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ABSTRACT 

The design and optimization of highly nonlinear and complex processes like plasma etching is challenging and time-
consuming. Significant effort has been devoted to creating plasma profile simulators to facilitate the development of 
etch recipes. Nevertheless, these simulators are often difficult to use in practice due to the large number of unknown 
parameters in the plasma discharge and surface kinetics of the etch material, the dependency of the etch rate on the 
evolving front profile, and the disparate length scales of the system. Here, we expand on the development of a 
previously published, data informed, Bayesian approach embodied in the platform RODEo (Recipe Optimization for 
Deposition and Etching). RODEo is used to predict etch rates and etch profiles over a range of powers, pressures, 
gas flow rates, and gas mixing ratios of an CF4/Ar gas chemistry. Three examples are shown: (1) etch rate 
predictions of an unknown material “X” using simulated experiments for a CF4/Ar chemistry, (2) etch rate 
predictions of SiO2 in a Plasma-Therm 790 RIE reactor for a CF4/Ar chemistry, and (3) profile prediction using level 
set methods.  

Keywords: etching, design of experiment, plasma, prediction 

1. INTRODUCTION 
Increasing device integration and the ever-growing consumer demand for faster processors and larger memory 
storage are driving a growing need for bleeding-edge nanomanufacturing processes. Moore’s law, or the idea that 
the number of transistors per chip doubles every two years, has so far been sustained by increasing the number of 
processing steps for double masking and etching (Figure 1).  

This steadily growing demand is paralleled by the climbing difficulty of creating the complex architectures required 
by next-generation devices. It is becoming more and more arduous to baseline and optimize a single process recipe. 
In fact, some recipes are so challenging that they can take up to two years to develop, or worse, are never put into 
production.  

For plasma processing steps, process optimization is especially challenging. Problems with selectivity, aspect ratio 
dependent effects, and critical dimension uniformity are all exacerbated with increasing architectural complexity. 
Computational modeling of the plasma and the etched surface has the potential to inexpensively and rapidly 
determine optimal etch process conditions for a wide range of materials, pattern layouts and plasma systems. 
However, etch rates and etch profiles are difficult to predict using conventional techniques. Currently, plasma 
recipes can have up to ten different gas chemistries meaning hundreds of reactions can take place in a single process 
in parallel. Adding to the complexity, plasma reactors are multiscale, operating at the length scales of the reaction 
chamber, wafer, die, and feature. Variations in the concentration of the species across each of these length scales and 
coupling the species transport processes makes it difficult and computationally expensive to predict molecular fluxes 
within reasonable timescales for process development in the fab. In addition, most industrial plasma systems exhibit 
non-Maxwellian behavior making it a challenge to determine the velocity distributions of the incoming plasma 
species to the wafer’s surface. Finally, there is a significant lack of knowledge of the plasma parameters. These 
problems are compounded as technology nodes get smaller and new materials and device structures are explored 
making it extremely difficult to create and optimize new recipes.  
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ௗௗ௧ (݁݊௘଴ܶ݁) = ௉ೌ್ೞ௏ − ቀ݁ܧ஼ಲೝܭଵ݊஺௥ + ଵ݊஼ிయቁܭ஼಴ಷయܧ݁݁ − ݁ ቀܧ௘ + ௜ಲೝశቁܧ ஺௥శ݊஺௥శߥ − ݁ ቀܧ௘ + ௜಴ಷయశቁܧ  ஼ிయశ݊஼ிయశ,(1)ߥ

where ܧ஼ represents the collisional energy losses per electron ion pair and (ܧ௘ +  ௜) is the energy lost to the wallܧ
per electron-ion pair. Here ν denotes the wall loss rate of positive ions such that 

ߥ  = ℎ௟ݑ஻,௜(2)  ,ܸ/ܣ 

where the Bohm velocity ݑ஻,௜ is calculated as ݑ஻,௜ = (݁ ௘ܶ/ܯ௜)ଵ/ଶ, and hl is the wall loss factor. Further details on the 
power balance and calculation of the wall loss factors can be found in literature.2-4 Using specified fixed inputs for 
the plasma reactor’s discharge length and diameter, the absorbed power, pressure, feed gas composition, reaction 
rate coefficients, and surface recombination constants, the system of equations is solved to determine species 
densities and electron temperatures. These results are fed as input into the plasma surface kinetics model which then 
outputs etch rates and the initial velocity field for the front profile propagation using level set methods.  

Table 1. Set of Reactions for CF4/Ar Global Plasma Model 

N Reaction 

1 ݁ + ݎܣ → ାݎܣ + 2݁ 

2 ݁ + ସܨܥ → ଷାܨܥ + ܨ + 2݁ 

3 ݁ + ଷܨܥ → ଷାܨܥ + 2݁ 

4 ݁ + ସܨܥ → ିܨ +  ଷܨܥ

5 ݁ + ସܨܥ → ଷܨܥ + ܨ + ݁ 

6 ݁ + ଷܨܥ → ଶܨܥ + ܨ + ݁ 

ଷାܨܥ 7 + ିܨ → ଷܨܥ +  ܨ

ିܨ 8 + ାݎܣ → ܨ +  ݎܣ

ܨ 9 + ݈݈ܽݓ →  ସܨܥ0.5

ଷܨܥ 10 + ݈݈ܽݓ →  ସܨܥ0.5

 

2.3  Surface Kinetics Model of CF4/Ar System 

A Langmuir surface kinetics model was used to predict vertical and lateral etch rates. In the Langmuir model the 
surface of the substrate is composed of bare sites where the neutrals adsorb and sites occupied by neutrals on which 
bombarding ions activate chemical reactions. The etch rate, ER, is a function of chemical etching and physical 
sputtering,15 

ܴܧ  = 	 (1 − ஼߁ܵߛ(ߠ + (1 −  ௣, (3)߁ܻ(ߠ

where ߛ is the probability of the chemical reaction, Γ஼ is the flux of the reacting species, S is the sticking probability, ߠ is the fraction of the surface covered by reaction products, Y is the sputtering yield, and Γ௣ is the flux of the 
sputtering species. The plasma was assumed to be at steady state such that ௗఏௗ௧ = 0. The percentage of active sites on 
the surface are then balanced as 

 (1 − ஼߁ܵߛ(ߠ = ∑ߠ ௗܻ,௝  ା,௝,  (4)߁

where ௗܻ,௝ and ߁ା,௝, are the partial yields of ion-stimulated desorption and partial fluxes for the different positive ion 
species at the surface of the substrate.  

 ௌܻ = భమܧ)ܤ − ଴,௦భమܧ ) (5) 

 ௗܻ = భమܧ)ܥ − ଴,ௗభమܧ ) (6)  
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The sputtering yield and ion stimulated desorption are functions of the square root of the ion energy. The 
coefficients parameters B and C depend on the type of ion and the sputtered material. E, the incident ion energy in 
the plasma sheath, is approximated to be 5.2 Te.18 Material dependent parameters ܧ଴,௦and ܧ଴,ௗare the threshold 
energies for sputtering and ion-stimulated desorption. Note that this surface kinetics model does not include any etch 
product redeposition that may be occurring by the fluorocarbon.  

2.4 Profile Simulation 

Level set methods were used to track motion of the interface for the etch profile simulation. In level set profile 
propagation, the velocity field is defined by position, time, the geometry of the interface, and the etch physics (as 
determined by the global plasma and surface kinetics models). The interface is represented by the zero-level set of a 
higher-dimensional function φ (r, t), that is φ (r, t) =0. The motion is then determined by convecting the φ(r,t) 
values with the normal velocity field defined by the etch rate in the surface kinetics model,22 

 డఝడ௧ + ࢜ ∙ ߮ߘ = 0 (7) 
Visibility of the plasma source to the etched surface was incorporated in the level set profile predictions. In order to 
take into account aspect ratio dependent effects based on the computed etch velocity at the surface, it was assumed 
that the velocity decayed normally across the surface such that 

 ௬ܸ(ݔ, (ݕ = 	 ௬ܸ଴ exp(∆ݕଶ) exp	 ቀହ∆௫మଶ ቁ (8) 

where ∆ݕ and ∆ݔ are the distance of a point’s coordinates from the origin of the grid.  

2.5 Experiments 

Experiments were performed on a Plasma-Therm 790 RIE etcher. The process space considered in all of the 
following examples was set by the etcher’s tolerance windows. These process windows are summarized in Table 2. 

Table 2. Process Window Considered on Plasma-Therm 790 Etcher 

 Minimum Maximum 
Power (W) 50 200 

Pressure (mTorr) 10 1000 
Flow Rate (sccm) 14 50 
Fraction of CF4 0 1 

 
The etch rate experiments (Example 2) were performed on a thermal oxide grown on silicon. Etch rates were 
measured using ellipsometry. For the pattern transfer experiments (Example 3 in the Results section), imprints were 
made with an Imprio®1-1100 machine using a monomat resist material on top of the thermal oxide. The imprinted 
resists were made up of line-space patterns with a 130-nm pitch. To perform the transfers, an Ar/O2 etch was first 
used to remove the residual layer of the imprinted material and expose the underlying substrate. The CF4/Ar etch 
recipes were then run at the specified process conditions for three minutes. Lastly, etch profiles were characterized 
on a ZEISS Neon 40 SEM. Cross-sectional SEM images were taken at 200KX and 5kV.  

2.6 Validation Methodology 

For the following examples, the performance of the calibrated RODEo model after a sequential experimental design 
was evaluated against a 3rd degree ordinary least squares regression model calibrated using two-level full-factorial 
design of experiment, hereafter referred to as the 2LFFD model. In a 2LFFD design of experiment, all input levels 
are set at two levels each (a high level and a low level) such that 2n experiments are performed, where n is the 
number of process parameters available. For the CF4/Ar system considered here n = 4 (power, pressure, total flow 
rate, and fraction of CF4 in the mixture), and so 16 experiments were performed in total at the min and max process 
ranges specified in Table 2.  

In a least squares regression, a model of the form 

ݕ  = ,ݔ)݂  (8) (ߚ
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Figure 8. (a) SEM Cross-sectional profile of pattern transfer and (b) Profile predicted by RODEo engine for a pressure 
of 50 mTorr, power of 200W, flow rate of 50 sccm. 

The heights and widths of the experimental versus predicted profiles are compared in Table 3. RODEo is able to 
qualitatively reproduce the etched profile and predicts the etch width with < 15% error and the etch height with less 
than 5% error. 

Table 3. Comparison of experimental measurements with RODEo predictions. 

 

 

 

4. SUMMARY 
A simplified global plasma and surface kinetics models is incorporated into the RODEo platform to map out multi-
dimensional process spaces for CF4/Ar plasma etch systems. RODEo’s etch rate predictions are compared with the 
predictions of least squares regression models calibrated using a two-level full-factorial design of experiments. It is 
demonstrated that RODEo can more effectively capture many of the nonlinearities of a plasma system than a 2LLFD 
model. Lastly, it is shown how RODEo’s front profile simulator can be used to predict an etch profile based on the 
results of the calibrated model.  
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