors yield better accuracy for fine-grained motion. When
classifying gross motion, using the motion capture system
achieved up to 36.95% higher accuracy than the wearable
sensor. On the other hand, the wearable sensor data was up
to 28.06% more accurate for fine-grained motion recognition.

Our findings will help roboticists understand how motion
capture and wearable sensors compare when classifying
activities of different motion granularities. In turn, this will
unveil which sensors are best suited for detecting activities
that are relevant in a given context. Thus, robots can better
infer the person’s task by utilizing a multimodal system to
simultaneously detect gross and fine-grained motion.

This work will also help the robotic learning from demon-
stration and grasping communities choose sensor modalities
to recognize motion specific to their needs. Learning from
demonstration researchers may choose to use motion capture
data to teach a robot gross motion activities, and utilize
wearable sensors for fine-grained manipulation training. Sim-
ilarly, as grasping is a very fine-grained activity, our results
suggest that the robotic grasping community can garner
important insights by using wearable sensors to complement
the traditional RGB-D and motion capture systems.

II. BACKGROUND

Many activities that occur in everyday life (e.g. walking,
climbing stairs, lifting objects) primarily entail gross motion.
Thus, the majority of HAR algorithms are designed to
recognize these activities, typically using data gathered via
external sensors such as RGB-D or motion capture systems.

In particular, motion capture has many applications. It
can help robots track people and objects in an environment,
generally using mounted cameras. For example, unmanned
aerial vehicles rely on motion capture data to guide them
and prevent collisions while in autopilot [11], [31]. It is also
widely used for tracking human activity for applications such
as security in public spaces and entertainment [25], [34].

Many researchers have explored using motion capture
data to help robots predict gross motion in manufacturing,
a safety-critical environment. For example, Unhelkar et al.
[39] used a Kinect to create human-aware robots that can
safely deliver parts to human workers in an automotive as-
sembly environment. Similarly, Hayes and Shah [9] classified
automotive assembly activities using 3D joint locations of
people and objects from a Vicon system. Mainprice et al. [24]
captured single-arm reaching movements of two people to
help robots predict activities in collaborative environments.

However, in many settings, robots need to be able to rec-
ognize pertinent activities that involve fine-grained motion,
such as grasping. Reliable classification of fine motion is
particularly difficult due to the small, ambiguous movements
that human hands are capable of [20], [40].

One approach to fine activity classification is using visual
data to track hands and objects in the environment. For
instance, Lei et al. [22] achieved high classification accuracy
of seven kitchen activities by using RGB-D data to track
hands interacting with 27 different objects. However, using
visual data is not necessarily viable in all settings, especially

Fig. 1. Arrangement of sensors on a participant’s arm. Vicon markers are
in red boxes. Myo is circled in blue.

dynamic and chaotic environments where cameras can often
be occluded. Additionally, cameras for motion capture and
visual sensing are expensive to install, and their field of view
is limited to a constrained physical space.

On the other hand, wearable sensors are mobile and thus
can be used to recognize activity anywhere. Thus, body-
worn non-visual sensors are another common approach to
fine-grained activity recognition. For example, Zhu et al.
[42] used data from an inertial measurement unit (IMU)
worn on the finger to recognize five different hand gestures.
Batzianoulis et al. [2] used arm muscle activity data from
sEMG sensors in tandem with finger joint locations to
recognize five different types of grasping motions.

A commonly used wearable sensor in recent studies is
the Myo armband which measures sEMG and inertial data.
Researchers have used it to recognize a wide variety of
activities such as daily living, gym exercises, and wandering
behavior in the elderly [19], [37], [38].

All of the aforementioned work used either motion capture
or a wearable sensor to recognize gross or fine-grained
motion. However, it is unclear whether they could have
achieved higher accuracy for their activity set had they used
a different sensing modality. Accurate recognition of both
gross and fine motion is especially crucial for robots in
safety-critical spaces where an error could result in harm to
a human partner. To this end, we investigate whether there
is an advantage to using one sensor modality over another
for recognizing different granularities of motion.

III. METHODOLOGY

In this work, we compared the efficacy of motion cap-
ture and wearable sensors for recognizing gross and fine-
grained motion. We collected the UCSD-MIT Human Motion
dataset, comprised of two tasks. The first task is an automo-
tive assembly task entailing gross motion, and the second is
a block assembly task consisting of fine grasping motion (see
Section III-A.2). The automotive task contains four activity
classes, and the block task has five. Five participants (two
female, three male) performed both tasks. We trained three
widely used machine learning algorithms with these data, and
used F1 scores as our evaluation metric (see Section IV).
In this section, we describe the data collection procedure,
labeling method, and classification algorithms.
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Fig. 2. Activities from the automotive assembly task. From left to right,
top to bottom: Walking, Receiving Part, Scanning Part, Attaching Part.

A. Data Collection

1) Sensors: We collected data using a Vicon motion-
capture system and Myo armband simultaneously (See Fig.
1). We placed Vicon markers on the shoulders, elbow,
and back of the hand on each of the participants’ arms.
Participants wore the Myo on the forearm of their dominant
arm. We solely tracked participants’ arm movements to avoid
burdening them with excessive Vicon markers, while still
capturing relevant information as they completed activities.

We connected the sensors to a single machine (Intel
i7-6820HQ CPU, 16GB of RAM) to ensure a consistent
timestamp across all data. We used the Robot Operating
System (ROS) (version Indigo) to save time-synchronized
data in rosbag format. The Vicon has a sampling rate of
120Hz, while the Myo has a sampling rate of 50Hz for
IMU data and 200Hz for sEMG data. In accordance with
other real-time activity recognition systems, we sampled our
data at a consistent rate of 30Hz in order to reduce the
computation required by the systems [8], [9], [30].

2) Dataset Creation: To evaluate the efficacy of these
sensors on different granularities of motion, we constructed
the automotive and block assembly tasks to have activities
composed of either gross or fine-grained motion respectively.

The automotive assembly task, inspired by the Dynamic-
AutoFA dataset, consists of four gross motion activities [9].
As such, no actions in this task depend on dexterous hand
or finger movements. The four main activities are Walking,
Receiving Part, Scanning Part, and Attaching Part (see Fig.
2, Table I). There are between two and four instances,
or occurrences, of each activity throughout the task. Each
participant completed five trials (i.e. repetitions of the task)
yielding a total of 50 to 100 instances of each activity.

The block assembly task consists of five fine grasping
motions. Participants received a box with one flat base block
and four rectangular blocks. In order to simulate different
dexterous hand movements, we asked participants to grab

TABLE I
SEQUENCE OF ACTIVITIES PERFORMED IN THE AUTOMOTIVE TASK .

Class Description
Walk to dashboard
Scan dashboard
Walk to left side of dashboard
Receive speedometer
Scan speedometer
Attach speedometer
Walk to right side of dashboard
Receive navigation unit
Scan navigation unit
Attach navigation unit
Walk to exit

and affix each block to the structure in a distinct manner. The
activities in this dataset are Palmar Grab, Thumb-3 Fingers,
Thumb-2 Fingers, Pincer Grab, and Ulnar Pinch Grab (see
Fig. 3, Table II). These grasps are similar to those used in
other grasp recognition studies [2], [42]. Each participant
completed five trials, performing each grasp once per trial,
which yielded a total of 25 instances of each grasp.

We collected data from five participants who engaged in
both the automotive and block assembly tasks. Participants
were between the ages of 26 and 34, with a mean age of
28.2 years. Two of the five participants were female, and
three were male. Four of the participants were right-handed,
and one was left-handed.

B. Data Processing and Labeling

1) Feature Selection: For both the Vicon and Myo data,
we use low-level, raw data features in the temporal domain.
This is to assess the baseline capabilities of these sensor
modalities without the influence of high-level feature selec-
tion, which can drastically impact a classifier’s accuracy [16].
Data are partitioned using a sliding window technique, with
window size of 1 second with 50% overlap.

The Vicon markers provided the 3D position (x-, y-, z-
coordinates) of the selected joints with respect to the Vicon’s
internal coordinate system. Since there were six joints (three
on each arm), there were a total of 18 of these features
in the dataset. We chose to track these joints because they
are similar to the arm joints tracked in the Carnegie Mellon
University Motion Capture Database [5].

For the Myo data, we collected the linear acceleration, an-
gular velocity, and muscle activity data of each participants’
dominant arm. This included x-, y-, and z- linear acceleration,
x-, y-, and z- angular velocity, and the eight channels of
sEMG data, yielding a total of 14 features. We chose these
features to help detect arm position and orientation relative
to the wearer, as the Myo does not sense movements relative
to the global environment. Additionally, the sEMG signals
can help detect differences in hand motion.

2) Data Labeling: Two annotators manually labeled the
data by reviewing recorded video played back from a rosbag
file. Annotators used a script to record the start and end
time of each activity. In order to ensure consistency in our
class labels, we conducted inter-rater reliability analysis by
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Fig. 3. Grasping activities in the block assembly task. From left to right: Palmar, Thumb-3 Fingers, Thumb-2 Fingers, Pincer, Ulnar pinch.

TABLE II
GRASP TYPES USED IN THE BLOCK TASK . EACH GRASP USED A

DIFFERENT COMBINATION OF FINGERS .

Grasp Name Fingers Involved
Palmar All
Thumb-3 Fingers Thumb, Index, Middle, Fourth
Thumb-2 Fingers Thumb, Index, Middle
Pincer Thumb, Index
Ulnar Pinch Thumb, Pinky

computing the two-way mixed intraclass correlation (ICC)
for our labeled data. ICC is a measure of similarity between
class labels, in our case the similarity of the start and end
times of the activities between annotators [6]. Thus, we
normalized the timestamps to the start of each trial.

We found Cronbach’s α = .81 which indicates that our
labels were consistent between annotators [36].

C. Classification algorithms

We trained three machine learning classifiers on both
datasets to determine which sensor modality is better suited
for recognizing gross and fine-grained motion. We used a
support vector machine (SVM) with a linear kernel function
(C = 1 ), linear discriminant analysis (LDA), and k-nearest
neighbors (KNN) (k = 5 ) [32]. We chose these classifiers as
they have proven successful in HAR and other applications
[4], [20]. As our goal was not to compare the classifiers
against each other, we used standard values for additional
parameters (e.g. C for SVM, k for KNN) to simplify the
selection process.

SVMs are widely used for pattern recognition, classifi-
cation, and regression [10]. They use kernel functions to
calculate hyperplanes with which to divide training instances
into proposed classes. These are then used to classify new
instances. They have shown success in high dimensional
spaces while producing interpretable results [10], [20].

LDA models training instances parametrically as multi-
variate means then uses linear decision boundaries to sepa-
rate them into classes [19]. They inherently handle multiclass
data such as ours and do not require hyperparameter tuning.

KNNs are a type of instance-based learning that classifies
new samples as the most prevalent class of the k most similar
training instances [20]. We chose k = 5 to maintain distinct
classification boundaries between classes.

D. Evaluation

To evaluate the relative efficacies of motion capture
and wearable sensors, we performed leave-one-out cross-
validation for each task (i.e. we tested each individual trial by
training the classifier on all other trials of that task and then
classified the original trial). In the case where we fused the
Vicon and Myo data, we employed early fusion techniques,
or combined the features before classification, which showed
success in our prior work [29].

We calculated the mean F1 score to evaluate the classifi-
cation efficacy across all trials of each participant for both
tasks (see Table III). As such, the training set is not subject
specific, but does contain data from that participant. The F1
score of a class is the average of its classification precision
and recall. Its value lies in the range of 0 to 1, where values
closer to 1 indicate higher precision and recall. We chose to
use the mean F1 score over raw accuracy as our performance
measure as it is a better indicator of performance, especially
when class distributions are imbalanced [17]. This was the
case for the automotive task, since each trial contained up to
twice as many more instances of some activities than others.

To determine the significance of our independent variables
on our dependent variable (F1 score), we performed a three-
way repeated-measures analysis of variance (ANOVA) test.
The independent variables we tested were motion granularity
(gross or fine), sensor modality (Myo or Vicon), and classifier
(SVM, LDA, or KNN) (see Table IV).

IV. RESULTS

Mauchly’s Test of Sphericity indicated that all combina-
tions of motion granularity, sensor modality, and classifier
violated the assumption of sphericity, i.e. the variances
of differences between data of the same participant were
not equal. The exceptions to this were Sensor Modality *
Classifier), χ2(2) = 1.37 , p = .504, and Motion Granularity
* Sensor Modality * Classifier, χ2(2) = 0.68 , p = .712 .
Thus, we corrected the degrees of freedom for all other com-
binations using Greenhouse-Geisser estimates of sphericity.
We corrected family-wise error rate in post hoc comparisons
using Bonferroni correction.

1) Motion Granularity: Motion granularity had a signif-
icant main effect on F1 score. Regardless of the sensor
modality or classifier used, the type of motion being classi-
fied significantly impacted the F1 score, F (1, 19) = 532.76,
p < .001, r = 0.98 .
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TABLE III
MEAN F1 SCORES OBTAINED FOR EACH DATA MODALITY ON EACH DATASET USING DIFFERENT CLASSIFIERS . ACROSS THE DATASETS AND SENSORS ,

WE AVERAGED THE F1 SCORES FROM EVERY TRIAL . A HIGHER F1 SCORE IS BETTER .

SVM LDA KNN
Vicon Myo Vicon+Myo Vicon Myo Vicon+Myo Vicon Myo Vicon+Myo

Automotive (Gross motion) .79 .42 .43 .76 .48 .49 .88 .58 .59
Block (Fine-grained motion) .09 .37 .36 .23 .39 .36 .32 .43 .43

TABLE IV
F-TESTS OF FACTORS . p  .≤ 05 INDICATES A SIGNIFICANT EFFECT ON F1

SCORE FOR INDIVIDUAL VARIABLES , AND SIGNIFICANT INTERACTION

BETWEEN VARIABLES FOR MULTIPLE . CONFIDENCE FOR ALL p-VALUES

IS 95%. r -VALUE IS EFFECT SIZE .

Source p r

Motion Granularity < .001 0.98
Sensor Modality < .001 0.69
Classifier < .001 0.75
Motion Granularity * Sensor Modality < .001 0.96
Sensor Modality * Classifier > .05 0.21
Motion Granularity * Classifier > .05 0.28
Motion Granularity * Sensor Modality * Classifier < .001 0.54

2) Sensor Modality: The sensor modality also had a
significant main effect on F1 score. Regardless of the motion
granularity or classifier, the sensor significantly impacted F1
score, F (1, 19) = 17.08, p < .001, r = 0.69 .

3) Classifier: We also found that the main effect of the
classifier was significant, F (1.54, 29.24) = 38.07, p < .001,
r = 0.75 . Contrasts between each classifier found that the
KNN achieved higher F1 scores than the SVM, F (1, 19) =
52.22, p < .001, r = 0.86 , as well as the LDA, F (1, 19) =
29.00, p < .001, r = 0.78 . The LDA also outperformed the
SVM, F (1, 19) = 17.53, p < .001, r = 0.693 .

4) Motion Granularity * Sensor Modality: There was a
significant interaction between the motion type and sensor
type, F (4, 19) = 219.39, p < .001 . This indicates that the
sensor had significantly different effects on the F1 score
depending on the motion granularity being recognized, and
vice-versa. Contrasts revealed that the Vicon yielded higher
accuracy than the Myo for gross motion, but lower accuracy
for fine. Conversely, the Myo yielded higher accuracy than
the Vicon for fine-grained motion, but lower for gross,
F (1, 19) = 219.39, p < .001, r = 0.96 (see Fig. 4a).

5) Sensor Modality * Classifier: There was no signifi-
cant interaction between the sensor modality and classifier,
F (2, 38) = 1.83 , p > .05 , r = 0.21 . The interaction graph
supports this finding (see Fig. 4b).

6) Motion Granularity * Classifier: There was also no
significant interaction between the granularity of motion
being classified and the classifier, F (1.53, 29.10) = 3.27 ,
p > .05 , r = 0.28 . The interaction graph supports this
finding (see Fig. 4c).

7) Motion Granularity * Sensor Modality * Classifier:
Finally, the was significant interaction between all three of
the independent variables, F (2, 38) = 15.34, p < .001, r =
0.54. This indicates that F1 score was significantly different

for each combination of motion granularity, sensor modality,
and classifier. This is reflected in the interaction graphs as
the difference in F1 score is consistently greatest between
the SVM and KNN (see Fig. 4b,c).

V. DISCUSSION

Our results suggest that motion capture and wearable
sensors offer complementary strengths for HAR. Motion
capture is more accurate for detecting gross motion, while
wearable sensors are more accurate for recognizing fine-
grained motion. Our results also indicate that both sensor
modalities yielded significantly more accurate recognition
of gross motion than fine-grained which suggests that fine-
grained motion is more difficult to classify than gross.

For gross motion recognition, we found that motion
capture data yielded significantly higher accuracy than the
wearable sensor data. This may be because the Vicon utilizes
3D position in the environment, so the relative position of
the person may help the classifiers more accurately recognize
gross motion. For example, the Receiving Part and Attaching
Part activities occur in consistent, but different, locations in
the environment. Thus, the classifiers can use the consistent
arm positions to distinguish between these two activity
classes. On the other hand, the Myo only obtains data relative
to the user, so it does cannot distinguish activities in the
same way. Arm movement may not be enough information
to accurately detect gross body motion.

For recognizing fine-grained motion, we found that the
wearable sensor data yielded significantly higher accuracy
than motion capture data. The Myo can detect the muscle
activity generated by the minute motion variations of each
grasp to help the classifiers differentiate between them. In
contrast, the Vicon tracks the position of the hands as
opposed to the fingers, so the 3D motion it captures is similar
between these fine-grained finger activities. Moreover, joints
were often occluded from view, resulting in lower accuracy,
a known problem when working with visual sensors [7].

Our results also indicate that fine-grained motion is more
difficult to classify than gross. Across all classifiers, both
the Myo and Vicon yielded lower accuracy on the block
assembly task than on the automotive one. This may be
because the movements between the grasps were similar
(overhand, using some number of fingers) which led to
ambiguities in the data. Fine-grained hand motion, as seen
in our dataset, can be difficult to discern as it often entails
analogous arm motion and muscle activity. In future work,
we will explore higher level features and combinations of
sensors to more accurately recognize these activities.
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Fig. 4. Interactions between each pair of variables. The y-axis represents mean F1 score over all trials. Similar slopes between lines indicate insignificant
interaction between variables. There was significant interaction between sensor modality and motion granularity, and insignificant interaction of classifier
with both motion granularity and sensor modality.

Our results also suggest that multimodal sensor fusion
resulted in lower classification accuracy than when using a
single sensor for both tasks. Prior work in other recognition
tasks showed that using similar multimodal approaches can
improve classification accuracy, so we expected a similar
result here [28], [29]. However, it is possible that the
additional modalities contributed more noise than meaningful
information, resulting in lower accuracy. In future work, we
may be able to mitigate this by performing higher level
feature extraction (e.g. mean absolute value for sEMG data,
frequency domain features for inertial data), training a deep
learning model to extract more significant information, or
exploring alternate fusion techniques [29].

Depending on the types of relevant activities in the space,
robots may need different kinds of sensor data in order to ac-
curately recognize the intentions of their human counterparts.
Our findings can help the robotics community make more
informed decisions regarding which sensor modalities would
be most beneficial for their specific tasks. This decision
depends considerably on which activities are important for
robots to recognize as well as the motion granularity of these
activities. For instance, if the robot needs to know that a
person is lifting a heavy object and may need help, motion
capture systems are reliable. On the other hand, wearable
sensors would better help a robot to determine which tool
to fetch next depending on whether the person is currently
assembling a part with a hammer versus a screwdriver.

A limitation of this work is that we only recorded the
arm motion of the participants. In many HAR scenarios,
movement of other body parts and environmental features
can improve activity detection [9]. While it is possible that
motion capture would have performed better with more
markers, recognizing precise finger movements would still
be a challenge due to their close proximity. Therefore, it is
unlikely that using more markers would have increased accu-
racy of fine-grained motion, and improvements in accuracy
of gross motion would further support our findings. Addi-
tionally, motion capture is not always viable for small tools

and parts (e.g. screwdrivers for assembling small electronics).
Thus, we subject both the Vicon and Myo to the difficult
scenario where only human arm movements are measured.

Our findings suggest promising avenues for improving
HAR of complex tasks in safety-critical settings. However, a
limitation that should be addressed to improve the robustness
of such systems is that we assume the classifier is trained on
previous data from each participant, which may not always
be the case in real-world scenarios. Additionally, as the
amount of training data increases, so does the computational
complexity of these classifiers. This is not ideal for a robot
that must react quickly in dynamic settings. Therefore, as
more data is collected, approaches that can handle larger
datasets such as deep learning may be more suitable.

As we continue research in this area, we plan to develop
a multimodal system that can leverage the complementary
nature of these sensor modalities to recognize both gross
and fine-grained motion so robots can better infer human
activity. We will also extend our dataset in order to create
a more reliable unimodal activity recognition system. Once
we have a classifier that can reliably detect human activity,
we plan to explore how robots can improve safety conditions
for human workers in safety-critical settings.

Our findings can help the robotics community to under-
stand which sensors work best for certain activities. These in-
sights will enable researchers to design algorithms for robots
that incorporate complementary multimodal approaches to
better recognize activities that entail both motion types.
These findings can also help guide both the robotic learn-
ing from demonstration and grasping communities as they
choose sensor modalities best suited for their contexts. Our
findings will help robots infer human intention regardless
of the nature of the activities and environment. With the
means to accurately distinguish particular activities, they can
better support people and improve safety conditions in more
specialized, safety-critical settings.
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