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Abstract. We present an explicit formula for the leading coefficient in the asymptotic expansion of the
eigenvalue counting function of the Kohn Laplacian on the unit sphere S2n−1.

1. Introduction

1.1. Statement. If two planar domains have the same spectrum for the Laplace operator with Dirichlet
boundary condition, then are they equivalent up to rigid transformations? Kac’s famous paper [Kac66]
presents this problem of inverse spectral theory to a wide audience. Although the answer is negative
[GWW92], many similar questions wait answers (see [LR15]).

The analogs of these problems on CR manifolds seek to relate the complex geometry of the manifold and
the spectrum of the Kohn Laplacian. For example, in [Fu05] Fu showed that a bounded domain in Cn is
pseudoconvex if and only if the essential spectrum of the Kohn Laplacian on the boundary of the domain is
positive.

In this note we look at the eigenvalue counting function for the Kohn Laplacian and obtain the coefficient
of the leading term in the asymptotic expansion. Similar estimates on general CR manifolds appear in
[Mét81, BS88, Pon08], where the coefficients are expressed in terms of certain integrals. However, here we
look at the problem on a specific CR manifold, namely the unit sphere S2n−1 ⊂ Cn. We express the leading
coefficient explicitly and explore its relation to geometric quantities of S2n−1.

Let N(λ) denote the number of eigenvalues of the Kohn Laplacian on the unit sphere that are less or
equal than λ. In [ABB+19] it was shown that N(λ) grows on the order of λn. In this note, we show that

(1.1) lim
λ→∞

N(λ)

λn
=

1

2nn!

( ∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
− 1

(n− 1)n

)
.

Although we present an elementary proof of this new result, the main purpose of the paper is to start an
investigation for the geometric meaning of these numbers.

1.2. Weyl’s Law. The relation between spectral theory and geometry has long been a centerpiece of math-
ematics. Weyl’s law beautifully expresses this relation on bounded domains in Rn, see [Ivr16, Section 1.1].
In particular, if Ω is a bounded domain in R2n and N(λ) is the number of non-zero Dirichlet eigenvalues of
the Laplace equation on Ω that are less than or equal to λ, counting multiplicity, then Weyl’s law states that

lim
λ→∞

N(λ)

λn
= (2π)2nω2nvol(Ω)

where ωd is the volume of the unit ball in Rd. More specifically, if Ω is the unit ball in R2n then

lim
λ→∞

N(λ)

λn
= (2π)2nω2

2n.

We see later in the note that the right hand side of (1.1) is not as elegant as Weyl’s law.

1.3. Kohn Laplacian. Before we go deeper in the calculations we introduce the Kohn Laplacian. The
Kohn Laplacian (or ∂b-Laplacian) on a compact orientable CR manifold

�b = ∂b∂
∗
b + ∂

∗
b∂b

is a linear, closed, densely defined self-adjoint operator from the space of (0, q)−forms L2
(0,q)(S

2n−1) to itself.

Here, ∂b is a differential operator that send (0, q)-forms to (0, q + 1)-forms, and ∂
∗
b denotes its Hilbert space
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adjoint. Both are densely defined linear operators on respective spaces of differential forms. These operators
are fundamental differential operators in the study of CR manifolds. We refer the reader to [CS01, Chapter
8] for a detailed account.

1.4. Spectrum on the Sphere. In [Fol72], Folland computes the eigenvalues and eigenforms of �b on
(0, r)−forms L2

(0,r)(S
2n−1) by using unitary representations. When r = 0, in other words on the space of

functions, the eigenvalues are of the form

(1.2) 2q(p+ n− 1)

with the corresponding eigenspaces Hp,q
(
S2n−1

)
1 are the space of spherical harmonics, where p and q denote

the bi-degrees of the polynomials. It follows from the symmetry of the sphere that the spherical harmonics
of different bi-degree are orthogonal. Furthermore, the dimensions of these spaces are given by

(1.3) dim
(
Hp,q(S2n−1)

)
=

(
n+ p− 1

p

)(
n+ q − 1

q

)
−
(
n+ p− 2

p− 1

)(
n+ q − 2

q − 1

)
as computed in [Kli04]. We note that when r = 0, that is when the Kohn Laplacian acts on the space of
functions L2(S2n−1), it simplifies to

�b = ∂
∗
b∂b.

In addition to Folland’s original proof, a direct computational proof (for r = 0) is given in [ABB+19].

2. Leading Coefficient: Proof of (1.1)

In this section we analyze the asymptotics of the eigenvalue counting function. In particular we show
that it has polynomial growth and we compute the leading coefficient in its polynomial expansion. First we
define “big-O notation” in the setting that we will be using it.

Definition 2.1. Given functions f, g, h in the variables on R we write f = g + O(h) if there are constants
c, x0 ∈ R, so that |f(x)− g(x)| ≤ ch(x) for all x ≥ x0.

Next we have a simple binomial coefficient bound.

Lemma 2.2. Let a, b nonnegative integers and y a positive real number. Then

byc∑
q=1

(
q + b

a

)
=

ya+1

(a+ 1)!
+O(ya).

Proof. Since a, b are fixed
(
q+b
a

)
is a polynomial of degree a in the variable q. We have

byc∑
q=1

(
q + b

a

)
=

byc∑
q=1

qa

a!
+O(qa−1) =

(byc)a+1

(a+ 1)a!
+O(byca) =

(y +O(1))a+1

(a+ 1)!
+O(ya)

=
ya+1 +O(ya)

(a+ 1)!
+O(ya) =

ya+1

(a+ 1)!
+O(ya),

as desired. �

We now proceed to the proof of the asymptotics of the eigenvalue counting function.

Theorem 2.3. Let N(λ) be the counting function as defined above, then

lim
λ→∞

N(λ)

λn
=

1

2nn!

( ∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
− 1

(n− 1)n

)
.

Remark 2.4. In addition to the constant in front of the highest order term λn, the proof also indicates the
size of the remainder term; indeed, we show that N(λ) ∼ cλn+O(λn−1 lnλ). We note that in the asymptotic
expansion of the counting function for the Dirichlet Laplacian, the coefficient of the second order term gives
the surface area. It would be an interesting further investigation to understand the constant in front of the
λn−1 lnλ term.

1For more information on spherical harmonics we refer to [ABR01]. We simplify the notation by writing just Hp,q .
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Proof. We note that all the eigenvalues are even integers so we define a function M(x) : (0,∞) → R by
M(x) = N(2x) when x is a positive integer, and M(x) = M(bxc) otherwise. We define

∆M(m) = M(m)−M(m− 1) =
∑

2q(p+n−1)=2m

dimHp,q =
∑

q(p+n−1)=m

dimHp,q =
∑
pq=m

dimHp−n+1,q.

We note that this quantity is exactly the dimension of the eigenspace of the eigenvalue 2m. Let

f(p, q) =
(n− 1)(p+ q)

(p− n+ 1)q

(
p− 1

p− n

)(
n+ q − 2

q − 1

)
,

so that by 1.3, f(p, q) = dimHp−n+1,q when p− n+ 1, q ≥ 1. Then

∆M(m) =
∑

pq=m,p≥n

f(p, q).

Now

M(x) =
∑
m≤x

∆M(m) =
∑
m≤x

∑
pq=m,p≥n

f(p, q) =

x∑
p=n

bx/pc∑
q=1

f(p, q).(2.1)

Now we analyze f(p, q)

f(p, q) =
(n− 1)(p+ q)

(p− n+ 1)q

(
p− 1

p− n

)(
n+ q − 2

q − 1

)
=

(n− 1)

(p− n+ 1)

(
p− 1

n− 1

)
(
p

q
+ 1)

(
q + n− 2

n− 1

)
.

We note that

(n− 1)

(p− n+ 1)

(
p− 1

n− 1

)
=

(
p− 1

n− 2

)
,

so

f(p, q) =

(
p− 1

n− 2

)
(
p

q
+ 1)

(
q + n− 2

n− 1

)
.

We split f(p, q). Define

f1(p, q) =

(
p− 1

n− 2

)(
q + n− 2

n− 1

)
f2(p, q) =

(
p− 1

n− 2

)
p

q

(
q + n− 2

n− 1

)
so that f = f1 + f2. We analyze both separately. We see∑
m≤x

∑
pq=m

f1(p, q) =

x∑
p=1

(
p− 1

n− 2

) bx/pc∑
q=1

(
q + n− 2

n− 1

)
=

x∑
p=1

(
p− 1

n− 2

)(
(x/p)n

n!
+O((x/p)n−1)

)

=

x∑
p=1

(
p− 1

n− 2

)
(x/p)n

n!
+O(

(
p− 1

n− 2

)
(x/p)n−1) =

x∑
p=1

(
p− 1

n− 2

)
xn

pnn!
+O(pn−2(x/p)n−1)

=

x∑
p=1

(
p− 1

n− 2

)
xn

pnn!
+O(

xn−1

p
) =

(
1

n!

x∑
p=1

p−n
(
p− 1

n− 2

))
xn +O(xn−1 lnx)(2.2)

where we have used Lemma 2.2 for the second equality. Note that
∑∞
p=1 p

−n(p−1
n−2
)

is a convergent sum.

Now we look at

f2(p, q) = p

(
p− 1

n− 2

)
1

q

(
q + n− 2

q − 1

)
=

p(p− 1)!

(n− 2)!(p− n+ 1)!

(q + n− 2)!

q(q − 1)!(n− 1)!
=

(
p

n− 1

)(
q + n− 2

n− 2

)
.

The idea is to repeat the analysis done for f1 but with the roles of p, q reversed:∑
m≤x

∑
pq=m

f2(p, q) =

x∑
q=1

bx/qc∑
p=1

f2(p, q) =

x∑
q=1

(
q + n− 2

n− 2

) bx/qc∑
p=1

(
p

n− 1

)
.
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Hence∑
m≤x

∑
pq=m

f2(p, q) =

x∑
q=1

(
q + n− 2

n− 2

) bx/qc∑
p=1

(
p

n− 1

)
=

x∑
q=1

(
q + n− 2

n− 2

)(
(x/q)n

n!
+O((x/q)n−1)

)

=

x∑
q=1

(
q + n− 2

n− 2

)
(x/q)n

n!
+O(

(
q + n− 2

n− 2

)
(x/q)n−1)

=

x∑
q=1

(
q + n− 2

n− 2

)
xn

qnn!
+O(qn−2(x/q)n−1) =

x∑
q=1

(
q + n− 2

n− 2

)
xn

qnn!
+O(

xn−1

q
)

=

(
1

n!

x∑
q=1

q−n
(
q + n− 2

n− 2

))
xn +O(xn−1 lnx)(2.3)

where once again we have used Lemma 2.2 for the second equality.
Recall that f = f1 + f2. By combining (2.2) and (2.3) we get∑

m≤x

∑
pq=m

f(p, q) =
1

n!

(
x∑
q=1

q−n
(
q + n− 2

n− 2

)
+

x∑
p=n

p−n
(
p− 1

n− 2

))
xn +O(xn−1 lnx)

=
1

n!

(
x∑
q=1

q−n
(
q + n− 2

n− 2

)
+

x∑
p=1

p−n
(
p− 1

n− 2

))
xn +O(xn−1 lnx)

=
1

n!

(
x∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

)))
xn +O(xn−1 lnx).

Let h(k) =
(
k+n−2
n−2

)
+
(
k−1
n−2
)
. We note that h is a polynomial of degree n− 2. Hence the sum

∞∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

))
converges at the same rate as

∑
k≥1 k

−2. Hence

x∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

))
=

∞∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

))
+O(x−1),

and so we get∑
m≤x

∑
pq=m

f(p, q) =
1

n!

( ∞∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

)))
xn +O(xn−1 lnx).(2.4)

Recall that in our expression for M , (2.1), we had p ≥ n in the sum. Hence in order to get an expression for
∆M we must subtract off ∑

m≤x

∑
pq=m,p<n

f(p, q) =

n−1∑
p=1

bx/pc∑
q=1

f(p, q)

from (2.4). Recall that

f(p, q) =

(
p− 1

n− 2

)
(
p

q
+ 1)

(
q + n− 2

n− 1

)
so f(p, q) = 0 if p < n− 1. Hence

n−1∑
p=1

bx/pc∑
q=1

f(p, q) =

bx/(n−1)c∑
q=1

f(n− 1, q) =

bx/(n−1)c∑
q=1

f1(n− 1, q) + f2(n− 1, q)

=

bx/(n−1)c∑
q=1

(
n− 1− 1

n− 2

)(
q + n− 2

n− 1

)
+

(
n− 1

n− 1

)(
q + n− 2

n− 2

)
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=

bx/(n−1)c∑
q=1

(
q + n− 2

n− 1

)
+

bx/(n−1)c∑
q=1

(
q + n− 2

n− 2

)

=
(x/(n− 1))n

n!
+O((x/(n− 1))n−1) +

(x/(n− 1))n−1

(n− 1)!
+O((x/(n− 1))n−2)

=
xn

(n− 1)nn!
+O(xn−1).

Now subtracting our expression for
∑
m≤x

∑
pq=m,p<n f(p, q) from (2.4) we obtain

M(x) =
∑
m≤x

∑
pq=m,p≥n

f(p, q) =
1

n!

( ∞∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

)))
xn − xn

(n− 1)nn!
+O(xn−1 lnx),

where we recall our expression for M , (2.1). Finally we have

lim
λ→∞

N(λ)

λn
=

1

2n
lim
λ→∞

M(λ)

λn
=

1

2nn!

( ∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
− 1

(n− 1)n

)
as desired. �

3. More Explicit Computations

The problem now becomes to compute the coefficient

1

2nn!

( ∞∑
k=1

k−n
((

k + n− 2

n− 2

)
+

(
k − 1

n− 2

))
− 1

(n− 1)n

)
.

We set h(k) =
(
k+n−2
n−2

)
+
(
k−1
n−2
)

and rewrite the expression above as

1

2nn!

( ∞∑
k=1

k−nh(k)− 1

(n− 1)n

)
.

However we note that
(
k+n−2
n−2

)
= (−1)n

(−k−1
n−2

)
, so h(k) is an even polynomial when n is even and odd when

n is odd. Hence k−nh(k) is a polynomial in k−2. Since the values of the Riemann zeta function at positive
even integers is well-known, then for any fixed n we can easily evaluate the above sum. To see explicitly how
the expression above works we will examine the case when n = 5.

Example 3.1.

lim
λ→∞

N(λ)

λ5
=

1

255!

( ∞∑
k=1

k−5
[(
k + 3

3

)
+

(
k − 1

3

)]
− 1

(5− 1)5

)

=
1

255!

( ∞∑
k=1

k−5
[

(k + 3)(k + 2)(k + 1)

3!
+

(k − 1)(k − 2)(k − 3)

3!

]
− 1

45

)

=
1

255!

( ∞∑
k=1

k−5

6

[
k3 + 6k2 + 11k + 6 + k3 − 6k2 + 11k − 6

]
− 1

45

)
=

1

255!

( ∞∑
k=1

2k−5

6
(k3 + 11k)− 1

45

)

=
1

255!

( ∞∑
k=1

1

3
(k−2 + 11k−4)− 1

45

)
=

1

255!

(
1

3
ζ(2) +

11

3
ζ(4)− 1

45

)
=

1

255!

(
π2

18
+

11π4

270
− 1

45

)
.

In general since the values of the Riemann zeta function at positive even integers are rational multiples
of a power of π2, we conclude with the following proposition.

Proposition 3.2. The leading coefficient of the eigenvalue counting function,

lim
λ→∞

N(λ)

λn
=

1

2nn!

( ∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
− 1

(n− 1)n

)
,

is a rational polynomial in π2.
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Proof. As in [Loe11], when we let s represent the signed Stirling number of the first kind, s′ represent the
unsigned Stirling number of the first kind, and Bl represent the l-th Bernoulli number we get the following.

∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
=

n−1∑
j=0

(2π)n−j+1 |Bn−j+1|
(n− 2)!(n− j + 1)!

s(n− 1, j)

By [Loe11, Theorem 2.74] we have(
k − 1

n− 2

)
=

(k − 1)(k − 2) . . . (k − n+ 2)

(n− 2)!

=
k(k − 1)(k − 2) . . . (k − n+ 2)

k(n− 2)!

=
1

k(n− 2)!

n−1∑
j=0

s(n− 1, j)kj

and by [Loe11, Theorem 2.73](
k + n− 2

n− 2

)
=

(k + n− 2)(k + n− 3) . . . (k + 1)

(n− 2)!

=
(k + n− 2)(k + n− 3) . . . (k + 1)k

k(n− 2)!

=
1

k(n− 2)!

n−1∑
j=0

s′(n− 1, j)kj .

We use the notation

χ2|l =

{
1, if 2 | l
0, else

Now we get

∞∑
k=1

k−n
[(
k + n− 2

n− 2

)
+

(
k − 1

n− 2

)]
=

∞∑
k=1

1

kn+1(n− 2)!

n−1∑
j=0

(s(n− 1, j) + s′(n− 1, j))kj

=

∞∑
k=1

1

kn+1(n− 2)!

n−1∑
j=0

(1 + (−1)n−1+j)s(n− 1, j)kj

=

∞∑
k=1

2

kn+1(n− 2)!

n−1∑
j=0

χ2|(n−j+1)s(n− 1, j)kj

=

n−1∑
j=0

2χ2|(n−j+1)

(n− 2)!
s(n− 1, j)

∞∑
k=1

kj−n−1

=

n−1∑
j=0

2

(n− 2)!
s(n− 1, j)χ2|(n−j+1)ζ(n− j + 1)

=

n−1∑
j=0

2

(n− 2)!
s(n− 1, j) · (−1)

n−j+1
2 (2π)n−j+1Bn−j+1

2(n− j + 1)!

=

n−1∑
j=0

(2π)n−j+1 |Bn−j+1|
(n− 2)!(n− j + 1)!

s(n− 1, j)

where we have used that Bl = 0 if l is odd. �
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As mentioned in the introduction, the right hand side is not as elegant as Weyl’s law. Therefore, we pose
the question whether we can hear the surface area with the Kohn Laplacian. We leave the further analysis
of these numbers to a future work.
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