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ABSTRACT

Advances in machine intelligence have sparked interest in hardware accelerators to implement these algorithms,
yet embedded electronics have stringent power, area budgets, and speed requirements that may limit non-
volatile memory (NVM) integration. In this context, the development of fast nanomagnetic neural networks
using minimal training data is attractive. Here, we extend an inference-only proposal using the intrinsic physics
of domain-wall MTJ (DW-MTJ) neurons for online learning to implement fully unsupervised pattern recognition
operation, using winner-take-all networks that contain either random or plastic synapses (weights). Meanwhile,
a read-out layer trains in a supervised fashion. We find our proposed design can approach state-of-the-art success
on the task relative to competing memristive neural network proposals, while eliminating much of the area and
energy overhead that would typically be required to build the neuronal layers with CMOS devices.
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1. INTRODUCTION

Presently, conventional/von Neumann computing devices are encountering serious difficulties in locally storing,
mapping, and manipulating complex data structures, an ability which may be critical to those systems that
cannot rely on external (cloud) processing for energy, distance, or trust/reliability reasons. These difficulties
can broadly be divided into issues with continued processor scaling, and memory energy ovrhead and bandwidth
issues, the latter of which is often referred to as the memory wall.1 However, since these problems arise as a
symptom of old computer architecture, the use of novel, brain-inspired (neuromorphic) architectures that exploit
existing and modified logic and memory devices remains an alternate path.2 In addition to the use of standard
CMOS and memory devices to realize neuromorphic prototypes,3 emerging non-volatile memory (NVM) devices
have recently come into consideration for in-memory computing (IMC) systems. Neuromorphic/IMC systems
built with NVM devices can reach very high density in the crossbar configuration, since the cell size can scale
as low as 4F 2, where F is the base feature size, and can serve as an excellent template for performing hardware
implementations of neural network learning and inference, by exploiting local physics and electrical effects.4 This
combination of form (extreme density) and function (data transformation/analysis) opens a pathway to extreme
energy efficiency in future computing systems.

Despite this promise, many types of NVM devices remain at the prototype stage, or suffer from critical issues
such as low durability, slow programming/write time, or a high required programming current. Thankfully,
magnetic tunnel junction (MTJ) memory devices, including typical two-terminal spin-transfer torque MTJ (STT-
MTJ) and emerging three-terminal spin-orbit torque MTJ (SOT-MTJ) devices open a doorway to low current
(< 10µA), fast speed (< 10ns), and high endurance (> 1012 operations) dense arrays of emerging memory.5,6

In order to fulfill the neurmorphic/IMC vision and perform local or in-situ learning, candidate NVM devices
must be programmable according to simplified rules which are derived from either state of the art optimization
techniques in machine learning, e.g. stochastic gradient descent and back-propagation, or neuroscience-derived
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rules, such as spike-timing dependent plasticity (STDP). While both approaches have so far been experimentally
demonstrated using alternative emerging NVM devices,7–9 demonstrations of online learning using spintronic
NVM candidates such as SOT-MTJ and STT-MTJ are sparse, or rely on significant CMOS-based circuits to
operate.10,11 An additional challenge is that, while emerging NVM devices are typically highly analog, MTJ
variant devices are typically binary between their Antiparallel (AP) and parallel (P) states. This requires the
use of stochastic behaviors as a stand-in for physically analog behavior, and can result in promising results.12 In
addition, spintronic memories are an exciting alternative for future neuromorphic systems since they may avoid
some of the signature issues that plague neuromorphic implementations with existing filamentary or phase-change
devices, e.g. characteristic non-linearity of write-mode asymmetry relating to physical challenges in moving ions.
The combination of non-linearity and asymmetry can be devastating to efficient NVM online learning systems,
so finding building blocks where this issue can be obviated is a promising path forward.13

We focus on an especially promising spintronic device: a three-terminal domain-wall MTJ (DW-MTJ) de-
vices with intrinsic analog behavior and the potential for attaJoule switching energies.14 While experimentally
demonstrated only in the logic context so far,15 these devices constitute a possible implementation for not only
synapse but neuron in emerging nanomagnetic hardware neural network proposals. Specifically, an array of DW-
MTJ devices can be used to implement the essential features of a population or layer of spiking neurons- leak,
integrate and firing- along with the inhibition behavior which is critical to unsupervised learning.16 In this work
we consider how effectively a nanomagnetic neural network learning with DW-MTJ output and hidden layers
can perform on a state of the art machine learning task by deriving these learned weights in-situ. Specifically,
we consider a dual-phase , or semi-supervised, approach to online learning. In this approach, an unsupervised
system/layer first adapts and is later co-integrated with a read-out system. Both systems can be physically real-
ized using an adaptive crossbar system with emerging memory devices and realized at terabit or higher density
scales for efficient edge computing applications. In the following sections, we detail this design and preliminary
results when using it on a standard task.

2. DW-MTJ DEVICE FULLY ONLINE LEARNING SYSTEM

2.1 Realistic neuronal emulation by DW-MTJ nanotracks

As described in,14 the motion of a domain-wall logic or memory devices are physically modeled and explained
by the spin-polarization of injected current in a soft ferromagnetic wire which sits between an input and output
MTJ device; antiferromagnetic contacts placed on the ends of the wire create an exchange bias which pins the
magnetic field at either end and drives domain wall motion back towards the Input MTJ, or forward towards
the Output MTJ. This complex physical system can be notably simplified by noting that the current must be
above a certain critical threshold Ith in a certain direction to drive the DW ’forward’, or ’backward’.

Recently, the DW-MTJ device was further engineered with the addition of a heavy ferromagnetic underlayer
such that, when no current is applied, the position (x) of the DW will tend to naturally relax towards the Input
MTJ.16 In this same work the ability of transverse magnetic fields from a given DW-MTJs track to inhibit its
neighbors was explored and confirmed via micromagnetic simulations. Taken together, the operations of leak,
integrate and fire along with inhibition create a physical basis for realistic emulation of winner-take-all circuits.
Besides an underlayer, an alternative physical method to implement intrinsic leaking of DW-MTJs is the use of
a gradient anisotropy.17

2.2 Realizing fully online learning DW-MTJ neural networks

2.2.1 First (un-supervised) layer

Winner-take-all circuits are a stable of neural computing, and it has been shown that soft-winner-take all gates,
i.e. more than one ’winning’ or spiking neuron per layer/population, can serve as a foundation for universal
function approximation.18 However, when WTA networks use plastic weight updates governed by the biological
learning rule STDP, winner take all circuits have been demonstrated to possess powerful emergent computational
properties such as approximating hidden Markov models.19 In addition, the use of plastic updates and lateral
inhibition in the context of vector-matrix multiplies and subsequent updates in a dense memory array has
been suggested to implement the powerful algorithm known as Expectation Maximization (EM).20 Due to these
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Figure 1. The two systems, which can both be conveniently realized in a shared nanofabric, both use DW-MTJ devices
at the hidden and output layer, notably using the lateral inhibition function to implement the k-WTA property and
the max-out property, respectively. The yellow crosspoints, here representing adaptive synapses, can in principle be any
two-terminal NVM device. For the first layer, we have considered them as both analog filamentary and binary magnetic
devices; for the second layer, we have considered them as only analog devices.

mutually powerful effects, we use a first layer of DW-MTJs learning in two cases: with un-adaptive synapses
but active neuron effects still in place (random weights), and with plastically adaptive synapses along with the
active neuron effects (STDP). In addition, we have considered two variants of STDP to determine the variety
of plastic updates needed to implement this additional computational power. On one hand, we considered a
binary approximation of STDP (B-STDP), which following12 relies upon the naturally stochastic behavior of
two-terminal STT-MTJ junctions, and moves NVM devices in the first layer between only extrema states (P
and AP, in the case of STT-MTJ devices). Second, analog STDP (A-STDP), in which multi-bit analog NVM
devices switch between multiple states, as proposed in21 and realized experimentally in.22 As in these references,
we have assumed the naturally exponential (non-linear) nature of the device’s state changes.

2.2.2 Second (supervised) layer

As noted in,23 such an unsupervised layer can be difficult to properly read-out in the context of standard
machine learning tasks, creating the need for a companion supervised learning system. Although the companion
supervised learning system does not increase the computational capacity of the network, it serves as a bridge to
implement an easily interpretable threshold-based learning system. Following hardware realizations that have
realized efficient sign-based implementation of the classic delta or Widrow-Hoff rule,24 we realize weights in pairs
of NVM devices, and adjust weights at every weight pair according to:

∆Wi,k = ∆Gsign(Xi(Tk −Ok)), (1)

where ∆Wi,k is the weight change at each programming step for the synapse connecting input i to output k,
Tk is the expected output, Ok the actual output, Xi the input value, and ∆G the conductance change. The
teacher signal, in the case of our network are the labels for the actual image class (e.g. digit ’1’) during the
teaching/training moment, but may in principle be any real-time signal directing the system’s adaptation.
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3. SIMULATION METHODS AND RESULTS

3.1 Description of dual learning operation simulations

In our simulations, we have co-integrated a model of the interacting DW-MTJs during the un-supervised learning
as a time-step simulator using forward Euler integration, along with a simplified model of lateral inhibition, with
t = 200 time steps during which the first set of parallel DW-MTJs, DWM operate based on the input currents
provided at that moment. At the end of the last time step, the spike(s) are collected by the simulator and passed
forward to implement the plasticity operation (if it is being implemented in that first network Wus). Following
this operation, another example is presented and fed to the DW-MTJs, for a total number of Lus unsupervised
learning samples. After this, the weights of the first memory matrix/crossbar are frozen and remain so during
the second phase. During the second phase of the dual learning approach, training inputs are again fed to the
input network (Wus), spikes are collected from the DW-MTJ interaction sub-simulator, and these spikes are
propagated to the second network (Ws) in a logical sign-symmetric manner as suggested in.25 As pictured in
Fig. 2(a), the output from this second crossbar is used to produce a set of spike outputs from the second set of
DW-MTJs DWN , and collected in a logic cell or local memory. Subsequently, these spike outputs in comparison
to a teaching signal is then used to implement the on-chip learning rule. Meanwhile, as in 2(b), the programming
occurs via simultaneous voltage pulses which must bypass the DW-MTJ devices, in the case of the post-synaptic
pulse. This operation occurs a total of Ls times using the frozen weights already obtained in the first phase.

Figure 2. (a) depicts the vector-matrix multiply (VMM) and max-out operation of Ws, and (b) depicts the physical
mapping of a learning rule (binary Widrow-Hoff algorithm). Note that, the actual comparison of the output and teacher
signal must be stored and compared in a logic cell made of standard CMOS, or logic domain-wall devices, and can’t be
made all at once due to the staged operation.

3.2 Preliminary simulation results

We have tested this procedure and our simulator on the classic MNIST task of handwritten digits. Our prelimi-
nary simulations suggest that with DWM = 200, that is with 200 competing hidden units, and with DWM = 10
as in16 at the final output layer, we achieve 88% accuracy on the test-set with plastic binary synapses and 92%
with plastic analog synapses, following Lus = 500 and then Ls = 50000. In order to verify that the weight
adaptations in the unsupervised layer are of value, we also set the first layer weights as constant (that is, skipped
the first of the dual phases mentioned earlier). Considering random binary and analog devices, we achieve 78%
and 79% respectively using this approach; this result unambiguously confirms the value of lateral inhibition
combined with plastic updates.
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However, regarding the value of analog v. binary plastic updates, we remain ambivalent about whether our
early results suggest that one is definitely better than the other. Since the binary updates rely upon stochastic
effects to perform properly, we hope to better benchmark whether different probability switching distributions
on each device may help to close this gap. Nevertheless, at the moment we can observe notably richer analog
filters in the first layer as compared to binary ones, as in Fig. 3. Lastly, we have eliminated the first layer entirely
and found that a perceptron with max-out DW-MTJs and following the weight updates as in Fig. 2 achieve 84%
on the test set, an intermediate result between the random weight input layer and the plastic input layer.

Figure 3. (a) shows several hidden neuron’s weight representations, reconstructed as a 28x28 grid, for the binary STDP
updates case, while (b) shows the same but for the analog update case. The colorbars and color coding depicts physical
conductance values between the minima and maximum extrema , not the logical weight values.

4. DISCUSSION

4.1 Comparison to state-of-the-art approaches

While10,11 previously proposed nanomagnetic neural networks incorporating realistic leaky-integrate-fire and
STDP learning approaches, respectively, neither incorporated the inhibition effect which is critical to k-WTA
learning. By combining STDP and k-WTA and demonstrating that these two effects strictly outperform either
alone, our work inspires a new avenue of research to explore the maximum computational power possible with
locally learning arrays. Meanwhile, in comparison to other proposals combining WTA and stochasticity in the
context of non-magnetic memristive/NVM devices,26 we have achieved unambiguously better numerical results
on the task while also massively reducing CMOS reliance at the neuron device level.26 While not a state-of-the
art result on the ML task, our approach yields a strong performance when compared to other competing neural
network schemes using spintronics devices even using fully feature backprop. For instance, this performance is
superior to various in-situ learning styles with two-terminal magnetic devices alone.27 Beyond this, we hope to
achieve state-of-the-art by increasing the small number of DW-MTJ tracks operating at the hidden layer, or by
demonstrating that hidden layers of DW-MTJs may be stacked in order to approach performances derived using
standard convolutional neural networks , e.g. > 99% on the test-set.28

4.2 Lateral inhibition and physical constraints

Consistent with,16 our simulations calculate the lateral inhibition assuming a small inter-DW-MTJ distance
∆D. A parameter anaylsis suggests that when this distance is expanded and the magnetic lateral force BF

exerted upon neighbor wires is too low, too many DW-MTJs devices tend to spike. This degrades the system’s
performance during both inference and k-WTA operation; at the worst case almost every other neuron will spike,
and performance is very poor. While we calculated a favorable value for ∆D and hence BF which resulted in on
average on 30% or less of the neurons in hidden layer DWM firing each example, a priority is to integrate more
physically realistic modeling into the neural solver to see if this is realistic. Optimizing our system to allow for
a large enough BF value may be the most challenging task in later physically realizing a version of this system.
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5. CONCLUSION

Domain-wall magnetic tunnel junction (DW-MTJ) are an extremely promising platform for neuromorphic com-
puting as they can be used at the synapse and neuron level, have rich analog behavior, and a very low switching
energy requirement. When co-integrated in an ultra-dense array, they can stand in for biorealistic populations of
neurons by implementing the key functions of leak, integrate and fire (LIF). We have demonstrated that beyond
inference or prediction, this property can be used in the online learning context to implement a powerful semi-
supervised learning strategy. This strategy, which uses both general plastic updates in the first system/layer as
well as specifically directed updates in the second system/layer, has already achieved promising results compared
to other semi-supervised and/or spintronic neuromorphic proposals.
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