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ABSTRACT
Unlike dense linear algebra applications, graph applications
typically suffer from poor performance because of 1) ineffi-
cient utilization of memory systems through random memory
accesses to graph data, and 2) overhead of executing atomic
operations. Hence, there is a rapid growth in improving both
software and hardware platforms to address the above chal-
lenges. One such improvement in the hardware platform is a
realization of the Emu system, a thread migratory and near-
memory processor. In the Emu system, a thread responsible
for computation on a datum is automatically migrated over
to a node where the data resides without any intervention
from the programmer. The idea of thread migrations is very
well suited to graph applications as memory accesses of the
applications are irregular. However, thread migrations can
hurt the performance of graph applications if overhead from
the migrations dominates benefits achieved through the mi-
grations.

In this preliminary study, we explore two high-level com-
piler optimizations, i.e., loop fusion and edge flipping, and
one low-level compiler transformation leveraging hardware
support for remote atomic updates to address overheads aris-
ing from thread migration, creation, synchronization, and
atomic operations. We performed a preliminary evaluation of
these compiler transformations by manually applying them
on three graph applications over a set of RMAT graphs from
Graph500.—Conductance, Bellman-Ford’s algorithm for the
single-source shortest path problem, and Triangle Counting.
Our evaluation targeted a single node of the Emu hardware
prototype, and has shown an overall geometric mean reduc-
tion of 22.08% in thread migrations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MCHPC’18, November 11, 2018, Dallas, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286481

KEYWORDS
Loop fusion, Edge flipping, Graph algorithms, Thread mi-
gratory, Near-memory, Atomic operations, The Emu system,
Compilers

ACM Reference Format:
Prasanth Chatarasi and Vivek Sarkar. 2018. A Preliminary Study
of Compiler Transformations for Graph Applications on the Emu
System. In MCHPC’18: Workshop on Memory Centric High Perfor-
mance Computing (MCHPC’18), November 11, 2018, Dallas, TX,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3286475.3286481

1 INTRODUCTION
Though graph applications are increasing in importance with
the advent of "big data", achieving high performance with
graph algorithms is non-trivial and requires careful attention
from programmers [20]. Two significant bottlenecks to achiev-
ing higher performance on existing CPU and GPU-based ar-
chitectures are 1) inefficient utilization of memory systems
through random memory accesses to graph data, and 2) over-
head of executing atomic operations. Since graph applications
are typically cache-unfriendly and are not well supported by
existing traditional architectures, there is growing attention
being paid by the architecture community to innovate suitable
architectures for such applications. One such innovation is
the Emu system, a highly scalable near memory system with
support for migrating threads without programmer interven-
tion [8]. The system is designed to improve the performance
of data-intensive applications exhibiting weak locality, i.e.,
from irregular and cache-unfriendly memory access which
are often found in graph analytics [18] and sparse matrix al-
gebra operations [19].

Emu architecture. An Emu system consists of multiple
Emu nodes interconnected by a fast rapid IO network, and
each node (shown in Figure 1) contains nodelets, station-
ary cores and migration engines. Each nodelet consists of a
Narrow Channel DRAM (NCDRAM) memory unit and mul-
tiple Gossamer cores, and the co-location of the memory unit
with the cores makes the overall Emu system a near-memory
system. Even though each nodelet has a different physical co-
located memory unit, the Emu system provides a logical view
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of the entire memory via the partitioned global address space
(PGAS) model with memory contributed by each nodelet.

Each gossamer core of a nodelet is a general-purpose, sim-
ple pipelined processor with no support for data caches and
branch prediction units, and is also capable of supporting 64
concurrent threads using fine-grain multi-threading. A key as-
pect of the Emu system is thread migration by hardware, i.e.,
a thread is migrated on a remote memory read by removing
thread context from the nodelet and transmitting the thread
context to a remote nodelet without programmer intervention.
As a result, each nodelet requires multiple queues such as
service, migration and run queues to process threads spawned
locally (using spawn instruction) and also migrated threads.

Figure 1: Overview of a single Emu node (Figure
source: [10]), where a dotted circle represents a nodelet.
Note that, the co-location of the narrow channel memory
unit (NCDRAM) with gossamer cores makes the overall
Emu system a near memory system.

Software support. The Emu system supports the Cilk par-
allel programming model for thread spawning and synchro-
nization using cilk_spawn, cilk_sync and cilk_for
constructs [11]. Since the Emu hardware automatically takes
care of thread migration and management; hence the Cilk run-
time is discarded in the toolchain. Also, it is important to note
that appending a cilk_spawn keyword before a function
invocation to launch a new task is directly translated to the
spawn instruction of the Emu ISA during the compilation.
The Emu system also provides libraries for data allocation
and distribution over multiple nodelets, and intrinsic functions
for atomic operations and migrating thread control functions.
Also, there has been significant progress made in supporting
standard C libraries on the Emu system.

Even though the Emu system is designed to improve the
performance of data-sensitive workloads exhibiting weak-
locality, the thread migrations across nodelets can hamper

the performance if overhead from the thread migration dom-
inates the benefits achieved through the migration. In the
next section, we study both high-level and low-level com-
piler transformations which can be applied to original graph
applications to mitigate the overheads as mentioned earlier.

2 COMPILER TRANSFORMATIONS
In this section, we discuss two high-level compiler transfor-
mations (Node fusion and Edge flipping)1, and one low-level
compiler transformation leveraging the remote atomic update
feature of the hardware, to mitigate the impact of overheads
in the performance of graph applications on the Emu system.

2.1 Node/Loop Fusion
Programmers write graph applications with multiple parallel
loops over nodes of a graph either to 1) compute various prop-
erties of a node (e.g., in Conductance [7, 21]), or 2) query on
computed properties of nodes (e.g., in Average teenage follow-
ers [17]). In such scenarios, multiple such parallel loops can
be grouped into a single parallel loop, and compute multiple
properties in the same loop or query immediately after com-
puting the properties. This grouping can result in reducing
thread migrations occurring in later loops, and also overheads
arising from thread creation and synchronization. The group-
ing of multiple such parallel loops is akin to loop fusion, a
classical compiler transformation for improving locality; but
we use the transformation to reduce unnecessary migrations
(for more details, see Section 3.2).

2.2 Edge Flipping
Edge flipping is another compiler transformation discussed
in [15] to flip a loop over incoming edges of a node with
outgoing edges of the node. However, we generalize the edge
flipping transformation to allow flips between both incoming
and outgoing edges. To allow this bi-directional flipping, the
transformation assumes an input graph to be bi-directional,
i.e., each node in the graph stores a list of incoming edges
along with outgoing edges.

Vertex centric graph algorithms such as Page rank, Bellman-
Ford algorithm for single-source shortest path, Page coloring
offer opportunities to explore the edge flipping transforma-
tion since these algorithms either explore incoming edges of
a node to avoid synchronization (pull-based approach), or
explore outgoing edges to reduce random memory accesses
(push-based approach), or explore a combination [6, 29]. We
discuss the above push-pull dichotomy in Section 2.2, using

1Note that these high-level transformations – node fusion and edge flipping –
have already been explored in past work on optimizing graph algorithms on
the x86 architectures [15], and we are evaluating them in the context of the
EMU system in this paper.
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the Bellman-Ford’s algorithm as a representative of vertex-
centric graph algorithms.

2.3 Use of Remote Updates
Remote updates, one of the architectural features of the Emu,
are stores and atomic operations to a remote memory location
that don’t require returning a value to the thread, and these
operations do not result in thread migrations [8]; instead they
send an information packet to the remote nodelet containing
the data and the operation to be performed. These remote
updates also can be viewed as very efficient special-purpose
migrating threads, and they don’t return a result unlike reg-
ular atomic operations, but they return an acknowledgement
that the memory unit of the remote nodelet has accepted the
operation. We leverage this feature as a low-level compiler
transformation replacing regular atomic operations that don’t
require returning a value by the corresponding remote up-
dates. The benefits of this transformation can be immediately
seen in vertex-centric algorithms (Section 3.3) and also in the
triangular counting algorithm (Section 3.4).

3 EXPERIMENTS
In this section, we present the benefits of applying the com-
piler transformations on graph algorithms. We begin with an
overview of the experimental setup and the graph algorithms
used in the evaluation, and then we present our discussion on
preliminary results for each algorithm.

3.1 Experimental Setup
Our evaluation uses dedicated access to a single node of
the Emu system, i.e., the Emu Chick prototype2 which uses
an Arria 10 FPGA to implement Gossamer cores, migration
engines, and stationary cores of each nodelet. Table 1 lists the
hardware specifications of a single node of the Emu Chick.

Table 1: Specifications of a single node of the Emu system.

Emu system
Microarch Emu1 Chick

Clock speed 150 MHz
#Nodelets 8

#Cores/Nodelet 1
#Threads/Core 64

Memorysize/Nodelet 8 GB
NCDRAM speed 1600MHz

Compiler toolchain emusim.HW.x (18.08.1)

In the following experiments, we compare two experimen-
tal variants: 1) Original version of a graph algorithm running
with all cores of a single node and 2) Transformed version af-
ter manually applying compiler transformations on the graph
2Several aspects of the system are scaled down in the prototype Emu system,
e.g., number of gossamer cores of a nodelet

algorithm. In all experiments, we measure only the execution
time of the kernel and report the geometric mean execution
time measured over 50 runs repeated in the same environment
for each data point. The speedup is defined as the execution
time of the original version of a graph algorithm divided by
the execution time of the transformed version of the program
running with all cores of a single node of the Emu system in
both cases,i.e., eight cores.

We also use an in-house simulation environment of the
Emu prototype, whose specifications match with the hardware
details mentioned in Table 1, to measure statistics of programs
such as thread migrations, threads created and terminated.
We are not currently aware of any methods for extracting
these statistics from the hardware. We define the percentage
reduction in thread migrations3 as follows:

%reduction in migrations

= (1 −
( #migrations in the transformed version

#migrations in the original version
)
)
× 100

Finally, we evaluate the benefits of compiler transformations
by measuring both improvements in execution time on the
Emu hardware and reduction in thread migrations on the Emu
simulator.

Graph applications: For our evaluation, we consider three
graph algorithms, i.e., 1) Conductance algorithm, 2) Bellman-
Ford’s algorithm for Single-source shortest path (SSSP) prob-
lem, and 3) Triangle counting algorithm. Both original and
transformed versions of above algorithms are implemented
using the Meatbee framework [13], an in-house experimental
streaming graph engine used to develop graph algorithms for
the Emu system. The Meatbee framework, inspired by the
STINGER framework [9], uses a striped array of pointers to
distribute the vertex array across all nodelets in the system,
and also implements the adjacency list as a hash table with a
small number of buckets.

Input data-sets: We use RMAT graphs (edges of these
graphs are generated randomly with a power-law distribution),
scale4 from 6 to 14 as specified by Graph500 [2]. Note that all
the above graphs specified by Graph500 are generated using
the utilities present in the STINGER framework. Table 2
presents details of the RMAT graphs used in our evaluation,
and total thread migrations and execution times of the original
graph algorithms on the Emu system.

3Note that the thread migration counts are for the entire program, and we are
not currently aware of any existing approaches on how to obtain migration
counts for a specific region of code.
4A scale of n for an input graph refers to having 2n vertices.
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Scale #vertices #edges
Thread migrations in
the original program

Execution time of the original program (ms),
geometric mean of 50 runs

Conductance SSSP-BF Triangle counting Conductance SSSP-BF Triangle counting
6 64 1K 6938 10915 26407 4.45 26.32 53.63
7 128 2K 13812 22851 84168 7.51 393.04 163.36
8 256 4K 28221 48354 252440 13.89 1634.64 547.84
9 512 8K 59068 104653 809423 32.13 2887.61 1694.09
10 1K 16K 122088 220204 2475350 64.59 4589.42 3942.55
11 2K 32K 253364 474118 7381977 134.43 10225.10 12649.30
12 4K 64K 522530 1136600 21777902 844.38 32140.30 36199.60
13 8K 128K 1065640 2332741 64063958 1841.53 - 185864.00
14 16K 256K 2171311 4569519 180988114 7876.99 - 721578.00

Table 2: Experimental evaluation of three graph algorithms (Conductance, SSSP-BF and Triangle counting) on
the RMAT graphs from scales 6 to 14 specified by Graph500. Transformations applied on the algorithms:
Conductance/SSSP-BF/Triangle counting: (Node fusion)/(Edge flipping and Remote updates)/ (Remote updates). The
evaluation is done a single node of the Emu system described in Table 1. Note that we had intermittent termination
issues while running SSSP-BF from scale 13-14 on the Emu node, and hence we omitted its results.

3.2 Conductance algorithm
The conductance algorithm is a graph metric application to
evaluate a graph partition by counting the number of edges
between nodes in a given partition and nodes in other graph
partitions [7, 21]. The algorithm is frequently used to detect
community structures in social graphs. An implementation of
the conductance algorithm is shown in Algorithm 1. The im-
plementation5 at a high-level consists of three parallel loops
iterating over vertices of a graph to compute different prop-
erties (such as din, dout, dcross) of a given partition
(specified as id in the algorithm). Finally, these properties
are used to compute conductance value of the partition of the
graph.

As can be seen from the implementation, the EMU hard-
ware spawns a thread for every vertex (v) of the graph from
the first parallel loop (lines 2-4), and migrates to a nodelet
where the vertex property partition_id is stored after
encountering the property (v.partition_id) at line 3.
Since the degree property of the vertex (v) is also stored on
the same nodelet as of the other property6, the thread doesn’t
migrate on encountering the property, v.degree, at line 4.
After reduction of the din variable, the hardware performs
a global synchronization of all spawned threads because of
an implicit barrier after the parallel loop. After the synchro-
nization, the hardware again spawns a thread for every vertex
from the second parallel loop (lines 5-7), and migrates after
encountering the same property (v.partition_id at line
6). The same behavior is repeated in the third parallel loop as

5The implementation is from a naive translation from existing graph analytics
domain-specific compilers for non-EMU platforms.
6The properties of vertices (such as partition_id, degree) are allo-
cated similar to the vertex allocation, i.e., uniformly across all nodelets.

Algorithm 1: An implementation of the Conductance
algorithm [7, 21].

1 def CONDUCTANCE(V , id ):
2 for each v ∈ V do in parallel with reduction
3 if v.partition_id == id then

▷ Thread migration for v .partition_id value
4 din+ = v .deдree

5 for each v ∈ V do in parallel with reduction
6 if v.partition_id != id then
7 dout+ = v .deдree

8 for each v ∈ V do in parallel with reduction
9 if v.partition_id == id then

10 for each nbr ∈ v .nbrs do
11 if nbr .partition_id != id then
12 dcross+ = 1
13 return dcross/((din < dout)?din : dout)

well (lines 8-12). The repeated migrations to the same nodelet
from multiple parallel loops, which arise from accessing the
same property or a different property which is stored on the
same nodelet, can be reduced by fusing all the three parallel
loops into a single loop. Also, the fusion of multiple parallel
loops can reduce the overhead of multiple thread creations
and synchronization. As can be seen from Figure 2, we have
observed a geometric mean reduction of 6.06% in the total
number of thread migrations after fusing three loops. As a
result, we also found a geometric mean speedup of 1.95x in
the execution time of the computation over the scale 6-14
of RMAT graphs specified by Graph500. This performance
improvement demonstrates the need for fusing parallel loops
over nodes of a graph to compute values/properties together
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to reduce thread migrations in applications such as Conduc-
tance.
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Speedup after applying loop fusion

%reduction in thread migrations after applying loop fusion

Figure 2: Speedup over the original conductance algo-
rithm on a single Emu node (8 nodelets) and % reduc-
tions in thread migrations after applying loop fusion.

3.3 Single Source Shortest Path using
Bellman-Ford’s Algorithm (SSSP-BF)

Bellman-Ford’s algorithm is used to compute shortest paths
from a single source vertex to all the other vertices in a
weighted directed graph. An implementation of the algo-
rithm is shown in Algorithm 2. We added a minor step (at
lines 15, 18, 23-25) in the body of the t-loop to the im-
plementation for termination if subsequent iterations of the
t-loop will not make any more changes, i.e., the distance
computed (temp_distance) for each vertex in the current
iteration is the same as the distance in the previous iteration
(distance).

As can be seen from the implementation, the EMU hard-
ware spawns a thread for every vertex (v) of the graph from
the parallel loop (lines 6-13) nested inside the t-loop. The
thread responsible for a particular vertex (v) in a given it-
eration (t) migrates to an incoming neighbor vertex (u) on
encountering the accesses distance(u) and weight(u,
v) (line 8). After adding the values, the thread migrates back
to the original node for writing after encountering the access
temp_distance(u) (line 9). The same migration behav-
ior is repeated for every incoming neighbor vertex, and finally
the local value based on the best distance from incoming
neighbors is computed. This approach is commonly known
as a pull-based approach since the vertex pulls information
from incoming neighbors to update its local value. However,
the back and forth migrations for every neighbor vertex via
incoming edges can be avoided by doing the edge flipping
transformation (discussed in Section 2.2), i.e., the loop iterat-
ing over incoming edges is flipped into a loop over outgoing

Algorithm 2: An implementation of the Bellman-Ford’s
algorithm (SSSP-BF).

1 def SSSP_BFS(V , id ):
2 distance(id) ← 0
3 distance(v) ← MAX , for ∀v ∈ (V − {id})
4 temp_distance(v) ← 0, for ∀v ∈ V
5 for t ← 0 to |V | − 1 do
6 for each v ∈ V do in parallel
7 for each u ∈ incominд_neiдhbors(v) do
8 temp = distance(u) +weiдht(u,v)

▷Migration for distance(u) value
9 if distance(v) > temp then

10 temp_distance(v) = temp

11 end
12 end
13 endfor
14

15 modi f ied ← f alse

16 for each v ∈ V do in parallel
17 if distance(v)! = temp_distance(v) then
18 modi f ied ← true

19 distance(v) = temp_distance(v)
20 end
21 endfor
22

23 if modified == false then
24 break;
25 end
26 end
27 return distance;

edges. The transformations leads to a push-based approach for
the SSSP algorithm, in which a vertex pushes its contribution
(distance(u) + weight(u, v)) to its neighbors ac-
cessible via outgoing edges and doesn’t require migrating to
the neighbors, as in the pull-based approach. Since multiple
vertices can have a common neighbor, the contribution is done
atomically, i.e., by using atomic_min in our implementation.

As a result of applying edge-flipping transformation, we
have observed a geometric mean reduction of 8.69% in the
total number of thread migrations (shown in Figure 3). How-
ever, the push-based approach with regular atomic updates
didn’t perform well compared with the pull-based approach
from the scale of 7 to 9 (shown in Figure 4), because of ir-
regularity in the input graphs and imbalance in the number
of incoming and outgoing edges. As a result, the cost of mi-
grating back and forth in the pull-based approach was not
expensive compared to doing more atomic updates in the
push-based approach for the above data points. This observa-
tion is in accordance with the push-pull dichotomy discussed
in [6, 29].
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Figure 3: % reductions in thread migrations of SSSP-
BF algorithm after applying edge flipping with regular
atomic updates and with remote atomic updates on a sin-
gle node (8 nodelets) of Emu Chick.

Figure 4: Speedup of SSSP-BF algorithm on a single Emu
node (8 nodelets) after applying edge flipping with regu-
lar atomic updates and with remote updates.

Furthermore, the push-based approach can be strengthened
by replacing regular atomic updates with remote atomic up-
dates since a node which is pushing its contribution (i.e., its
distance) to neighbors via outgoing edges doesn’t need a re-
turn value. By doing so, we have observed a geometric mean
reduction of 30.28% in thread migrations (shown in Figure 3)
compared to the push-based approach with regular atomic
updates. Also, there is an overall geometric mean improve-
ment of 1.57x in execution time relative to the push-based
approach with regular atomic updates (shown in Figure 4).
The above performance improvement demonstrates the need
for using remote atomic updates for scalable performance,
and also exploring hybrid approaches involving both push
and pull strategies based on input graph data.

3.4 Triangle Counting Algorithm
Triangle counting is another graph metric algorithm which
computes the number of triangles in a given undirected graph,
and also computes the number of triangles that each node
belongs to [24]. The algorithm is frequently used in complex
network analysis, random graph models, and also real-world
applications such as spam detection. An implementation of
the Triangle counting is shown in Algorithm 3, and it works by
iterating over each vertex(v), picking two distinct neighbors
(u, w), and check if there exists an edge between them to be
part of a triangle. Also, the implementation avoids duplicate
counting by delegating the counting of a triangle to the vertex
with lower id.

Algorithm 3: An implementation of the Triangle count-
ing algorithm [24].

1 tc(v) ← 0, for ∀v ∈ (V )
2 for each v ∈ V do in parallel
3 for each u ∈ v .nbrs do
4 if nbr1 > v then
5 for each w ∈ v .nbrs do
6 if w > u then
7 if edдe_exists(u,w) then
8 tc_count ++; //Atomic
9 tc(v) ++; //Atomic

10 tc(u) ++; //Atomic
11 tc(w) ++; //Atomic

▷ Above regular atomics can be
replaced by the remote updates.
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Figure 5: Speedup over the original triangle counting im-
plementation on a single Emu node (8 nodelets) and % re-
ductions in thread migrations after using remote atomic
updates.

6



Exploring Compilers Transformations for EMU. MCHPC’18, November 11, 2018, Dallas, TX, USA

In the above implementation of the triangle counting al-
gorithm, whenever a triangle is identified (line 7), the imple-
mentation atomically increments the overall triangles count
and triangle counts of the three vertices of the triangle. As
part of the atomic update operation, the thread performs a
migration to the nodelet having the address. However, the
thread incrementing the triangle counts doesn’t need the re-
turn value of the increment for further computation; hence,
the regular atomic updates can be replaced by remote atomic
updates to reduce thread migrations. After replacing with re-
mote updates, we have observed a geometric mean reduction
of 54.55% in the total number of thread migrations (shown
in Figure 5). As a result, we also found a geometric mean
speedup of 1.05x7 in the execution time of the kernel over the
scale 6-14 of RMAT graphs specified by Graph500.

4 RELATED WORK
There is an extensive body of literature in optimizing graph
applications for a variety of traditional architectures [3, 4, 27],
accelerators [12, 16], and processing in memory (PIM) ar-
chitectures [1, 22]. Also, there has been significant research
done on optimizing task-parallel programs to reduce the over-
heads arising from task creation, synchronization [23, 25, 30]
and migrations [26]. In this section, we discuss past work
closely related to optimizing irregular applications for the
Emu system and also past work on compiler optimizations in
mitigating task (thread) creation, synchronization and migra-
tion overhead.

Emu related past work. Kogge et al. in [19] discussed
migrating thread paradigm of the Emu system as an excellent
match for systems with significant near-memory processing,
and evaluated its advantage over a sparse matrix application
(SpMV) and a streaming graph analytic benchmark (Fire-
hose). Hein et al. [14] characterized the Emu chick hardware
prototype (same as what we used in our evaluation) using
custom kernels and discussed memory allocation, thread mi-
grations strategies for SpMV kernels. In this work, we study
high-level, and low-level compiler transformations that can
benefit existing graph algorithms by leveraging the intricacies
discussed in [5, 8, 14, 19, 28].

Programming models support and compiler optimiza-
tions for reducing thread creation, synchronization and
migration overheads. Task-parallel programs often result
in considerable overheads in task creation and synchroniza-
tion, and hence approaches in [23, 25, 30] presented compiler
frameworks to transform the input program to reduce the over-
heads using optimizations such as task fusion, task chunking,
synchronization (finish construct) elimination. Our study

7Note that the computational complexity of the triangle counting algorithm
is significant, i.e., O (m

3
2 ) where m is number of edges, and even 5% im-

provement is equivalent to few thousands of msecs as reported in Table 2.

on the loop fusion transformation to reduce thread creation
and synchronization overheads on the Emu system is inspired
by the above compiler frameworks and also from the Green-
Marl DSL compiler [15].

5 CONCLUSIONS AND FUTURE WORK
Graph applications are increasing in popularity with the ad-
vent of "big data", but achieving higher performance is not
trivial. The major bottlenecks in graph applications are 1)
inefficient utilization of memory subsystems through random
memory accesses to the graph data, and 2) overhead of ex-
ecuting atomic operations. Since these graph applications
are cache-unfriendly and are not well handled by existing
traditional architectures, there is growing attention in the ar-
chitecture community to innovate suitable architectures for
such applications.

One of the innovative architecture to handle graph applica-
tions is a thread migratory architecture (Emu system), where
a thread responsible for computation on a data is migrated
over to a nodelet where the data resides. However, there are
significant challenges which need to be addressed to gain
the potential of Emu system, and they are reducing thread
migration, creation, synchronization, and atomic operation
overheads. In this study, we explored two high-level compiler
optimizations, i.e., loop fusion and edge flipping, and one
low-level compiler transformation leveraging remote atomic
updates to address the above challenges. We performed a
preliminary evaluation of these compiler transformations by
manually applying them on three graph applications over a set
of RMAT graphs from Graph500.—Conductance, Bellman-
Ford’s algorithm for the single-source shortest path problem,
and Triangle Counting. Our evaluation targeted a single node
of the Emu hardware prototype, and has shown an overall
geometric mean reduction of 22.08% in thread migrations.
This preliminary study clear motivates us in exploring the
implementation of automatic compiler transformations to al-
leviate the overheads arising from running graph applications
on the Emu system.
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[21] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Net-
work Analysis and Graph-Mining Library. ACM Trans. Intell. Syst.
Technol. 8, 1, Article 1 (July 2016), 20 pages. https://doi.org/10.1145/
2898361

[22] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. 2017. Graph-
PIM: Enabling Instruction-Level PIM Offloading in Graph Computing
Frameworks. In 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 457–468. https://doi.org/10.
1109/HPCA.2017.54

[23] V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar.
2013. A Transformation Framework for Optimizing Task-Parallel
Programs. ACM Trans. Program. Lang. Syst. 35, 1, Article 3 (April
2013), 48 pages. https://doi.org/10.1145/2450136.2450138

[24] Thomas Schank. 2007. Algorithmic Aspects of Triangle-Based Network
Analysis. Ph.D. Dissertation. Universität Karlsruhe.

[25] Jun Shirako, Jisheng M. Zhao, V. Krishna Nandivada, and Vivek N.
Sarkar. 2009. Chunking Parallel Loops in the Presence of Synchro-
nization. In Proceedings of the 23rd International Conference on
Supercomputing (ICS ’09). ACM, New York, NY, USA, 181–192.
https://doi.org/10.1145/1542275.1542304

[26] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2010. Hi-
erarchical Place Trees: A Portable Abstraction for Task Parallelism
and Data Movement. In Proceedings of the 22Nd International Confer-
ence on Languages and Compilers for Parallel Computing (LCPC’09).
Springer-Verlag, Berlin, Heidelberg, 172–187. https://doi.org/10.1007/
978-3-642-13374-9_12

[27] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon,
Bruce Hendrickson, and Umit Catalyurek. 2005. A Scalable Dis-
tributed Parallel Breadth-First Search Algorithm on BlueGene/L. In
Proceedings of the 2005 ACM/IEEE Conference on Supercomput-
ing (SC ’05). IEEE Computer Society, Washington, DC, USA, 25–.
https://doi.org/10.1109/SC.2005.4

[28] Jeffrey Young, Eric Hein, Srinivas Eswar, Patrick Lavin, Jiajia Li, Jason
Riedy, Richard Vuduc, and Tom Conte. 2018. A Microbenchmark
Characterization of the Emu Chick. arXiv:cs.DC/1809.07696

[29] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman P. Amarasinghe. 2018. GraphIt - A High-
Performance DSL for Graph Analytics. CoRR abs/1805.00923 (2018).
arXiv:1805.00923 http://arxiv.org/abs/1805.00923

[30] Jisheng Zhao, Jun Shirako, V. Krishna Nandivada, and Vivek Sarkar.
2010. Reducing Task Creation and Termination Overhead in Explicitly
Parallel Programs. In Proceedings of the 19th International Conference
on PACT. ACM, New York, NY, USA, 169–180.

8

https://doi.org/10.1007/11602569_48
https://doi.org/10.1109/ICPP.2006.34
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/HPEC.2012.6408680
http://www.emutechnology.com/products/#lightbox/0/
http://www.emutechnology.com/products/#lightbox/0/
https://doi.org/10.1145/277650.277725
https://github.gatech.edu/ehein6/meatbee
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1109/PACT.2011.14
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1109/IPDPSW.2017.176
https://doi.org/10.1109/IPDPSW.2017.176
https://doi.org/10.1145/3149704.3149770
https://doi.org/10.1145/3149704.3149770
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2898361
https://doi.org/10.1145/2898361
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/1542275.1542304
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1109/SC.2005.4
http://arxiv.org/abs/cs.DC/1809.07696
http://arxiv.org/abs/1805.00923
http://arxiv.org/abs/1805.00923

	Abstract
	1 Introduction
	2 Compiler Transformations
	2.1 Node/Loop Fusion
	2.2 Edge Flipping
	2.3 Use of Remote Updates

	3 Experiments
	3.1 Experimental Setup
	3.2 Conductance algorithm
	3.3 Single Source Shortest Path using Bellman-Ford's Algorithm (SSSP-BF)
	3.4 Triangle Counting Algorithm

	4 Related Work
	5 Conclusions and Future work
	6 Acknowledgments
	References

