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Abstract: Scientific data, generated by computational models or from experiments, are typically
results of nonlinear interactions among several latent processes. Such datasets are typically
high-dimensional and exhibit strong temporal correlations. Better understanding of the underlying
processes requires mapping such data to a low-dimensional manifold where the dynamics of the
latent processes are evident. While nonlinear spectral dimensionality reduction methods, e.g.,
Isomap, and their scalable variants, are conceptually fit candidates for obtaining such a mapping,
the presence of the strong temporal correlation in the data can significantly impact these methods.
In this paper, we first show why such methods fail when dealing with dynamic process data. A novel
method, Entropy-Isomap, is proposed to handle this shortcoming. We demonstrate the effectiveness of
the proposed method in the context of understanding the fabrication process of organic materials.
The resulting low-dimensional representation correctly characterizes the process control variables
and allows for informative visualization of the material morphology evolution.

Keywords: manifold learning; time series; dynamic processes

1. Introduction

Scientific data, either produced by complex numerical simulations or collected by high-resolution
scientific instruments, are typically characterized by three salient features: (i) massive data volumes;
(ii) high dimensionality; and (iii) the presence of strong temporal correlation in the data. Representation
of this big process data in a low-dimensional (2D or 3D) space can reveal key insights into the dynamics
of the underlying scientific processes at play. Here, the term process data means any data that represent
the evolution of some process states over time (see Figure 1). Indeed, most of these high-dimensional
datasets are generated through an interplay of a few physical processes. However, such interactions
are typically nonlinear, which means that linear dimensionality reduction methods, such as principal
component analysis (PCA), are not applicable here. Instead, one needs to resort to nonlinear methods
which assume that the nonlinear processes can be characterized by low-dimensional submanifolds,
and by “mapping” the data onto such manifolds, one can understand the true behavior of the physical
processes in a low-dimensional representation.

Our focus in this work was to develop a novel method for dimensionality reduction of process data,
which can handle the above listed challenges. Input data is typically large, as each sample of a process
delivers a time series of high-dimensional points, which rules out many nonlinear dimensionality
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reduction methods. At the same time, the presence of strong temporal correlation among data points
that belong to the same time series confuses many dimensionality reduction methods which operate
under the assumption that the input data is uniformly sampled in the manifold space.

The key motivation behind this work arises from the massive and high-dimensional datasets
that are produced by computational models that simulate material morphology evolution during
the fabrication process of organic thin films (see Section 5.1), by solving nonlinear partial differential
equations. Organic thin film fabrication is a key factor that controls the properties of organic electronics,
such as transistors, batteries, and displays. However, this requires expensive computations to simulate,
and even then precise modeling is not possible. Choice of the fabrication parameters impacts the
trajectory that the process follows, which eventually determines the properties of the material being
fabricated. Scientists and engineers are interested in using dimensionality reduction on the resulting
big data to explore the material design space, and optimize the fabrication to make devices with
desired properties.

In our prior work, we proposed S-Isomap, a spectral dimensionality reduction technique for
nonlinear data [1] that can scale to massive data streams. While this method can efficiently and
reliably process high-throughput data streams, it assumes that the input data are weakly correlated.
Consequently, it fails when applied directly to process data. S-Isomap was derived from the standard
Isomap algorithm [2], which is frequently used and favored in scientific computing data analysis [3–8].
Unfortunately, while there is some prior work on applying Isomap to spatio-temporal data [9], the focus
has been on segmentation of data trajectories rather than discovering a continuous latent state. In our
recent work, we proposed a new spectral method to handle high-dimensional process data [10].

This paper significantly expands on our past work [10] and makes two key contributions. The first
contribution is to show how the standard linear and nonlinear dimensionality reduction methods, e.g.,
PCA, Isomap, etc., fail when dealing with process data. The poor performance can be attributed to the
fact that every observation is highly correlated with the temporally close observations belonging to the
same trajectory, and there is a lack of mixing (or cross-talk) between different trajectories of a process.
The second contribution of this paper is a new method, Entropy-Isomap, which induces the cross-talk
between different trajectories by adaptively modifying the neighborhood size for every data instance.
The proposed method is both easy to implement and effective, and could likely be applied to other
spectral dimensionality reduction methods, besides Isomap.

2. Background and Related Work

In this section we provide a gentle introduction to the spectral dimensionality reduction methods
and the process data encountered in our target application, and also discuss some related techniques
discussed in the literature for these topics.

2.1. Spectral Dimensionality Reduction Methods

Spectral dimensionality reduction (SDR) refers to a family of methods that map high-dimensional
data to a low-dimensional representation by learning the low-dimensional structure in the original
data. SDR methods rely on the assumption that there exists a function f : Rd → RD, d ≤ D,
that maps low-dimensional coordinates, yi ∈ Rd, of each data sample to the observed xi ∈ RD.
The goal then becomes to learn the inverse mapping, f−1, that can be used to map high-dimensional
xi to low-dimensional yi. While different methods exist within this family, they all share a common
computing pattern. For a given set of points, X, in a high-dimensional space RD, SDR methods
compute either top or bottom eigenvectors of a feature matrix, F derived from the n× D data matrix,
X, where n is the number of data instances. Here, the feature matrix, F, captures the structure of the
data through some selected property (e.g., pairwise distances).

Two broad categories of SDR methods exist, based on the assumption they make about f
(i.e., linear vs. nonlinear). Linear methods assume that the data lie on a low-dimensional subspace Vd

of RD, and construct a set of basis vectors representing the mapping. When working with the linearity
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assumption, the most commonly used methods are PCA and multidimensional scaling (MDS) [11].
PCA learns the subspace that best preserves covariance, i.e., F is the D× D sample covariance matrix
of the input data. The basis vectors learned by PCA, known as principal components, are the directions
along which the data has highest variance. In the case of MDS, the feature matrix is the n × n
dissimilarity matrix that encodes some pairwise relationships between data points in X. When these
relationships are Euclidean distances, the result is equivalent to that of PCA, and this is known as
classical MDS. Spectral decomposition of F in both methods yields eigenvectors Q. Taking the top d
eigenvectors, the data can be mapped to low-dimensions as Y by the transformation Y = XQd.

However, in cases where the data is assumed to be generated by some nonlinear process,
the linearity assumption is too restrictive. In such cases, both PCA and MDS are not robust enough
to learn the inverse mapping f−1. Although variants of PCA have been proposed to address such
situations (e.g., kernel PCA [12]), their performance is sensitive to the choice of the kernel and the
associated parameters. Instead, the most common approach is to use a manifold learning-based
nonlinear SDR (or NLSDR) technique, such as Isomap [2].

NLSDR techniques can be divided into two categories: global and local. Global methods, e.g.,
Isomap, minimum volume embedding [13], preserve a global property of the data. On the other hand,
local methods, e.g., local linear embedding (LLE) [14,15], diffusion maps [16], Laplacian eigenmaps [17],
preserve a local property for each data instance. All of these methods, however, involve a series of
similar data transformations. First, a neighborhood graph is constructed, in which each node is linked
with its k nearest neighbors. Next, this neighborhood graph is used to create a feature matrix which
characterizes the property that the underlying algorithm is trying to preserve. For Isomap, the feature
matrix is obtained as the shortest path graph in which every pair of data instances is connected to
each other by the shortest path between them. The low-dimensional representation of the input data is
obtained by factorization of the feature matrix. Typically, first d eigenvectors/values form the output Y.
The steps of the Isomap algorithm are outlined in Algorithm 1.

Algorithm 1 ISOMAP

Input: X, k
Output: Y

1: Dn×n ← PAIRWISEDISTANCES(X)
2: Gn×n ← ∞
3: for xi ∈ X do

4: kNN← KNN(xi, X, k)
5: for xj ∈ kNN do

6: Gi,j ← Di,j
7: Fn×n ← ALLPAIRSSHORTESTPATHS(G)
8: Y← MDS(F)
9: return Y

2.2. Dynamic Process Data

If the rows in the input data matrix, X, are uniformly sampled from the underlying manifold,
methods such as Isomap are generally able to learn the manifold, in the presence of sufficient data.
However, here, we consider the scenario where X represents a dynamic process, i.e., instances in X
are partitioned into T trajectories, Γ1, Γ2,..., ΓT . ΓI represents one trajectory which is specified by a
τ-parameterized sequence of mI data points. Thus, the sum of the lengths of the T trajectories is equal to
n, i.e., ∑T mI = n. In other words, ΓI = (xI(τ1), xI(τ2),. . . , xI(τmI )), where τi < τj when i < j. Parameter
τ usually denotes time, and trajectory ΓI can be a function of one or more additional parameters.

The target application for this study is the study of material morphology evolution during the
fabrication of organic thin film [18]. In particular, we use process data produced by the numerical
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simulation of the morphology evolution. Each input trajectory (denoted as Γ(ϕ, χ), from here on)
corresponds to a simulation which is parameterized by two fabrication process variables, viz.: (i) ϕ,
or the blend ratio of polymers making organic film; and (ii) χ, or the strength of interaction between
these polymers. Each trajectory consists of a series of “images”, generated over time, where each image
is actually a 2D morphology snapshot that is produced by the numerical simulation for a given time
step. A simple preprocessing step transforms the image to a high-dimensional vector, RD. See Figure 1
for some examples of the images that are generated for a selected combination of ϕ and χ. A detailed
description of the data and the data generation process is provided in Section 5.

Γ1

Γ2

Γ3

Time step 0 Time step 20 Time step 80 Time step 150

Figure 1. High-dimensional process data trajectories generated by a material morphology simulation.
Each row corresponds to the instances sampled at different time points from a single trajectory. Each
trajectory ΓI corresponds to different variants of the organic thin film fabrication process (described
by parameters ϕ and χ): Γ1 = Γ(ϕ = 0.6, χ = 2.2), Γ2 = Γ(ϕ = 0.6, χ = 3.0), Γ3 = Γ(ϕ = 0.5, χ = 3.0).
Each image is a high-dimensional point capturing material morphology (different colors represent
different types of polymer making the material). (Please view in color).

Ideally, to understand the impact of the input parameters, ϕ and χ, on the final properties of the
material, a large number of simulations need to be run that can uniformly span the domains of ϕ and χ.
However, the computational cost associated with generating one trajectory, corresponding to a single
combination of ϕ and χ, means that the sampling is sparse. On the other hand, sampling in the time
dimension is relatively dense. Instances belonging to the same trajectory tend to be strongly correlated,
which is reflective of how the morphologies evolve. These factors strongly influence the connectivity
of the neighborhood graph, G, which strongly impacts the approximation of the manifold distances by
the Isomap algorithm.

2.3. Related Works in Dealing with Dynamic Processes

A significant body of work exists in the field of developing reduction strategies for
high-dimensional data generated via complex physical processes. In fact, linear projection methods
are often used to construct such reduced order models from high-dimensional data [19]. Nonlinear
counterparts for such settings have been explored in limited settings, for certain types of dynamical
systems [20–23]. In particular, several of these methods have adapted diffusion maps [16] to dynamical
process data, by considering a fixed length “time-window” around each sample of the process data to
define a local neighborhood, which can account for moderate noise at short temporal scales. However,
most of these methods focus on understanding a single dynamical process, and not necessarily a
collection of trajectories obtained by varying the parameter settings.

One recent work proposes a data-driven method for organizing temporal observations of
dynamical systems that depend on the system parameters [24]. In that work, the authors
simultaneously compute lower dimensional representations of the data along multiple dimensions, e.g.,
time, parameter space, initial variable space, etc. An iterative procedure is then applied, wherein every
step involves mapping the data into a low-dimensional manifold using the diffusion maps algorithm
for each dimension, then recomputing the distances between the observations (for each dimension)
through a reconciliation step that utilizes information from other dimensions, and then repeating the
process. While, one could adapt the above method for the problem discussed here, it is not designed
to provide insights about the sparsely populated regions in the manifold, which is crucial to guide the
next round of simulations in our target application.



Algorithms 2020, xx, 5 5 of 16

3. Challenges of Using SDR with Dynamic Process Data

As mentioned earlier, PCA and Isomap are two standard off-the-shelf approaches to perform
dimensionality reduction on high-dimensional data. However, if the method is applied without taking
into consideration the underlying assumption of data linearity and uncorrelated samples, it delivers
highly misleading results. Here, we study the effectiveness of both PCA and Isomap when dealing
with dynamic process data.

3.1. Comparing PCA and Isomap for Dynamic Process Data

A reliable way of determining the quality of the low-dimensional representation (mapping)
produced by each method is to compare the original data X in RD with the mapped data Y in Rd,
by computing the residual variance. The process of computing residual variance for PCA differs from
Isomap, but the values are directly comparable.

In PCA, each principal component (PC) explains a fraction of the total variance in the dataset.
If we consider λi as the eigenvalue corresponding to the ith PC and |Λ| as the total energy in the
spectrum, i.e., |Λ| = ∑D

i=1 λi, then the variance explained by the ith PC can be computed as λi
|Λ| .

The residual variance can be calculated as

R = 1−
d

∑
i=1

λi
|Λ| . (1)

In the Isomap setting, residual variance is computed by comparing the approximate pairwise
geodesic distances, computed in G represented by matrix DG (recall that G is a neighborhood graph),
to the pairwise distances of the mapped data Y, represented by matrix DY:

R = 1− ρ(DG, DY)
2. (2)

Here, ρ is the standard linear correlation coefficient, taken over all entries of DG and DY.
To compare PCA and Isomap, we compare the residual variance obtained using PCA and Isomap

on the earlier described material morphology evolution process data. The dataset consisted of six
trajectories, corresponding to a unique combination of the parameters ϕ and χ. The comparison is
shown in Figure 2. It is evident that PCA is not able to learn a reasonable low-dimensional mapping
even when using 10 eigenvectors, while Isomap produces a highly accurate representation. For instance,
while Isomap is able to explain about 70% of the variance using three dimensions, PCA requires more
than nine dimensions. It should be noted that the ability to represent data in two or three dimensions
is especially desired by domain experts, as it allows for data visualization and exploratory analysis.
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Figure 2. Isomap and principal component analysis (PCA) run on simulation output produced by
data with six trajectories for χ = 3.0 and ϕ ∈ {0.50, 0.52, 0.54, 0.56, 0.58, 0.6}. The quality of the Isomap
manifold and PCA subspace are assessed using residual variance.
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If we visualize the data in 3D space using the PCA representation (d = 3) (see Figure 3a),
we observe that while PCA is able to describe the time aspect of the process evolution, it does
not offer any additional insights into the process, making it ineffective for the task at hand.
This can be primarily attributed to PCA’s inability to capture the nonlinear relationships between the
high- and low-dimensional data.

(a) (b) (c)
Figure 3. Low-dimensional (d = 3) representation of six trajectories with fixed χ = 3.0 and variable
ϕ ∈ {0.50, 0.52, 0.54, 0.56, 0.58, 0.6} obtained using (a) PCA, (b) Isomap with k = 8, (c) Isomap with
k = 8 using only the first 30 time steps of each pathway. (Please view in color).

The 3D visualization of Isomap is shown in Figure 3b. We note that despite the fact that Isomap
is better than PCA at minimizing the residual variance, the low-dimensional trajectories do not offer
meaningful insights. The trajectories appear to diverge from one another, leaving no reasonable
interpretation of the empty space, whereas one would expect some ordering with respect to the ϕ

parameter. This indicates that the standard application of Isomap is inadequate when working with
parameterized high-dimensional time series data. We obtain equally unsatisfactory results with other
methods, including t-SNE and LLE [14,25].

3.2. Standard Isomap and Dynamic Process Data

While the Isomap trajectories in Figure 3b diverge from the initial time point, close inspection
reveals that the trajectories exhibit nondivergent behavior in the earlier steps, which is expected since
the morphologies are expected to evolve in a similar fashion at the beginning of the simulation.

We only applied Isomap to the early stage data represented by the first 30 time steps of each
trajectory (the threshold was selected by the domain expert). The results are shown in Figure 3c.
The results here are more encouraging as one can clearly observe that data points for all trajectories
cluster together before quickly diverging. This observation points us to the key deficiency of Isomap
when dealing with dynamic process data. When data instances exhibit strong temporal correlations,
the neighborhood computation for any data instance in Isomap is heavily dominated by other instances
belonging to the same trajectory. Thus, Isomap cannot capture the relationships across different
trajectories and the reduced representation is dominated by the time dimension, as can be seen
in Figure 3b.

To further study this point, we consider the pairwise distance matrix D that contains the distance
between every pair of data instances. The rows and columns of the matrix are ordered by the trajectory
index and time, as shown in Figure 4a. Consider any pair of row (and column) indices, i and j, such that
the trajectory index that contains the ith data instance is I, and the trajectory index that contains the
jth data instance is J and τi, and τj denotes the time index for each instance within the corresponding
trajectory. Then, row i precedes row j in the matrix D if either I < J or τi ≤ τj if I = J.

We consider another visualization of this matrix (See Figure 4b), where the row ordering is
retained, but each row contains the sorted distances (increasing order) of the corresponding data
instance and all other instances in the dataset. We can observe that for the majority of instances,
the first several nearest neighbors are always from the same trajectory. This is problematic because the
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ability of Isomap to learn an accurate description of the underlying manifold depends on how well the
neighborhood matrix captures the relationship across the trajectories. We refer to this relationship as
cross-talk, or mixing among the trajectories. For any given point, the desired effect would be that the
nearest neighborhood set contains points from multiple trajectories. However, the sorted neighborhood
matrix indicates a lack of mixing, which essentially means that the Isomap algorithm does not consider
information from other trajectories when learning the shape of the manifold in the neighborhood of
one trajectory.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

I
(a) (b)

Figure 4. Pairwise distances of all points with χ = 3.0 and from six trajectories for
ϕ ∈ {0.50, 0.52, 0.54, 0.56, 0.58, 0.6} visualized in two ways. (Please view in color). (a) Distance matrix

D for all data grouped by ϕ and ordered by time step along both axes. Distances in subblocks along
the main diagonal denote interpoint distances within a fixed ϕ-value trajectory. Off-diagonal subblocks
highlight distance between points lying on disjoint trajectories. (b) Distance matrix D with rows
grouped by ϕ and ordered by time step. Entries in row i are sorted by increasing distance from xi and
colored according to their ϕ value. Clusters of similar color nearest the left edge reflect k-NN having
common ϕ-value for sufficiently large k.

3.3. Quantifying Trajectory Mixing

We propose a quantitative measure of the quality of neighborhoods in terms of the trajectory
mixing by employing the information-theoretic notion of entropy. Consider any data instance, x,
which belongs to trajectory Γi. Let pj be the fraction of k nearest neighbors of x that lie on a trajectory
Γj. The entropy of the k-neighborhood of the data instance x is calculated as

Hk
x = ∑

∀j,pj ̸=0
−pj log2 pj. (3)

Similarly, we can define the k-neighborhood entropy for a trajectory Γi as the average of
k-neighborhood entropy for all data instances on the ith trajectory, i.e.,

Hk
Γi
=

1
mi

∑
x∈Γi

Hk
x. (4)

Neighborhood entropy is directly related to the mixing of the trajectories in the proximity of a
given data instance. If the neighborhood entropy of an instance is high, it means that the nearest
neighbors of that instance exist in a large number of trajectories, indicating a strong mixing of the
trajectories. On the other hand, if the entropy of a data instance is low, it means that the nearest
neighbors lies on a single or very few trajectories, indicating a low level of mixing.
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3.4. Strategies for Inducing Trajectory Mixing

One simple way to induce more trajectory mixing is to increase k, since this would increase
the neighborhood entropy of the points. In considering the average neighborhood entropy for six
individual trajectories for various values of k, we find that the neighborhood entropy increases linearly
with k. Thus, for a small value of k, Isomap is unable to obtain a meaningful low-dimensional
representation, as evident when using standard Isomap, as discussed above, where k was set to 8.
In contrast, using large k could result in the desired level of trajectory mixing. However, as discussed
in the Isomap paper [2], the approximation error between the true geodesic distance on the manifold
between a pair of points and the approximate distance calculated using Dijkstra’s algorithm is inversely
related to k. For large k, Isomap is essentially reduced to PCA, and is unable to capture the nonlinearities
in the underlying manifold.

Another strategy to induce trajectory mixing is subsampling, i.e., selecting a subset of points from
a given trajectory. However, this would result in reduction of the data, which yields poor results.
Alternatively, we could use skipping in the neighborhood selection, i.e., for a given point, skip the s
nearest points before including points in the neighborhood. Unfortunately, in experimenting with
skipping and subsampling approaches we experienced a loss in local manifold quality or data size,
respectively. On the basis of this and the desire to achieve the most accurate local and global qualities,
we propose an entropy-driven approach in the next section.

4. Entropy-Isomap

As we established earlier, standard Isomap does not work well for dynamic process data since
neighboring data points are typically from the same trajectory. However, the global structure of
the process manifold is determined by the relations between different trajectories. When k-NN
neighborhoods are computed, this can result in poor mixing of the trajectories. The mixing can also
vary depending on the temporal location of the process. For example, if the trajectories are generated
using similar initial conditions, the trajectories will exhibit strong mixing. However, the trajectories
typically diverge subsequently. A neighborhood size k that produces good results in early stages might
produce poor results later on in the process. A value of k that is large enough to work for all times
might include so many data points that the geodesic and Euclidean distances become essentially the
same, which results in a PCA-like behavior, defeating the purpose of using Isomap.

To address this situation, we propose to directly measure the amount of mixing and use it to
change the neighborhood size for different data points adaptively. This mitigates the shortcomings of
the two methods described in the previous section, which either discard data (subsampling) or lose
local information (skipping).

Figure 5 shows that neighborhood entropy increases when the next nearest neighbors are added.
We propose using a threshold on the neighborhood entropy, as defined above, to adaptively determine
an appropriate neighborhood size, k. This modification allows the flexibility of larger neighborhoods
in regions where it is necessary or desired to force mixing between trajectories.

An additional parameter, M, determines the largest possible neighborhood size. This user-defined
parameter is used to ensure that the neighborhoods are not so large as to reduce Isomap to PCA.
For datasets which contain trajectories in poorly sampled regions of the state space, M controls the
size of the local neighborhood, without skewing the rest of the analysis, which would otherwise result
in an unreasonably large value of k.
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Figure 5. Neighborhood entropy of different trajectories as a function of k (χ = 3.0 and ϕ ∈
{0.50, 0.52, 0.54, 0.56, 0.58, 0.6}).

Algorithm 2 outlines the step of the proposed Entropy-Isomap algorithm. While the proposed
algorithm has some similarities to the standard Isomap algorithm (See Algorithm 1), there are some
key differences. First, the algorithm takes two additional arguments, the target entropy level, Ĥ to
determine the optimal neighborhood size, and the maximum neighborhood size, M. The initial step,
computing all pairwise distances for data instances in X, remains the same as in the standard algorithm.
Next, the algorithm performs the entropy-based neighborhood selection (lines 3–9). For each point
xi, the algorithm starts with an initial neighborhood size, k, and identifies the k-nearest neighbors.
These are used to compute the neighborhood entropy for the data instance. If the entropy threshold Ĥ
is not satisfied, then ki is incremented (line 6), and the process repeats. Once the entropy threshold
is reached, or if ki reaches the maximum threshold of M, the process terminates. The entire process
is repeated for each xi, and after all neighborhoods have been identified, the algorithm continues
the same way as standard Isomap (lines 10–12). While this iterative strategy for identifying optimal
neighborhood size for each data instance appears to be inefficient, it is presented here for more
clarity. In practice, the optimal neighborhood determination can be made via a more efficient binary
search-based strategy.

Algorithm 2 ENTROPY-ISOMAP

Input: X, k , Ĥ, M
Output: Y

1: Dn×n ← PAIRWISEDISTANCES(X)
2: Gn×n ← ∞
3: for all xi ∈ X do

4: ki ← k
5: while H < Ĥ and ki < (M + k) do

6: ki ← ki + 1
7: kNN← KNN(xi, X, ki)
8: Gi,j ← Di,j where xj ∈ kNN.
9: H ← NEIGHBORHOODENTROPY(x, ki, Ḡi)

10: Fn×n ← ALLPAIRSSHORTESTPATHS(G)
11: Y← MDS(F)
12: return Y

We applied Entropy-Isomap to the process data discussed earlier, with k = 8 and the maximum
number of steps M = 100. The large M ensures that the algorithm is able to create very large
neighborhoods to strictly enforce trajectory mixing. To understand the behavior of the method as
a function of the entropy threshold, Ĥ, we varied Ĥ from 0.1 to 0.9. The example low-dimensional
representation obtained by Entropy-Isomap is presented in Figure 6b.
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Figure 7b shows how the final neighborhood entropy for the instances belonging to six trajectories
vary according to time. We note that, for this data, the threshold for entropy (Ĥ, set to 0.3 for this
experiment) is often not reached even after expanding ki. Instead, the neighborhood size reaches
the maximum limit, M. We believe that this is because the k nearest neighbors for the majority of
points are in the same trajectory, (see Figure 4b), which leads to skewed neighborhood distributions.
As a result, even when a satisfactory number of neighbors come from other trajectories, the entropy
for the neighborhood might be low. Even when the trajectories mix, the neighborhoods are still
dominated by other instances in the same trajectory, as shown in Figure 6c. Therefore, while high
entropy implies good mixing, the converse is not necessarily true. Large neighborhoods could produce
mixing, while still having low entropy. Thus, the entropy threshold is set to be around 0.30–0.40,
with further confirmation through experimentation being presented in the next section.

(a)
(b)

 0

 10000

 20000

 30000

 40000

0.5 0.52 0.54 0.56 0.58 0.6

N
ei

gh
bo

r F
re

qu
en

cy

Trajectory

0.5 0.52 0.54 0.56 0.58 0.6

(c)

Figure 6. Six trajectories with fixed χ = 3.0 and the variable ϕ ∈ {0.50, 0.52, 0.54, 0.56, 0.58, 0.6} were
selected to learn mapping and transform the data into three dimensions using (a) Isomap with k = 8
and (b) Entropy-Isomap with k = 8, Ĥ = 0.3. (c) Neighborhood cross-mixing given by Entropy-Isomap
with k = 8, Ĥ = 0.3: for each trajectory Γ, neighbors of each point belonging to individual trajectories
are aggregated and shown in stacked bar graph form. (Please view in color).

If the entropy threshold is strictly enforced, one will have to increase the neighborhood size.
For the process data, we observed that the neighborhood sizes will become very large. Figure 7a shows
the neighborhood size distribution for Ĥ = 0.30. For such values of k, the method simply reduces to
PCA, a linear method, which suffers from limited expressiveness because of the linearity assumption.
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Figure 7. Entropy-Isomap with the default k = 8 and entropy threshold Ĥ = 0.3 run for data with
χ = 3.0 and the variables ϕ ∈ {0.50, 0.52, 0.54, 0.56, 0.58, 0.6}. (Please view in color). (a) Distribution of
selected neighborhood sizes ki that did not reach the maximum M = 100. (b) Entropy of the discovered
neighborhood for each time step.

Points that produce no mixing also end up with large neighborhoods, as Entropy-Isomap tries
to increase ki in order to meet the entropy threshold. These points occur when the dataset does not
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contain enough trajectories that pass near those particular states to produce good geodesic distance
estimates. Interestingly, we found that plotting entropy versus time in Figure 7b reveals that trajectories
can pass through poorly sampled parts of the state space and again “meet up” with other trajectories.

The proposed methods can be used to detect trajectories that do not interact and also which
regions of the state space are poorly sampled. This can be used to either remove them from the dataset
or as a guide to decide where to collect more process data.

5. Application

The current work is motivated by the need to analyze and understand big datasets arising in
the manufacturing of organic electronics (OEs). OE is a new sustainable class of device, spanning
organic transistors [26,27], organic solar cells [28,29], diode lighting [30,31], flexible displays [32],
integrated smart systems such as RFIDs [33,34], smart textiles [35], artificial skin [36], and implantable
medical devices and sensors [37,38]. The critical and highly desirable features of OEs are their
cost, and their rapid and low-temperature roll-to-roll fabrication. However, many promising OE
technologies are bottlenecked at the manufacturing stage, or more precisely, at the stage of efficiently
choosing fabrication pathways that would lead to the desired material morphologies, and hence
device properties.

The final properties of OEs (e.g., electrical conductivity) are a function of more than a dozen
material and process variables that can be tuned (e.g., through evaporation rate, blend ratio of
polymers, final film thickness, solubility, degree of polymerization, atmosphere, shearing stress,
chemical strength, and frequency of patterning substrate), leading to the combinatorial explosion of
manufacturing variants. Because the standard trial-and-error approach, in which many prototypes
are manufactured and tested, is too slow and cost inefficient, scientists are investigating in silico
approaches [39,40]. The idea is to describe the key physical processes via a set of differential equations,
and then perform high-fidelity numerical simulations to capture the process dynamics in relation to
input variables. Then, the problem becomes to identify and simulate some initial set of manufacturing
variants, and use analytics of the resulting process data to first understand the process dynamics (e.g.,
rate of change in domain size or the transition between different morphological classes), and then
identify new promising manufacturing variants.

The key scientific breakthroughs that improved organic solar cell (OSC) performance were
closely related to the manufacturing pathway. Most advances have been achieved by nontrivial and
nonintuitive (and sometimes very minor) changes in the fabrication protocol. Classic examples include
changing the solvent [41], and thermal annealing [42], which together resulted in a two orders of
magnitude increase in the efficiency of OSCs. These advances have reaffirmed the importance of
exploring processing conditions to impact device properties, and have resulted in the proliferation
of manufacturing variants. However, these variants are invariably chosen using trial-and-error
approaches, which has resulted in the exploration of very scattered and narrow zones of the space of
potential processing pathways due to resource and time constraints.

5.1. Data Generation

The material morphology data analyzed in this paper was generated by a computational model
based on the phase-field method of recording the morphology evolution during thermal annealing
of the organic thin films [18,43]. We focused on the exploration of two manufacturing parameters:
blend ratio ϕ and strength of interaction χ. We selected these two parameters, since they are known
to strongly influence the properties of the resulting morphologies. For each fabrication variant (ϕ, χ),
we generated a series of morphologies that together formed one trajectory Γ(ϕ, χ).

We selected the range of our design parameters ϕ = [0.5, 0.6] and χ = [2.2, 3.0] to explore several
factors. First, we were interested in two stages of the process: early materials phase separation
and coarsening. Moreover, we wanted to explore various topological classes of morphologies.
In particular, we were interested in identifying the fabrication conditions leading to interpenetrated
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structures. Finally, we hoped to find the optimal annealing time that results in desired material
domain sizes. In total, we generated 16 trajectories, with, on average, 180 morpohologies per trajectory.
Each morphology was represented as an image converted into a 40, 000 dimensional spacesdefined by
pixel composition values. The entire data used in our experiments as well as the source code of the
method are open and available from https://gitlab.com/SCoRe-Group/Entropy-Isomap.

5.2. Results

For the target application of optimal manufacturing design, we leveraged dimensionality
reduction to gain insights into the morphological data. First, we aimed to discover the latent variables
governing the associated dynamic process. Second, we aimed to unravel the topology of the manifold
in order to explore the input parameter space and ultimately identify the manufacturing variant that
leads to the desired morphology.

Using Entropy-Isomap, we performed the analysis for a set of morphological pathways. In Figures 8
and 9, we depict the discovered three-dimensional manifold for the set of 16 pathways. In the
discovered manifold, the individual pathways are ordered according to process variables that were
varied to generate the data. In each figure, the same manifold is depicted eight times. For easier
inspection, each variant is individually color coded. The panels in the top row of Figure 8 depict
the pathways for fixed ϕ and varying χ. We observe that the pathways for increasing ϕ are ordered
from front to back. The panels in the bottom row of Figure 8 highlight the pathways for increasing χ.
Similarly to the top row, we observe the pathways to be ordered from right to left.

Figure 8. The manifold of the early stage of the morphology evolution with the first 30 points per
trajectory. To better illustrate the discovered ordering by two variables, we color coded the same
manifold according to increasing ϕ (top) and χ (bottom). (Please view in color).

Figure 8 depicts the manifold for the early stages of morphology evolution, while Figure 9 depicts
the manifold for a longer evolution time. However, in both cases, the observed ordering is consistent.
The pathways for increasing χ are ordered from the right (dark) to the left (light), while the pathways
for increasing ϕ are ordered from the front (green) to back (blue).

https://gitlab.com/SCoRe-Group/Entropy-Isomap
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Figure 9. The manifold of the late stage with the first 80 points per trajectory. The same manifold is
color coded according to increasing ϕ (top) and χ (bottom). (Please view in color).

The observed ordering of pathways strongly indicates that the input variables are also the latent
variables controlling the dynamics of the process. The discovered manifold also reveals that denser
sampling is required along the blend ratio space variable (ϕ). Specifically, the pathways sharing the
same χ but varying ϕ are spread further apart on the manifold than those sharing the same χ value.
This observation has important implications for the exploration of the design space. In particular,
adding more sampling points in the ϕ space offers higher exploration benefits, while adding more
points in the χ space improves exploitation chance. This indicates that the ϕ space should be explored
first, followed by a potential exploitation phase.

Finally, using Entropy-Isomap, we identified two regimes in the manifold. Morphologies in the
early stages of the process are mapped to evolve in the radial direction, while morphologies in late
stages are mapped to evolve parallel to each other. This is interesting as the underlying process
indeed has two inherent time scales. In the early stage, the fast and dynamic phase separation
between the two polymers occurs. During this stage, the composition of the individual phases
changes significantly. These changes mostly increase composition amplitude. In the second stage,
the equilibrium composition is already established. The coarsening between already formed domains
dominates the dynamics of the process. Here, the amplitude of the composition (signal) does not
change significantly. The changes mostly occur in the frequency space of the domain size, with the
domain sizes increasing over time.

6. Conclusions and Future Directions

Existing spectral dimensionality reduction methods do not work well when the underlying data
exhibits a temporal correlation, as is the case with dynamic process data. We propose using the notion
of neighborhood entropy to quantitatively determine the amount of information exchanged among data
instances, independent of the temporal component. On the basis of this measure, we propose the
Entropy-Isomap algorithm, which uses the entropy of the neighborhood to adaptively increase the
neighborhood size, and thus facilitate cross-talk across different process trajectories.

We show how the proposed methodology can be used to better understand the morphology
evolution of two immiscible materials. In future, the proposed approach can be leveraged for the smart
and autonomous exploration of the manufacturing design spaces in organic electronics. The notion of
mixing between individual trajectories can be used to detect the underexplored parts in the design,
thus helping to build more reliable manifolds and increase confidence in the understanding of
the dynamic process. The reduced order representation learnt by the proposed method shows a
clear ordering of the trajectories according to the process variables. At the same time, the learnt
representation reveals sparsely populated regions in the manifold, motivating the need for more
samples in those regions. Thus, this insight can provide guidance in terms of designing the next round
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of simulations that can generate data corresponding to the undersampled process configurations.
More importantly, the exposed undersampled regions of the design space can be used for active
learning of the dynamic processes, potentially reducing the number of required numerical experiments
to discover a stable manifold. Another promising direction is the use if a Bayesian surrogate, e.g.,
a Gaussian process-based model [44], as well as the use of predictive variance to execute the smart
exploration of the manufacturing process.
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